
1
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Multichannel Speech Enhancement
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Abstract—In this contribution, we present a novel online
approach to multichannel speech enhancement. The proposed
method estimates the enhanced signal through a filter-and-
sum framework. More specifically, complex-valued masks are
estimated by a deep complex-valued neural network, termed the
complex-valued spatial autoencoder. The proposed network is
capable of exploiting as well as manipulating both the phase
and the amplitude of the microphone signals. As shown by the
experimental results, the proposed approach is able to exploit
both spatial and spectral characteristics of the desired source
signal resulting in a physically plausible spatial selectivity and
superior speech quality compared to other baseline methods.

Index Terms—Multichannel signal processing, speech enhance-
ment, deep learning, complex-valued networks.

I. INTRODUCTION

The widespread availability of devices with multiple mi-
crophones have boosted the interest in multichannel speech
enhancement techniques for, e.g., source separation, source
extraction, or noise suppression [1], [2].

The most commonly used multichannel speech enhance-
ment technique is beamforming, where the spatial diversity of
the different sound sources is exploited to emphasize sounds
coming from the desired source’s direction while suppress-
ing sounds that arrive from other directions [3]–[5]. Many
beamformers can be found in the literature derived under
different constraints such as the popular Minimum Variance
Distortionless Response (MVDR) beamformer [6], the Gen-
eralized MVDR (GMVDR) beamformer [7], the Generalized
Eigenvalue (GEV) beamformer [8], [9], the Multichannel
Wiener Filter (MWF) [10], and modulation-domain multichan-
nel Kalman filter [11].

In general, conventional beamformers share the need for
spatial information, whether in the form of steering vectors
or spatial covariance matrices, in order to function properly.
Recently, several data-driven methods have been proposed
to estimate this information, e.g., in [12] a combination of
a Deep Neural Network (DNN) and a maximum likelihood
estimator is used to estimate the clean speech statistics and
speech presence probability which are then used to compute
the beamformer’s weights. The authors in [13] proposed to use
the Multichannel Non-negative Matrix Factorization (MNMF)
to decompose time-frequency bins into speech and noise
components to be used in obtaining the necessary statistics for
an MVDR beamformer. MNMF is replaced by a DNN-based
speech prior in [14] to estimate clean speech statistics.
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Alternatively, departing from statistically optimum beam-
formers, a beamformer’s weights can be directly estimated
using DNNs. The authors in [15] proposed to train a DNN to
estimate a beamformer’s weights for maximizing the perfor-
mance of a subsequent Automatic Speech Recognition (ASR)
system without guaranteeing better speech quality. Similarly,
time-domain beamformer weights are estimated using Long-
Short Term Memory (LSTM) layers in [16] for better speech
recognition performance. Robust speech recognition was also
the aim in [17] where ’deep LSTM adaptive beamforming’ is
introduced. Another variant is to infer a time-frequency mask
that is applied to the reference microphone to estimate the
desired signal. This was done in [18] by employing a shared
LSTM network across subbands and in [19] using a convolu-
tional recurrent network. Sinc and dilated convolutional layers
were used in [20] to perform waveform mapping.

In this paper, we present a novel approach to data-driven
online multichannel spatiospectral filtering using complex-
valued DNNs. The proposed approach adopts the filter-and-
sum technique from conventional beamforming as each chan-
nel is filtered by a complex-valued mask and the filtered
channels are then added to produce the enhanced signal.
This allows the network to produce effects such as phase-
aligned superposition of the desired signal, in contrast to,
e.g., [18]. Moreover, unlike, e.g., [15], the network is trained
for speech quality enhancement and is not a preprocessing
block for an ASR system, nor is it a supporting block for a
conventional beamformer as, e.g., in [12]. Finally, we verify
the validity of the proposed approach under various acoustic
conditions, where the proposed network is shown to be capable
of localizing and extracting the desired speech signal. In the
following, signals in the Short Time Fourier Transform (STFT)
domain are denoted by uppercase letters while signals in the
time domain are denoted by lowercase letters. Furthermore,
transposition is denoted by (·)T, ’*’ denotes conjugate com-
plex, while vectors are denoted by boldface letters.

