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Abstract: The fractional-order hyperchaotic Lorenz system is solved as a discrete map by

applying the Adomian decomposition method (ADM). Lyapunov Characteristic Exponents (LCEs)

of this system are calculated according to this deduced discrete map. Complexity of this

system versus parameters are analyzed by LCEs, bifurcation diagrams, phase portraits, complexity

algorithms. Results show that this system has rich dynamical behaviors. Chaos and hyperchaos can

be generated by decreasing fractional order q in this system. It also shows that the system is more

complex when q takes smaller values. SE and C0 complexity algorithms provide a parameter choice

criteria for practice applications of fractional-order chaotic systems. The fractional-order system

is implemented by digital signal processor (DSP), and a pseudo-random bit generator is designed

based on the implemented system, which passes the NIST test successfully.

Keywords: Fractional-order calculus; Adomian decomposition method; Complexity; Lorenz

Hyperchaotic system; DSP

1. Introduction

In recent years, dynamics of fractional-order chaotic systems have become a hot topic [1–3].

Secure communication and information encryption based on these fractional-order systems have also

aroused people’s interests [4–6]. Now, three approaches are mainly derived to solve fractional-order

chaotic systems: frequency-domain method [7], Adomian Decomposition Method (ADM) [8] and

Adams-Bashforth-Moulton (ABM) algorithm [9]. However, Tavazoei et al. [10] reported that the

frequency-domain method is not always reliable in detecting chaos behavior in nonlinear systems.

On the other hand, ABM and ADM are more accurate and convenient to analyze dynamical behaviors

of a nonlinear system. Compared with the ABM, ADM yields more accurate results and needs less

computing resources as well as memory resources [11]. So the numerical simulations in this paper

are done by applying ADM scheme.

Lyapunov Characteristic Exponents (LCEs) are necessary and more convenient for detecting

hyperchaos in fractional-order hyperchaotic system. A definition of LCEs for fractional differential

systems was given in Reference [12] based on frequency-domain approximations, but the limitations

of frequency-domain approximations are highlighted in Reference [10]. Time series based LCEs

calculation methods like Wolf algorithm [13], Jacobian method [14] and neural network algorithm [15]

are associated with difficulties in choosing the embedding dimension and the delay parameter

inherent of the phase-space reconstruction. Recently, LCEs of fractional-order chaotic systems

are calculated based on ADM by applying QR decomposition method [16]. However, there are

few references discussing LCEs of fractional-order chaotic system versus parameters and fractional

order q.
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Complexity measure is also an important way to analyze dynamics of a chaotic system.

It can reflect the security of the system to some extent, if it is used in information security.

Currently, there are several methods to measure complexity of time series, including permutation

entropy (PE) [17], statistical complexity measure (SCM) [18], sample entropy (SampEn) [19], fuzzy

entropy (FuzzyEn) [20], spectral entropy (SE) [21], and C0 algorithm [22]. Among them, SE and

C0 algorithms are proper choices to estimate the complexity of a time series accurately and rapidly

without any over-coarse graining preprocessing [21,22]. They are used to measure the complexity

of chaotic systems [23,24] and physiological signals [25], respectively. However, few papers have

reported complexity analysis of fractional-order chaotic systems.

In addition, compared with analog circuit implementation, digital circuit realization is a more

reliable and accurate way for the application of fractional-order chaotic systems. We will also focus

on the digital circuit realization of the fractional-order chaotic system.

The rest of the paper is organized as follows. In Section 2, the fractional-order Lorenz

hyperchaotic system is solved numerically. In Section 3, dynamics and complexity of the system

are analyzed and some interesting results are illustrated. In Section 4, the system is implemented by

DSP, then a pseudo-random bit generator is designed based on the implemented system. Finally, we

summarize the results.

