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Abstract— Complex-valued signals occur in many areas of
science and engineering and are thus of fundamental interest.
In the past, it has often been assumed, usually implicitly, that
complex random signals are proper or circular. A proper complex
random variable is uncorrelated with its complex conjugate, and
a circular complex random variable has a probability distribution
that is invariant under rotation in the complex plane. While these
assumptions are convenient because they simplify computations,
there are many cases where proper and circular random signals
are very poor models of the underlying physics. When taking
impropriety and noncircularity into account, the right type of
processing can provide significant performance gains. There are
two key ingredients in the statistical signal processing of complex-
valued data: (1) utilizing the complete statistical characterization
of complex-valued random signals; and (2) the optimization of
real-valued cost functions with respect to complex parameters.
In this overview article, we review the necessary tools, among
which are widely linear transformations, augmented statistical
descriptions, and Wirtinger calculus. We also present some
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selected recent developments in the field of complex-valued signal
processing, addressing the topics of model selection, filtering, and
source separation.

Index Terms— Improper, noncircular, widely linear, Wirtinger
calculus, CR calculus, model selection, estimation, independent
component analysis.

I. INTRODUCTION

Complex-valued signals arise in many areas of science

and engineering, such as communications, electromagnetics,

optics, and acoustics, and are thus of fundamental interest.

In the past, it has often been assumed—usually implicitly—

that complex random signals are proper or circular. A proper

complex random variable is uncorrelated with its complex

conjugate, and a circular complex random variable has a

probability distribution that is invariant under rotation in the

complex plane. These assumptions are convenient because

they simplify computations and, in many respects, make

complex random signals look and behave like real random

signals. While these assumptions can often be justified, there

are also many cases where proper and circular random signals

are very poor models of the underlying physics. This fact has

been known and appreciated by oceanographers since the early

1970s [80], but it has only more recently started to influence

the thinking of the signal processing community.
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In the last two decades, there have been important advances

in this area that show impropriety and noncircularity as an

important characteristic of many signals of practical interest.

When taking impropriety and noncircularity into account, the

right type of processing can provide significant performance

gains. For instance, in mobile multiuser communications, it

can enable an improved tradeoff between spectral efficiency

and power consumption. Important examples of digital mod-

ulation schemes that produce improper complex baseband

signals are: Binary Phase Shift Keying (BPSK), Pulse Am-

plitude Modulation (PAM), Gaussian Minimum Shift Keying

(GMSK), Offset Quaternary Phase Shift Keying (OQPSK),

and baseband (but not passband) Orthogonal Frequency Di-

vision Multiplexing (OFDM), which is commonly called

Discrete Multitone (DMT) [119]. A small sample of papers

exploiting impropriety of these signals is [140], [45], [123],

[62], [46], [85], [83], [138], [22], [57], [79], [31], [78], and

[23]. Improper baseband communication signals can also arise

due to imbalance between their in-phase and quadrature (I/Q)

components. I/Q imbalance degrades the signal-to-noise-ratio

and thus bit error rate performance. Some papers proposing

ways of compensating I/Q imbalance in different types of com-

munication systems include [15], [110], and [142]. Techniques

for wide-band system identification when the system (e.g., a

wide-band wireless communication channel) is not rotationally

invariant are presented in [81] and [82].

In array processing, a typical goal is to estimate the direction

of arrival (DOA) of one or more signals-of-interest impinging

on a sensor array. If the signals-of-interest or the interference

are improper (as they would be if they originated, e.g., from

a BPSK transmitter), this can be exploited to achieve higher

DOA resolution or higher Signal-to-Interference-plus-Noise-

Ratio (SINR). Some papers addressing the adaptation of array

processing algorithms to improper signals include [25], [77],

[49], [36], [26], and [107].

Data-driven methods for signal processing, in particular

latent variable analysis (LVA), is another area where exploiting

impropriety and noncircularity has led to important advances.

In LVA, much interest has centered around independent

component analysis (ICA), where the multivariate data are

decomposed into additive components that are as independent

as possible. It has been shown that, under certain conditions,

ICA can be achieved by exploiting impropriety [63], [41].

Significant performance gains are noted when algorithms

explicitly take the noncircular nature of the data into account

[7], [96], [87], [88], [69], [141]. Among the many applications

of ICA, medical data analysis and communications have been

two of the most active. In [141], noncircularity is exploited

for feature extraction in electrocardiograms (ECGs). In [67],

[68], noncircularity is used in the analysis of functional

magnetic resonance imaging (fMRI) data, leading to improved

estimation of neural activity.

There are two key ingredients in the statistical signal

processing of complex-valued data: (1) utilizing the complete

statistical characterization of complex-valued random signals;

and (2) the optimization of real-valued cost functions with

respect to complex parameters. With respect to (1), Brown

and Crane [20] in 1969 were among the first to consider the

complementary correlation, which is the correlation of a com-

plex signal with its complex conjugate. They also introduced

linear-conjugate linear (or widely linear) transformations that

allow access to the information contained in this correlation.

At first, the impact of this paper was limited. It took until the

1990s before a string of papers showed renewed interest in this

topic. Many were from the French school of signal processing.

Among the important early contributions were the fundamental

studies by Comon, Duvaut, Amblard, and Lacoume [10], [32],

[39], [60], the derivation of the widely linear minimum mean-

squared error filter by Picinbono and Chevalier [103], the work

on higher-order statistics by Lacoume, Gaeta, and Amblard

[11], [12], [43], [61], [76], [109], the introduction of the

noncircular Gaussian distribution by van den Bos [129], and

the derivation of the optimum Wiener filter for cyclostationary

complex processes by Gardner [44]. We should also mention

the more mathematically oriented work by Vakhania and

Kandelaki [125] on random vectors with values in complex

Hilbert spaces.

The results concerning the optimization of real-valued func-

tions with complex arguments are much older still, although

they have gone largely unnoticed by the engineering commu-

nity. It was already in 1927 that Wirtinger proposed gener-

alized derivatives of non-holomorphic (including real-valued)

functions with respect to complex arguments [137]. However,

differentiating such functions separately with respect to real

and imaginary parts—and using varying definitions for the

derivatives—has been the common practice. This approach is

tedious, and in an attempt to make the terms and analysis more

manageable, simplifying assumptions are usually introduced.

A common such assumption is circularity. Wirtinger calculus

(also called the CIR-calculus [59]) presents an elegant alter-

native, which allows keeping all computations in the complex

domain. In the engineering community, Wirtinger calculus was

rediscovered by Brandwood in 1983 [19], and then further

developed by van den Bos, albeit for gradient and Hessian

formulations in C2N [126], [128]. The extensions of gradient

and Hessian expressions to CN are more recent [59], [64],

[65].

Our goal in this article is to review all these fundamental re-

sults, and to present some selected recent developments in the

field of complex-valued signal processing. Naturally, in a field

as wide as this, one faces the difficult decision of what topics

to cover. We have decided to focus on three key problems,

namely model selection, filtering, and source separation. Some

of these results have been drawn from the first author’s chapter

in the edited book [5], and the second and third authors’ book

[115], which provides a comprehensive review of this field. We

thank Wiley Interscience and Cambridge University Press for

their kind permission to use some material from these books.

Another recent book on this topic is [75], which has a focus

on neural networks.

We also provide some critical perspectives in this paper.

As is often the case when new tools are introduced, there

may also be some over-excitement and abuse. We comment

on several points: There are certain instances where the use of

improper/noncircular models is simply unnecessary and will

not improve performance. The fact that a signal is improper
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or noncircular does not guarantee that this can be exploited

to improve a metric such as mean-squared error. Moreover,

employing improper/noncircular models can even be disadvan-

tageous because they are more complex than proper/circular

models. Performance should be defined in a broader sense

that includes not only optimality with respect to a selected

metric, but also other properties of the algorithm, such as

robustness and convergence speed. So an improvement in

mean-squared error performance may come at the price of

less robust and more slowly converging iterative algorithms.

Therefore, the question of whether to use proper/circular or

improper/noncircular models requires careful deliberation. We

show that circular models may be preferable when the degree

of impropriety/noncircularity is small, the number of samples

is small, or the signal-to-noise ratio is low. We provide a

number of concrete examples that clarify these points.

In terms of terminology, a general question that has divided

researchers is how to extend definitions from the real to

the complex case. For example, since the complementary

covariance has traditionally been ignored, definitions of uncor-

relatedness and orthogonality are given new names when the

complementary covariance is taken into account. This practice

leads to some counterintuitive results such as “two uncor-

related Gaussian random vectors need not be independent”

(because their complementary covariance matrix need not be

diagonal). We would like to avoid such displeasing results,

and therefore always adhere to the following general principle:

Definitions and conditions derived for the real and complex

domains should be equivalent. This means that complementary

covariances must be considered if they are nonzero.

The rest of the paper is organized as follows: In the next

section, we provide a review of the tools needed for (1)

utilizing the complete statistical characterization of complex-

valued random signals and (2) the optimization of real-

valued cost functions with respect to complex parameters.

These are widely linear transformations, augmented statistical

descriptions, and Wirtinger calculus. Section III addresses the

question of how to detect whether a given signal is circular or

noncircular, and more generally, how to detect the number of

circular and noncircular signals in a given signal subspace.

Section IV discusses widely linear estimation, which takes

the information in the complementary covariance into account,

and Section V deals with ICA. We hope that our paper will

illuminate the role impropriety and noncircularity play in

signal processing, and demonstrate when and how they should

be taken into account.

II. PRELIMINARIES

A. Wirtinger Calculus

In statistical signal processing, we often deal with a real-

valued cost function, such as a likelihood function or a

quadratic form, which is then either analytically or numerically

optimized with respect to a vector or matrix of parameters.

What happens when the parameters are complex-valued? That

is, how do we differentiate a real-valued function with respect

to a complex argument?

Consider first a complex-valued function f(z) = u(zr, zi)+
jv(zr, zi), where z = zr + jzi. The classical definition of

complex differentiability requires that the derivatives defined

as the limit

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)
∆z

(1)

are independent of the direction in which ∆z approaches 0
in the complex plane. This requires that the Cauchy-Riemann

equations [3], [5]

∂u

∂zr
=

∂v

∂zi
and

∂u

∂zi
= − ∂v

∂zr
(2)

be satisfied. These conditions are necessary for f(z) to be

complex-differentiable. If the partial derivatives of u(zr, zi)
and v(zr, zi) are continuous, then they are sufficient as well.

A function that is complex-differentiable on its entire domain

is called holomorphic or analytic. Obviously, since real-valued

cost functions have v(zr, zi) ≡ 0, the Cauchy-Riemann

conditions do not hold, and hence cost functions are not

analytic. Indeed, the Cauchy-Riemann equations impose a

rigid structure on u(zr, zi) and v(zr, zi) and thus f(z). A

simple demonstration of this fact is that either u(zr, zi) or

v(zr, zi) alone suffices to express the derivatives of an analytic

function.

The usual approach to overcome this basic limitation is

to evaluate separate derivatives with respect to the real and

imaginary parts of a non-analytic function, which may then

be stacked in a vector of twice the original dimension. In the

end, this solution is converted back into the complex domain.

Needless to say, this approach is cumbersome. In some cases

(for example, f(z) = |g(z)|2 [5]), it even requires additional

assumptions (for the example, analytic g(z)) to make it work.

Wirtinger calculus [137]—also called the CIR calculus

[59]—provides a framework for differentiating non-analytic

functions. Importantly, it allows performing all the derivations

in the complex domain, in a manner very similar to the real-

valued case. All the evaluations become quite straightforward

making many tools and methods developed for the real case

readily available for the complex case. By keeping the expres-

sions simple, we also eliminate the need for simplifying, but

often inaccurate, assumptions such as circularity.

Wirtinger calculus only requires that f(z) be differentiable

when expressed as a function f : IR2 → IR2. Such a

function is called real-differentiable. If u(zr, zi) and v(zr, zi)
have continuous partial derivatives with respect to zr and zi,
f is real-differentiable. We now define the two generalized

complex derivatives

∂f

∂z
,

1

2

(
∂f

∂zr
− j ∂f

∂zi

)
and

∂f

∂z∗
,

1

2

(
∂f

∂zr
+ j

∂f

∂zi

)
,

(3)

which can be formally “derived” by writing zr = (z + z∗)/2
and zi = (z − z∗)/2j and then using the chain rule [104].

These generalized derivatives can be formally implemented by

regarding f as a bivariate function f(z, z∗) and treating z and

z∗ as independent variables. That is, when applying ∂f/∂z,

we take the derivative with respect to z, while formally treating

z∗ as a constant. Similarly, ∂f/∂z∗ yields the derivative with

respect to z∗, formally regarding z as a constant. Thus, there is

no need to develop new differentiation rules. This was shown
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in [19] in 1983 without a specific reference to Wirtinger’s

earlier work [137]. Interestingly, many of the references that

refer to [19] and use the generalized derivatives (3) evaluate

them by computing derivatives with respect to zr and zi,
instead of z and z∗. This leads to unnecessarily complicated

derivations.

The Cauchy-Riemann equations can simply be stated as

∂f/∂z∗ = 0. In other words, an analytic function cannot

depend on z∗. If f is analytic, then the usual complex

derivative in (1) and ∂f/∂z in (3) coincide. So Wirtinger

calculus contains standard complex calculus as a special case.

For real-valued f(z), we have (∂f/∂z)∗ = ∂f/∂z∗,

i.e., the derivative and the conjugate derivative are complex

conjugates of each other. Because they are related through

conjugation, we only need to compute one or the other. As

a consequence, a necessary and sufficient condition for real-

valued f to have a stationary point is ∂f/∂z = 0. An

equivalent necessary and sufficient condition is ∂f/∂z∗ = 0
[19].

