

University of Groningen

Complexation of Nitrous Oxide by Frustrated Lewis Pairs

Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

Published in: Journal of the American Chemical Society

DOI: 10.1021/ja904377v

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Otten, E., Neu, R. C., & Stephan, D. W. (2009). Complexation of Nitrous Oxide by Frustrated Lewis Pairs. *Journal of the American Chemical Society, 131*(29), 9918-9919. https://doi.org/10.1021/ja904377v

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

```
data tu3PN2OB(C6F5)3
_audit_creation_method
                                SHELXL-97
_chemical_formula_sum
 'C30 H27 B F15 N2 O P'
chemical formula weight
                                 758.32
loop_
 _atom_type_symbol
 _atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C' 0.0033
                   0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H' 0.0000 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'B' 'B' 0.0013 0.0007
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'N' 'N' 0.0061 0.0033
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0' 0.0106 0.0060
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'F' 'F' 0.0171 0.0103
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'P' 'P' 0.1023 0.0942
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
                                 triclinic
_symmetry_cell_setting
_symmetry_space_group_name_H-M
                                 P-1
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 '-x, -y, -z'
_cell_length_a
                                 9.5265(4)
                                 11.6603(5)
_cell_length_b
_cell_length_c
                                 14.3458(7)
_cell_angle_alpha
                                 76.6040(10)
_cell_angle_beta
                                 89.0710(10)
_cell_angle_gamma
                                 87.1940(10)
_cell_volume
                                 1548.32(12)
_cell_formula_units_Z
                                 2
                                296(2)
_cell_measurement_temperature
                                2.0
_cell_measurement_theta_min
                                 25.0
_cell_measurement_theta_max
_exptl_crystal_size_max
                                 0.22
_exptl_crystal_size_mid
                                 0.18
_exptl_crystal_size_min
                                 0.17
_exptl_crystal_density_diffrn
                                 1.627
_exptl_crystal_density_method
                                 'not measured'
_exptl_crystal_F_000
                                 768
_exptl_absorpt_coefficient_mu
                                 0.210
_exptl_absorpt_correction_type
                                 empirical
_exptl_absorpt_correction_T_min
                                 0.6888
_exptl_absorpt_correction_T_max
                                  0.7452
_diffrn_ambient_temperature
                                 296(2)
_diffrn_radiation_wavelength
                                 0.71073
_diffrn_radiation_type
                                 MoK∖a
_diffrn_radiation_source
                                 'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                graphite
_diffrn_reflns_number
                                 19946
_diffrn_reflns_av_R_equivalents
                                 0.0235
_diffrn_reflns_av_sigmaI/netI
                                 0.0203
_diffrn_reflns_limit_h_min
                                 -11
_diffrn_reflns_limit_h_max
                                 11
```

_diffrn_reflns_limit_k_max _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min _diffrn_reflns_theta_max _reflns_number_total _reflns_number_gt _reflns_threshold_expression _computing_structure_solution _computing_structure_refinement	13 -16 17 1.80 25.04 5446 4919 >2sigma(I) 'SHELXS-97 (Sheldrick, 1990)' 'SHELXL-97 (Sheldrick, 1997)'
_refine_special_details	
; Refinement of F^2^ against ALL regodness of fit S are based on F^ on F, with F set to zero for nega F^2^ > 2sigma(F^2^) is used only not relevant to the choice of ref on F^2^ are statistically about t factors based on ALL data will be ;	eflections. The weighted R-factor wR and 22, conventional R-factors R are based ative F^2^. The threshold expression of for calculating R-factors(gt) etc. and is Elections for refinement. R-factors based wice as large as those based on F, and R- e even larger.
refine ls structure factor coef	Fsqd
refine_ls_matrix_type	full
_refine_ls_weighting_scheme refine_ls_weighting_details	calc
'calc w=1/[\s^2^(Fo^2^)+(0.0396P)	^2^+0.7977P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary	direct
atom_sites_solution_secondary	aream
_refine_ls_hydrogen_treatment	constr
_refine_ls_extinction_method	none
_refine_ls_extinction_coef	2
refine ls number parameters	451
	0
_refine_ls_R_factor_all	0.0322
_refine_is_wR_factor_gt	0.0286
_refine_ls_wR_factor_gt	0.0751
_refine_ls_goodness_of_fit_ref	1.013
_refine_ls_restrained_S_all	1.013
_refine_ls_shift/su_mean	0.000
loop	
atom_site_type_symbol	
_atom_site_fract_x	
_atom_site_fract_y	
atom_site_ffact_2 atom_site_U_iso_or_equiv	
_atom_site_adp_type	
_atom_site_occupancy	
_atom_site_symmetry_multiplicity	
_atom_site_refinement_flags	
_atom_site_disorder_assembly	
_atom_site_disorder_group	7(3) 0 01482(10) Hani 1 1 d
N1 N 0.56612(12) 0.51283(10) 0.161	L75(9) 0.0181(3) Uani 1 1 d
N2 N 0.59637(12) 0.42949(10) 0.232	240(9) 0.0167(3) Uani 1 1 d
01 0 0.67854(10) 0.34845(8) 0.2030)2(7) 0.0171(2) Uani 1 1 d
D D U.IIJZ4(II) U.ZJ00J(I4) U.Z01	$U \cup (I \land) U \cdot U \downarrow U \land ()) U d I \downarrow \downarrow$