II. COMPLEX-VALUED SPATIAL AUTOENCODERS

We consider a scenario with M microphones, where at time-
frequency bin (τ, f) the m-th microphone signal is given by

Xm(τ, f) = Dm(τ, f) +Nm(τ, f), (1)

where Dm(τ, f) = H∗
m(τ, f)S(τ, f) denotes the reverberant

source signal, Hm denotes the Acoustic Transfer Function
(ATF) from the desired source’s position to the m-th micro-
phone, while Nm denotes the background noise components
as picked up by the m-th microphone. It must be pointed
out that undesired components captured by Nm are restricted
to non-speech components, i.e., interfering speakers are not
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Fig. 1: The proposed complex-valued spatial autoencoder structure.

considered in this work. Nevertheless, Nm is not restricted
to stationary nor diffuse noises, but it can represent arbitrary
noises. Our goal in this paper is to extract the source signal S,
or a reverberant version of it, with minimal distortions while
suppressing the noise components N .

Complex-valued DNNs [21] have shown convincing results
in single-channel speech enhancement [22], [23] as well as in
echo suppression [24]. Their ability to manipulate and exploit
phase information makes them a natural candidate for our
multichannel signal processing task.

The proposed network architecture is shown in Fig. 1. As
input, the network takes one frame of the time-domain signal
xm(τ) comprising L samples per channel m, i.e., xm(τ) =
[xm(τ), ..., xm(τ −L+ 1)]T and outputs one complex-valued
mask Mm(τ) per channel. For each time-frequency bin (τ, f),
an estimate of the desired source signal is obtained as follows

Ŝ(τ, f) =

M∑
m=1

Mm(τ, f) ·Xm(τ, f). (2)

As seen from the figure, the networks starts by processing
each channel’s signal separately. Afterwards, information from
all channels is processed jointly at the compandor unit in the
middle. Finally, each channel’s mask is constructed separately.
This structure resembles the commonly used autoencoder
structures and therefore, we denote it a spatial autoencoder.

A. Spatial Encoders
As seen in Fig. 1, M frames of length L of the M micro-

phone signals {xm(τ)}Mm=1 are processed as follows: First, an
STFT is performed to obtain {Xm(τ)}Mm=1. Afterwards, the
complex-valued signal X1(τ) is fed into a complex-valued
subnetwork, denoted by CRUnet, that is a smaller variant
of the network in [24] consisting of eight complex-valued
convolutional modules with a complex-valued Gated Recurrent
Unit (GRU) and a complex-valued Fully Connected (FC)
layer in between. The CRUnet produces a complex-valued
mask GC(τ) that is used across all M channels to obtain
initial estimates of the desired speech components Sm(τ) and
undesired noise components Nm(τ) as

Ŝm(τ) = GC(τ)�Xm(τ), (3)

N̂m(τ) = (1−GC(τ))�Xm(τ), (4)

where � denotes the Hadamard product operator.
The use of the same mask GC(τ) across all microphone

signals ensures the preservation of relative phase differences
and therefore, the preservation of spatial information as en-
coded in the original microphone signals. On the other hand,

one should acknowledge that using a single complex-valued
mask across the different channels cannot effectuate spatially
selective filtering.

The initial signal components estimates are then down-
sampled using two single-dimensional convolutional layers
denotes by conv1ds and conv1dn to reduce their dimen-
sionality to L1 < L. More specifically, the initial source
estimates {Ŝm(τ)}Mm=1 are downsampled using conv1ds that
is shared across all M channels, while the noise estimates
{N̂m(τ)}Mm=1 are similarly downsampled using conv1dn. This
downsampling is done for purely computational purposes as a
certain degree of redundancy is to be expected in the signals
Ŝm(τ) and N̂m(τ).