As an example for the application of Wirtinger derivatives,

consider the real-valued function f(z) = |z|4 = z4r +2z2rz
2
i +

z4i . We can evaluate ∂f/∂z by differentiating separately with

respect to zr and zi,

∂f

∂z
=

1

2

(
∂f

∂zr
− j ∂f

∂zi

)
= 2z3r+2zrz

2
i −2j(z2rzi+z

3
i ), (4)

or we can write the function as f(z) = f(z, z∗) = z2(z∗)2

and differentiate by treating z∗ as a constant,

∂f

∂z
= 2z(z∗)2. (5)

The second approach is clearly simpler. It can be easily shown

that the two expressions, (4) and (5), are equal. However, while

the expression in (4) can easily be derived from (5), it is not

quite as straightforward the other way round. Because f(z) is

real-valued, there is no need to compute ∂f/∂z∗: it is simply

the conjugate of ∂f/∂z.

Evaluation of integrals, e.g., for calculating probabilities, is

also commonly encountered. The same observation that allows

the use of a representation in the form f(z, z∗) and treating

z and z∗ as independent variables—when obviously they are

not,—can also be made when calculating integrals. When we

consider f(·) as a function of real and imaginary parts, the

definition of an integral is well understood as the integral

of the function f(zr, zi) in a region R defined on IR × IR
as
∫∫

R
f(zr, zi) dzr dzi. The integral

∫∫
f(z, z∗) dz dz∗, on

the other hand, is not meaningful as we cannot vary the two

variables z and z∗ independently, and we cannot define the

region corresponding to R in the complex domain. However,

using Green’s theorem [3] or Stokes’s theorem [51], [52], we

can write the real-valued integral as a contour integral in the

complex domain [91]
∫∫

R

f(zr, zi) dzr dzi =
1

2j

∮

CR

F (z, z∗) dz (6)

where
∂F (z, z∗)

∂z∗
= f(z, z∗).

Here, we have to assume that f(zr, zi) is continuous through

the simply connected region R, and CR describes its contour.

By transforming the integral defined in the real domain to a

contour integral in the complex domain, the formula shows

the dependence on the two variables z and z∗ in a natural

manner. In [91], the application of the integral relationship in

(6) is discussed in detail, along with examples, for evaluating

probability masses when f(zr, zi) is a probability density

function. Another example is given in [7], where (6) is used

to evaluate the expectation of the score function with a

generalized Gaussian distribution.

Wirtinger calculus extends straightforwardly to functions

f : CN → CM or f : CN×M → C. There is no need

to develop new differentiation rules for Wirtinger derivatives.

All rules for taking derivatives for real functions remain valid.

However, care must be taken to properly distinguish between

the variables with respect to which differentiation is performed

and those that are formally regarded as constants. So all the

expressions from the real-valued case given, for example, in

[98] can be straightforwardly applied to the complex case. For

instance, for g(Z,Z∗) = Trace(ZZH), we obtain

∂g

∂Z
=
∂Trace(Z(Z∗)T )

∂Z
= Z∗ and

∂g

∂Z∗
= Z.

There are a number of comprehensive references (e.g., [59],

[5], [115], [42]) on Wirtinger calculus that deal with the

chain rule for non-analytic functions, complex gradients and

Hessians, and complex Taylor series expansions.

In summary, Wirtinger calculus defines a framework in

which the derivatives of non-analytic functions can be com-

puted in a manner very similar to the real-valued or the

analytic case. The framework is general in that it also includes

derivatives of analytic functions as a special case. It allows

keeping the computations in CN and eliminates the need to

double the dimensionality as in the approach taken by [126].

Most of the tools developed for real-valued signals can thus

be easily extended to the complex setting, see e.g., [5], [65],

[66]. In this overview paper, we use Wirtinger calculus for a

straightforward derivation of the complex least-mean-square

(LMS) algorithm in Section IV-C, and an extension of ICA,

based on higher-order statistics, to complex data in Section

V-B. Without Wirtinger calculus, these extensions would be

significantly more difficult.

B. Widely Linear Transformations, Inner Products, and

Quadratic Forms

Let us now explore the different ways that linear transfor-

mations can be described in the real and complex domains. In

order to do so, we construct three closely related vectors from

two real vectors xr ∈ IRN and xi ∈ IRN . The first is the real

composite 2N -dimensional vector xIR = [xTr ,x
T
i ]
T , obtained

by stacking xr on top of xi. The second is the complex vector

x = xr + jxi, and the third is the complex augmented vector

x = [xT ,xH ]T , obtained by stacking x on top of its complex

conjugate x∗. The space of complex augmented vectors, whose

bottom N entries are the complex conjugates of the top N
entries, is denoted by C2N

∗ . Augmented vectors are always

underlined. In much of our discussion, our focus will be on
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complex-valued quantities, where we will be using x and its

augmentation x.

The complex augmented vector x ∈ C2N
∗ is related to the

real composite vector xIR ∈ IR2N as x = TNxIR and xIR =
1
2T

H
Nx, where the real-to-complex transformation

TN =

[
I jI
I −jI

]
∈ C2N×2N (7)

is unitary up to a factor of 2, i.e., TNTH
N = TH

NTN = 2I.
The complex augmented vector x is obviously an equivalent

redundant, but convenient, representation of xIR. When the

size of TN is clear, we may drop the subscript N for economy.

If a real linear transformation M ∈ IR2M×2N is applied

to the real composite vector xIR ∈ IR2N , it yields a real

composite vector yIR ∈ IR2M ,

yIR =

[
yr
yi

]
=

[
M11 M12

M21 M22

] [
xr
xi

]
= MxIR,

where Mij ∈ IRM×N . The augmented complex version of yIR

is

y =

[
y

y∗

]
= TM

[
yr
yi

]
=
(
1
2TMMTH

N

)
(TNxIR) = Hx,

(8)

with y = yr + jyi. The matrix H ∈ C2M×2N is called

an augmented matrix because it satisfies a particular block

pattern, where the SE block is the conjugate of the NW block,

and the SW block is the conjugate of the NE block:

H = 1
2TMMTH

N =

[
H1 H2

H∗
2 H∗

1

]
(9)

H1 = 1
2 [M11 +M22 + j(M21 −M12)]

H2 = 1
2 [M11 −M22 + j(M21 +M12)]

Hence, H is an augmented description of the widely linear

[103] or linear–conjugate-linear transformation

y = H1x+H2x
∗.

Even though the representation in (9) contains some redun-

dancy as the northern blocks determine the southern blocks,

it proves to be a powerful tool. For instance, it enables easy

concatenation of widely linear transformations.

Obviously, the set of complex linear transformations, y =
H1x with H2 = 0, is a subset of the set of widely linear

transformations. A complex linear transformation (sometimes

called strictly linear for emphasis) has the equivalent real

representation
[
yr
yi

]
=

[
M11 M12

−M12 M11

] [
xr
xi

]
. (10)

To summarize, linear transformations on IR2N are linear on

CN only if they have the particular structure (10). Otherwise,

the equivalent operation on CN is widely linear. For analysis,

it is often preferable to represent IR-linear operations as C-

widely linear operations. However, from a hardware imple-

mentation point of view, IR-linear transformations are usually

preferable over C-widely linear transformations because the

former require fewer real operations (additions and multipli-

cations) than the latter.

Next, we look at the different representations of inner prod-

ucts and quadratic forms. Consider the two 2N -dimensional

real composite vectors xIR = [xTr ,x
T
i ]
T and yIR = [yTr ,y

T
i ]
T ,

the corresponding N -dimensional complex vectors x = xr +
jxi and y = yr + jyi, and their complex augmented descrip-

tions x = TxIR and y = TyIR. We may now relate the inner

products defined on IR2N , C2N
∗ , and CN as

xTIRyIR = 1
2x

Hy = Re {xHy}.

Thus, the usual inner product xTIRyIR defined on IR2N equals

(up to a factor of 1/2) the inner product xHy defined on C2N
∗ ,

and also the real part of the usual inner product xHy defined

on CN . Both the inner product on C2N
∗ and the inner product

on CN are useful.

Another common real-valued expression is the quadratic

form xTIRMxIR, which may be written as a (real-valued) widely

quadratic form in x:

xTIRMxIR = 1
2 (x

T
IRT

H)
(
1
2TMTH

)
(TxIR) =

1
2x

HHx

The augmented matrix H and the real matrix M are connected

as before in (9). Thus, we obtain

xTIRMxIR = xHH1x+Re (xHH2x
∗).

C. Statistics of Complex-valued Random Variables and Vec-

tors

We define a complex random variable x as x = xr + jxi,
where xr and xi are a pair of real random variables. Similarly,

an N -dimensional complex random vector x is defined as x =
xr + jxi, where xr and xi are a pair of N -dimensional real

random vectors. Note that we do not differentiate in notation

between a random vector and its realization, as the meaning

should be clear from the context. The probability distribution

(density) of a complex random vector is interpreted as the

2N -dimensional joint distribution (density) of its real and

imaginary parts. If the probability density function (pdf) exists,

we write this as

px(x) = px(xr + jxi) , pxrxi
(xr,xi).

If there is no risk of confusion, the subscripts may also be

dropped. For a function g : D → CN whose domain D
includes the range of x, the expectation operator is defined

as

E{g(x)} = E{Re [g(x)]}+ jE{Im [g(x)]}

=

∫

IR2N

g(xr + jxi)p(xr + jxi) dxr dxi. (11)

This integral can also be evaluated using contour integrals as

in (6) writing the function as g(x,x∗) and the pdf as p(x,x∗).
Unless otherwise stated, we assume that all random vectors

have zero mean. In order to characterize the second-order

statistical properties of x = xr + jxi, we consider the real

composite random vector xIR. Its covariance matrix is

CxIRxIR
= E {xIRx

T
IR} =

[
Cxrxr

Cxrxi

CT
xrxi

Cxixi

]
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with Cxrxr
= E {xrxTr }, Cxrxi

= E {xrxTi }, and Cxixi
=

E {xixTi }. The augmented covariance matrix of x is [129],

[101], [114]

Cxx = E {xxH} = TCxIRxIR
TH =

[
Cxx C̃xx

C̃∗
xx C∗

xx

]
= CH

xx.

(12)

The NW block of the augmented covariance matrix is the usual

(Hermitian and positive semi-definite) covariance matrix

Cxx = E {xxH} = Cxrxr
+Cxixi

+j(CT
xrxi
−Cxrxi

) = CH
xx

(13)

and the NE block is the complementary covariance matrix

C̃xx = E {xxT } = Cxrxr
−Cxixi

+j(CT
xrxi

+Cxrxi
) = C̃T

xx,
(14)

which uses a regular transpose rather than a Hermitian (con-

jugate) transpose. Other names for C̃xx include pseudo-

covariance matrix [84], conjugate covariance matrix [44] or

relation matrix [102]. It is important to note that, in general,

both Cxx and C̃xx are required for a complete second-order

characterization of x. In the important special case where the

complementary covariance matrix vanishes, C̃xx = 0, x is

called proper, otherwise improper [84].

The conditions for propriety on the covariance and cross-

covariance of real and imaginary parts xr and xi are Cxrxr
=

Cxixi
and Cxrxi

= −CT
xrxi

. When x = xr + jxi is scalar,

then Cxrxi
= 0 is necessary for propriety. If x is proper, its

Hermitian covariance matrix is

Cxx = 2Cxrxr
− 2jCxrxi

= 2Cxixi
+ 2jCT

xrxi
,

and its augmented covariance matrix Cxx is block-diagonal. If

complex x is proper and scalar, then Cxx = 2Cxrxr
= 2Cxixi

.

It is easy to see that propriety is preserved by strictly linear

transformations, which are represented by block-diagonal aug-

mented matrices.

If Cxx is nonsingular, the following three conditions are

necessary and sufficient for Cxx and C̃xx to be covariance

and complementary covariance matrices of a complex random

vector x [101]: 1) The covariance matrix Cxx is Hermitian

and positive semi-definite; 2) The complementary covariance

matrix is symmetric, C̃xx = C̃T
xx; 3) The Schur complement

of Cxx within the augmented covariance matrix, Cxx −
C̃xxC

−∗
xx C̃

∗
xx, is positive semi-definite.

Circularity: It is also possible to define a stronger version of

propriety in terms of the probability distribution of a random

vector. A vector is called circular if its probability distribution

is rotationally invariant, i.e., x and x′ = ejαx have the same

probability distribution for any given real α. Circularity does

not imply any condition on the standard covariance matrix

Cxx because

Cx′x′ = E {x′x′H} = E {ejαxxHe−jα} = Cxx. (15)

On the other hand,

C̃x′x′ = E {x′x′T } = E {ejαxxT ejα} = ej2αC̃xx (16)

is true for arbitrary α if and only if C̃xx = 0. Because the

Gaussian distribution is completely determined by second-

order statistics, a complex Gaussian random vector x is

circular if and only if it is zero-mean and proper [48].

Propriety requires that second-order moments be rotation-

ally invariant, whereas circularity requires that the distribution,

and thus all moments (if they exist), be rotationally invariant.

Therefore, circularity implies zero mean and propriety, but not

vice versa, and impropriety implies noncircularity, but not vice

versa. By extending the reasoning of (15) and (16) to higher-

order moments, we see that if x is circular, a pth order moment

can be nonzero only if it has the same number of conjugated

and nonconjugated terms [100]. In particular, all odd-order

moments must be zero. This holds for arbitrary order p.

We call a vector x pth order circular [100] or pth order

proper if the only nonzero moments up to order p have

the same number of conjugated and nonconjugated terms.

In particular, all odd moments up to order p must be zero.

