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Complex Zeros of Two Incomplete Riemann
Zeta Functions

By K. S. Kölbig

Abstract. The computation of the complex zeros of an incomplete Riemann zeta function
defined in an earlier paper is extended and new zero trajectories are given. A second in-
complete Riemann zeta function is denned and its zero trajectories are investigated numer-
ically as functions of the upper limit X of the definition integral. It becomes apparent that
there exist three different classes of zero trajectories for this function, distinguished by
their behaviour for X —► <*>.

1. Introduction. Let 5 = a + it be a complex variable. In a previous paper [1],
some results concerning the complex zeros of an incomplete Riemann zeta function

(1) A(s, X) = — r dx
T(s) Jo e  — 1

and of the incomplete gamma function

(2) P(s, X) = /   x'   e * dx
1 (S) J0

were presented, X > 0 being a real parameter. These results were obtained by a
systematic numerical investigation. It became apparent that not all, but only some,
of the zero trajectories s(X), defined in the s-plane by A(s(\), X) = 0, reach a zero
of the Riemann zeta function on the line <j = \ as X —> °°. The remaining curves
j(X) approach the zero trajectories s(X) of the incomplete gamma function P(s, X),
which are denned by r°(s(X), X) = 0.

It is the aim of this paper to present further solutions s(X) which again have
been obtained by numerical calculation. Because of the fact that there exists the
relation

(3)        «s) = rfe /„ / - i * - (i - 2--)r« /„
we introduce, in addition, a second incomplete Riemann zeta function

B(s, X) = ^ [ dx      (<r > 0),f W Jo e + 1
where

(5) lim B(s, X) = (1 - 21",)f(s) = f*W-
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552 K. S. KÖLBIG

Some of its zero trajectories s(X), defined by B(§(\), X) = 0, are also computed.

2. Relations to Other Functions. The incomplete Riemann zeta functions
A(s, X) and B(s, X), as functions of a complex variable s, do not seem to have arisen
so far in applications. However, these functions, the corresponding complete functions

and f as well as certain of their possible generalizations, play, for other
types of variables, under different names, and different notations, an important
role in several fields of physics and chemistry, e.g., in thermodynamics and in con-
ductivity theory. They are often called Debye functions, Bose-Einstein functions,
Fermi-Dirac functions, etc. In his handbook of special functions, Luke [2] defines the
Debye functions by

fz xm
(6) A*(z, m) — mz~m I   —-- dx*

Jo e — 1

for complex z with Re z > 0 and positive integral m. He also gives rational Pad6
approximations to these functions. By comparison with (1), we find

(7)

Recently, Ng et al. [3] have defined an incomplete Bose-Einstein function

corresponding to a complete function Bp(v) when u —* oo, They do not investigate
Bp(i, «) further. In another paper, Ng and Devine [4] present a method for the com-
putation of the Debye functions

i
(9) D„(x) = — x'A*(x, p)

pi p

for integral p and real x. From (1), (8) and (9), we have

(10) A(s, X) = B._,(0, X) = /J._,(X).

One can also define an incomplete Fermi-Dirac function

though this is not done by Ng et al., who discuss only the complete function Fv(v)-
If we compare it with B(s, X), we find that

(12) B(s, X) = F._,(0, X).

The complete Bose-Einstein functions and the complete Fermi-Dirac functions have
been investigated by several authors, e.g., by Dingle [5], [6]. Cody and Thacher [7]
have developed rational Chebyshev approximations for in the particularly
important casesp = — J, \, f, and real ??. Ng et al. have given Chebyshev polynomial

* The asterisk in A* is not in the original notation. We introduce it here in order to avoid con-
fusion.
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expansions of Bp(v) for p = 0(1)10 and real -n- Finally, we mention the fact that
Nielsen's generalized polylogarithms

(.3)        s.m - rfca=? /'     ' '°f" " "°(« — 1)! p\ J0 «

which are of importance in the theory of Feynman integrals in quantum electro-
dynamics, and which have recently been discussed by Kölbig et al. [8], for positive
integers n and p, are connected to the Debye functions and, therefore, to A(s, X).
From Eq. (13), with the substitution «' = —log [1 — (1 — e~*)u], we find the relation

(14) A(s, X) = S1.,.1(l -e~x).