_diffrn_reflns_limit_k_min -11

F1 F 0.89157(9) 0.44717(7) 0.27851(6) 0.0251(2) Uani 1 1 d . . . F2 F 1.06202(10) 0.46944(8) 0.41656(7) 0.0298(2) Uani 1 1 d . . . F3 F 1.06952(9) 0.30877(9) 0.58813(7) 0.0306(2) Uani 1 1 d . . . F4 F 0.90878(10) 0.11771(8) 0.61482(7) 0.0323(2) Uani 1 1 d . . . F5 F 0.74767(10) 0.08483(7) 0.47383(7) 0.0283(2) Uani 1 1 d . . . F6 F 0.93202(9) 0.32561(7) 0.13621(7) 0.0254(2) Uani 1 1 d . . . F7 F 1.09459(10) 0.20039(9) 0.04203(7) 0.0372(2) Uani 1 1 d . . F8 F 1.08967(10) -0.03940(9) 0.08390(7) 0.0345(2) Uani 1 1 d . . . F9 F 0.91212(10) -0.15077(8) 0.22194(7) 0.0306(2) Uani 1 1 d . . . F10 F 0.73953(9) -0.02781(7) 0.31383(7) 0.0270(2) Uani 1 1 d . . . F11 F 0.53877(9) 0.27366(8) 0.44767(6) 0.0244(2) Uani 1 1 d . . . F12 F 0.27364(9) 0.22416(9) 0.47859(7) 0.0337(2) Uani 1 1 d . . . F13 F 0.13323(9) 0.11806(8) 0.35998(8) 0.0338(2) Uani 1 1 d . . . F14 F 0.27811(9) 0.04631(8) 0.21525(7) 0.0310(2) Uani 1 1 d . . . F15 F 0.54534(9) 0.09092(8) 0.18370(6) 0.0242(2) Uani 1 1 d . C1 C 0.80849(14) 0.26432(12) 0.36864(10) 0.0167(3) Uani 1 1 d . . C2 C 0.89168(15) 0.36099(13) 0.36006(10) 0.0183(3) Uani 1 1 d . . . C3 C 0.97961(15) 0.37619(13) 0.43141(11) 0.0210(3) Uani 1 1 d . . . C4 C 0.98555(15) 0.29496(14) 0.51784(11) 0.0218(3) Uani 1 1 d . . . C5 C 0.90488(16) 0.19778(13) 0.53056(11) 0.0219(3) Uani 1 1 d . . . C6 C 0.82166(15) 0.18387(12) 0.45665(11) 0.0196(3) Uani 1 1 d . . . C7 C 0.81876(14) 0.15689(12) 0.22642(10) 0.0171(3) Uani 1 1 d . . . C8 C 0.91605(15) 0.20797(13) 0.15767(11) 0.0194(3) Uani 1 1 d . . C9 C 1.00424(15) 0.14471(14) 0.10839(11) 0.0240(3) Uani 1 1 d . . C10 C 1.00196(16) 0.02357(14) 0.12942(12) 0.0243(3) Uani 1 1 d . . . C11 C 0.91242(16) -0.03198(13) 0.19942(11) 0.0225(3) Uani 1 1 d . . . C12 C 0.82414(15) 0.03416(13) 0.24609(11) 0.0195(3) Uani 1 1 d . . . C13 C 0.56010(14) 0.18390(12) 0.31457(10) 0.0159(3) Uani 1 1 d . . . C14 C 0.48157(15) 0.21360(12) 0.38837(11) 0.0184(3) Uani 1 1 d . . . C15 C 0.34155(15) 0.19016(13) 0.40614(11) 0.0214(3) Uani 1 1 d . . C16 C 0.27060(15) 0.13517(13) 0.34716(12) 0.0225(3) Uani 1 1 d . . C17 C 0.34398(15) 0.10131(12) 0.27380(11) 0.0212(3) Uani 1 1 d . . C18 C 0.48406(15) 0.12563(12) 0.25929(10) 0.0180(3) Uani 1 1 d . C19 C 0.51457(16) 0.75005(12) 0.08595(11) 0.0203(3) Uani 1 1 d . C20 C 0.55905(18) 0.70735(14) -0.00486(11) 0.0269(4) Uani 1 1 d . . . H20A H 0.5902 0.7729 -0.0531 0.040 Uiso 1 1 calc R . . H20B H 0.4804 0.6743 -0.0285 0.040 Uiso 1 1 calc R . . H2OC H 0.6342 0.6483 0.0106 0.040 Uiso 1 1 calc R . . C21 C 0.39969(17) 0.84960(13) 0.05991(12) 0.0265(4) Uani 1 1 d . . . H21A H 0.4344 0.9128 0.0110 0.040 Uiso 1 1 calc R . . H21B H 0.3747 0.8784 0.1157 0.040 Uiso 1 1 calc R . H21C H 0.3183 0.8196 0.0368 0.040 Uiso 1 1 calc R . . C22 C 0.64713(17) 0.79939(14) 0.11880(12) 0.0277(4) Uani 1 1 d . . . H22A H 0.6774 0.8640 0.0693 0.041 Uiso 1 1 calc R . . H22B H 0.7204 0.7385 0.1317 0.041 Uiso 1 1 calc R . . H22C H 0.6263 0.8266 0.1760 0.041 Uiso 1 1 calc R . . C23 C 0.46895(15) 0.65009(13) 0.30562(11) 0.0200(3) Uani 1 1 d . . . C24 C 0.40627(18) 0.77397(14) 0.30767(12) 0.0263(3) Uani 1 1 d . . . H24A H 0.4145 0.7868 0.3710 0.039 Uiso 1 1 calc R . . H24B H 0.3089 0.7797 0.2901 0.039 Uiso 1 1 calc R . . H24C H 0.4563 0.8325 0.2631 0.039 Uiso 1 1 calc R . C25 C 0.39040(17) 0.55847(14) 0.37990(11) 0.0262(3) Uani 1 1 d . . . H25A H 0.3996 0.5744 0.4422 0.039 Uiso 1 1 calc R . . H25B H 0.4297 0.4809 0.3807 0.039 Uiso 1 1 calc R . . H25C H 0.2928 0.5629 0.3632 0.039 Uiso 1 1 calc R . . C26 C 0.62400(17) 0.63845(15) 0.33751(12) 0.0271(4) Uani 1 1 d . . . H26A H 0.6297 0.6527 0.4006 0.041 Uiso 1 1 calc R . . H26B H 0.6773 0.6951 0.2935 0.041 Uiso 1 1 calc R . H26C H 0.6615 0.5603 0.3382 0.041 Uiso 1 1 calc R . C27 C 0.27581(15) 0.57440(13) 0.15708(11) 0.0202(3) Uani 1 1 d . . . C28 C 0.15581(16) 0.65282(14) 0.18625(13) 0.0279(4) Uani 1 1 d . . . H28A H 0.0670 0.6250 0.1726 0.042 Uiso 1 1 calc R . . H28B H 0.1641 0.7328 0.1508 0.042 Uiso 1 1 calc R . . H28C H 0.1616 0.6495 0.2536 0.042 Uiso 1 1 calc R . . C29 C 0.26042(16) 0.44471(13) 0.21121(12) 0.0257(3) Uani 1 1 d . . . H29A H 0.1697 0.4196 0.1984 0.039 Uiso 1 1 calc R . .