Therefore, for zero-mean random vectors, the terms proper and

second-order circular are equivalent. We note that, while this

terminology is most common, there is not uniform agreement

in the literature. Some researchers use the terms “proper”

and “circular” interchangeably. More detailed discussions of

higher-order statistics, Taylor series expansions, and charac-

teristic functions for improper random vectors are provided in

[11], [42], [115].

D. Statistics of Complex-valued Random Processes

In this section, we provide a very brief introduction to

complex discrete-time random processes. Complex random

processes have been studied by [12], [33], [84], [100], [102],

[111], [132], among others. For a comprehensive review, we

refer the reader to [115].

The covariance function of a complex-valued discrete-time

random process x(k) is defined as

c(k,m) = E{x(k +m)x∗(k)} − E{x(k +m)}E{x∗(k)},

where the first term is the correlation function. To com-

pletely describe the second-order statistics, we also define the

complementary covariance function (also called the pseudo-

covariance or relation function) as

c̃(k,m) = E{x(k +m)x(k)} − E{x(k +m)}E{x(k)}.

If the complementary covariance function vanishes for all

pairs (k,m), then x(k) is called proper, otherwise improper.

If and only if x(k) is zero-mean and proper is it second-

order circular. The definitions in the continuous-time case are

completely analogous.

A random signal x(k) is stationary if all its statistical

properties are invariant to any given time-shift (translations

of the origin), or equivalently, if the family of distributions

that describe the random process as a collection of random

variables is shift-invariant. To define wide-sense stationarity,

we therefore consider the complete second-order statistical

characterization including the complementary covariance func-

tion. We call a complex random process x(k) wide-sense

stationary (WSS) if and only if E{x(k)} ≡ µx, c(k,m) ≡
c(m), and c̃(k,m) ≡ c̃(m) are all independent of k.

Since the complementary covariance function is commonly

ignored, the “traditional” definition of wide-sense stationarity

for complex processes only considers the covariance function,
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allowing a shift-dependent complementary covariance func-

tion. Some researchers then introduce a different term (such as

second-order stationary [100]) to refer to the condition where

both the covariance and complementary covariance function

are shift-invariant.

Let x(k) be a second-order zero-mean WSS process, and let

x(k) = [x(k), x∗(k)]T denote the corresponding augmented

process. We define the augmented power spectral density

matrix of x(k) as the discrete-time Fourier transform of the

covariance function of x(k), which is given by

C(θ) , F
{
E{x(k +m)xH(k)}

}
=

[
C(θ) C̃(θ)

C̃∗(θ) C(−θ)

]
.

In this equation, C(θ) = F{c(m)} is the power spectral

density and C̃(θ) = F{c̃(m)} is called the complementary

power spectral density. When the complementary power spec-

tral density vanishes for all θ, C̃(θ) ≡ 0, the process x(k) is

proper.

The augmented power spectral density matrix is positive

semi-definite. As a consequence, there exists a WSS random

process x(k) with power spectral density C(θ) and comple-

mentary power spectral density C̃(θ) if and only if [102]:

(1) C(θ) ≥ 0; (2) C̃(θ) = C̃(−θ) (but C̃(θ) is generally

complex); and (3) |C̃(θ)|2 ≤ C(θ)C(−θ). The third condition

allows us to establish the classical result that analytic WSS

signals without a DC component must be proper [100]. If x(k)
is analytic, then C(θ) = 0 for θ ∈ [−π, 0). If it does not have

a DC component, then C(θ) = 0 for θ ∈ [−π, 0]. Therefore,

|C̃(θ)|2 ≤ C(θ)C(−θ) ≡ 0 implies C̃(θ) ≡ 0. There are

further connections between stationarity and circularity, which

are explored in detail in [100]. An algorithm for the simulation

of improper WSS processes having specified covariance and

complementary covariance functions is given in [108].

E. Gaussian Random Variables and Vectors

Next, we look at the the ever-important Gaussian distri-

bution. In order to derive the general complex multivariate

Gaussian pdf (proper/circular or improper/noncircular) for

zero-mean x = xr + jxi, we begin with the Gaussian pdf

of the composite random vector of real and imaginary parts

xIR = [xTr ,x
T
i ]
T :

p(xIR) =
1

(2π)2N/2
√
detCxIRxIR

exp
{
− 1

2x
T
IRC

−1
xIRxIR

xIR

}
.

(17)

We first consider the nondegenerate case where all covari-

ance matrices are invertible. Using x = TxIR, C−1
xIRxIR

=
THC−1

xxT, and detCxx = 22N detCxIRxIR
, where T was

defined in (7), we obtain the pdf of complex x [101], [129]:

p(x) =
1

πN
√
detCxx

exp
{
− 1

2x
HC−1

xxx
}
. (18)

This pdf depends algebraically on x, i.e., x and x∗, but

is interpreted as the joint pdf of xr and xi, and can be

used for proper/circular or improper/noncircular x. In the

past, the term “complex Gaussian distribution” often implicitly

assumed circularity. Therefore, some researchers call a noncir-

cular complex Gaussian random vector “generalized complex

Gaussian.” The simplification that occurs when C̃xx = 0 is

obvious and leads to the pdf of a complex proper and circular

Gaussian random vector x [139], [47]:

p(x) =
1

πN detCxx
exp

{
−xHC−1

xxx
}

A generalization of the Gaussian distribution is the family

of elliptical distributions. A study of complex elliptical dis-

tributions has been provided by [94] and in Section 2.3.4 of

[115].

The scalar complex Gaussian: The case of a scalar Gaussian

x = xr + jxi provides some interesting insights [115], [92].

The real bivariate Gaussian vector [xr, xi] can be characterized

by Cxrxr
= E{x2r} (the variance of xr), Cxixi

= E{x2i }
(the variance of xi), and ρxrxi

= E{xrxi}/
√
E{x2r}E{x2i }

(the correlation coefficient between xr and xi). From (18), the

pdf of the complex Gaussian variable x = xr + jxi can be

expressed as

p(x) =
1

πCxx
√

1− |ρ|2
exp

{
−|x|

2 − Re (ρx∗2)

Cxx(1− |ρ|2)

}
(19)

where the complex correlation coefficient ρ between x and x∗

is defined as

ρ =
C̃xx
Cxx

.

So there are two equivalent parametrizations of a complex

Gaussian x: We can use the three real parameters Cxrxr
,

Cxixi
, and ρxrxi

or the three real parameters Cxx, Re ρ, and

Im ρ. We can obtain the second set of parameters from the

first set as

Cxx = Cxrxr
+ Cxixi

(20)

ρ =
Cxrxr

− Cxixi

Cxx
+ j

2
√
Cxrxr

√
Cxixi

ρxrxi

Cxx
(21)

and vice versa as

Cxrxr
= 1

2Cxx(1 + Re ρ) (22)

Cxixi
= 1

2Cxx(1− Re ρ) (23)

ρxrxi
=

Im ρ√
1− (Re ρ)2

. (24)

The complex correlation coefficient ρ = |ρ|ejψ satisfies

|ρ| ≤ 1. If |ρ| = 1, then x = C̃xxC
−1
xx x

∗ = ρx∗ = ejψx∗ with

probability 1. Equivalent conditions for |ρ| = 1 are Cxrxr
= 0,

or Cxixi
= 0, or ρxrxi

= ±1. The first of these conditions

makes the complex variable x purely imaginary and the second

makes it real. The third condition means xi = tan(ψ/2)xr
and x = [1 + j tan(ψ/2)]xr. All these cases with |ρ| = 1 are

called maximally noncircular because the support of the pdf

for the complex random variable x degenerates into a line in

the complex plane.

For |ρ| < 1, there are basically four different cases:

1) If xr and xi have identical variances, Cxrxr
= Cxixi

=
Cxx/2, and are independent, ρxrxi

= 0, then x is proper
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and circular, i.e., ρ = 0, and its pdf takes on the simple

and much better-known form

p(x) =
1

πCxx
exp

(
− |x|

2

Cxx

)
. (25)

2) If xr and xi have different variances, Cxrxr
6= Cxixi

,

but xr and xi are still independent, ρxrxi
= 0, then ρ is

real, ρ = (Cxrxr
− Cxixi

)/Cxx, and x is noncircular.

3) If xr and xi have identical variances, Cxrxr
= Cxixi

=
Cxx/2, but xr and xi are correlated, ρxrxi

6= 0, then ρ
is purely imaginary, ρ = jρxrxi

, and x is noncircular.

4) If xr and xi have different variances, Cxrxr
6= Cxixi

,

and are correlated, ρxrxi
6= 0. Then ρ is generally

complex.

With x = rejθ and ρ = |ρ|ejψ , we see that the pdf p(x) in

(19) is constant on the level curve r2[1−|ρ| cos(2θ−ψ)] = K2.

This contour is an ellipse, and r is maximum when cos(2θ−ψ)
is minimum. This establishes that the ellipse orientation (the

angle between the real axis and the major ellipse axis) is

θ = ψ/2, which is half the angle of the complex correlation

coefficient ρ = |ρ|ejψ . It can be shown (see [92]) that

the degree of noncircularity |ρ| is the square of the ellipse

eccentricity.

Figure 1 shows contours of constant probability density

for cases 1–4 listed above. In plot (a), we see the circular

case with ρ = 0, which exhibits circular contour lines. All

remaining plots are noncircular, with elliptical contour lines.

We can make two observations: First, increasing the degree of

noncircularity of the signal by increasing |ρ| leads to ellipses

with greater eccentricity. Secondly, the angle of the ellipse

orientation is half the angle of ρ, as shown above. Plot (b)

shows case 2: xr and xi have different variance but are still

independent. In this situation, the ellipse orientation is either

0◦ or 90◦, depending on whether xr or xi has greater variance.

Plot (c) shows case 3: xr and xi have the same variance but

are now correlated. In this situation, the ellipse orientation is

either 45◦ or 135◦. The general case 4 is depicted in plot (d).

Now the ellipse can have an arbitrary orientation ψ/2, which

is controlled by the angle of ρ = |ρ|ejψ .

Marginal and von-Mises distributions: With xr = r cos θ,

xi = r sin θ, dxr dxi = r dr dθ, it is possible to change

variables and obtain the joint pdf for the polar coordinates

(r, θ)

prθ(r, θ) =
r

πCxx
√
1− |ρ|2

exp

{
−r

2[1− |ρ| cos(2θ − ψ)]
Cxx(1− |ρ|2)

}
,

where x = rejθ and ρ = |ρ|ejψ . The marginal pdf for r is

obtained by integrating over θ,

pr(r) =
2r

Cxx
√
1− |ρ|2

exp

{
− r2

Cxx(1− |ρ|2)

}
I0

{
r2|ρ|

Cxx(1− |ρ|2)

}
, r > 0,

(26)

where I0 is the modified Bessel function of the first kind of

order 0. The pdf pr(r) is invariant to ψ. In the circular case

ρ = 0, it is the Rayleigh pdf

pr(r) =
r

Cxx/2
exp

{
− r2

Cxx

}
.
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(c)  = 0.9j
2 1 0 1 2

2

1

0

1

2

(d)  = 0.97 exp(j0.8 )
2 1 0 1 2

2

1

0

1

2

Fig. 1. Probability-density contours of complex Gaussian random variables
with different complex correlation coefficient ρ.

This suggests that we call pr(r) in (26) the im-

proper/noncircular Rayleigh pdf. Integrating prθ(r, θ) over r
yields the marginal pdf for θ:

pθ(θ) =

√
1− |ρ|2

2π[1− |ρ| cos(2θ − ψ)] , −π < θ ≤ π.

In the circular case ρ = 0, this is a uniform distribution.

These marginals are illustrated in Figure 2 for Cxx = 1,

ψ = 0.8π, and various values of |ρ|. The larger |ρ| the more

noncircular x becomes, and the marginal distribution of θ
develops two peaks at θ = ψ/2 = 0.4π and θ = ψ/2 − π =
−0.6π. At the same time, the maximum of the pdf of r is

shifted to the left.

Having derived the joint and marginal distributions of r and

θ, it is also straightforward to write down the von-Mises pdf,

which is the conditional distribution of θ given r:

pθ|r(θ|r) =
prθ(r, θ)

pr(r)
=

1

2π

exp{κ cos(2θ − ψ)}
I0{κ}

with

κ =
r2|ρ|

Cxx(1− |ρ|2)
All these results show that the parameters {Cxx, |ρ|, ψ}

for complex x = xr + jxi, rather than the parameters

{Cxrxr
, Cxixi

, ρxrxi
} for real (xr, xi), are the most natural

parametrization for the joint and marginal pdfs of the polar

coordinates r and θ.

It is worthwhile to comment on the fact that the Central

Limit Theorem still applies to noncircular random variables.

That is, adding more and more independent and identically

distributed noncircular random variables leads to a sample
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Fig. 2. Marginal pdfs for magnitude r and angle θ in the bivariate Gaussian
distribution with unit variance Cxx = 1, ψ = 0.8π, and various values for
|ρ|.

average that is asymptotically Gaussian and noncircular. How-

ever, this addition has to be done coherently, preserving the

phase of the random samples. If a large number of noncircular

random variables is added noncoherently, i.e., with randomized

phase, then the phase information is washed out, and the

resulting sample average becomes more and more circular.

F. Examples

Figure 3 shows scatter plots for three signals: (a) Ice

Multiparameter Imaging X-Band Radar (IPIX) data from the

website http://soma.crl.mcmaster.ca/ipix/, (b) a 16-quadrature

amplitude modulated (QAM) signal, and (c) wind data ob-

tained from http://mesonet.agron.iastate.edu. Figure 4 shows

their corresponding covariance functions c(m) and comple-

mentary covariance functions c̃(m). The radar signal in (a) is

narrow-band. Evidently, the gain and phase of the in-phase and

quadrature channels are matched, as the data appear circular

(and therefore proper). The uniform phase is due to carrier

phase fluctuation from pulse-to-pulse and the amplitude fluc-

tuations are due to variations in the scattering cross-section.