2. Numerical Solution of the Fractional-Order Lorenz Hyperchaotic System

2.1. Adomian Decomposition Method

For a given fractional-order chaotic system with the form of ∗D
q
t0

x(t) = f (x(t)), where

x(t) = [x(t), y(t), z(t), u(t)]T are the state variables. ∗D
q
t0

is the Caputo fractional derivative with

the order (0 < q ≤ 1), and it is defined as [26]

∗D
q
t0

x(t) =

{

1
Γ(1−q)

∫ t
t0

ẋ(τ)
(t−τ)q dτ, 0 < q < 1

dx(t)
dt , q = 1

. (1)

This system can be separated into two parts as following form

{

∗D
q
t0

x(t) = Lx(t) + Nx(t)

x(k)(t+0 ) = bk, k = 0, ..., m − 1
. (2)

Here, m = ceil(q), bk is a specified constant relating to the initial values, and Lx(t) and Nx(t) are

the linear and nonlinear terms of the fractional differential equations respectively. By applying the

R-L fractional integral operator to both sides of Equation (2), the following equation is obtained [26,27]

x = J
q
t0

Lx + J
q
t0

Nx +
m−1

∑
k=0

bk
(t − t0)

k

k!
, (3)

where the definition of R-L fractional-order integral operator J
q
t0

is [26]

J
q
t0

x(t) =
1

Γ(q)

∫ t

t0

(t − τ)q−1x(τ)dτ. (4)

According to [27], the nonlinear terms can be evaluated by

{

Ai(x0, x1, ..., xi) = 1
i! [

di

dλi N(νi(λ))]λ=0

ν
i(λ) = ∑

i
k=0(λ)

kxk
, (5)
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where i = 0, 1, ..., ∞. Then the nonlinear terms are expressed as

Nx =
∞

∑
i=0

Ai(x0, x1, ..., xi). (6)

According to Reference [8], the solution of Equation (2) is derived by















































x0 = ∑
m−1
k=0 bk

(t−t0)
k

k!

x1 = J
q
t0

Lx0 + J
q
t0

A0(x0)

x2 = J
q
t0

Lx1 + J
q
t0

A1(x0, x1)

...

xi = J
q
t0

Lxi−1 + J
q
t0

Ai−1(x0, x1, ..., xi−1)

...

. (7)

The analytical solution of the fractional-order system is presented by

x(t) =
∞

∑
i=0

xi = F(x(t0)). (8)

Because ADM converges fast [11,16], the first 6 terms are used to get the solution of system (2). In

the real cases, it is impossible to estimate the high accuracy value of x when t takes large value. So, it

is necessary to design a time discretization method. That is to say, for a time interval [t0, t], we divide

the interval into subintervals [tn, tn+1]. Then we get the value of x(tn+1) based on x(tn) by applying

function F(·). Finally, the numerical solution of the fractional-order chaotic system are denoted as a

discrete map x(n + 1) = F(x(n)).

2.2. Fractional-Order Lorenz Hyperchaotic System

By introducing a nonlinear quadratic controller u to the second equation of Lorenz system, a four

dimensional dynamic system is obtained [28]



























ẋ = 10(y − x)

ẏ = 28x − xz + y − u

ż = xy − 8
3 z

u̇ = kyz

, (9)

where k(0 < k ≤ 1) is a parameter. When k ∈ (0, 0.152), the system is a hyperchaotic system.

When k ∈ [0.152, 0.21)∪[0.34,0.49), the system (9) is chaotic, and the system undergoes periodic orbits

for the rest region of k [28]. By introducing fractional derivative to this system, the fractional-order

Lorenz hyperchaotic is obtained



























∗D
q
t0

x = 10(y − x)
∗D

q
t0

y = 28x − xz + y − u

∗D
q
t0

z = xy − 8
3 z

∗D
q
t0

u = kyz

. (10)

Here, the fractional-order system is solved by ADM. By introducing some intermediate variables,

a rapid iteration scheme of the fractional-order hyperchaotic Lorenz system is obtained. It is shown as
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xn+1 = ∑
6
j=0 K

j
1hjq/Γ(jq + 1)

yn+1 = ∑
6
j=0 K

j
2hjq/Γ(jq + 1)

zn+1 = ∑
6
j=0 K

j
3hjq/Γ(jq + 1)

un+1 = ∑
6
j=0 K

j
4hjq/Γ(jq + 1)

. (11)

The intermediate variables K
j
i (i = 1, ..., 4, j = 0, 1, ..., 6) are shown as follows.