B. Spatial Compandor
The encoders lead to a compandor unit. The goal of the

compandor unit is to estimate the necessary complex equal-
ization, or an abstract representation thereof, that adjusts both
the amplitude and phase of the different channels in order to
extract the desired source exploiting both the spatial and the
spectrotemporal domain. As the compandor is the only part of
the network that has access to all channels simultaneously and
where different channels are processed differently to lead to
the desired spatial selectivity, it is also the part where spatial
filtering is accomplished. Inspired by the coding literature,
the term compandor here refers to the compression at the
input side, where information from all channels is fused into
a single channel stream to be processed jointly, while on the
output side the single stream of information is expanded to the
original number of channels. More specifically, at the input of
the compandor, the signals resulting from the encoding stage
are collected in the vector h(τ) ∈ C2ML1 . Therefore, h(τ)
encapsulates both spatial and spectral information regarding
the desired source and any active noise sources.

The vector h(τ) is then processed by a cascade of a
complex-valued FC layer denoted by (CFC), a complex-valued
leaky Rectified Linear Unit (ReLU) activation function [22]
denoted by (CAct), a complex-valued GRU (CGRU), and
finally a CFC and a CAct. These different layers will be
characterized by their output sizes which are denoted by
{L2, L3,ML4}, respectively. The inclusion of the the CGRU
enables the compandor to not only recognize and exploit
instantaneous spatial and spectral patterns, but to also exploit
the temporal evolution of these patterns.

Finally, the compandor outputs the vector d(τ) ∈ CML4 ,
which is decomposed into M excitation vectors {dm(τ)}Mm=1

of length L4 such that each vector is used to construct a
complex-valued mask at the decoding stage.
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C. Spatial Decoders
Following the compandor unit is the decoding stage, where

each excitation vector dm(τ) is fed into a decoder network
consisting of a CFC, a complex-valued Batch Normalization
(BN), and a CAct. This cascade is repeated once more and
then followed by the final CFC layer. These layers will
be characterized by their outputs’ dimensions {L5, L6, L},
respectively. The final decoder layer outputs an unprocessed
mask Om(τ, f) for each time-frequency bin (τ, f) that is used
to obtain the complex-valued maskMm(τ, f) as follows [22]

|Mm(τ, f)| = tanh(|Om(τ, f)|), (5)

and
eiθMm (τ, f) =

Om(τ, f)

|Om(τ, f)| . (6)

It is worth noting that the aforementioned M decoder
networks are identical, i.e., weights are shared across the M
decoding channels, and as a consequence, any differences
between the M masks {Mm(τ, f)}Mm=1 can stem only from
differences in the excitation vectors {dm(τ)}Mm=1 rather than
channel-specific decoder networks.

Using Eq. (2) we obtain the STFT-domain estimate of the
source signal Ŝ(τ) which can be transformed back to time
domain to obtain the estimated signal frame ŝ(τ).

D. Training and Optimization
As a training target, we employ the clean reverberant source

signals filtered by an MVDR beamformer steered towards the
source position

Starget(τ, f) =

M∑
m=1

W ∗
m(τ, f)Dm(τ, f), (7)

where Wm(τ, f) denotes an MVDR beamformer weight at the
(τ, f) time-frequency bin. The beamformer weights Wm(τ, f)
are calculated using a recursively estimated noise spatial
covariance matrix RNN (τ, f) using the ground truth noise
signals {Nm(τ, f)}Mm=1 and a free-field steering vector to-
wards to the source’s ground truth Direction Of Arrival (DOA).
A simple rearrangement of Eq. (7) as a function of the
microphone signals yields

Starget(τ, f) =

M∑
m=1

W ∗
m(τ, f) (cRm(τ, f)Xm(τ, f)) , (8)

where cRm(τ, f) denotes the ideal complex-valued ratio mask
at microphone m and time-frequency bin (τ, f). Clearly,
this target is not attainable using only a spatial filter, i.e.,
Wm(τ, f), but instead, spectral filtering as represented by
cRm(τ, f) is needed, highlighting the difference to learning a
conventional beamformer. Furthermore, compared to utilizing
the ’dry’ non-reverberant source signal, the proposed target
is a reverberant image of the source signal and therefore,
dereverberation is not targeted by the network.