The 16-QAM signal in (b) has zero complementary covariance

function and is therefore proper (second-order circular). How-

ever, its distribution is not rotationally invariant and therefore

!! " !
!!

"

!

xr

x
i

(a) Radar data

!1.5 1.5 
!1.5

1.5 

xr

x
i

(b) 16-QAM data

!! " !
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"

!

xr

x
i

(c) Wind data

Fig. 3. Scatter plots for (a) circular, (b) proper but noncircular, and (c)
improper (and thus noncircular) data

it is noncircular. The wind data in (c) is noncircular and

improper.

In Figure 5 (a), we show the scatter plot of a motor

component estimated using ICA of functional MRI data [106],

which is naturally represented as complex valued [4]. The

paradigm used in the collection of the data is a simple motor

task with a box-car type time-course, i.e., the stimulus has

periodic on and off periods. As can be observed in the figure,

the distribution of the given fMRI motor component has

a highly noncircular distribution. In Figure 5 (b) and (c),

we show the spatial map for the same component using a

Mahalanobis Z-score threshold, which is defined as Zck,l
=√

[uk,l − µ̂k]T Ĉ−1
k [uk,l − µ̂k]. In this expression, uk,l =

[
urk,l

, uik,l

]T
is the vector of real and imaginary parts of

the kth estimated source of voxel l, and µ̂k and Ĉk are

the corresponding estimated spatial image mean vector and

covariance matrix.

As demonstrated by these examples, noncircular signals

do arise in practice, even though circularity has been com-

monly assumed in the derivation of many signal processing

algorithms. As we will elaborate, taking the noncircular or
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Fig. 4. Covariance and complementary covariance function plots for the
corresponding processes in Figure 3: (a) circular, (b) proper but noncircular,
(c) improper

improper nature of signals into account in their processing

may provide significant payoffs. It is worth noting that, in these

examples, we have classified signals as circular or noncircular

simply by inspection of their scatter plots and estimated

covariance functions. But such classification should be done

based on sound statistical arguments. This is the topic of the

next section.

III. MODEL SELECTION

When should we take noncircularity into account? On the

one hand, if the signals are indeed noncircular, we would

expect a noncircular model to capture their properties more

accurately. On the other hand, noncircular models have more

degrees of freedom than circular models, and the principle of

parsimony says that one should seek simple models to avoid

overfitting to noise fluctuations. So how do we choose between

circular/proper and noncircular/improper models? This raises

the question of how to detect whether a given signal is circular

or noncircular, and more generally, how to detect the number

of circular and noncircular signals in a given signal subspace.

The latter problem can be combined with the detection of the

dimension of the signal subspace so it becomes a simultaneous
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(a) Scatter plot
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Fig. 5. (a) Scatter plot of the average voxel values of the motor component
estimated using ICA from 16 subjects. (b) Magnitude and (c) phase spatial
maps using Mahalanobis Z-score thresholding; only voxels with |Zc| > 4 are
shown.

order and model selection problem. For either problem, we

show that circular models should be preferred over noncircular

models when the SNR is low, the number of samples is small,

or the signals’ degree of noncircularity is low.

A. Circularity coefficients

Throughout this section, we drop the subscripts on covari-

ance matrices for economy. We first derive a maximal invariant

(a complete set of invariants) for the augmented covariance

matrix C under nonsingular strictly linear transformation.

Such a set is given by the canonical correlations between

x and its conjugate x∗ [112], which [41] calls the circularity

coefficients of x. “Maximal invariant” means two things: (1)

The circularity coefficients are invariant under nonsingular

linear transformation; (2) If two jointly Gaussian random

vectors x and y have the same circularity coefficients, then

x and y are related by a nonsingular linear transformation,

x = My.

Assuming C has full rank, the canonical correlations be-

tween x and x∗ are determined by starting with the coherence
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matrix [116]

R = C−1/2C̃(C∗)−H/2 = C−1/2C̃C−T/2. (27)

Since R is complex symmetric, R = RT , yet not Hermitian

symmetric, i.e., R 6= RH , there exists a special singular value

decomposition (SVD), called the Takagi factorization [53],

which is

R = FKFT . (28)

The complex matrix F is unitary, and K = diag(k1, k2, ..., kN )
contains the canonical correlations 1 ≥ k1 ≥ k2 ≥ · · · ≥
kN ≥ 0 on its diagonal. The squared canonical correlations

k2n are the eigenvalues of the squared coherence matrix

RRH = C−1/2C̃C−∗C̃∗C−H/2, or equivalently, of the ma-

trix C−1C̃C−∗C̃∗ [116]. The canonical correlations between

x and x∗ are invariant to the choice of a square root for C, and

they are a maximal invariant for C under nonsingular strictly

linear transformation of x. Therefore, any function of C that is

invariant under nonsingular strictly linear transformation must

be a function of these canonical correlations only [112].

Following [41], we call these canonical correlations kn the

circularity coefficients, and the set {kn}Nn=1 the circularity

spectrum of x. However, the term “circularity coefficient”

is not entirely accurate as the circularity coefficients only

characterize second-order circularity, or (im-)propriety. Thus,

the name impropriety coefficients would have been more

suitable. For a scalar random variable x, there is only one

circularity coefficient k1 = |E{x2}|/E{|x|2}. For Gaussian

x, k1 characterizes the degree of noncircularity, and for non-

Gaussian x, the degree of impropriety.

Differential entropy1: The entropy of a complex random

vector x is defined to be the entropy of the real composite

vector xIR. The differential entropy of a complex Gaussian

random vector x with augmented covariance matrix C is thus

H(x) = 1
2 log

[
(πe)2N detC

]
.

Combining our results so far, we may factor C as

C =

[
C C̃

C̃∗ C∗

]
=

[
C1/2 0

0 C∗/2

] [
F 0

0 F∗

] [
I K

K I

] [
FH 0

0 FT

] [
CH/2 0

0 CT/2

]
.

(29)

Note that each factor is an augmented matrix. This factoriza-

tion establishes

detC = det2C det(I−KKH) = det2C
N∏

n=1

(1− k2n).

(30)

This allows us to write the entropy of a complex noncircular

Gaussian random vector x as [41], [112]

Hnoncircular =
1
2 log[(πe)

2N detC]

= log[(πe)N detC]︸ ︷︷ ︸
Hcircular

+ 1
2 log

N∏

n=1

(1− k2n)
︸ ︷︷ ︸

≤0

, (31)

1Since we do not consider discrete random variables in this paper, we refer
to differential entropy simply as entropy from now on.

where Hcircular is the entropy of a circular Gaussian random

vector with the same Hermitian covariance matrix C (but

C̃ = 0). The entropy Hnoncircular is maximized if and only if

x is circular. If x is noncircular, the loss in entropy compared

to the circular case is given by the second term in (31), which

is a function of the circularity spectrum. Thus, this term can

be used as a measure for the degree of impropriety of a

random vector x, and it is also a test statistic in the generalized

likelihood ratio test for noncircularity. Other measures for the

degree of impropriety have been proposed and studied by

[112].

B. Testing for circularity

In this section, we present hypothesis tests for circularity

based on a generalized likelihood ratio test (GLRT). In a GLR,

the unknown parameters (C and C̃ in our case) are replaced by

maximum likelihood estimates. The GLR is always invariant

to transformations for which the hypothesis testing problem

itself is invariant [58]. As propriety is preserved by strictly

linear, but not widely linear, transformations, the hypothesis

test must be invariant to strictly linear, but not widely linear,

transformations. Since the GLR must be a function of a

maximal invariant statistic the GLR is a function of the

circularity coefficients.

Let x be a complex zero-mean Gaussian random vector

with augmented covariance matrix C. Consider L indepen-

dent and identically distributed (i.i.d.) random samples drawn

from this distribution and arranged in the sample matrix

X = [x1,x2, ...,xL], and let X = [x1,x2, ...,xL] denote the

corresponding augmented sample matrix. The joint probability

density function of these samples is

p(X) = π−LN (detC)−L/2 exp

{
−L
2
tr (C−1Ĉ)

}
, (32)

with augmented sample covariance matrix

Ĉ =

[
Ĉ

̂̃
C

̂̃
C∗ Ĉ∗

]
=

1

L

L∑

l=1

xlx
H
l .

The GLR test of the hypotheses H0 : x is circular (C̃ = 0)

vs. H1 : x is noncircular (C̃ 6= 0) compares the GLRT statis-

tic

λ =

max
C

C̃=0

p(X)

max
C

p(X)
(33)

to a threshold. This statistic is the ratio of likelihood with

C constrained to have zero off-diagonal blocks, C̃ = 0, to

likelihood with C unconstrained. We are thus testing whether

or not C is block-diagonal. The unconstrained maximum like-

lihood (ML) estimate of C is the augmented sample covariance

matrix Ĉ. The ML estimate of C under the constraint C̃ = 0

is

Ĉ0 =

[
Ĉ 0

0 Ĉ∗

]
.
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After a little algebra, the GLR can be expressed as [94], [116]

ℓ = λ
2

L =
det Ĉ

(det Ĉ)2
=

N∏

n=1

(1− k̂2n). (34)

In this equation, k̂n denotes the estimated circularity coef-

ficients, which are computed from the augmented sample

covariance matrix Ĉ. A full-rank implementation of this

test relies on the middle expression in (34). A reduced-rank

implementation that considers only the r largest estimated

circularity coefficients is based on the last expression in (34).

This test was first proposed by [13], in complex notation

by [94], and the connection with canonical correlations was

established by [116]. It is shown in [13] that

ℓ′ =
1

N

N∑

n=1

k̂2n

rather than ℓ is the locally most powerful (LMP) test for

circularity. An LMP test has the highest possible power

(i.e., probability of detection) for H1 close to H0, where

all circularity coefficients are small. Testing for circularity is

reexamined by [133], which studies the null distributions of ℓ
and ℓ′, and derives a distributional approximation for ℓ. It also

shows that no uniformly powerful (UMP) test exists for this

problem because the GLR and the LMP tests are different for

dimensions N ≥ 2. (In the scalar case N = 1, the GLR and

LMP tests are identical.)

Extensions of this test to non-Gaussian data: There have

been recent extensions of this test to non-Gaussian data. In

[95], the test is made asymptotically robust with respect to

violations of Gaussianity, provided the distribution remains

elliptically symmetric. This is achieved by dividing the GLRT

statistic by an estimated normalized fourth-order moment

(which is closely related to the kurtosis). Generation and

estimation of samples from a complex generalized Gaussian

distribution (GGD) and estimation of its parameters is ad-

dressed in [90] and a circularity test for the complex GGD

is given in [89]. These results have been recently extended to

elliptically symmetric distributions [93].

The complex GGD is a complex elliptically symmetric

distribution with a simple probabilistic characterization. It

allows for a direct connection to the Gaussian test given in

(34). If x is a scalar complex GGD random variable, it has

pdf

p(x) =
β(c)√
det(C)

exp
{
−
[
η(c)(xHC−1x)

]c}
(35)

where c > 0 is the shape parameter, β(c) = cΓ(2/c)
πΓ(1/c)2 ,

η(c) = Γ(2/c)
2Γ(1/c) , Γ(·) is the Gamma function, x = [x, x∗]T ,

and C is the augmented covariance matrix. The complex GGD

comprises a large number of symmetric distributions, from

super-Gaussian (for 0 < c < 1), Gaussian (for c = 1),

to sub-Gaussian (for c > 1), including other distributions

such as the bivariate Laplacian. As for all complex elliptically

symmetric distributions, zero mean and propriety is equivalent

to circularity.

A GLRT statistic based on the complex GGD, as derived

by [89], is given by

log λGGD = (L/2) log det
(
ĈĈ

−1

0

)
+

ηĉ(ĉ)

L∑

l=1

[(
xHl Ĉ

−1
xl

)ĉ
−
(
xHl Ĉ

−1

0 xl

)ĉ]
. (36)

Here, ĉ is the ML estimate of the shape parameter c, and

Ĉ0 and Ĉ are the ML estimates of the augmented covariance

matrix, under H0 and H1, respectively. These ML estimates

have been derived in [90]. Asymptotically for L → ∞, the

statistic λGGD is χ2-distributed with two degrees of freedom.

This allows choosing a threshold to yield a specified proba-

bility of false alarm. In the scalar Gaussian case, c = 1 and

N = 1, the last term in (36) vanishes, and the complex GGD

and Gaussian GLRT become equivalent. Using the complex

GGD model and the ML estimators for its parameters, it is

also possible to design a test for Gaussianity [89].

To compare the performance of the different circularity

detectors, we generate L = 500 independent realizations

from a complex GGD with unit variance E{|x|2} = 1, as

in [89]2. Figures 6(a)–6(c) show the probability of detection

versus the degree of impropriety |ρ| = |E{x2}| for the three

detectors: the Gauss-GLRT in (34), the adjusted GLRT (Adj-

GLRT) [95], and the complex GGD-GLRT in (36). Each data

point in the figures is the result of the average of 1000
runs, with the detection threshold set for a probability of

false alarm of 0.01. As can be observed in the figures, all

three detectors yield similar performance for sub-Gaussian

and identical performance for Gaussian data. So the Gauss-

GLRT detector performs well even with sub-Gaussian data.

When the samples are super-Gaussian, however, the complex

GGD-GLRT significantly outperforms. In [89], examples are

presented to show that the circularity test based on the complex

GGD model provides good performance even with data that

are not complex GGD, such as BPSK data.