K0
1 = xn, K0

2 = yn, K0
3 = zn, K0

4 = un, (12)



























K1
1 = 10(K0

2 − K0
1)

K1
2 = 28K0

1 − K0
1K0

3 + K0
2 − K0

4

K1
3 = K0

1K0
2 − 8

3 K0
3

K1
4 = kK0

2K0
3

, (13)



























K2
1 = 10(K1

2 − K1
1)

K1
2 = 28K1

1 − K1
1K0

3 − K0
1K1

3 + K1
2 − K1

4

K2
3 = K1

1K0
2 + K0

1K1
2 − 8

3 K1
3

K2
4 = k(K1

2K0
3 + K0

2K1
3)

, (14)



























K3
1 = 10(K2

2 − K2
1)

K3
2 = 28K2

1 − K0
1K2

3 −
Γ(2q+1)
Γ2(q+1)

K1
1K1

3 − K2
1K0

3 + K2
2 − K2

4

K3
3 = K0

1K2
2 +

Γ(2q+1)
Γ2(q+1)

K1
1K1

2 + K2
1K0

2 − 8
3 K2

3

K3
4 = k[K0

2K2
3 +

Γ(2q+1)
Γ2(q+1)

K1
2K1

3 + K2
2K0

3]

, (15)



























K4
1 = 10(K3

2 − K3
1)

K4
2 = 28K3

1 − K0
1K3

3 − K3
1K0

3 + K3
2 − K3

4 −
Γ(3q+1)

Γ(q+1)Γ(2q+1)
(K1

1K2
3 + K2

1K1
3)

K4
3 = K0

1K3
2 +

Γ(3q+1)
Γ(q+1)Γ(2q+1)

(K2
1K1

2 + K1
1K2

2) + K3
1K0

2 − 8
3 K3

3

K4
4 = k[K0

2K3
3 +

Γ(3q+1)
Γ(q+1)Γ(2q+1)

(K2
2K1

3 + K1
2K2

3) + K3
2K0

3]

, (16)



















































K5
1 = 10(K4

2 − K4
1)

K5
2 = 28K4

1 − K0
1K4

3 − K4
1K0

3 + K4
2 − K4

4 −
Γ(4q+1)

Γ(q+1)Γ(3q+1)
(K1

1K3
3 + K3

1K1
3)−

Γ(4q+1)
Γ2(2q+1)

K2
1K2

3

K5
3 = K0

1K4
2 +

Γ(4q+1)
Γ(q+1)Γ(3q+1)

(K1
1K3

2 + K3
1K1

2) +
Γ(4q+1)
Γ2(2q+1)

K2
1K2

2+

K0
1K4

2 − 8
3 K4

3

K5
4 = k[K0

2K4
3 +

Γ(4q+1)
Γ(q+1)Γ(3q+1)

(K1
2K3

3 + K3
2K1

3) +
Γ(4q+1)
Γ2(2q+1)

K2
2K2

3 + K0
2K4

3]

, (17)



























































K6
1 = 10(K5

2 − K5
1)

K6
2 = 28K5

1 − K0
1K5

3 − K5
1K0

3 + K5
2 − K5

4 −
Γ(5q+1)

Γ(q+1)Γ(4q+1)
(K1

1K4
3 + K4

1K1
3)

− Γ(5q+1)
Γ(2q+1)Γ(3q+1)

(K2
1K3

3 + K3
1K2

3)

K6
3 = K0

1K5
2 +

Γ(5q+1)
Γ(q+1)Γ(4q+1)

(K1
1K4

2 + K4
1K1

2) +
Γ(5q+1)