H29B H 0.2698 0.4382 0.2788 0.039 Uiso 1 1 calc R H29C H 0.3322 0.3957 0.1900 0.039 Uiso 1 1 calc R C30 C 0.26216(18) 0.57795(15) 0.04976(12) 0.0292(4) Uani 1 1 d H30A H 0.1712 0.5526 0.0377 0.044 Uiso 1 1 calc R H30B H 0.3336 0.5264 0.0314 0.044 Uiso 1 1 calc R H30C H 0.2731 0.6571 0.0131 0.044 Uiso 1 1 calc R	
<pre>loop_ atom_site_aniso_label atom_site_aniso_Ul1 atom_site_aniso_U.11 atom_site_aniso_U.22 atom_site_aniso_U.23 atom_site_aniso_U.23 atom_site_aniso_U.23 atom_site_aniso_U.23 atom_site_aniso_U.23 atom_site_aniso_U.23 atom_site_aniso_U.13 atom_site_aniso_U.14 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.14 atom_site_aniso_U.12 atom_site_aniso_U.15 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.14 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.12 atom_site_aniso_U.14 atom_site_aniso_U.14 atom_site_aniso_U.15 atom_site_aniso_U.15 atom_site_aniso_U.14 atom_site_aniso_U.15 atom_site_aniso_U.15 atom_site_aniso_U.14 atom_site_aniso_U.15 atom_site_aniso_U.15 atom_site_aniso_U.14 atom_site_aniso_U.15 atom_site_aniso_U.15 atom_site_aniso_U.14 atotatiso_U.14 atom_site_an</pre>	132(13)

```
_geom_special_details
```

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

loop_

```
_geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
_geom_bond_site_symmetry_2
 _geom_bond_publ_flag
P1 N1 1.7087(12) . ?
P1 C19 1.8786(15) . ?
P1 C23 1.8796(15) . ?
P1 C27 1.8808(15) . ?
N1 N2 1.2571(17) . ?
N2 01 1.3359(15) .
                   ?
O1 B1 1.5430(18)
                   ?
                 .
B1 C1 1.640(2) .
                 ?
B1 C7 1.644(2) . ?
B1 C13 1.649(2) . ?
F1 C2 1.3542(17) . ?
F2 C3 1.3472(17) . ?
F3 C4 1.3403(17) . ?
F4 C5 1.3451(18) . ?
F5 C6 1.3541(17)
                   ?
                 •
F6 C8 1.3501(17) .
                   ?
F7 C9 1.3456(18) . ?
F8 C10 1.3446(17) . ?
F9 C11 1.3476(17) . ?
F10 C12 1.3500(18) . ?
F11 C14 1.3562(17) . ?
F12 C15 1.3416(17) . ?
F13 C16 1.3368(17)
                     ?
                   .
F14 C17 1.3478(17)
                     ?
F15 C18 1.3566(17)
                   . ?
C1 C2 1.391(2) . ?
C1 C6 1.391(2) . ?
C2 C3 1.381(2) . ?
C3 C4 1.375(2) . ?
C4 C5 1.376(2) . ?
C5 C6 1.378(2) . ?
C7 C12 1.392(2) .
                  ?
C7 C8 1.392(2) . ?
C8 C9 1.382(2) . ?
C9 C10 1.376(2) . ?
C10 C11 1.371(2) . ?
C11 C12 1.381(2) . ?
C13 C14 1.385(2) . ?
C13 C18 1.390(2) . ?
C14 C15 1.383(2)
                 •
                   ?
C15 C16 1.377(2)
                   ?
                 •
C16 C17 1.376(2)
                   ?
                 •
                 . ?
C17 C18 1.380(2)
C19 C22 1.537(2) . ?
C19 C21 1.540(2) . ?
C19 C20 1.545(2) . ?
C23 C25 1.537(2) . ?
C23 C24 1.542(2) . ?
C23 C26 1.544(2) .
                   ?
C27 C30 1.538(2) . ?
```