C. Order selection with a general signal subspace model

Determining the effective order of the signal subspace is

an important problem in many signal processing and com-

munications applications. The popular solution proposed by

Wax and Kailath [134] uses information theoretic criteria

by considering principal component analysis (PCA) of the

observed data to select the order. However, the model assumes

circular multivariate Gaussian signals, and is suboptimal in the

presence of noncircular signals in the subspace [73].

In [73], a noncircular PCA (ncPCA) approach is proposed

along with an ML procedure for estimating the free parameters

in the model. The procedure can be used for model selection in

the presence of circular Gaussian noise, whereby the numbers

of circular and noncircular signals are determined together

with the total model order. The method reduces to Wax and

Kailath’s signal detection method [134] when all signals are

circular, but may provide a significant performance gain in the

2Matlab code to implement the detectors and to generate complex GGD
samples can be found at http://mlsp.umbc.edu/resources.
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Fig. 6. Detection performance of circularity detectors versus degree of
impropriety |ρ|, for L = 500 sub-Gaussian, Gaussian, and super-Gaussian
complex GGD samples. Probability of false alarm is fixed at 0.01.

presence of noncircular signals. We first introduce the model

for ncPCA and then demonstrate its use for model selection.

Given a set of observations x(l) = [x1(l), . . . , xN (l)]T ,

with l as the observation index, we assume the linear model

x(l) = As(l) + n(l), l = 1, . . . , L, (37)

where s(l) = [s1(l), . . . , sM (l)]T is the M×1 complex-valued

signal vector, A is an N ×M complex-valued matrix with

full column rank, 0 ≤ M < N , and n(l) is the complex-

valued N × 1 random vector modeling the additive noise.

Given the set of observations x(l), l = 1, . . . , L, a key step

in many applications is to determine the dimension M of the

signal subspace. Traditional PCA provides a decomposition

into signal and noise subspaces. In ncPCA, the M -dimensional

signal subspace is further decomposed into noncircular and

circular signals. As in [134], the noise term n(l) is assumed

to be a circular, isotropic, stationary, complex Gaussian ran-

dom process with zero mean, statistically independent of

the signals, and the signals are assumed to be multivariate

Gaussian. However, in contrast to [134], we let p signals be

noncircular and q =M−p signals be circular. The underlying

assumption here is that the rank of the source covariance

matrix E{s(l)sH(l)} is M and that of the complementary

covariance matrix E{s(l)sT (l)} is p. For the degenerate case,

the actual number of the signals and those that are noncircular

can be greater than M and/or p.

In order to determine the orders M and p, given L snapshots

of x, X , [x(1), . . . ,x(L)], we write the likelihood of X as

ℓ(X|θ) =
L∏

l=1

p [x(l)|θ] , (38)

where θ denotes the set of all adjustable parameters in the

likelihood function

p[x(l)|θ] = 1

πN det1/2 (C)
exp

{
−xH(l)C−1x(l)

2

}
.

For the model in (37), the covariance and complementary

covariance matrices of x have parametric forms [72], [73]

C = U(Λ2 − σ2I)UH + σ2I, C̃ = UΛVK′VTΛUT ,
(39)

where U is a complex-valued N × M matrix with or-

thonormal columns spanning the signal subspace, Λ =
diag (λ1, . . . , λM ) is a diagonal matrix with diagonal elements

λm > σ2, σ2 is the noise variance, V = [v1, . . . ,vp] is

an M × p complex-valued matrix with orthonormal columns,

and K′ = diag
(
k′1, . . . , k

′
p

)
is a p × p diagonal matrix with

complex-valued entries k′i. The absolute values of these entries

equal the circularity coefficients: |k′i| = ki, i = 1, ..., p.

Compared to the Takagi factorization in (28), which leads

to nonnegative circularity coefficients, the decomposition in

(39) incorporates an additional phase factor into the quantities

k′i, making them complex valued. This is simply a notational

convenience [73].

Given the ML estimates for all the free parameters θ =
{U,V,Λ,K′, σ2} in (38), we may follow [134] and select

M and p using information-theoretic criteria such as Akaike’s

information criterion (AIC) [8], the Bayesian information

criterion (BIC) [118], or the minimum description length

(MDL) [105]. This leads to the estimated orders

(M̂, p̂) = arg min
(M,p)

[− log ℓ(X|θ0) + r(θ)η(L)] (40)

where θ0 = {U0,V0,Λ0,K
′
0, σ

2
0} is the optimal θ that

maximizes ℓ(X|θ), which can be obtained as in [72], and

results in the likelihood

log ℓ(X|θ0)
L

= (N −M) log σ2
0 +

M∑

m=1

log λ20,m

+0.5

p∑

l=1

log
(
1− |k′0,l|2

)
+N log (eπ) . (41)

The penalty term r(θ)η(L) in (40) contains the degrees of

freedom of θ,

r(θ) =M(2N −M) + p(2M − p+ 1) + 1,

and η(L), which depends on the number of samples and

the chosen criterion. For example, in the BIC (or the MDL

criterion) [105], [118], η(L) = 0.5 logL.

The signal detection method given in [134] can be obtained

as a special case without noncircular (p = 0) sources. In the
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Fig. 7. BIC gain of noncircular over circular model for (a) varying degree of
noncircularity, (b) varying SNR, and (c) varying sample size. Each simulation
point is averaged over 1000 independent runs. A positive gain suggests that
the noncircular model is preferred over the circular model.

presence of noncircular signals, the presented approach will

lead to a smaller − log ℓ(X|θ0) term in (40). At the same time,

however, a noncircular model has more degrees of freedom, so

the penalty term r(θ)η(L) in (40) will increase. This requires

the right tradeoff, resulting in a good model fit without over-

fitting. The following example demonstrates this tradeoff and

shows that a circular model can be preferable when the noise

level is high, the degree of noncircularity is low, and/or the

number of samples is small.

In this example, M = 7 Gaussian sources of unit variance

E{|s|2} = 1 and identical degree of noncircularity |ρ| =
|E{s2}| are mixed through a randomly chosen 20× 7 matrix,

after which circular Gaussian noise is added to the mixture. We

study the BIC of a circular model with orders (M, p) = (7, 0),
and a noncircular model with orders M = p = 7. The gain

of the noncircular model over the circular model is defined

as (BIC of circular model)/L minus (BIC of noncircular

model)/L. It is clear that a positive gain suggests that the

noncircular model is preferred over the circular model.

Figure 7 shows the overall information-theoretic (BIC) gain

of using a noncircular model for varying degree of noncir-

cularity, SNR, and sample size. The results are averaged over

1000 independent runs. We observe that the noncircular model

is preferred when there is ample evidence that the signals are

noncircular: the cases of large degree of noncircularity, high

SNR, and large sample sizes. On the other hand, the simpler

circular model is preferred when there is scarce evidence

that the signals are noncircular: the cases where the degree

of noncircularity is low, the SNR is low, or the number

of samples is small. The ncPCA approach can model both

circular and noncircular signals and hence can avoid the use of

an unnecessarily complex noncircular model when a circular

model should be preferred.

We also give an example in array signal processing to

demonstrate the direct performance gain using ncPCA rather

than a circular model [134] for signal subspace estimation

and model selection. We model M = 3 far-field, independent

narrowband sources (one BPSK signal, one QPSK signal

and one 8-QAM signal, with degrees of impropriety of 1,

4 2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

SNR (dB)

P
d

(a)

 

 

4 2 0 2 4 6 8
10

2

10
1

10
0

SNR (dB)

S
u

b
s
p

a
c
e

 d
is

ta
n

c
e

(b)

 

 

cPCA

ncPCA

Wax Kailath, (M)

ncPCA, (M)

ncPCA, (M,  p)

Fig. 8. Comparison of probability of detection (Pd) and subspace distance
gain for (a) ncPCA and (b) circular PCA (cPCA), as a function of SNR.

0, and 2/3, and variances 1, 2, and 6 respectively) emit-

ting plane waves impinging upon a uniform linear array of

N = 10 sensors with half-wavelength inter-sensor spacing.

The received observations are x(l) =
∑M
m=1 sm(l)am +

n(l), where l is the snapshot index, sm(l) is the wave-

form of the mth source, n(l) the circular antenna noise,

am = [1, exp (jπ sin(θm)), . . . , exp (jπ(N − 1) sin(θm))]
T

is the steering vector associated with the mth source, and θm
is the direction-of-arrival (DOA) of the mth source. We set

θ1 = −θ3 = 5◦ and θ2 = 0.

In Figure 8, we show the gain using ncPCA compared to a

circular model [134] both in terms of probability of detection

and in terms of subspace distance. Probability of detection is

defined as the fraction of trials where the order was detected

correctly, and substance distance is the squared Euclidean

distance between the estimated and the true signal subspace.

Each simulation point is averaged over 1000 independent runs.

As observed in Figure 8, ncPCA outperforms circular PCA

by approximately 4.0 dB in SNR. This holds for both the

detection of the order M alone and the joint detection of

orders (M,p), which perform almost identically for different

SNR levels. In addition, ncPCA consistently leads to a smaller

subspace distance. Further examples and additional discussion

on the performance of ncPCA are given in [72].

IV. WIDELY LINEAR ESTIMATION

In Section II-B, we have discussed widely linear (linear-

conjugate linear) transformations, which allow access to the

information contained in the complementary covariance. In

this section, we consider widely linear minimum mean-squared

error (WLMMSE) estimation [103], widely linear minimum

variance distortionless response (WLMVDR) estimation [29],

[77], [26], [27], and the widely linear least-mean-square

(LMS) algorithm. Using the augmented vector and matrix

notation, many of the results for widely linear estimation are

straightforward extensions of the corresponding results for

linear estimation.

A. Widely Linear MMSE Estimation

We begin with WLMMSE estimation of the N -dimensional

message (or signal) x from the M -dimensional measurement
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y. To extend results for LMMSE estimation to WLMMSE

estimation we need only replace the signal x by the aug-

mented signal x and the measurement y by the augmented

measurement y, and proceed as usual. Thus, most of the results

for LMMSE estimation apply straightforwardly to WLMMSE

estimation. It is, however, still worthwhile to summarize some

of these results and to compare LMMSE with WLMMSE

estimation. The widely linear estimator is

x̂ = Wy⇐⇒ x̂ = W1y +W2y
∗, (42)

where

W =

[
W1 W2

W∗
2 W∗

1

]

is determined such that the mean-squared error E{‖x̂−x‖2} =
1
2E{‖x̂−x‖2} is minimized. Keep in mind that the augmented

notation on the left hand side of (42) is simply a convenient,

but redundant, representation of the right hand side of (42).

Obviously, it is sufficient to estimate x because x̂∗ can be

obtained from x̂ through conjugation.

The WLMMSE estimator is found by applying the or-

thogonality principle (x̂ − x) ⊥ y and (x̂ − x) ⊥ y∗

[103], or equivalently, (x̂ − x) ⊥ y. This says that the error

between the augmented estimator and the augmented signal

must be orthogonal to the augmented measurement. This leads

to E{x̂ yH} − E{xyH} = 0 and thus

WCyy −Cxy = 0⇔W = CxyC
−1
yy . (43)

Thus, x̂ = CxyC
−1
yy y, or equivalently, [103]

x̂ = (Cxy−C̃xyC
−∗
yy C̃

∗
yy)P

−1
yy y+(C̃xy−CxyC

−1
yy C̃yy)P

−∗
yy y

∗.

In this equation, the Schur complement Pyy = Cyy −
C̃yyC

−∗
yy C̃

∗
yy is the error covariance matrix for linearly es-

timating y from y∗. The augmented error covariance matrix

Q of the error vector e = x̂− x is

Q = E{e eH} = Cxx −CxyC
−1
yyC

H
xy.

A competing estimator x̂
′ = W′y will produce an aug-

mented error e′ = x̂
′ − x with covariance matrix

Q′ = E
{
e′e′

H
}
= Q+ (W−W′)Cyy(W−W′)H , (44)

which shows Q ≤ Q′. As a consequence, all real-valued

increasing functions of Q are minimized, in particular,

E{‖e‖2} = trQ ≤ trQ′ = E{‖e′‖2} and detQ ≤ detQ′.

These statements hold for the error vector e as well as the

augmented error vector e because Q ≤ Q′ ⇒ Q ≤ Q′. The

error covariance matrix Q of the error vector e = x̂ − x is

the NW block of the augmented error covariance matrix Q,

which can be evaluated as

Q = E{eeH} = Cxx−(Cxy−C̃xyC
−∗
yy C̃

∗
yy)P

−1
yyC

H
xy−(C̃xy−CxyC

−1
yy C̃yy)P

−∗
yy C̃

H
xy.

(45)

A particular choice for a generally suboptimum filter is the

LMMSE filter

W′ =

[
CxyC

−1
yy 0

0 C∗
xyC

−∗
yy

]
⇐⇒W′ = CxyC

−1
yy ,

which ignores complementary covariance matrices.

Special cases: If the signal x is real, we have C̃xy = C∗
xy .

This leads to the simplified expression

x̂ = 2Re
{
(Cxy − C̃xyC

−∗
yy C̃

∗
yy)P

−1
yy y

}
.

While the WLMMSE estimate of a real signal from a complex

signal is always real [103], the LMMSE estimate is generally

complex.

The WLMMSE and LMMSE estimates are identical if and

only if the error of the LMMSE estimate is orthogonal to y∗,

i.e.,

(W′y − x) ⊥ y∗ ⇐⇒ CxyC
−1
yy C̃yy − C̃xy = 0. (46)

There are two important special cases where (46) holds:

• The signal and measurement are cross-proper, i.e., C̃xy =

0, and the measurement is proper, C̃yy = 0. Joint

propriety of x and y will suffice but it is not necessary

that x be proper.