It should, however, be noted that, in all these cases, s is considered by the authors
to be a real number or even a positive integer.**

3. Other Formulae for A(s, X) and B(s, X). Formulae for P(s, X) and A(s, X)
which allow analytic continuation of these functions into regions of the j-plane other
than those covered by the definition integrals (1) and (2) are given in [1]. From the
power series expansion [9]

_J_i v       - - v 1 - 2"+1 „ -
e + 1      2 t=i   n\ tri (n + 1)!

which converges for | jc| < x, where EJX) is the «th Euler polynomial and Bn are the
Bernoulli numbers, we find for B(s, X), in the same way as for A(s, X) [1], the expression

(16)

By analytic continuation, this formula defines B(s, X) in the half plane <r g 0, except
at the integer points 0, — 1, — 2, ••• . By an appropriate limiting procedure, we
obtain

(17) B(-k, X) = (1 - 2*+l)f(-A:) = (-1)*(1 - 2k+1)Bk+1/(k + 1)

for all X and k = 0, 1, 2, • • • . In particular, we have

B(0, X) = i.

(18) B(-2k, X) = 0 (k > 0),

B(-2k + I, X) = (22i - l)B2k/2k      (k > 0).

For s *» lj one finds

(19) B(\, X) = f = log 2 + X - log(ex 4- 1)
Jo « T 1

!kJ WO130 UBfl ->v•>«5t: ''fsnwi l"» i -   ■-  S      ■     .       7. EJfliöq >rlj yjE
and
(20) lim B(l, X) = lim (1 - 21_,)f(s) = log 2.

X-.» «-.1

** Of course, it is also possible to introduce the corresponding complementary functions, where
the integral is taken from a finite value X to °a instead of from 0 to X. This is done by several authors.
We do not present further details here.
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From the expansion

(21) e + I r -Z(-DV (* > 0),

we obtain from (4), by using (2) and the substitution x' = nx, the following expression
valid for a > 0:

(22) B(s, X) = - £ (-l)"n"P(s, «X).

For s — we can use a known relation between the incomplete gamma function
and the error function [9] to obtain

(23) B(h A) = £ (-0"
Vn erf(nXy

The formulae for A(s, X) and P(s, X) which correspond to (16), together with
the well-known [9] partial fraction expansion of P(s, X), have been used in [1] for
the numerical calculation of these functions. However, for increasing t and X, the
numerical evaluation of the integrals becomes more and more time-consuming. We
present, therefore, another formula for A(s, X), which is essentially due to Putschbach
[10], who developed this formula in a manuscript mentioned in [1]. Further, we shall
give the corresponding formula for B(s, X).

2WL

-21TL

Figure 1

We consider a z-plane which is cut along the real axis from 0 to -f- °° (Fig. 1). In
this plane, we construct a contour CA which starts at X > 0 on the upper boundary
of the cut, encircles the origin on the left and ends in X > 0 on the lower boundary,
in such a way that the points z = 2wt and z = —2iri remain above and below CA,
respectively. We then integrate the function

(24) j(z) = (-z)-V(e' - 1),

where (—z)'~l = e(*~u 'og {~'] and where the logarithm is taken as real on the negative
real axis, along the contour CA. By shrinking CA into the boundary of the cut along
the real axis, inserting appropriate boundary values along the cut, and using a well-
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known property of the gamma function and the definition (1), we finally obtain

This formula corresponds to the so-called Hankel integral for f(s) and now defines
A(s, X) for all s ^ 1.