C27 C27	C28 C29	1.542	2(2) 4(2)	· ?	
-			()		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28 C29 C29 C29 C29 C29 C29 C29 C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	1.542 1.542 1.544 angle an	2(2) 4(2) 4(2) atom atom atom site publ 0.02(12.65 3.50(12.95 13.26 0.02(12.95 13.26 1.12(1 1.32(1 1.35(1))))))))))))))))))))))))))))))))))))	<pre>. ? . ? . ? ?</pre>	pel_1 pel_2 pel_3 7_1 7_3
C4 (F3 (F3 (C3 (F4 (F4 (F5 (C12 (23 C2 24 C3 24 C5 25 C4 25 C4 25 C4 25 C6 26 C1 27 E1 27 B1 27 B1 27 B1 27 B2 27 B1 28 C7	2 120. 3 120. 5 120. 5 118. 4 119. 5 121. 5 116. 119. 5 116. 119. 5 116. 119. 5 116. 119. 5 124. 5 113. 124. 5 121. 5 120. 5 120.	.17(1 .97(1 .35(1 .68(1 .50(1 .45(1 .02(1 .46(1 .52(1 3.65((4.50((.76(1 .15(1	4) . ? 4) . ? 4) . ? 4) . ? 3) . ? 4) . ? 3) . ? 4) . ? 3) . ? 3) . ? 13) . ? 13) . ? 13) . ? 3) . ? 3) . ? 3) . ? 3) . ? 3) . ? 3) . ? 3) . ? 3) . ? 3) . ?)
C9 (F7 (F7 (C10) F8 (C11) F9 (C11) F9 (C10) F10) C11 C14 C14 C14 C14 C14 F11	C8 C7 C9 C1 C9 C8 C9 C C10 C C10 C C10 C C11 C C11 C C11 C C11 C C11 C C11 C C12 C12 C12 C13 C13 C14	7 123. 0 119 120. 28 119 211 12 29 120 29 120 29 120 29 120 29 120 20 11 212 12 212 12 213 1 215 12 215	.93(1).86(.58(1).53(20.61).25(19.11 19.38 20.84 119.7 115.7 20.35 23.90 113.0 22.92 22.82 114 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

```
F11 C14 C13 120.66(12) . . ?
C15 C14 C13 124.61(14) . . ?
F12 C15 C16 120.00(13) . . ?
F12 C15 C14 120.27(14) . . ?
C16 C15 C14 119.70(14) . .
                           ?
F13 C16 C17 121.27(14) . .
                           ?
F13 C16 C15 120.43(14) . .
                           ?
C17 C16 C15 118.28(13) . . ?
F14 C17 C16 119.84(13) . . ?
F14 C17 C18 120.18(14) . . ?
C16 C17 C18 119.96(14) . . ?
F15 C18 C17 115.11(13) . . ?
F15 C18 C13 120.51(13) . . ?
C17 C18 C13 124.36(14) . .
                           ?
C22 C19 C21 109.45(12) . .
                           ?
C22 C19 C20 105.52(13) . . ?
C21 C19 C20 109.41(13) . . ?
C22 C19 P1 110.12(11) . . ?
C21 C19 P1 111.73(10) . . ?
C20 C19 P1 110.41(10) . . ?
C25 C23 C24 108.39(12) . . ?
C25 C23 C26 106.45(13) . .
                           ?
C24 C23 C26 109.83(13) . .
                           ?
C25 C23 P1 111.30(10) . . ?
C24 C23 P1 110.08(10) . . ?
C26 C23 P1 110.69(10) . . ?
C30 C27 C28 108.71(13) . . ?
C30 C27 C29 106.66(13) . . ?
C28 C27 C29 109.87(13) . . ?
C30 C27 P1 110.02(11) . . ?
C28 C27 P1 112.00(10) . .
C29 C27 P1 109.44(10) . . ?
_diffrn_measured_fraction_theta_max
                                      0.991
_diffrn_reflns_theta_full
                                       25.04
_diffrn_measured_fraction_theta_full
                                      0.991
_refine_diff_density_max 0.306
_refine_diff_density_min
                           -0.281
refine diff density rms
                          0.042
#===end
data_tu3PN2OB(C6F5)2Ph
_audit_creation_method
                                 SHELXL-97
_chemical_formula_sum
 'C30 H32 B F10 N2 O P'
_chemical_formula_weight
                                  668.36
loop_
_atom_type_symbol
 _atom_type_description
 _atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C'
          0.0033
                   0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H'
                    0.0000
           0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'B' 'B' 0.0013
                   0.0007
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'N' 'N'
          0.0061
                   0.0033
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0' 0.0106 0.0060
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'F' 'F' 0.0171 0.0103
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'P' 'P' 0.1023 0.0942
```

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -v, -z' 10.3832(8) _cell_length_a 11.9066(9) _cell_length_b _cell_length_c 14.5601(12) _cell_angle_alpha 70.621(4) 76.818(4) _cell_angle_beta _cell_angle_gamma 65.912(4) _cell_volume 1541.2(2)_cell_formula_units_Z 2 296(2) _cell_measurement_temperature _cell_measurement_theta_min 2.0 25.0 _cell_measurement_theta_max _exptl_crystal_size_max 0.25 _exptl_crystal_size_mid 0.22 _exptl_crystal_size_min 0.19 _exptl_crystal_density_diffrn 1.440 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 688 _exptl_absorpt_coefficient_mu 0.178 _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.6931 _exptl_absorpt_correction_T_max 0.7555 _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK∖a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_reflns_number 60932 _diffrn_reflns_av_R_equivalents 0.0309 _diffrn_reflns_av_sigmaI/netI 0.0299 -17 _diffrn_reflns_limit_h_max 17 _diffrn_reflns_limit_k_min -20 _diffrn_reflns_limit_k_max 20 _diffrn_reflns_limit_l_min -25 25 _diffrn_reflns_limit_l_max _diffrn_reflns_theta_min 2.11 37.83 _diffrn_reflns_theta_max _reflns_number_total 16452 _reflns_number_gt 12630 _reflns_threshold_expression >2sigma(I) _____computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full

```
refine ls weighting scheme
                                  calc
_refine_ls_weighting_details
 'calc w=1/[\s^2^(Fo^2^)+(0.0590P)^2^+0.2143P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary
                                  direct
_atom_sites_solution_secondary
                                  difmap
_atom_sites_solution_hydrogens
                                  geom
_refine_ls_hydrogen_treatment
                                  constr
_refine_ls_extinction_method
                                  none
_refine_ls_extinction_coef
                                  ?
_refine_ls_number_reflns
                                  16452
                                  415
_refine_ls_number_parameters
_refine_ls_number_restraints
                                  0
_refine_ls_R_factor_all
                                  0.0546
_refine_ls_R_factor_gt
                                  0.0377
_refine_ls_wR_factor_ref
                                  0.1151
_refine_ls_wR_factor_gt
                                  0.1043
_refine_ls_goodness_of_fit_ref
                                  1.021
_refine_ls_restrained_S_all
                                  1.021
_refine_ls_shift/su_max
                                  0.001
_refine_ls_shift/su_mean
                                  0.000
loop_
 _atom_site_label
 _atom_site_type_symbol
 _atom_site_fract_x
 _atom_site_fract_y
 _atom_site_fract_z
 _atom_site_U_iso_or_equiv
 _atom_site_adp_type
 _atom_site_occupancy
 _atom_site_symmetry_multiplicity
 _atom_site_calc_flag
 _atom_site_refinement_flags
 _atom_site_disorder_assembly
 _atom_site_disorder_group
P1 P -0.189047(18) 0.438748(17) 0.197715(13) 0.01546(4) Uani 1 1 d . . .
F1 F 0.35038(7) 0.31833(6) 0.26478(4) 0.03317(12) Uani 1 1 d . . .
F2 F 0.29463(8) 0.40325(7) 0.42314(6) 0.04645(17) Uani 1 1 d . . .
F3 F 0.16002(9) 0.29584(8) 0.59119(5) 0.04959(18) Uani 1 1 d . . .
F4 F 0.08009(8) 0.10282(7) 0.59737(4) 0.03853(14) Uani 1 1 d . . .
F5 F 0.13284(6) 0.01656(5) 0.44185(4) 0.02650(10) Uani 1 1 d . . .
F6 F 0.39801(6) -0.13210(5) 0.37635(4) 0.02778(10) Uani 1 1 d . . .
F7 F 0.36426(6) -0.34633(5) 0.38861(5) 0.03521(13) Uani 1 1 d . . .
F8 F 0.20169(8) -0.34838(7) 0.26622(7) 0.04812(18) Uani 1 1 d . . .
F9 F 0.06709(8) -0.12687(7) 0.13508(6) 0.04550(16) Uani 1 1 d . . .
F10 F 0.09214(6) 0.08897(6) 0.12413(4) 0.03264(12) Uani 1 1 d . . .
N1 N -0.02112(6) 0.36748(6) 0.14699(4) 0.01778(10) Uani 1 1 d . . .
01 0 0.19052(5) 0.23470(5) 0.16947(4) 0.01790(9) Uani 1 1 d . . .
N2 N 0.05840(6) 0.28195(6) 0.20948(4) 0.01746(10) Uani 1 1 d . . .
C1 C 0.44510(7) 0.08888(7) 0.19259(5) 0.01781(11) Uani 1 1 d . .
C2 C 0.47451(8) 0.09927(8) 0.09205(6) 0.02402(14) Uani 1 1 d . .
H2 H 0.3997 0.1269 0.0552 0.029 Uiso 1 1 calc R .
C3 C 0.61257(9) 0.06941(9) 0.04560(7) 0.02926(16) Uani 1 1 d . . .
H3 H 0.6286 0.0790 -0.0216 0.035 Uiso 1 1 calc R . .
C4 C 0.72618(8) 0.02539(8) 0.09934(7) 0.02778(16) Uani 1 1 d . . .
H4 H 0.8186 0.0051 0.0687 0.033 Uiso 1 1 calc R . .
C5 C 0.70033(8) 0.01204(8) 0.19938(7) 0.02616(15) Uani 1 1 d . . .
H5 H 0.7759 -0.0184 0.2362 0.031 Uiso 1 1 calc R . .
C6 C 0.56178(8) 0.04398(8) 0.24500(6) 0.02221(13) Uani 1 1 d . . .
H6 H 0.5464 0.0352 0.3121 0.027 Uiso 1 1 calc R . .
C7 C 0.25256(7) 0.15742(7) 0.34556(5) 0.01801(11) Uani 1 1 d . . .
C8 C 0.28789(8) 0.25810(8) 0.34660(6) 0.02329(13) Uani 1 1 d . . .
C9 C 0.25907(10) 0.30507(9) 0.42713(7) 0.02991(17) Uani 1 1 d . . .
C10 C 0.19129(10) 0.25065(10) 0.51279(7) 0.03114(17) Uani 1 1 d . .
C11 C 0.15248(9) 0.15185(9) 0.51600(6) 0.02581(15) Uani 1 1 d . .
C12 C 0.18264(8) 0.10784(7) 0.43346(5) 0.02009(12) Uani 1 1 d .
```