• The measurement is maximally improper, i.e., y =
αy∗ with probability 1 for constant α with |α| = 1.

In this case, C̃xy = αCxy and C̃yy = αCyy and

CxyC
−1
yyCyyα − Cxyα = 0. WL estimation is un-

necessary since y and y∗ both carry exactly the same

information about x. This is irrespective of whether or

not x is proper.

In these cases, WLMMSE estimation has no performance

advantage over LMMSE estimation. The other extreme case

is where a WL operation allows perfect estimation while

LMMSE estimation yields a nonzero estimation error. An

example of such a case is y = x + n, where the signal x is

real and the noise n purely imaginary. Here the WL operation

Re {y} yields a perfect estimate of x, whereas the LMMSE

estimate is not even real valued. If y = x+n with proper and

white noise n, then the maximum performance advantage of

WLMMSE estimation over LMMSE estimation is a factor of

2 [117].

WLMMSE estimation is optimum in the Gaussian case,

but may be improved upon for non-Gaussian data if we have

access to higher-order statistics. The next logical extension of

widely linear processing is to widely linear-quadratic process-

ing [28], [30], [115], which requires statistical information up

to fourth order. We should add the cautionary note here that

there is no difference between the optimum, generally non-

linear, conditional mean estimator E(x|y), and E(x|y,y∗).
Conditioning on y and y∗ changes nothing, since E(x|y)
already extracts all the information there is about x from

y. So the “widely nonlinear” estimator E(x|y,y∗) is simply

E(x|y).

B. Widely Linear MVDR Estimation

Next, we extend linear minimum-variance distortionless

response (LMVDR) estimators to widely linear MVDR es-

timators that account for complementary covariance. The

measurement model is

y = Ψx+ n, (47)

where the matrix Ψ = [ψ1,ψ2, . . . ,ψp] ∈ CM×p consists of

p modes that are assumed to be known (as, for instance, in
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beamforming), and the vector x = [x1, x2, ..., xp] consists of p
complex deterministic amplitudes. Without loss of generality

we assume ΨHΨ = I. The noise n has covariance matrix

Cnn = E{nnH}. Because x is modeled as unknown but

deterministic, the covariance matrix of the measurement equals

the covariance matrix of the noise: Cyy = Cnn. The matched

filter estimator of x is

x̂ = ΨHy (48)

with mean x and error covariance matrix E{(x̂ − x)(x̂ −
x)H} = ΨHCnnΨ. The LMVDR estimator x̂ = WHy, with

W ∈ CM×p, is derived by minimizing the trace of the error

covariance under an unbiasedness constraint:

min tr [WHCnnW] under constraint WHΨ = I

The solution is

x̂ = (ΨHC−1
nnΨ)−1ΨHC−1

nny (49)

with mean x and error covariance matrix Q = E{(x̂−x)(x̂−
x)H} = (ΨHC−1

nnΨ)−1. If there is only a single mode ψ ∈
CM×1, then the solution is

x̂ =
ψHC−1

nn

ψHC−1
nnψ

y, (50)

and the covariance matrix of the noise is Cnn = E{yyH} −
|x|2ψψH .

The measurement model (47) in augmented form is

y = Ψx+ n,

where

Ψ =

[
Ψ 0

0 Ψ∗

]

and the noise n is generally improper with augmented covari-

ance matrix Cnn. The matched filter estimator of x, however,

does not take into account noise, and thus the widely linear

matched filter solution is still the linear solution (48). The

WLMVDR estimator, on the other hand, is obtained as the

solution to

min tr [WHCnnW] under constraint WHΨ = I (51)

with

W =

[
W1 W2

W∗
2 W∗

1

]
.

This solution is widely linear [29], [77], [26],

x̂ = (ΨHC−1
nnΨ)−1ΨHC−1

nny, (52)

with mean x and augmented error covariance matrix Q =

E{(x̂− x)(x̂− x)H} = (ΨHC−1
nnΨ)−1. The variance of the

WLMVDR estimator is less than or equal to the variance of

the LMVDR estimator because of the following argument. The

optimization (51) is performed under the constraint WHΨ =
I, or equivalently, WH

1 Ψ = I and WH
2 Ψ = 0. Thus,

the WLMMSE optimization problem contains the LMMSE

optimization problem as a special case in which W2 = 0

is enforced. As such, WLMVDR estimation cannot be worse

than LMVDR estimation. However, the additional degree of

freedom of being able to choose W2 6= 0 can reduce variance

if the noise n is improper.

The reduction in variance of the WLMVDR compared

to the LMVDR estimator is entirely due to exploiting the

complementary correlation of the noise n. Indeed it is easy

to see that for proper noise n, the WLMVDR solution (52)

simplifies to the LMVDR solution (49). Since x is not assigned

statistical properties, the solution is independent of whether

or not x is improper. This stands in marked contrast to

WLMMSE estimation discussed in the previous section. A

detailed analysis of the WLMVDR estimator is provided by

[26]. Further results are presented in [27].

C. Linear and Widely Linear Filtering and the LMS Algorithm

In this section, we consider the linear and widely linear

filtering problem, where we estimate a scalar signal x(k) from

observations taken over M time instants y(k) = [y(k), y(k −
1), ..., y(k −M + 1)]T . We first derive the normal equations

and the least-mean-square (LMS) algorithm [135], [136], and

then extend it to the widely linear case. The linear estimate of

x(k) is

x̂(k) = wH(k)y(k).

For convenience, we will suppress the time-dependency of

the filter w(k). We could derive the solution for w using

orthogonality arguments as in (43). Alternatively, we can take

the Wirtinger derivative of the linear mean-squared error term

JL(w) = E{|e(k)|2} = E{|x(k) − x̂(k)|2}, which is real

valued, with respect to w∗ (by treating w as a constant)

∂E{e(k)e∗(k)}
∂w∗

=
∂E{

[
x(k)−wHy(k)

] [
x∗(k)−wTy∗(k)

]
}

∂w∗

= −E
{
y(k)

[
x∗(k)−wTy∗(k)

]}
. (53)

By setting (53) to zero and assuming a nonsingular covariance

matrix, we obtain the normal equations

E{y(k)yH(k)}wopt = E{x∗(k)y(k)} ⇐⇒ wopt = C−1
yy (k)cyx(k),

where cyx(k) = E{x∗(k)y(k)}. If x(k) and y(k) are jointly

WSS, this equation is independent of k. The weight vector

w can also be computed adaptively using gradient descent

updates

w(k + 1) = w(k)− µ∂E{|e(k)|
2}

∂w∗(k)

= w(k) + µE{e∗(k)y(k)} (54)

or using stochastic gradient updates

w(k + 1) = w(k) + µe∗(k)y(k),

which replaces the expected value in (54) with its instan-

taneous estimate. This is the popular LMS algorithm. The

stepsize µ > 0 determines the trade-off between the rate of

convergence and the minimum MSE.

Widely linear filter and LMS algorithm: As shown in (42),

a widely linear filter forms the estimate of x(k) through the

inner product

x̂WL(k) = vHy(k) (55)
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where the weight vector v = [v0, v1, · · · , v2M−1]
T has twice

the dimension of the linear filter. The minimization of the

widely linear MSE cost JWL is obtained analogously by

setting ∂JWL(v)/∂v
∗ = 0. This results in the widely linear

complex normal equation

E{y(k)yH(k)}vopt = E{x∗(k)y(k)} ⇐⇒ vopt = C−1
yy (k)

[
cyx(k)
c̃∗yx(k)

]
,

where c̃∗yx(k) = E{x∗(k)y∗(k)}. The difference between the

widely linear MSE JWL and the linear MSE JL is [103]

Jdiff = JL(wopt)− JWL(vopt)

=
(
c̃∗yx − C̃∗

yyC
−1
yy cyx

)H (
C∗
yy − C̃∗

yyC
−1
yy C̃yy

)−1 (
c̃∗yx − C̃∗

yyC
−1
yy cyx

)
≥ 0.(56)

The widely linear LMS algorithm is written similar to the

linear case as

v(k + 1) = v(k) + µe∗(k)y(k) (57)

where µ > 0 is the stepsize and e(k) = x(k)− vH(k)y(k).
The study of the LMS filter has been an active research

topic. A thorough account of its properties is given in [50],

[74] based on the different types of assumptions that can be

invoked to simplify the analysis. With the augmented vector

notation, most of the results for the linear LMS filter can

be readily extended to the widely linear case although care

must be taken in the assumptions such as uncorrelatedness

and orthogonality of the signals [38], [6].

The convergence of the LMS algorithm depends on the

eigenvalues of the input covariance matrix [21], [50]. For the

widely linear LMS filter, this is the augmented covariance

matrix. A measure typically used for the eigenvalue disparity

of a given matrix is the condition number. For a Hermitian

matrix C, the condition number is the ratio of largest to

smallest eigenvalue: κ(C) = λmax/λmin. When the signal is

proper, the augmented covariance matrix is block-diagonal and

has eigenvalues that occur with even multiplicity. In this case,

the condition numbers of the augmented covariance matrix

C and the Hermitian covariance matrix C are the same. If

the signal is improper, then the eigenvalue spread of C is

always greater than the eigenvalue spread of C. The maximally

improper case leads to the most spread out eigenvalues. This

can be shown via majorization theory [115], [117].

Thus, the MSE performance advantage of the widely linear

LMS algorithm for improper signals comes at the price of

slower convergence compared to the linear LMS algorithm.

An update scheme such as the recursive least squares (RLS)

algorithm [50], which is less sensitive to the eigenvalue spread,

may be preferable in some cases. In the next example, we

demonstrate the impact of impropriety on the convergence of

LMS algorithm, and show that when the underlying system

is linear, there is no performance gain with a widely linear

model—a simple point, but not always acknowledged in the

literature.

D. Examples

We define a random process

y(k) =
√
1− ζ2yr(k) + jζyi(k), (58)
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(b) Noncircular input (ζ = 0.1)

Fig. 9. Convergence of the linear and widely linear LMS algorithm for a
linear system, for (a) circular input and (b) noncircular input

where yr(k) and yi(k) are two uncorrelated real-valued ran-

dom processes, both Gaussian distributed with zero mean and

unit variance. By changing the value of ζ ∈ [0, 1], we can

change the degree of noncircularity of y(k). For ζ = 1/
√
2,

the random process y(k) becomes circular (and hence proper),

whereas ζ = 0 and ζ = 1 lead to maximally noncircular

y(k). We then construct x(k) = h(k) ∗ y(k) + n(k). That is,

we pass y(k) through a linear system with impulse response

h(k) = α(1+ cos(2π(k− 3)/5)− j[1 + cos(2π(k− 3)/10)]),
k = 1, . . . , 5, where α = 0.432 to ensure unit weight norm,

and we also add uncorrelated white circular Gaussian noise

n(k) with signal-to-noise ratio of 20 dB.

Because x(k) was obtained from y(k) as the output of a

linear system plus uncorrelated noise, the optimum filter for

estimating x(k) from y(k) is obviously linear. However, we

use this simple example to demonstrate what would happen

if one were to use a widely linear filter instead. In order

to estimate x(k) using the LMS algorithm, we assemble

M snapshots of y(k) in the vector y(k) = [y(k), y(k −
1), · · · , y(k − M + 1)]T . Its covariance matrix is C = I,

and its complementary covariance matrix is C̃ = (1− 2ζ2)I.
The eigenvalues of the augmented covariance matrix C can

be shown to be 2ζ2 and 2(1 − ζ2), each with multiplicity

M . Hence, the condition number is κ(C) = (1 − ζ2)/ζ2 for

ζ ∈ (0, 1/
√
2] and κ(C) = ζ2/(1− ζ2) for ζ ∈ [1/

√
2, 1).

In Figure 9, we show the convergence behavior of a linear

and a widely linear LMS filter for estimating x(k) from y(k).
The step size is fixed at µ = 0.04 for all runs, and we choose

the length of the filter M = 5 to match the length of the

system’s impulse response. Figure 9 (a) shows the learning
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Fig. 10. Convergence of the linear and widely linear LMS algorithm for a
widely linear system, for (a) circular input and (b) noncircular input

curve for a circular input, i.e., ζ = 1/
√
2, and Figure 9 (b)

for a noncircular input with ζ = 0.1. The figures confirm

that the linear and widely linear filters yield the same steady-

state mean-square error values for circular and noncircular

y(k). However, in the noncircular case, the use of the widely

linear LMS filter is even detrimental because of its decreased

convergence rate. This is due to the fact that, for circular y(k),
the condition numbers for both C and C are unity, whereas

for noncircular y(k), κ(C) = 1 but κ(C) = 99.

Let us now consider the widely linear system x(k) =
Re {h(k)∗y(k)}+n(k) with the same h(k) as before. Figure

10 shows the corresponding learning curves for the linear

and widely linear LMS filters with the same settings for the

simulation as before. As can be observed in the figures, the

widely linear filter provides smaller MSE for both circular

and noncircular y(k). For circular input y(k), the reduction

in MSE by using the widely linear filter can be obtained

from (56) as Jdiff = ‖c̃yx‖2 = ‖E{x(k)y(k)}‖2. However,

this performance gain again comes at the price of slower

convergence due to the increased eigenvalue spread.

V. INDEPENDENT COMPONENT ANALYSIS

Data-driven signal processing methods are based on simple

generative models and hence can minimize the assumptions

on the nature of the data. They have emerged as promising

alternatives to the traditional model-based approaches in many

signal processing applications where the underlying dynamics

are hard to characterize. The most common generative model

used in data-driven decompositions is a linear mixing model,

where the mixture (the given set of observations) is written

as a linear combination of source components, i.e., it is

decomposed into a mixing matrix and a source matrix. For

uniqueness of the decomposition (subject to a scaling and

permutation ambiguity), constraints such as sparsity, nonneg-

ativity, or independence are applied to the two matrices. ICA

is a popular data-driven blind source separation technique

that imposes the constraint of statistical independence on

the components, i.e., the source distributions. It has been

successfully applied to numerous signal processing problems

in areas as diverse as biomedicine, communications, finance,

and remote sensing [35], [34], [56], [5].