In order to evaluate the contour integral in (25), we deform CA into a circle Kx of
radius X as shown in Fig. 2, excluding the values X = 2nir (n — 1, 2,^3, • • •)•

6Ji

1

Figure 2

In the cut plane, the function /(z) has poles of order 1 at the points z = ±2nir/
(n = 1, 2, 3, • • •)• If we choose N such that

2A% < X < 2(N + IV      (N = 0, 1, 2, • • •)

which is equivalent to N = [X/(2ir)],*** we see that the poles for n = ±1, ±2, • ■ • ,
±N if N g| 1 (or no pole if N = 0) lie inside the contour of Fig. 2, and that the
remaining poles, for n = ±(N + 1), ±(N + 2), • • • lie outside. Applying the residue
theorem, and using

(26) Res + Res /(z)U_2nTi = 2(2/l7r)"-1 sin | 5,

we obtain the relation

(27) *(i, X) - T(l - s)f2V"' sin ; j £ h*"1 -       f   (,~Z) , &

*** [jc] denotes the largest integer g x.
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where the sum over n is zero for N = 0. For the calculation of the remaining integral
over Kx, we introduce the well-known partial fraction expansion

(28) = 1 ~ \ + 22 £ S + n ?e — 1     z      2 „Ti z + (2mr)

which converges uniformly in the annulus 2mr < |z| < 2(n + 1)tt for « = 0, 1, 2, • • • .
With z = \e", (-z) = Xei('"", 0 ^ 0 < 2ir, this leads to

(29)
dz

Kxe    — 1

_ X* /sin 2 sin ttj T2' ,«,_„,<„ + 1) -A 1 .1
-^{—-x—i + ^L e     Sxv- + (2^2 dr

Exchanging the sum with the integral and using the substitution 6' = d — ir, we
find in the case 2/jjt/X < 1 (i.e., n = 1, 2, 3, - f • , N if N 1) that the integral of
the /ith term in the series is given by

■/-. XVi9 + (2mr)2     X2 J_,
d0

1 + (2mr/A)V2*'

(30) = 1 /' ± (^iy(^=)M.«-»-»»' rf*

2   .       A     (-1)' /2«rVf
= -j-, sin « g f _ 2. _ j ^—j

and, similarly, for X/(2/jtt) < 1 (i.e., n = N + I, N + 2, ■ • ■),

C    eH-+1)> dd 1     .      A    (-1)'     / X V
(31) xV" + (2/ht)2 = Sm    « . + V + 1 W •

Introducing these results into (29) and (27), we have

A(s, X) = - T(l - s){(2tt)* sin ^ j j£ n"1

(32) - x sin 4* - m73T) - x £ 5, - 2j - i IxJ
- 2x y —!— v Ü-Y'll

(2wr)2 fa s + 2/+ 1 \2mr/ Jj '
where again the sums from 1 to N are zero for N = 0. This is Pütschbachs formula.
The double sums in this formula can be conveniently rearranged, and one finally has

A(s, X) = - T(l - 5)1(2*)' sin      £ n~l
it i. I „_i

>.  •      r 1 1 2 V   <">     (-0'' ^AfirV'"x sinH^-X(^7)-x§a'  , _ 2j - i I—J

_^_        y fl«*.    (-1)'    f_*_V'liN + 1)V2 U p'   5 + 2; + 1 \2(<V + IV/ JJ

(33)
~ 2(
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The constants a]m and ß1^ are defined by

(34)

ß,„ .   £ (*L±i)"**. „<» , r<2; + 2).„_at+i \    n J

This normalized form has the considerable advantage that

for / —» oo (with iV > 0 for a}*0); This implies that, for the numerical calculation,
one has to store only a limited number of these constants, without necessarily re-
stricting the upper limit of the summation index j to the number of coefficients stored.

A similar procedure can be applied to the function B(s, X), which can be written as

(35)
2iri     JcBe   ~r 1

Here, the poles of the integrand lie at the points z = ±(2n — l)ir/ (n = 1, 2, 3, • • •).
For (IN - 1)tt < X < (2N + l)x or, equivalently, N = [(X + *V(2jr)], we obtain,
following the same procedure as for A(s, X), and using the partial fraction expansion

(36) j  - = —     2z      ~~2 j  77-~      , ■, n2 ,e + 1     2 Z?tz + ((2n — IV)

the formula

B(s, X) = -- T(l - s)\lv sin^s £ (2n - l)*"1ir I 2 „.,

_2X
(2N +

Here, the constants y)m and B\m are defined by

v. .     |~1      2 A   (y,     (-1)'     ((2N - 1VV'

f,   m     (-I)''     /      X V'l\
1)V &   '   5 + 2j + 1 \(2A> + IV/ Jf

(38)

«!" - JC (|fr>f)"*'.   *i" - a - 2-''-,)f(w + 2).
For y —» oo (with A7 > 0 in the case 7 • V))> we again have

7,    ~ 1,       0,    ~ 1.