C13 C 0.24629(7) -0.00822(7) 0.25099(5) 0.01846(11) Uani 1 1 d . . . C14 C 0.31327(8) -0.12515(7) 0.31532(6) 0.02102(12) Uani 1 1 d . . . C15 C 0.29849(8) -0.23817(7) 0.32276(7) 0.02558(15) Uani 1 1 d . . . C16 C 0.21547(9) -0.23947(9) 0.26166(8) 0.03047(17) Uani 1 1 d . . . C17 C 0.14755(9) -0.12715(9) 0.19575(7) 0.02891(16) Uani 1 1 d . . . C18 C 0.16335(8) -0.01505(8) 0.19169(6) 0.02267(13) Uani 1 1 d . . . -0.30161(8) 0.45224(8) 0.10791(6) 0.02157(12) Uani 1 1 d . . C19 C C20 C -0.23035(11) 0.48374(11) 0.00222(6) 0.03144(18) Uani 1 1 d . . . H20A H -0.2901 0.4913 -0.0427 0.047 Uiso 1 1 calc R . . H20B H -0.1404 0.4166 -0.0044 0.047 Uiso 1 1 calc R . . H20C H -0.2162 0.5629 -0.0120 0.047 Uiso 1 1 calc R . . C21 C -0.31489(11) 0.32260(9) 0.12558(8) 0.03196(18) Uani 1 1 d . . . H21A H -0.3689 0.3030 0.1877 0.048 Uiso 1 1 calc R . . H21B H -0.2220 0.2574 0.1256 0.048 Uiso 1 1 calc R . . H21C H -0.3621 0.3264 0.0745 0.048 Uiso 1 1 calc R . C22 C -0.45059(9) 0.55436(9) 0.11685(7) 0.03096(17) Uani 1 1 d . . . H22A H -0.4433 0.6370 0.0983 0.046 Uiso 1 1 calc R . . H22B H -0.4930 0.5366 0.1833 0.046 Uiso 1 1 calc R . . H22C H -0.5083 0.5532 0.0745 0.046 Uiso 1 1 calc R . C23 C -0.22928(8) 0.34228(8) 0.32440(6) 0.02305(13) Uani 1 1 d . . . C24 C -0.39002(9) 0.38966(10) 0.35600(7) 0.03282(19) Uani 1 1 d . . . H24A H -0.4084 0.3432 0.4223 0.049 Uiso 1 1 calc R . . H24B H -0.4378 0.3762 0.3137 0.049 Uiso 1 1 calc R . . H24C H -0.4241 0.4791 0.3517 0.049 Uiso 1 1 calc R . C25 C -0.15396(10) 0.35415(10) 0.39851(6) 0.03173(18) Uani 1 1 d . . . H25A H -0.1954 0.4397 0.4052 0.048 Uiso 1 1 calc R . . H25B H -0.0550 0.3347 0.3757 0.048 Uiso 1 1 calc R . . H25C H -0.1645 0.2954 0.4609 0.048 Uiso 1 1 calc R . C26 C -0.17840(10) 0.19869(8) 0.33079(7) 0.03129(18) Uani 1 1 d . . . H26A H $-0.2071 \ 0.1538 \ 0.3951 \ 0.047$ Uiso 1 1 calc R . . H26B H -0.0769 0.1650 0.3182 0.047 Uiso 1 1 calc R . . H26C H -0.2197 0.1881 0.2830 0.047 Uiso 1 1 calc R C27 C -0.18732(8) 0.59693(7) 0.19456(6) 0.02114(12) Uani 1 1 d . . . C28 C -0.18161(10) 0.67906(8) 0.08805(7) 0.02907(16) Uani 1 1 d . . . H28A H -0.2698 0.7037 0.0629 0.044 Uiso 1 1 calc R . . H28B H -0.1055 0.6306 0.0490 0.044 Uiso 1 1 calc R . . H28C H -0.1660 0.7541 0.0858 0.044 Uiso 1 1 calc R . . C29 C -0.31939(9) 0.67083(9) 0.25364(8) 0.03198(18) Uani 1 1 d . . . H29A H -0.3170 0.7528 0.2473 0.048 Uiso 1 1 calc R . . H29B H -0.3201 0.6236 0.3214 0.048 Uiso 1 1 calc R . H29C H -0.4034 0.6821 0.2291 0.048 Uiso 1 1 calc R . C30 C -0.05134(9) 0.57599(9) 0.23415(7) 0.02857(16) Uani 1 1 d . . . H30A H 0.0302 0.5304 0.1966 0.043 Uiso 1 1 calc R . . H30B H -0.0518 0.5274 0.3016 0.043 Uiso 1 1 calc R . . H30C H -0.0477 0.6572 0.2290 0.043 Uiso 1 1 calc R . . B1 B 0.28305(8) 0.11748(7) 0.24276(6) 0.01702(12) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 P1 0.01354(7) 0.01533(7) 0.01619(7) -0.00363(5) -0.00196(5) -0.00422(5) F1 0.0379(3) 0.0323(3) 0.0355(3) -0.0143(2) 0.0114(2) -0.0227(2) F2 0.0513(4) 0.0515(4) 0.0591(4) -0.0363(3) 0.0087(3) -0.0314(3) F3 0.0632(5) 0.0653(5) 0.0351(3) -0.0346(3) 0.0036(3) -0.0258(4) F4 0.0510(4) 0.0434(3) 0.0166(2) -0.0081(2) 0.0077(2) -0.0186(3) F5 0.0333(3) 0.0255(2) 0.0212(2) -0.00534(17) 0.00459(18) -0.0157(2) F6 0.0276(2) 0.0229(2) 0.0286(2) -0.00296(18) -0.01004(19) -0.00434(18) F7 0.0337(3) 0.0175(2) 0.0415(3) -0.0017(2) 0.0015(2) -0.00452(19) F8 0.0455(4) 0.0296(3) 0.0793(5) -0.0194(3) -0.0038(3) -0.0212(3) F9 0.0412(3) 0.0472(4) 0.0647(5) -0.0247(3) -0.0173(3) -0.0186(3) F10 0.0362(3) 0.0299(3) 0.0340(3) -0.0075(2) -0.0173(2) -0.0080(2)

