Corrigenda

Complexes of Aminobenzylamines. Part I. Complexes of *o*-Aminobenzylamine with Copper(II), Cobalt(II) and Nickel(II)

Dimitra Kovala-Demertzi, John Michael Tsangaris and Nick Hadjiliadis*

University of Ioannina, Department of Chemistry, Inorganic Chemistry Laboratory, Domboli 31, Ioannina, Greece

Experimental

Materials and methods

Anhydrous CuCl₂, CuBr₂, NiCl₂, NiBr₂, CoCl₂, CoBr₂ together with NiCl₂ \cdot 6H₂O, 2-aminobenzenonitrile and Li[AlH₄] were purchased from Fluka, ROC/RK Merck and used without further purification.

I.r. spectra were recorded on Perkin-Elmer 577 and 597 spectrophotometers, in KBr pellets or Nujol mulls on KBr plates. Diffuse reflectance spectra were recorded in a Varian 634 spectrophotometer by diluting the samples with MgO. U.v.-vis. spectra were recorded on Bosch-Lomb-Shimadji Spectronic 210 W, Hitachi 100-70 and Cary 17 spectrophotometers using 1 cm rectangular quartz cells. E.s.r. spectra were recorded on a Varian Y-4502 Spectrometer using DPPH as internal reference. Molar conductance measurements were performed on a Metrohm Ltd., Herisau E-527 conductoscope. Magnetic susceptibility measurements were made by the Fara-

The preparation of the complexes is briefly described in the Table.

day method using Hg[Co(CNS)₄]₂ as reference. M.ps. are uncorrected. C, H and N elemental analyses were performed by Dr. Mantzos of the National Hellenic Research Foundation, in Athens. Halogens were determined potentiometrically or by precipitation as AgX (X = Cl or Br). Metal analyses was made by following the appropriate method either titrimetrically or by precipitation⁽⁴⁸⁾.

Preparation of the complexes

All the complexes described above, were first dried at room temperature in a vacuum desiccator containing CaCl₂. The drying was continued to constant weight at 90 °C under vacuum over P_2O_5 .

The deuterated o-aba and its complexes were prepared by shaking small quantities with D₂O for 24 h.

The ligand o-aba was prepared according to the method of Amundsen and Nelson⁽⁴⁹⁾.

Complex	Starting materials	Solvents	Reaction time and temperature	Washing the precipitate	Yield %
CuLCl ₂	CuCl ₂ (anhydrous) (4 mmols) + Ligand (2 mmols)	EtOH + EtOAc, 1 : 1 proportion (20 cm ³)	5 h (25 °C)	EtOAc + petroleum ether	90
CuL ₂ Cl ₂	$CuCl_2$ (anhydrous) (2 mmols) + L (4.4 mmols)	EtOH + EtOAc, $1:2$ proportion (30 cm ³)	5 h (25 °C)	EtOAc + petroleum ether	90
CuL ₂ Br ₂	CuCl ₂ (anhydrous) (2 mmols) + L (4.4 mmols)	MeOH · EtOAc, 1:2 proportion	24 h (25 °C)	MeOH + petroleum ether	90
CoLX ₂	CoX_2 (anhydrous) (4–6 mmols) + L (2 mmols)	EtOH + EtOAc (20 cm^3)	24 h (25 °C)	EtOAc + petroleum ether	70
CoL ₂ X ₂	CoX_2 (anhydrous) (2 mmols) + L (4.2 mmols)	EtOH + EtOAc, $1:1$ proportion (20 cm ³)	24 h (25 °C)	EtOAc + petroleum ether	75–85
CoL ₃ X ₂	CoX_2 (anhydrous) (2 mmols) + L (6.3 mmols)	EtOH (20 cm ³)	24 h (25 °C)	EtOAc + petroleum ether	70–80
NiLCl ₂	NiCl ₂ (anhydrous) (4 mmols) + L (4 mmoles)	EtOH (20 cm ³)	24 h (25 °C)	EtOAc + petroleum ether	90
NiLBr ₂	NiBr ₂ (anhydrous) (3 mmoles) + L (3 mmoles)	EtOH (20 cm ³)	24 h (25 °C)	EtOH + petroleum ether	90
NiL ₂ Cl ₂	NiCl ₂ · $6 H_2O$ (2 mmoles) + L (4.3 mmoles)	EtOH (20 cm ³)	12 h (25 °C)	EtOH + petroleum ether	80
NiL ₂ Br ₂	NiBr ₂ (anhydrous) (3 mmoles) + L (6.2 mmoles)	MeOH (20 cm ³)	12 h (reflux)	MeOH + petroleum ether	85
NiL ₃ Cl ₂	NiCl ₂ · $6 H_2 O$ (2 mmoles) L (6.5 mmoles)	EtOH + EtOAc (20 cm^3)	24 h (25 °C)	^b EtOAc	90
NiL₃Br₂	NiBr ₂ (2 mmoles) L (6.4 mmoles)	$EtOH + EtOAc (20 \text{ cm}^3)$	²⁴ h (25 °C)	EtOAc + petroleum ether	90
Ni ₂ L ₃ Cl ₂	NiCl ₂ (2 mmoles) L (4 mmoles)	EtOH (20 cm ³)	24 h (reflux)	EtOH + petroleum ether	70