The constants a\N), ■ • • , 5-V) can be expressed by Bernoulli numbers, but this does
not lead to a significant simplification.

We finally note that A(s, X) and B(s, X) are related by the equation

(39) B(s, X) = A(s, X) - 2l"A(s, 2X)

which may be obtained from (1) and (4) by using the fact that
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(40) (e" 4- IT' = (e - l)"1 - 2(e2x - l)-'.

4. Nontrivial Zeros of A(s, X) and B(s, X). In [1], the first six zero trajectories
Sm(X) (m = 1,2, • • • ,6) were calculated. It was found that only S4(X) and SB(X)
reached zeros of f(s) as X —> <», terminating respectively at the first two zeros, Si =
§ 4- 14.13473/ and s2 = J 4- 21.02204/. A numerical investigation of the trajectories
jm(X) for m — 7, 8, • • • , 14 has given the result shown in Fig. 3. Since the behaviour
of the trajectories is fairly regular for a < — 5, only the region around a = 0 has
been investigated and only the results for this region are plotted in Fig. 3. One sees
that, in addition to 54(X) and s6(X), the trajectories s8(X), s10(X), 512(X), and su(X)
reach the zeros sa = | + 25.01086/, s4 = \ 4- 30.42488/, j, = | + 32.93506/, and
So = § 4- 37.58618/, respectively. The trajectories s7(X), se(X), su(X), and s13(X)
approach the zero trajectories s5(X), s&(\), s7(\), and s8(X) of the incomplete gamma
function P(s, X), respectively. The fact that for 4 ^ m ^ 14 all the even-numbered
trajectories reach a zero Sa, of f (s), whereas all the odd-numbered trajectories approach
a zero trajectory of P(s, X), is somewhat surprising for its regularity. It is, however,
by no means certain that this will be a general law. Consequently, a new question
arises—namely how far this behaviour will continue.f At present, the investigation
of this problem has not been carried further, since the numerical difficulties become
too great, as will be explained later.

For the function B(s, X), we note from (3) and (4) that

(41) (1 - 2l-)ffc) = ~ lim C-f^-rdx.
T(s) x^oo Jo e 4- 1

Since the factor <£(s) = 1 — 21_* on the left-hand side of this equation vanishes in
the upper half-plane / > 0 for

(42) si = 1 4- ~- i= 1 4- 9.06472A:/      (* = 1, 2, ■ • •)log 2

and since we have |f(s*)l < °° and 0 < \T(s0k)\ < °°, it follows that
/.«       t.'-l (2T*/log 2) i

(43) jf j^*-1 -r-pr**-0
Therefore, one has to expect that some of the trajectories Sm(X) defined by B(§m(\), X)
= 0 may end at the points s°k. As will be seen, this is indeed the case.

The problem of calculating the trajectories Sm(X) is treated in a similar way to
that of sm(X) [1]. From preliminary calculations, which were carried out very con-
veniently on the CERN interactive GAMMA system, using the formula

(44) B(s, X) « — \T + £ B2n -~r-->T(s) [2s     tri   (2n)l        s + 2n — lj

for real negative s, it was found that, just as A(s, X) oscillates about f(s), so B(s, X)
oscillates about f*(s) defined in (5). Both functions have the same values at s = ~k

t For instance, it would be interesting to know whether there is any special behaviour of the
trajectories near a zero-free Gram interval of fO) (see, e.g., Lehmer [11] or Barkley Rosser et al. [12]).
The first of these intervals is around r = 282 and therefore far beyond the range of the present calcula-
tions.
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t
A50_1^ '
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Zero trajectories of
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P(s,X)- / 40-extrapolated        / -^/

s—/

s - Plane / —/
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Figure 3
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(k = 0, 1, 2, • • •). One finds also that the starting point 3* of J^X) lies around
s —2.35, for Xt f« 0.986. A further investigation with the GAMMA system gave
approximations for the starting values of the higher order trajectories. A detailed
numerical calculation then provided accurate starting points §* for the trajectories
s„(X) for m = 1, 3, • • • , 5 as given in Table 1.