N1 0.0159(2) 0.0175(2) 0.0166(2) -0.00372(18) -0.00147(18) -0.00358(18)
01 0.01393(19) 0.0180(2) 0.0165(2) -0.00369(16) 0.00036(15) -0.00249(16)
N2 $0.0147(2)$ $0.0177(2)$ $0.0172(2)$ $-0.00468(18)$ $-0.00054(17)$ $-0.00373(18)$
C1 0.0154(2) 0.0168(3) 0.0192(3) -0.0054(2) -0.0010(2) -0.0039(2)
C2 0.0187(3) 0.0289(4) 0.0199(3) -0.0073(3) -0.0005(2) -0.0044(3)
C3 0.0233(3) 0.0340(4) 0.0247(3) -0.0104(3) 0.0056(3) -0.0069(3)
C4 0.0177(3) 0.0256(4) 0.0383(4) -0.0130(3) 0.0047(3) -0.0068(3)
C5 0.0169(3) 0.0249(3) 0.0373(4) -0.0106(3) -0.0046(3) -0.0054(2)
C6 0.0186(3) 0.0239(3) 0.0237(3) -0.0075(2) -0.0039(2) -0.0056(2)
C7 0.0170(3) 0.0183(3) 0.0172(3) -0.0050(2) -0.0015(2) -0.0049(2)
C8 0.0223(3) 0.0249(3) 0.0250(3) -0.0104(3) 0.0019(2) -0.0102(3)
C9 0.0297(4) 0.0332(4) 0.0355(4) -0.0196(3) 0.0002(3) -0.0136(3)
C10 0.0332(4) 0.0394(5) 0.0257(4) -0.0191(3) -0.0017(3) -0.0105(3)
C11 0.0279(3) 0.0301(4) 0.0160(3) -0.0071(3) -0.0006(2) -0.0075(3)
C12 0.0212(3) 0.0203(3) 0.0163(3) -0.0044(2) -0.0020(2) -0.0055(2)
C13 0.0166(3) 0.0181(3) 0.0191(3) -0.0062(2) 0.0003(2) -0.0051(2)
C14 0.0181(3) 0.0182(3) 0.0235(3) -0.0057(2) 0.0001(2) -0.0045(2)
C15 0.0212(3) 0.0172(3) 0.0321(4) -0.0061(3) 0.0045(3) -0.0052(2)
C16 0.0247(3) 0.0243(4) 0.0460(5) -0.0152(3) 0.0045(3) -0.0121(3)
C17 0.0230(3) 0.0310(4) 0.0397(4) -0.0168(3) -0.0018(3) -0.0116(3)
C18 0.0200(3) 0.0230(3) 0.0256(3) -0.0091(3) -0.0022(2) -0.0065(2)
C19 0.0205(3) 0.0241(3) 0.0223(3) -0.0039(2) -0.0060(2) -0.0102(2)
C20 0.0337(4) 0.0457(5) 0.0204(3) -0.0056(3) -0.0062(3) -0.0205(4)
C21 0.0367(4) 0.0311(4) 0.0377(5) -0.0089(3) -0.0083(4) -0.0196(4)
C22 0.0197(3) 0.0324(4) 0.0371(4) -0.0039(3) -0.0111(3) -0.0059(3)
C23 0.0182(3) 0.0258(3) 0.0183(3) -0.0012(2) 0.0002(2) -0.0060(2)
C24 0.0192(3) 0.0393(5) 0.0293(4) -0.0035(3) 0.0042(3) -0.0081(3)
C25 0.0251(4) 0.0442(5) 0.0179(3) -0.0077(3) -0.0016(3) -0.0056(3)
C26 0.0293(4) 0.0235(4) 0.0308(4) 0.0046(3) -0.0017(3) -0.0097(3)
C27 0.0188(3) 0.0198(3) 0.0267(3) -0.0105(2) -0.0002(2) -0.0067(2)
C28 0.0317(4) 0.0198(3) 0.0340(4) -0.0021(3) -0.0041(3) -0.0114(3)
C29 0.0240(3) 0.0287(4) 0.0449(5) -0.0218(4) 0.0033(3) -0.0054(3)
C30 0.0235(3) 0.0371(4) 0.0349(4) -0.0199(3) -0.0005(3) -0.0138(3)
B1 0.0161(3) 0.0165(3) 0.0163(3) -0.0041(2) -0.0013(2) -0.0042(2)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag P1 N1 1.7107(6) . ? P1 C19 1.8724(8) . ? P1 C27 1.8760(8) . ? P1 C23 1.8790(8) . ? F1 C8 1.3472(10) . ? F2 C9 1.3430(11) . ? F3 C10 1.3394(10) . ? F4 C11 1.3426(10) . ? F5 C12 1.3437(9) . ? F6 C14 1.3488(10) . ? F7 C15 1.3436(10) . ? F8 C16 1.3402(10) . ? F9 C17 1.3456(11) . ? F10 C18 1.3506(10) . ? N1 N2 1.2602(8) . ?