To optimize the network’s weights, the Signal-to-Noise-
Ratio (SNR) loss function is used [25]

JSNR(starget(τ), ŝ(τ)) = −10 log10

( ‖starget(τ)‖2
‖starget(τ)− ŝ(k)‖2

)
,

where ‖·‖ denotes the Euclidean norm, while starget(τ) and
ŝ(τ) denote the time-domain target signal and estimated de-
sired signal, respectively.

TABLE I: Average performance of the various approaches.

∆SINR [dB] SDR [dB] ∆PESQ ∆STOI

CRUnet 7.7 4.2 0.16 0.03
DNN-MVDR 5.3 - 0.08 0.07

OMVDR 5.0 - 0.1 0.09
OGMVDR 14.3 - 0.24 0.12

COSPA 7.5 5.3 0.23 0.09

III. EXPERIMENTAL RESULTS

For evaluation we compare the proposed approach, denoted
by Complex-valued Spatial Autoencoder (COSPA) to four
different baseline methods:

• The use of the CRUnet as a DNN-based single-channel
speech enhancement method. This network is trained to
estimate a complex-valued mask that extracts sm(τ) from
xm(τ) and is optimized using the SNR loss function [25].
This network had approximately 0.5 M parameters. When
applied across M microphones, this approach provides
one source signal estimate per microphone signal and
therefore, its results were averaged over the M channels.

• A DNN-driven MVDR beamformer (denoted DNN-
MVDR) which uses free-field steering vectors steered to-
wards the true source DOA. The noise spatial covariance
matrices are recursively estimated using the estimated
noise microphone signals. The noise signals are estimated
using complex-valued masks estimated by a pre-trained
CRUnet. This approach is used as a representative of
DNN-supported beamforming methods.

• An oracle knowledge MVDR beamformer (denoted
OMVDR) which, similarly to the DNN-MVDR, uses
free-field steering vectors steered towards the true source
DOA. The noise spatial covariance matrices are recur-
sively estimated using the ground truth noise microphone
signals. This beamformer represents an upper bound
for similar methods which rely on estimating the noise
components in calculating the spatial covariance matrices.

• An oracle knowledge Generalized MVDR (GMVDR)
beamformer (denoted OGMVDR) which uses the true
Relative Transfer Function (RTF)s calculated w.r.t. the
source position in addition to the true noise microphone
signals for recursively estimating the spatial covariance
matrices. This beamformer represents an upper bound for
achievable performance using MVDR beamformers as it
uses oracle spectral and spatial knowledge.

For all considered algorithms, online processing was carried
out for a linear array with M = 5 omnidirectional micro-
phones with uniform spacing of 4 cm, using signal frames of
length 1024 samples and with frame shifts of 512 samples
for a sampling frequency of fs = 16 kHz. The COSPA was
configured with {L1 = 260, L2 = L3 = 128, L4 = 513, L5 =
L6 = 256} resulting in approximately 2.7 M free parameters.

For this evaluation, two datasets were generated. In all
datasets, each scenario included one desired speech source
and two interferers, a noise source and a music source. The
speech utterances were taken from the TIMIT dataset [26]
with disjoint speakers for training and testing. The noise and
music sequences were obtained from the MUSAN dataset [27],
which includes singing voices among other types of noise, and
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for which training and testing sequences were also disjoint.
To generate the training dataset, 6000 scenarios, each 7 s
long, (11hrs 40min) were created. Each scenario consisted
of a room of random dimensions between [3, 3, 1] m and
[8, 8, 4] m and a reverberation time sampled randomly from
the range [0.3 − 0.7] s. The positions of the microphone
array, desired speech source, noise source and music source
were also sampled randomly within the simulated room. The
Room Impulse Responses (RIRs) of the simulated sources
were generated using the image-source method [28].

As for the test dataset, 300 scenarios were generated using
randomly sampled room dimensions, reverberation times, ar-
ray, speech source, noise source and music source positions
similar to the training dataset. The inter-microphone distance
was identical across all scenarios in both datasets.