Table 1

m

1 0.98656 - 2.34145
2 1.66221 - 6.20124
3 1.98928 -10.14943
4 2.18907 -14.12026
5 2.32552 -18.10126

It seems that §* = 2 — Am — e(m) for m —> °°, where e(w) = 0(1). No attempt
was made to prove this relation.

A systematic numerical investigation of the first 17 zero trajectories l„(X) gives
the result shown in Fig. 3. There are, in fact, three classes of curves, namely those
which end in a zero Sm of f(s) on the line a — \, those which approach a zero tra-
jectory of P(s, X), and those which end in a zero s\ of <p(s) = 1 — 21-' on the line
cr = 1. The following table marks with an asterisk the behaviour of Sm(X) as A —> od .

Table 2

m      1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16 17

* * * * *
F(s x)*** ** * * *
4>(s) * * * *

It is, of course, impossible, to deduce a general behaviour for higher m from the
calculated results. It might be that such a behaviour does not exist in the case of
B(s, X), since we have here the additional zeros si, which are equally spaced and
which interfere with the unequally spaced zeros of f(s).

5. The Numerical Calculation of the Zeros of A(s, X) and B(s, X). As was al-
ready stated, the numerical evaluation of the integrals in formulae (10) of reference
[1] and (16) becomes very time-consuming for increasing values of X and t. The
results for A(s, X) and B(s, X) can be obtained in a much faster way by using the
expressions (33) and (37), provided that X is not too near to an even or odd multiple
of 7T, respectively. These representations, however, have the disadvantage that they
are very sensitive to the cancellation of terms. In particular, the quantities in the
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Table 3

Ja Jß Jy Ji

32    - 18 32 N + 46 32 N - 34 32 N + 30
(N £2) (N ^ 0) (N ^2) (N^ 0)

square brackets are likely to cancel to a large extent, especially for increasing t. Since
these brackets are multiplied by large quantities and the results are added to others,
the cancellation becomes quite dangerous. All the computations were therefore
performed in double-precision arithmetic on a CDC 6600 computer, corresponding to
about 28 decimal digits. The constants a'-*0, • • • , 8jN) were computed beforehand
and stored in a data file. Since they approach unity for j —* °°, only restricted numbers
Ja, ••• , Js of them have to be stored. As an indication, the numbers Jt,
required for 28-digit precision, are given as functions of N (N g 10) in Table 3.

Table 4
Zero Trajectories for the Incomplete Zeta Function B(s, X)

l,(X)

1
2
3
4
5
6
7
8
9.

10
11
12
13
14
15
16
17
18
19
20

• 2.34631
■ 2.36578
• 1.72637
• 0.86760
• 0.01500

0.77159
1.49273
2.16699
2.81776
3.46874
4.13880
4.83593
5.55766
6.29755
7.05021
7.81230
8.58191
9.35796

10.13977
10.92690

0.16772
2.12190
3.45312
4.35556
4.97944
5.45541
5.86507
6.25539
6.65159
7.06278
7.48443
7.90432
8.31209
8.70355
9.07888
9.43983
9.78824

10.12569
10.45343
10.77242

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

6.29432
5.87078
4.87320
3.77683
2.75156
1.84050
1.04691
0.36702
0.19963
0.65044
0.98185
1.17830
1.17655
1.04917
1.00583
0.99793
0.99797
0.99896
0.99959

1,
3.
5.
6.
6.
7.
7.

.33751

.65737

.24436

.27204

.94395

.39900

.72099
7.96112
8.15598
8.33890
8.54174
8.78700
9.04118
9.10687
9.08637
9.07256
9.06691
9.06511
9.06469

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



562 k. s. kölbig

Table 4 (continued)

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

s,(X)

■10.15367
■ 9.93496
• 8.79853
• 7.43585
■ 6.12305
• 4.93709

3.88350
2.94561
2.10115
1.32595
0.59121
0.14854
0.98641

.87653

.63291

.32475

.99550

.66219

.33115
6.00460
6.68342
7.36803
8.05865
8.75523

1.
2.
3.
3.
4.
5.