01	N2	1.	32	70	()	8)			?		
01	В1	1.	54	75	()	9)			?		
С1	C2	1.	39	93	(]	10)	•		?	
С1	C6	1.	39	93	(]	10)	•		?	
С1	В1	1.	61	79	(]	10)	•		?	
C2	C3	1.	39	29	(]	11)			?	
C2	H2	0.	93	00		•	?				
CЗ	С4	1.	38	66	(]	13)			?	
CЗ	HЗ	0.	93	00		•	?				
С4	C5	1.	38	63	(]	13)			?	
С4	H4	0.	93	00		•	?				
C5	C6	1.	39	30	(]	11)			?	
C5	H5	0.	93	00		•	?				
С6	H6	0.	93	00			?				
С7	C12	1	.3	92	1	(1	0)			•	?
С7	С8	1.	39	48	(11)			?	
С7	В1	1.	64	31	(10)			?	
С8	C9	1.	38	41	(12)			?	
С9	C10	1	. 3	80	7	(1	4)				?
C10	C1	1	1.	37	4	9 (14	1)			?
C11	C1	2	1.	38	91) (11	ý			?
C13	C1	8	1.	39	1(5 (11	ý			?
C13	C1	4	1.	39	31) (1())			?
C13	B1	1	. 6	51	2	(1	1)				?
C14	C1	5	1.	38	2	2 (11)	·		?
C15	C1	6	1	38	0	_ (1 (14	1)		Ī	?
C16	C1	7	1	37	6	2 (14	1)		•	?
C17	C1	8	1	39	0	- (ร (12	$\frac{1}{2}$		•	?
C19	C2	1	1	53	6	8 (8 (10	>		•	• ?
C19	C2	2	1 1	53	8	2 (2 (10	> \		•	• ?
C19	C2	0	1	54	20	2 (3 (10	- / > \		•	•
C20	H2	ΛΔ		9 9	61	ノ (12	- /	?	•	•
C20	H2	0n	0	9	61) วก			· ?		
C20	H2		0	9	61) วก			· ?		
C21	H2	1 Δ	0	9	61) วก			· ?		
C21	ц ц	1 R	0	.) q	61	00 10			?		
C21	H2	10	0	9	61) วก			· ?		
C22	H2	22	0	9	61) วก			· ?		
C22	H2	2R	0	9	61) วก			· ?		
C22	H2	20	0	9	61) วก			· ?		
C23	C2	4	1	53	9	1 (11)	·		?
C23	C2	5	1 1	54	0	- (2 (1:	- /		•	• ?
C23	C2	6	1	54	6	≏ (1 (1:	2)		•	•
C24	. H2	4 A		9 9	61	י <u>י</u> ה	± 、	, ,	?	•	•
C24	H2	4R	0	. 9	61	ว ด			。 ?		
C24	H2	4C	0	. 9	61	ว ด			。 ?		
C25	H2	5 A	0	. 9	61	ว ด			。 ?		
C25	H2	5R	0	9	61	ว 0 า ก			· ?		
C25	H2	50	0	. 9	61	ว ด			。 ?		
C26	H2	61	0	9	61) วก			· ?		
C26	и2 Ц2	6B	0	.) q	61	00 10			• ?		
C26	H2	6C	0	9	61) วก			· ?		
C20	C2	8	1	53	.7	50 5(1 2	> \	•		2
C27		a	1 ·	51	0	2 (2 /	11	- /		•	•
C27		0	⊥• 1	54	11	5 (5 (11	- /		•	:
C21	с3 11 го	U Q 7	⊥• ∩	ე4 ი	т: С і) () へ	1	-)	Ċ	•	÷
C20	п2 บา	0A QD	0	. 🤊	6	0 0 7 0			: 0		
	пZ	0B	0	. 9	C	0 U N N			: ?		
	пZ	00	0	. 9	C I	0 U 0 C			:		
C29		ЭA	0	. 9	01	0 U 0 0			:		
C29	HZ	ЭB	0	.9	01	0 U 0 0			:		
C29	HZ	30	0	.9	C I	0 U 0 C	•		:		
C30	H3	0A	0	.9	C I	0 U 0 C	•		:		
USU	HJ	0B	0	.9	01	0 U 0 0			:		
000		110	- 0	<u> </u>	n	111			~		