We consider the typical ICA problem, where x is a linear

mixture of independent components (sources) s, as described

by

x = Ms (59)

where x, s ∈ C
N , i.e., the number of sources and observations

are equal, and the mixing matrix M ∈ CN×N is nonsingular.

The objective is to blindly recover the sources s from the

observations x, without knowledge of M, using the demixing

(or separating) matrix W ∈ CN×N such that the source

estimates are u = Wx where u = [u1, . . . , uN ]T . Arbitrary

scaling of s, i.e., multiplication by a diagonal matrix (which

may have complex entries), and reordering the components of

s, i.e., multiplication by a permutation matrix, preserves the

independence of its components. The product of a diagonal

and a permutation matrix is a monomial matrix, which has

exactly one nonzero entry in each column and row. Hence, we

can determine W only up to multiplication with a monomial

matrix.

A limitation of ICA for the real-valued case is that when

the sources are white—i.e., we cannot exploit the sample

correlation structure in the data—we can only allow one

Gaussian source in the mixture for successful separation. In

the complex case, on the other hand, we can perform ICA

of multiple Gaussian sources as long as they all have dis-

tinct circularity coefficients. In addition, the complex domain

enables the separation of improper sources through a direct

application of the invariance property of the circularity coeffi-

cients. When all the sources in the mixture are improper with

distinct circularity coefficients, we can achieve ICA through

joint diagonalization of the covariance and complementary

covariance matrices using the strong uncorrelating transform

(SUT) [41], [63]. For the real-valued case, separation using

second-order statistics can be achieved only when the sources

have sample correlation.

Using higher-order statistical information, we can perform

ICA for any type of distribution, circular or noncircular, as

long as there are no two complex Gaussian sources with the

same circularity coefficient [41]. To achieve ICA, we can

either compute the higher-order statistics explicitly, or we

can generate them implicitly through the use of nonlinear

functions. Among the former group is JADE (which stands

for joint approximate diagonalization of eigenmatrices) [24],

which computes cumulants. JADE can be used directly for

ICA of complex-valued data. A recent extension of this

algorithm [122] enables joint diagonalization of matrices that

can be Hermitian or complex symmetric. Hence, it allows for
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more efficient ICA solutions, considering also the commonly

neglected complementary statistics in the original formulation

of JADE.

Algorithms that rely on joint diagonalization of cumulant

matrices are robust. However, their performance suffers as the

number of sources increases, and the cost of computing and

diagonalizing cumulant matrices may become prohibitive for

separating a large number of sources. ICA techniques that

use nonlinear functions to implicitly generate higher-order

statistics may present attractive alternatives. Among these are

ML-ICA [99], information-maximization (Infomax) [16], and

maximization of non-Gaussianity (e.g., the FastICA algorithm)

[55], which are all intimately related to each other. These

algorithms can be easily extended to the complex domain

using Wirtinger calculus as shown in [7]. In addition, one

can develop complex ICA algorithms that adapt to different

source distributions, using general models such as complex

generalized Gaussian distributions [90] as in [87], or more

flexible models through efficient entropy estimation techniques

[69].

A. ICA using Second-Order Statistics

We first present the second-order approach to ICA [40],

[41], [63], which is based on the fact that the circularity coeffi-

cients of s are invariant under the linear mixing transformation

M [113]. We discussed the circularity coefficients in Section

III-A. There is a corresponding coordinate system, called the

canonical coordinate system, where the latent description s′

has identity correlation matrix, E{s′s′H} = I, and diagonal

complementary correlation matrix with the circularity coeffi-

cients on the diagonal,

E{s′s′T } = K = diag(k1, k2, ..., kN ).

In [41], vectors that are uncorrelated with unit variance,

but possibly improper, are called strongly uncorrelated, and

the transformation Ass, which transforms s into canonical

coordinates s′ as s′ = Asss, is called the strong uncorrelating

transform (SUT). The SUT is found as

Ass = FHssC
−1/2
ss ,

where Fss is obtained from the Takagi factorization (28) for

the coherence matrix of s. If all circularity coefficients are

distinct and nonzero, the SUT is unique up to the sign of its

rows [41]. We will now show that the SUT Axx, computed

from the mixture x, is a separating matrix for the complex

linear ICA problem provided that all circularity coefficients

are distinct.

The assumption of independent components in s in the given

ICA model (59) implies that the correlation matrix Css and

the complementary correlation matrix C̃ss are both diagonal. It

is therefore easy to compute canonical coordinates between s

and s∗, denoted by s′ = Asss. In the SUT Ass = FHssC
−1/2
ss ,

C
−1/2
ss is a diagonal scaling matrix, and FHss is a permutation

matrix that rearranges the canonical coordinates s′ such that

s′1 corresponds to the largest circularity coefficient k1, s′2 to

the second largest coefficient k2, and so on. This makes the

s
∗

A
∗

xx

Axx

M
∗

M

A
−∗

ss

A
−1

ss

x
∗

C̃ss

s x

C̃xx K

x
′

x
′∗

s
′∗

s
′

K

Fig. 11. Two-channel model for second-order complex ICA. The vertical
arrows show the complementary correlation matrix between the upper and
lower lines.

SUT Ass monomial. As a consequence, s′ has independent

components.

The mixture x has correlation matrix Cxx = MCssM
H

and complementary correlation matrix C̃xx = MC̃ssM
T .

The canonical coordinates between x and x∗ are computed as

x′ = Axxx = FHxxC
−1/2
xx x, and the SUT Axx is determined

analogously to Ass.

Figure 11 shows the connection between the different co-

ordinate systems. The important observation is that s′ and x′

are both in canonical coordinates with the same circularity

coefficients {kn}. It remains to show that s′ and x′ are related

by a diagonal unitary matrix D = AxxMA−1
ss as x′ = Ds′,

provided that all circularity coefficients are distinct. Since

s′ and x′ are both in canonical coordinates with the same

diagonal canonical correlation matrix K,

E
{
s′s′H

}
=

[
I K

K I

]

E
{
x′x′H

}
=

[
D 0

0 D∗

] [
I K

K I

] [
DH 0

0 DT

]

=

[
DDH DKDT

D∗KDH D∗DT

]
=

[
I K

K I

]
.

This shows that D is unitary and DKDT = K. The latter

can only be true if Dij = 0 whenever ki 6= kj . Therefore,

D is diagonal and unitary if all circularity coefficients are

distinct. Since K is real, the corresponding diagonal entries

of all nonzero circularity coefficients are actually ±1. Thus,

x′ has independent components because s′ has independent

components. Hence, we have shown that the SUT Axx is a

separating matrix for the complex linear ICA problem if all

circularity coefficients are distinct, and the ICA solution is

u = Wx with u = x′ and W = Axx.

This development requires that correlation and complemen-

tary correlation matrices exist. For some distributions (e.g.,

Cauchy distribution) this is not the case. Ollila and Koivunen

[96] have presented a generalization of the SUT that works

for such distributions.

A recent source separation algorithm, entropy rate mini-

mization (ERM) [71], uses second-order statistics along with

sample correlation to improve the overall separation perfor-

mance, and the second-order source separation algorithm SUT

described above becomes a special case of the ERM algorithm.

B. ICA using Higher-Order Statistics

As discussed in Section V-A, ICA can be achieved using

only second-order statistics as long as all the sources are
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noncircular with distinct circularity coefficients. Using higher-

order statistics, however, one can develop more powerful ICA

algorithms that can achieve separation under more general

conditions and separate sources as long as there are no two

complex Gaussians with the same circularity coefficient in the

given mixture.

A natural cost for achieving independence is mutual infor-

mation, which can be expressed as the Kullback-Leibler dis-

tance between the joint and factored marginal source densities

I(W) = D

(
ps(u)

∥∥∥
N∏

n=1

psn(un)

)
=

N∑

n=1

H(un)−H(u)

=

N∑

n=1

H(un)−H(x)− log | detWIR| (60)

where

WIR =

[
Wr −Wi

Wi Wr

]

is the real representation of complex W = Wr + jWi and

psn(un) = psnr ,sni
(unr

, uni
) is the pdf of source n, n =

1, . . . , N . To write (60), we used the Jacobian transformation

px(x) = |detWIR|pu(Wx) (61)

where pu(Wx) = pu(u).
When we have L independent samples x(l) ∈ CN , we can

use the mean ergodic theorem to write the first term in (60),

the total source entropy, as

N∑

n=1

H(un) = −
N∑

n=1

E
{
log psn(w

H
n x)

}
≈

− 1

L

L∑

l=1

N∑

n=1

log psn(w
H
n x(l)) (62)

where wn denotes the nth row of W. Since H(x) is constant

with respect to the weight matrix, it is easy to see that the

minimization of mutual information given in (60) is equivalent

to maximum likelihood estimation for the given L samples.

The maximum likelihood L(W) is written as L(W) =∑L
l=1 ℓl(W) where

ℓl(W) = log p(x(l)|W) = log

N∏

n=1

psn(w
H
n x)+log | detWIR|.

(63)

In writing (63), we used W = M−1 by ignoring the scaling

and permutation ambiguity to simplify the notation. We have

also omitted the sample index of x(l) for economy.

A simple but effective learning rule for maximizing the

likelihood function can be obtained by directly using Wirtinger

derivatives as explained in Section II-A. We write the real-

valued cost function ℓl(W) as ℓl(W,W∗), and derive the

relative (natural) gradient updates for the demixing matrix [7]

∆W = (I−ψ(u)uH)W, (64)

where the nth element of the score function ψ(u) ∈ C
N is

the Wirtinger derivative

ψn(un) = −
∂ log psn(un)

∂u∗n
. (65)

This way the development avoids the need for simplifying

assumptions such as circularity [14].

Another natural cost function for performing ICA is ne-

gentropy, which measures the entropic distance of a given

distribution from the Gaussian. Independence is achieved by

moving the distribution of the transformed mixture wH
n x—

the independent source estimate un—away from the Gaussian,

i.e., by maximizing non-Gaussianity. Note that in this case, the

objective function is defined for each individual source rather

than for the whole vector u as in ML ICA. With negentropy

maximization as the objective, the cost function for estimating

all sources is written as in (62), under the constraint that W

be unitary. Since detWIR = | det(W)|2, the second term in

(63) vanishes for unitary W. So maximizing likelihood and

maximizing negentropy are equivalent goals for unitary W.

If we approximate the negentropy—or, equivalently, the

entropy (62) under a variance constraint—using a nonlinear

function G(·)

E
{
log psn(w

H
n x)

}
= E

{
|G(wH

n x)|2
}
, (66)

we can estimate the columns wn of the unitary demixing

matrix W in a deflationary procedure, where the sources are

estimated one at a time. We can again use Wirtinger calculus

to obtain either gradient updates [7] or modified Newton type

updates [86], [7] such that the weight vector is updated by

w← E{G′(u) [G′(u)]
∗}w − E{G∗(u)G′(u)x}+

E{xxT }E{G∗(u)G′′(u)}w∗ (67)

where G′(u) and G′′(u) denote the first and second derivatives

of G(·). After each update (67), an orthogonalization and

normalization step is used for w to ensure that the resulting

W is unitary.

To summarize, ICA using higher-order statistics can be

achieved by maximizing likelihood (which is equivalent to

minimizing mutual information) or by maximizing negentropy.

When the demixing matrix is constrained to be unitary—as it

is for the negentropy cost—the two costs are equivalent. In

both cases, the performance is optimized when the nonlinear

functions, the score function in (64) and the nonlinearity G(·)
in (67), are chosen to match the source distributions. This is

discussed in more detail in the next section.

C. ICA Algorithms and Noncircularity

As shown in Section V-A, noncircularity (or rather impropri-

ety) allows the separation of sources using only second-order

statistics as long as all the sources in the mixture are noncir-

cular with distinct circularity coefficients. Noncircularity also

plays an important role in the performance of ICA algorithms.

To be identifiable, the mixing matrix M in (59) must have full

column rank and there must not be two Gaussian sources with

the same circularity coefficient [41]. In terms of local stability,

noncircularity plays a more critical role because algorithms

become less stable as the degree of noncircularity increases.

As noted in the previous section, the ML and negentropy

cost functions are equivalent for unitary W. Nevertheless,

the stability conditions differ for these two cost functions
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Fig. 12. Regions of stability for negentropy cost given by E
{

G(|wH
n x|2)

}

because, for the negentropy cost, the unitary constraint allows

a desirable decoupling for each source estimate.

When the negentropy cost is approximated as

E
{
G(|wH

n x|2)
}

, we can obtain local stability conditions.

These are conditions for the cost function to have a local

minimum or maximum [88], following the approach in [18],

which assumed circularity. In Fig. 12, we plot the regions

of stability for three nonlinear functions, G1(u) =
√
a+ u,

G2(u) = log(a + u), and G3(u) = u2/2, where a is an

arbitrary constant, chosen as 0.1 as in [18]. The region

of stability depends on the kurtosis (which is normalized

such that the Gaussian has zero kurtosis) and the degree

of impropriety |E{u2}|/E{|u|2}. We see that stability

for sub-Gaussian sources, whose kurtosis is in the range

[−1, 0), is always affected by impropriety. Examples of such

sources include quadrature amplitude modulation, BPSK, and

uniformly distributed signals. However, for super-Gaussian

sources, whose kurtosis is greater than zero, impropriety

affects stability only for sources whose kurtosis is close to

the Gaussian. Hence, for super-Gaussian sources, matching

the density to the improper nature of the signals is less of a

concern than for sub-Gaussians.

