Complexities of the Centre and Median String Problems

François Nicolas (nicolas@lirmm.fr) and Eric Rivals (rivals@lirmm.fr)

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (France)

Outline

- 1. Preliminaries
 - Edit Distance
 - The Longest Common Subword problem
- 2. The MEDIAN and CENTRE STRING problems
- 3. Intractability of CENTRE STRING and MEDIAN STRING
- 4. Intractability of CENTRE STRING: a sketch of proof
- 5. Approximating MEDIAN and CENTRE STRING
- 6. Open problems

Edit Distance

Let x and y be words.

The (non-weighted) edit distance (also called Levenshtein distance) between x et y (denoted lev(x,y)) is the smallest number of single letter deletions, insertions and substitutions needed to transform x into y.

For example, $lev((01)^n, (10)^n) = 2$ for all integer $n \ge 1$.

Wagner & Fisher's algorithm computes the edit distance $\operatorname{lev}(x,y)$ in polynomial time $\operatorname{O}(|x||y|)$.

The LCS problem

Let w be a word. A *subword* of w is any word obtained from w by deleting between 0 and |w| letters.

Longest Common Subword (o)	
instance:	a non empty finite language L .
solution:	a word s such that for all $w \in L$, s is a subword of w .
measure:	the length of s .

For example 0^n and 1^n are the longest common subwords of the language $\{(01)^n, 1^n0^n\}$.

LCS (D)	
instance:	a non empty finite language L and a positive integer λ .
question:	Is there a word of length λ wich is a subword of all words in L ?

Binary LCS (D) is NP-complete [Maier 1978] and W[1]-hard with respect to the parameter $\#\,L$ [Pietrzak 2003].

Centre and Median string problem (optimisation)

We are interested in the complexity of the two following consensus problems:

CENTRE STRING (O)		
instance:	a non empty finite language X .	
solution:	any word γ .	
measure:	$\max_{x \in X} \operatorname{lev}(x, \gamma).$	

and

MEDIAN STRING (O)		
instance:	a non empty finite language X .	
solution:	any word μ .	
measure:	$\sum_{x \in X} \operatorname{lev}(x, \mu).$	

Centre and Median string problem (decision)

The decision problems associated with CENTRE STRING (O) and MEDIAN STRING (O) are

CENTRE STRING (D)	
instance:	a non empty finite language X and a positive integer d .
question:	Is there a word γ such that $\max_{x \in X} \operatorname{lev}(x, \gamma) \leq d$?

and

MEDIAN STRING (D)	
instance:	a non empty finite language X and a positive integer d .
question:	Is there a word μ such that $\sum_{x \in X} \operatorname{lev}(x, \mu) \leq d$?

Known results

MEDIAN STRING (O) can be solved in time O $\left(2^{\# X}\prod_{x\in X}|x|\right)$ by dynamic programming [Sankoff-Kruskal 1983].

CENTRE STRING (D) is NP-complete even restricted to languages X with alphabet size 4 [de la Higuera - Casacuberta 2000]

MEDIAN STRING (D) is NP-complete for unbounded alphabet size (infinite alphabet) [de la Higuera - Casacuberta 2000]

MEDIAN STRING (D) is NP-complete even restricted to languages X with alphabet size 7 but the non-weighted edit distance is replaced by a conveniently weighted edit distance [Sim - Park 1999]

Our results

Regular complexity: Binary CENTRE STRING (D) and binary MEDIAN STRING (D) are both NP-complete.

Meaning: one of these problems can be solved in time $O(|X|^{\alpha})$ where α is a positive constant if and only if P = NP.

Parameterized complexity: Binary CENTRE STRING (D) and binary MEDIAN STRING (D) are both W[1]-hard with respect to parameter #X.

Meaning: if one of these problems can be solved in time $O\left(f(\#X)\left|X\right|^{\alpha}\right)$ where α is a positive constant and f an arbitrary function then FPT=W[1].

Intractability of CENTER STRING (sketch of the proof)

At first we reduce binary LCS (D) to binary LCS0 (D):

LCSO (D)	
instance:	a non empty finite language K such that all words in K share
	the same even length $2k$.
question:	Does there exists a word of length k which is a subword of all
	words in K ?

Given an instance (L,λ) of binary LCS (D) we construct an instance :

$$K := \bigcup_{x \in L} \left\{ x \mathbf{0}^{2\lambda + m - |x|}, x \mathbf{1}^{2\lambda + m - |x|} \right\} \mathbf{0}^m$$

of binary LCSO (D) where $m := \max_{x \in L} |x|$ (and $k = \lambda + n$).

Intractability of CENTRE STRING (continued)

We reduce binary LCS0 (D) to binary CENTRE STRING (D). Given an instance K of binary LCS0 (D) we construct an instance :

$$(X,d) := (K \cup \{\varepsilon\}, k)$$

of binary CENTRE STRING (D) where k is such that all words in K are of length 2k.

The proof relies on the following lemma:

- for all words x, y, we have $lev(x,y) \ge |x| |y|$ and,
- if lev(x, y) = |x| |y| then y is a subword of x.

10

Approximation

CENTRE STRING (O) and MEDIAN STRING (O) are 2-approximable: compute respectively

$$\underset{x_0 \in X}{\operatorname{argmin}} \left(\underset{x \in X}{\operatorname{max}} \operatorname{lev}(x_0, x) \right)$$

and

$$\underset{x_0 \in X}{\operatorname{argmin}} \left(\sum_{x \in X} \operatorname{lev}(x_0, x) \right)$$

There exists a P.T.A.S. (??) for MEDIAN STRING (O) [Li-Ma-Wang 2001]

Open problems

Regular Complexity: Do CENTRE STRING (D) and MEDIAN STRING (D) remain NP-complete if we replace the non-weighted edit distance by any weighted edit distance?

Parameterized complexity: What is the parameterized complexity of CENTRE STRING (D) and MEDIAN STRING (D) with respect to the distance parameter d?

Approximability: Does there exists a P.T.A.S. for CENTRE STRING (0)?