0.22596
3.74940
6.04542
7.53915
8.50652
9.14708
9.58480
9.89391

10.11850
10.28424
10.40494
10.48893
10.58553
10.89696
11.31852
11.75021
12.18137
12.60831
13.02867
13.44152
13.84677
14.24460
14.63517
15.01862

Ä4(X)

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

5.
4.
3.
2.
2.

-13.97332
■12.71326
11.09646

■ 9.50870
8.06649
6.78683

.65500

.64905

.74811

.93489

.19629
1.52369
0.91313
0.36519
0.11621
0.52571
0.85593
1.09183
1.59381
2.27519
2.89424
3.49212
4.09019

3.79136
6.79974
8.76752

10.04044
10.87712
11.44142
11.83336
12.11424
12.32250
12.48324
12.61402
12.72861
12.83986
12.96199
13.11227
13.31233
13.59359
14.04000
14.81908
15.31490
15.75818
16.20113
16.65080

It is essential that these constants are calculated as accurately as possible. The
a-*' and yj*1 are finite sums, and no particular problem arises. For ß)m and 5ijrf),
however, either infinite sums have to be evaluated or the relations

(45) ß(r = (N + l)2l+Tr(2y + 2) - E 4t2
L n-i n

(46) |f» = (2N + l)2i+2\(l - 2'2i~2)t(2j +2)- jZ-
L n-l I

have to be used. For j 2i 3, approximations to the infinite sums were calculated
directly, since it is clear that the square brackets in the above formulas are a source
of cancellation errors. For / = 0, 1, 2, however, the convergence of the series (34)
and (38) is too slow. For these cases, the help of Mr. Wim Klein (CERN) is acknowl-
edged. He calculated the constants ß\m and Blsm for j = 0, 1, 2 and N = 1(1)10
rapidly and accurately with paper and pencil from the Eqs. (45) and (46), carrying
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Table 4 (continued)

X ff t

3 -17.99851 3.80230
4 -16.62308 7.52454
5 -14.75815 9.96953
6 -12.89947 11.55151
7 -11.20337 12.58729
8 - 9.69808 13.27988
9 - 8.36947 13.75403

10 - 7.19261 14.08642
11 - 6.14263 14.32491
12 - 5.19793 14.49989
13 - 4.34067 14.63099
14 - 3.55632 14.73087
15 - 2.83307 14.80738
16 - 2.16095 14.86457
17 - 1.53093 14.90257
18 - 0.93321 14.91559
19 - 0.35389 14.88426
20 0.23114 14.73109
21 0.47252 14.28953
22 0.47046 14.17194
23 0.48427 14.14051
24 0.49402 14.13347
25 0.49838 14.13319

35 decimals and taking as basic numbers for f(2y 4- 2) the 35-decimal values of
it2 and it* as given in the tables of Fletcher et al. [13].

The details of the calculation procedure for the zero trajectories are already
described in [1]. In order to make programming of the expressions for A(s, X) and
B(s, X) easier and to avoid splitting into real and imaginary parts, a package of
"double-precision complex" subroutines has been written and used in the programs.

For the trajectories which lie in the region t > 35, the cancellation problem
becomes more and more serious for the expressions (33) and (37), in particular for
B(s, X). In this region, the formulae (10) of reference [1] and (16) have been used for
the calculation or for checking purposes. The numerical integrations were carried
out by a program based on the modified Clenshaw-Curtis algorithm developed by
Hävie [14], [15]. It was found in this connection, that the substitution £ = log x in
the integrals reduces the calculation time considerably. It was, however, not possible
to use these expressions for further calculation in the region above / > 38, since
practically all the significant digits cancel between the sum and the integral.