For ML ICA, on the other hand, it is shown in [66] that,

when all sources are circular and non-Gaussian, the updates

converge to the inverse of the mixing matrix up to a phase

shift. However, when the sources are noncircular and non-

Gaussian, the stability conditions become more difficult to

satisfy, especially when the demixing matrix is constrained to

be unitary. When the sources are Gaussian though, ML ICA

is stable as long as the circularity coefficients of all sources

are distinct. This is the case that can also be solved using the

second-order ICA approach described in Section V-A.

For ML ICA of circular sources, the nth entry of the score

function vector ψ(u) in (65) can be shown to be [7]

ψn(un) = −
∂ log φ(

√
unun∗)

∂un∗
= − un

2|un|

(
φ′(|un|)
φ(|un|)

)

because for this case we have psn(un) = φ(|un|). Thus, the

score function always has the same phase as its argument. This

is the form of the score function proposed in [14] where all

sources are assumed to be circular. When the source is cir-

cular Gaussian, the score function becomes linear: ψn(un) =
un/2σ

2
n. This is expected because circular Gaussian sources

cannot be separated. However, when they are noncircular, the

score function is ψn(un) = (σ2
nun − σ̃2

nu
∗
n)/2(σ

4
n − |σ̃2

n|2),
where σ2

n and σ̃2
n are the variance and the complementary

variance of the nth source. This function is widely linear in un,

which allows separation as long as the sources have distinct

circularity coefficients.

In addition to identifiability and local stability conditions,

noncircularity also plays a role in terms of the overall per-

formance of the algorithms. The performance of both ML-

ICA and ICA by maximization of non-Gaussianity is optimal

when the nonlinearity used in the algorithm (the score function

ψ(·) for ML and G(·) for maximization of non-Gaussianity)

is matched to the density of each estimated source. This is

also when the estimators assume their desirable large sample

properties [54], [99].

Given the richer structure of possible distributions in the

complex (two-dimensional) space compared to the real (one-

dimensional) space, the pdf estimation problem becomes more

challenging for complex-valued ICA. In the matching proce-

dure, we need to consider not only the sub- or super-Gaussian

but also the circular/noncircular nature of the sources. One

way to do this is to employ the complex GGD (35) to derive a

class of flexible ICA algorithms. Its shape parameter c and the

augmented covariance matrix can be estimated during the ICA

updates. This is the approach taken in the adaptive complex

maximization of non-Gaussianity (ACMN) algorithm [86],

[87] based on the updates given in (67). Another approach

to density matching is entropy estimation through the use

of a number of suitably chosen measuring functions [70].

Such an approach can provide robust performance even with

a small set of chosen measuring functions [70]. Since the

demixing matrix is not constrained in the maximum likelihood

approach, exact density matching for each source becomes

a more challenging task. This is due to the fact that in the

update equation (64), the score function for each source (65)

affects the whole demixing matrix estimate W. In the complex

ICA by entropy bound minimization (ICA-EBM) algorithm

[69], the maximum likelihood updates are combined with a

decoupling approach that enables easier density matching for

each source independently. We study the performance of these

algorithms in Section V-D.

Finally, it is important to note that exact density matching is

not generally critical for the performance of ICA algorithms.

As the discussion in Section III highlights, it is important

only when the sample size is small or the sources are highly

noncircular. In many cases, simpler algorithms that do not

explicitly estimate the distributions, and may not even match

the circular/noncircular nature of the data, can provide sat-

isfactory performance for practical problems such as fMRI

analysis [68].

D. Examples

In this section, we present two examples to show the

performance of the ICA algorithms we have discussed so far,

for Gaussian and non-Gaussian sources with varying degrees
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of noncircularity [69]. Three indices are used to evaluate

performance. Ideally, the product P = WM of demixing and

mixing matrix should be monomial. Based on that, we define

the first performance index as follows: For each row of P, we

keep only the entry whose magnitude is largest. If the matrix

we thus obtain is monomial, we declare success, otherwise

failure. The ratio of failed trials is the first performance index.

The second performance index is the average interference-

to-signal-ratio (ISR), which is calculated as the average for

all successful runs. The ISR for a given source is defined

as the inverse ratio of the largest squared magnitude in the

corresponding row of P to the sum of squared magnitudes for

the remaining entries in that row. The third performance index

is the average CPU time.

We consider three different ICA algorithms: (i) the second-

order SUT [41]; (ii) ACMN, which maximizes negentropy by

adaptively estimating the parameters of the GGD model in (35)

[86], [87]; and (iii) complex ICA-EBM, which maximizes the

likelihood and approximates the entropy (source distributions)

through a set of flexible measuring functions [69].

The first example is the separation of noncircular Gaussian

sources with distinct circularity coefficients. Five Gaussian

signals with unit variance and complementary variances of

|E{s2}| = 0, 0.2, 0.4, 0.6, and 0.8 are mixed with a randomly

chosen square matrix whose real and imaginary elements are

independently drawn from a zero-mean, unit-variance Gaus-

sian distribution. Figure 13(a) shows the performance indices.

We observe that the second-order SUT algorithm exhibits the

best separation performance and also consumes the least CPU

time. ACMN fails to separate the mixtures primarily because

of the simplification it employs in the derivation. Complex

ICA-EBM performs as well as SUT only for large sample

sizes. The entropy estimator used in this algorithm can exactly

match the entropy of a Gaussian source, which accounts for the

asymptotic efficiency of complex ICA-EBM for the separation

of Gaussian sources.

In the second example, we study the performance of the

algorithms for complex GGD sources whose pdf is given

in (35). Nine sources are generated with shape parameters

c = 0.2, 0.4, 0.6, 0.8, 1, 3, 5, 7, and 9, hence including four

super-Gaussian, one Gaussian, and four sub-Gaussian sources.

For each run, the complex correlation coefficient ρ is selected

randomly inside the unit circle, resulting in different circularity

coefficients. Figure 13(b) depicts the performance indices.

We observe that the flexible ICA-EBM outperforms the other

algorithms at a reasonable computational cost. ACMN, which

is based on a complex GGD model, provides the next best per-

formance but still with a significant performance gap primarily

because of the unitary constraint it imposes on the demixing

matrix W.

In summary, the second-order SUT is efficient for es-

timation of Gaussian sources provided that they all have

distinct circularity coefficients. By adaptively estimating the

parameters of a GGD model, ACMN can provide satisfactory

performance for most cases as shown in [69], [87] but it is

also computationally demanding. Flexible density matching in

ICA-EBM, on the other hand, provides an attractive trade-off

between performance and computational cost. In addition, in

a maximum likelihood framework, the demixing matrix is not

constrained. This can lead to better performance compared to

algorithms that do impose constraints, such as ACMN. Except

when prior information such as distinct circularity coefficients

is available, a flexible algorithm such as ICA-EBM would thus

provide the best choice with robust performance.

VI. CONCLUSIONS

In this overview paper, we have tried to illuminate the

role that impropriety and noncircularity play in statistical

signal processing of complex-valued data. We considered three

questions: Why should we care about impropriety and non-

circularity? When does it make sense to take it into account?

How do we do it? In a nutshell, the answers to these questions

are: We should care because it can lead to significant perfor-

mance improvements in estimation, detection, and time-series

analysis. We should take it into account whenever there is

sufficient statistical evidence that signals and/or the underlying

nature of the problem are indeed improper. We can do it

by considering the complete statistical characterization of the

signals and employing Wirtinger calculus for the optimization

of cost functions with complex parameters.

In second-order methods such as mean-squared error es-

timation, a complete statistical characterization requires con-

sideration of the complementary correlation; in problems such

as ICA, it requires the use of flexible density models that

can account for noncircularity. The caveat is that noncircular

models have more degrees of freedom than circular models,

and can hence lead to performance degradation in certain

scenarios, even when the signals are noncircular. We noted that

circular models are to be preferred when the SNR is low, the

number of samples is small, or the degree of noncircularity is

low. In addition, in the implementation of adaptive algorithms

such as the LMS algorithm, taking the complete second-order

statistical information into account may come at the expense

of slower convergence.

We have reviewed some of the fundamental results, and

some selected more recent developments in the field. There

is a lot that we have not included, such as Cramér-Rao type

performance bounds [127], [37], [97], [115] and a much more

in-depth discussion of random processes. We have also paid

only scant attention to the singular case of maximally im-

proper/noncircular signals (also called “rectilinear” or “strict-

sense noncircular” signals). This case deserves more attention

because many algorithms developed for improper/noncircular

signals either fail in the maximally improper case or may

even give worse performance than algorithms developed for

proper/circular signals. Examples of papers dealing explicitly

with maximally improper signals are [49], [1], [2], [107].

In addition, we would like to note the growing interest in

the extension of these results to hypercomplex numbers, in

particular quaternions (see, e.g., [124], [9], [17], [120], [130],

[131], [121]).

We hope that this overview paper will encourage more

researchers to take full advantage of the power of complex-

valued signal processing.
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[119] G. Tauböck. Complex noise analysis of DMT. IEEE Trans. Signal

Processing, 55:5739–5754, 2007.
[120] C. C. Took and D. P. Mandic. Quaternion-valued stochastic gradient-

based adaptive IIR filtering. IEEE Trans. Signal Processing, 58:3895–
3901, July 2010.

[121] C. C. Took and D. P. Mandic. Augmented second-order statistics of
quaternion random signals. Signal Processing, 91(214–224), Feb. 2011.

[122] T. Trainini, X.-L. Li, E. Moreau, and T. Adalı. A relative gradient
algorithm for joint decompositions of complex matrices. In Proc. Eu-

ropean Signal Process. Conf. (EUSIPCO), Aalborg, Denmark, August
2010.

[123] H. Trigui and D. T. M. Slock. Performance bounds for cochannel
interference cancellation within the current GSM standard. Signal

Processing, 80:1335–1346, 2000.
[124] N. N. Vakhania. Random vectors with values in quaternion Hilbert

spaces. Theory Probability Appl., 43(1):99–115, 1999.
[125] N. N. Vakhania and N. P. Kandelaki. Random vectors with values in

complex Hilbert spaces. Theory Probability Appl., 41(1):116–131, Feb.
1996.

[126] A. van den Bos. Complex gradient and Hessian. IEE Proc.: Vision,

Image, and Signal Processing, 141(6):380–382, Dec. 1994.
[127] A. van den Bos. A Cramér-Rao lower bound for complex parameters.

IEEE Trans. Signal Processing, 42:2859, 1994.
[128] A. van den Bos. Estimation of complex parameters. In 10th IFAC

Symp., volume 3, pages 495–499, July 1994.
[129] A. van den Bos. The multivariate complex normal distribution—A

generalization. IEEE Trans. Inform. Theory, 41:537–539, 1995.
[130] J. Via, D. Ramirez, I. Santamaria, and L. Vielva. Properness and widely

linear processing of quaternion random vectors. IEEE Trans. Info.

Theory, 56:3502–3515, July 2010.
[131] J. Via, D. Ramirez, I. Santamaria, and L. Vielva. Widely and

semi-widely linear processing of quaternion vectors. In Proc. IEEE

Int. Conf. Acoust., Speech, Signal Processing (ICASSP), pages 3946–
3949, Dallas, TX, March 2010.

[132] P. Wahlberg and P. J. Schreier. Spectral relations for multidimensional
complex improper stationary and (almost) cyclostationary processes.
IEEE Trans. Inform. Theory, 54:1670–1682, 2008.

[133] A. T. Walden and P. Rubin-Delanchy. On testing for impropriety of
complex-valued Gaussian vectors. IEEE Trans. Signal Processing,
57:825–834, March 2009.

[134] M. Wax and T. Kailath. Detection of signals by information theoretic
criteria. IEEE Trans. Acoustics, Speech, and Signal Processing,
33(2):387–392, April 1985.

[135] B. Widrow, J. Cool, and M. Ball. The complex LMS algorithm. Proc.

IEEE, 63:719–720, 1975.
[136] B. Widrow and Jr. M. E. Hopf. Adaptive switching circuits. In IRE

WESCON, volume 4, pages 96–104, 1960.
[137] W. Wirtinger. Zur formalen Theorie der Funktionen von mehr kom-

plexen Veränderlichen. Math. Ann., 97:357–375, 1927.
[138] M. Witzke. Linear and widely linear filtering applied to iterative

detection of generalized MIMO signals. Ann. Telecommun., 60:147–
168, 2005.

[139] R. A. Wooding. The multivariate distribution of complex normal
variables. Biometrika, 43:212–215, 1956.

[140] Y. C. Yoon and H. Leib. Maximizing SNR in improper complex noise
and applications to CDMA. IEEE Commun. Letters, 1:5–8, 1997.

[141] V. Zarzoso and P. Comon. Robust independent component analysis by
iterative maximization of the kurtosis contrast with algebraic optimal
step size. IEEE Trans. Neural Networks, 21(2):248–261, Feb. 2010.

[142] Y. Zou, M. Valkama, and M. Renfors. Digital compensation of I/Q
imbalance effects in space-time coded transmit diversity systems. IEEE

Trans. Signal Processing, 56:2496–2508, 2008.
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Fig. 13. Performance comparison of eight complex ICA algorithms for
the separation of (a) mixtures of five Gaussian sources with degrees of
noncircularity |E{s2}|/E{|s|2} = 0, 0.2, 0.4, 0.6, and 0.8; and (b) mixtures
of nine noncircular complex sources drawn from GGD distributions, both
as a function of sample size. Each simulation point is averaged over 100
independent runs.