loop_

```
_geom_angle_atom_site_label_1
 _geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
_geom_angle_publ_flag
N1 P1 C19 102.32(3) . .
N1 P1 C27 102.03(3) . . ?
C19 P1 C27 112.93(4) . . ?
N1 P1 C23 112.36(3) . . ?
C19 P1 C23 112.71(4) . . ?
C27 P1 C23 113.45(4) . .
                           ?
N2 N1 P1 112.85(5) . .
                         ?
N2 01 B1 111.61(5)
                    . .
                         ?
N1 N2 O1 111.68(6) . .
                         ?
C2 C1 C6 116.68(6) . .
                         ?
C2 C1 B1 119.25(6) . . ?
C6 C1 B1 123.87(6) . . ?
C3 C2 C1 121.94(7) . . ?
C3 C2 H2 119.0 . . ?
C1 C2 H2 119.0 . .
                    ?
C4 C3 C2 120.13(8)
                      . ?
C4 C3 H3 119.9 . .
                    ?
C2 C3 H3 119.9 . .
                    ?
C5 C4 C3 119.16(7)
                    . . ?
C5 C4 H4 120.4 . . ?
C3 C4 H4 120.4 . . ?
C4 C5 C6 120.33(8) . . ?
C4 C5 H5 119.8 . . ?
C6 C5 H5 119.8 .
                    ?
                 .
C5 C6 C1 121.75(7)
                    . . ?
C5 C6 H6 119.1 . . ?
С1 С6 Н6 119.1 .
                  . ?
C12 C7 C8 113.93(7) . . ?
C12 C7 B1 126.75(6) . . ?
C8 C7 B1 119.11(6) . . ?
F1 C8 C9 115.97(7) . . ?
F1 C8 C7 119.91(7) . .
                         ?
C9 C8 C7 124.09(8) . . ?
F2 C9 C10 119.48(8) . . ?
F2 C9 C8 121.22(9) . . ?
C10 C9 C8 119.30(8) . . ?
F3 C10 C11 120.23(9) . . ?
F3 C10 C9 120.43(9) . . ?
C11 C10 C9 119.32(8) . . ?
F4 C11 C10 119.66(7) . . ?
F4 C11 C12 120.62(8) . . ?
C10 C11 C12 119.65(8) . .
                            ?
F5 C12 C11 115.21(7) . . ?
F5 C12 C7 121.00(6) . . ?
C11 C12 C7 123.71(7) . . ?
C18 C13 C14 113.58(7) . . ?
C18 C13 B1 126.38(7) . . ?
C14 C13 B1 119.70(6) . . ?
F6 C14 C15 115.91(7) . . ?
F6 C14 C13 119.62(7) . . ?
C15 C14 C13 124.47(8) . . ?
F7 C15 C16 119.91(8) . . ?
F7 C15 C14 120.64(8) . . ?
C16 C15 C14 119.45(8) . . ?
F8 C16 C17 120.60(9) . . ?
F8 C16 C15 120.54(9) . . ?
C17 C16 C15 118.86(8) . .
F9 C17 C16 119.65(8) . . ?
F9 C17 C18 120.46(9) . . ?
```

C16 C17 C18 11 F10 C18 C17 11 F10 C18 C13 12	9.89(8) ? 4.65(7) ? 1.61(7) ?
C17 C18 C13 12	3.74(8) ?
C21 C19 C22 10	9.31(7) ?
C_{21} C_{19} C_{20} 10 C_{22} C_{19} C_{20} 10	5.96(7) ?
C21 C19 P1 109	.49(6) ?
C22 C19 P1 111	.54(6) ?
C20 C19 P1 110 C19 C20 H20A 1	./2(5) ?
C19 C20 H20B 1	09.5 ?
H20A C20 H20B	109.5 ?
C19 C20 H20C 1	09.5 ?
H20B C20 H20C	109.5 ?
C19 C21 H21A 1	09.5 ?
C19 C21 H21B 1	09.5 ?
C19 C21 H21C 1	09.5 ?
H21A C21 H21C	109.5 ?
H21B C21 H21C	109.5 ?
C19 C22 H22A 1 C19 C22 H22B 1	09.5 ?
H22A C22 H22B	109.5 ?
C19 C22 H22C 1	09.5 ?
H22A C22 H22C	109.5 ?
C24 C23 C25 10	8.46(7) ?
C24 C23 C26 10	8.13(7) ?
C25 C23 C26 IU C24 C23 P1 110	(1.21(7)) ?
C25 C23 P1 110	.47(6) ?
C26 C23 P1 112	.04(6) ?
C23 C24 H24A 1 C23 C24 H24B 1	09.5 ?
H24A C24 H24B	109.5 ?
C23 C24 H24C 1	09.5 ?
$H_{24A} C_{24} H_{24C}$ $H_{24B} C_{24} H_{24C}$	109.5 ?
C23 C25 H25A 1	09.5 ?
C23 C25 H25B 1	09.5 ?
C23 C25 H25C 1	109.5 ?
H25A C25 H25C	109.5 ?
H25B C25 H25C	109.5 ?
C23 C26 H26A 1 C23 C26 H26B 1	09.5 ?
H26A C26 H26B	109.5 ?
C23 C26 H26C 1	09.5 ?
H26A C26 H26C H26B C26 H26C	109.5 ?
C28 C27 C29 10	8.66(7) ?
C28 C27 C30 10	6.49(7) ?
C28 C27 P1 109	0.18(7) ?
C29 C27 P1 112	.10(6) ?
C30 C27 P1 109	.48(6) ?
C27 C28 H28B 1	09.5 ?
H28A C28 H28B	109.5 ?
C27 C28 H28C 1	09.5 ?
H28B C28 H28C	109.5 ?
C27 C29 H29A 1	09.5 ?
C27 C29 H29B 1	09.5 ?

H29A C29 H29B 109.5 ?	
C27 C29 H29C 109.5 ?	
H29A C29 H29C 109.5 ?	
H29B C29 H29C 109.5 ?	
C27 C30 H30A 109.5 ?	
C27 C30 H30B 109.5 ?	
H30A C30 H30B 109.5 ?	
C27 C30 H30C 109.5 ?	
H30A C30 H30C 109.5 ?	
H30B C30 H30C 109.5 ?	
O1 B1 C1 105.94(5) ?	
O1 B1 C7 106.50(5) ?	
C1 B1 C7 113.85(6) ?	
O1 B1 C13 108.92(6) ?	
C1 B1 C13 105.99(5) ?	
C7 B1 C13 115.21(6) ?	
_diffrn_measured_fraction_theta_max	0.992
_diffrn_reflns_theta_full	37.83
_diffrn_measured_fraction_theta_full	0.992
_refine_diff_density_max 0.543	
_refine_diff_density_min -0.259	
_refine_diff_density_rms 0.054	
#===end	