Table 4 gives five-digit values of the zeros of B(s, X) for the first five trajectories
MX).
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6. A Plot of the Zeros of A(\z, X). It has been seen that some of the zero
trajectories of A(s, X) and B(s, X) approach a zero trajectory of P(s, X). In a little-
known paper, Mahler [16] investigated theoretically the behaviour of the zero trajec-
tories 2„(X) = sm(X)/X of P(Xz, X) in the z-plane. In particular, he found that the
moduli of the starting points 2* = s*/X* (see Table 2 in [1]) on the real negative
axis decrease with increasing m, approaching a limiting value; and that the curves
2m(X) cluster towards a limiting curve for m —> ».In addition, he showed that the
2m(X) end in the point z = 1 for X —> <» and all m.ff

In Fig. 4, the first five zero trajectories zra(X) = sm(X)/X of A(\z, X) are given.
The behaviour of these curves is different from those of P(\z, X) (apart from the
irregularities due to the zeros of f(s)) insofar as the moduli of the starting points

= (see Table 1 in [1]) on the real negative axis increase with m. The zero
trajectories of B(\z, X) would give a similar picture.

CERN
Geneva, Switzerland

1. K. S. Kölbig, "Complex zeros of an incomplete Riemann zeta function and of the
incomplete gamma function," Math. Comp., v. 24, 1970, pp. 679-696.

2. Y. L. Luke, The Special Functions and their Approximations. Vol. II, Math, in Sei.
and Engineering, vol. 53, Academic Press, New York, 1969. MR 40 #2909.

3. E. W. Ng, C. J. Devine & R. F. Tooper, "Chebyshev polynomial expansion of Bose-
Einstein functions of order 1 to 10," Math. Comp., v. 23, 1969, pp. 639-644.

4. E. W. Ng & C. J. Devine, "On the computation of Debye functions of integer orders,"
Math. Comp., v. 24, 1970, pp. 405-407.

5. R. B. Dingle, "The Fermi-Dirac integrals," Appl. Sei. Res. B, v. 6, 1957, pp. 225-
239. MR 19, 133.

6. R. B. Dingle, "The Bose-Einstein integrals," Appl. Sei. Res. B, v. 6, 1957, pp. 240-244.
MR 19, 133.

7. W. J. Cody & H. C. Thacher, Jr., "Rational Chebyshev approximations for Fermi-
Dirac integrals of order —    Y2 and %," Math. Comp., v. 21, 1967, pp. 30-40.

8. K. S. Kölbig, J. A. Mignaco & E. Remiddi, "On Nielsen's generalized polylogarithms
and their numerical calculation," Nordisk Tidskr. Informationsbehandling, v. 10, 1970, pp.
38-74.

9. M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions,
with Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series,
55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965.
MR 31 #1400.

10. R. Putschbach, Untersuchungen über die unvollständige Riemannsche Zetafunktion,
Inst. Prakt. Mathematik (IPM), Techn. Hochschule Darmstadt, 1948?. (Unpublished.)

11. D. H. Lehmer, "On the roots of the Riemann zeta-function," ^cra Math., v. 95,
1956, pp. 291-298. MR 19, 121; MR 19, 1431.

12. J. Barkley Rosser, L. Schoenfeld & J. M. Yohe, Rigorous Computation and the
Zeros of the Riemann Zeta-Function, IFIP Congress 68, Edinburgh, Vol. 1, North-Holland,
Amsterdam, 1969, pp. 70-76. MR 41 #2892.

13. A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathe-
matical Tables. Vol. 1: Introduction, 2nd ed., Published for Scientific Computing Service,
Ltd., London, by Addison-Wesley, Reading, Mass., 1962. MR 26 #365a.

14. T. Hävie, "On a modification of the Clenshaw-Curtis quadrature formula," Nordisk
Tidskr. Informationsbehandling, v. 9, 1969, pp. 338-350. MR 41 #1219.

15. T. Hävie, "Further remarks on the modified Clenshaw-Curtis quadrature formula,"
Nordisk Tidskr. Informationsbehandling. (To appear.)

16. K. Mahler, "Ueber die Nullstellen der unvollstaendigen Gammafunktionen," Rend.
Circ. Mat. Palermo, v. 46, 1930, pp. 1-^42.

17. K. S. Kölbig, "On the zeros of the incomplete gamma function." (To appear.)

tT Details and a plot of some zero trajectories of P(\z, X) will be given elsewhere [17].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