For both datasets, the SNR and signal-to-music ratio was
sampled randomly per scenario from the range [−7, 0] dB,
individually. In addition, to simulate microphone noise, white
additive noise for an SNR of 30 dB was added to each
microphone signal.

To compare the different approaches, four different mea-
sures are used1, averaged over time and scenarios:

• ∆SINR: describes the gain in terms of Signal-to-
Interferer and Noise Ratio (SINR) when comparing the
SINR at the first microphone to that of the enhanced
signal. The SINR is calculated as the ratio between the
energy of the (filtered) source signal to the energy of the
(filtered) music and noise signals.

• SDR: describes the Signal-to-Distortion Ratio (SDR) as
calculated for the (filtered) source signal to quantify the
distortions introduced by the filtering [29].

• ∆PESQ: describes the PESQ (Perceptual Evaluation of
Speech Quality [30]) difference between the unprocessed
first microphone signal and the enhanced signal.

• ∆STOI: describes the STOI (Short-Time Objective Intel-
ligibility [31]) difference between the unprocessed first
microphone signal and the enhanced signal.

As a reference signal for the SDR, PESQ and STOI calcula-
tions, the dry non-reverberant source signal was used.

The averaged performance results are provided in TABLE I,
where the OGMVDR beamformer performs best as it utilizes
perfect spatial and spectral knowledge. When comparing the
COSPA to single-channel CRUnet, clear gains are observed
due to the utilization of spatiospectral filtering in comparison
to spectral filtering only. We must point out that due to the
random nature of the testing dataset, it included scenarios of
limited spatial diversity, in which the advantages of spatial
filtering are less pronounced, driving the average results of the
single-channel approach closer to other multichannel ones. A
comparison between OMVDR, OGMVDR and COSPA places
COSPA in terms of performance in-between the two oracle
knowledge methods which is very encouraging given that
COSPA is not provided any side information such as source
DOA. It is worth mentioning that no SDR values are provided

1Audio examples and source code implementation can also be found at
https://github.com/ModarHalimeh/COSPA
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Fig. 2: An examplary COSPA beampattern.

for the different MVDR beamformer variants, as distortionless
response is guaranteed in the source’s direction.

To better examine the spatial selectivity of the proposed
approach, the average results in Table I are complemented
by the beampattern depicted in Fig. 2. This beampattern is
generated by simulating 36 equidistant white noise sources
placed at different DOAs with angular distance increments
of 5◦, under the free-field propagation assumption. Then, a
set of complex-valued masks {Mm(τ); τ = 1, 2, ...}Mm=1

is generated for one sample in the test set, i.e., to extract
one desired speech signal from a noisy mixture, as described
earlier. Using the masks {Mm(τ); τ = 1, 2, ...}Mm=1, the
white noise sources’ microphone signals are filtered, and
the power of the filtered signals, averaged over the signals’
duration, is depicted in Fig. 2 in [dB] after being normalized
to a maximum of 0 dB. As shown by the beampattern, the
proposed COSPA is able to successfully localize the desired
source as well as being spatially selective to emphasize signals
coming from the source’s direction. One must point out that
since Fig. 2 is averaged over time, an unseen aspect is the time-
varying nature of the produced masks that, e.g., can exploit the
different sources’ activity patterns. Finally, it is worth noting
that unlike MVDR-based approaches, the COSPA does not
guarantee a distortionless response in the source’s direction
which can be seen as a result of the spectral filtering side of
the method.

IV. CONCLUSION AND FINAL REMARKS

In this paper we introduced a novel data-driven approach
to multichannel signal enhancement. This approach utilizes
a complex-valued DNN, termed Complex-valued Spatial Au-
toencoder, to estimate complex-valued masks that are applied
to the microphone signals. The proposed approach is compared
to different single and multichannel approaches under different
acoustic conditions, where the COSPA’s spatiospectral filter-
ing capabilities reflect physically plausible spatial selectivity
and result in superior speech quality. Finally, encouraged
by the results achieved in denoising, we plan on extending
COSPA to the task of source extraction, where multiple
interfering speakers are considered.

https://github.com/ModarHalimeh/COSPA
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