Γ(2q+1)Γ(3q+1)
(K2

1K3
2

+K3
1K2

2) + K5
1K0

2 − 8
3 K5

3

K6
4 = k[K0

2K5
3 +

Γ(5q+1)
Γ(q+1)Γ(4q+1)

(K1
2K4

3 + K4
2K1

3) +
Γ(5q+1)

Γ(2q+1)Γ(3q+1)
(K2

2K3
3+

K3
2K2

3) + K5
2K0

3]

. (18)
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where h = tm+1 − tm, and Γ(·) is the Gamma function. Based on the discrete map Equation (11),

it is easy to get the time series by the way of computer programming. Also it provides the necessary

discrete iterative equations for the fractional-order hyperchaotic Lorenz system implemented on DSP

platform. In this paper, we set h = 0.01. Dynamics under two parameters q and k are analyzed in the

following sections.

3. Dynamics Analysis of the Fractional-Order Lorenz Hyperchaotic System

3.1. Bifurcation Analysis

For the discrete map Equation (11), LCEs can be calculated by employing QR decomposition

method [16]. The computational process is shown as follows.

qr[JMJM−1...J1] = qr[JMJM−1...J2(J1Q0)]

= QM[RM...R2R1]
, (19)

where qr[·] represents QR decomposition function, and J is the Jacobian matrix of the given map

Equation (11). All LCEs can be calculated by

λk =
1

Mh

M

∑
i=1

ln |Ri(k, k)| , (20)

where k = 1, 2, 3, 4, and M is the maximum iteration number. Let M = 20, 000 for accurate and

stable outputs. In this study, we just show the first three λ1, λ2 and λ3 for better observation as

well as for legibility. LCEs and the corresponding bifurcation diagram of the fractional-order Lorenz

hyperchaotic system with q varying and k varying are analyzed.

(1) Fix k = 0.26 and vary q from 0.60 to 1.00 with the step of ∆q = 0.001. The bifurcation

diagram and Lyapunov characteristic exponents are shown in Figure 1. It illustrates that the states

of the system are different as q increases. The period windows are observed at q ∈ [0.6340, 0.6700] ∪
(0.906, 1]. When q ∈ (0.670, 0.860], the system is a hyperchaotic system. When q ∈ (0.860, 0.906], this

system is chaotic. It is worth pointing out that the periodic state of the integer order system becomes

chaotic or hyperchaotic when order q changes to fractional order.

Figure 1. Bifurcation and Lyapunov Characteristic Exponents (LCEs) with different q (k = 0.26)

(a) Bifurcation diagram; (b) Lyapunov characteristic exponents.

(2) Fix q = 0.96 and vary k from 0 to 1 with the step of ∆k = 0.0025. The bifurcation diagram and

Lyapunov characteristic exponents are shown in Figure 2. It illustrates that the system is hyperchaotic

at k ∈ (0, 0.1875]. When k ∈ (0.1875, 0.2275] ∪ (0.3400, 0.4975], the system is in chaotic state, and it is

periodic for k ∈ (0.2275, 0.3400] ∪ (0.4975, 1].
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Figure 2. Bifurcation and LCEs with different k (q = 0.96) (a) Bifurcation diagram; (b) Lyapunov

characteristic exponents.

3.2. Observation of Chaotic Attractors

To further observe the dynamical behavior, some typical chaotic attractors of system (10) are

recorded according to the bifurcation analysis results above. These phase portraits are shown in

Figures 3 and 4 with k = 0.26, q varying and q = 0.96, k varying, respectively.

Results with k = 0.26 and q varying are summarized as follows. (1) The system is periodic when

q = 0.65 as shown in Figure 3a; (2) The system is hyperchaotic when q = 0.72 as shown in Figure 3b,

and the attractor has two wings; (3) The system is chaotic when q = 0.89 as shown in Figure 3c,

which is different from the above two attractors; (4) The system is periodic when q = 1.00 as shown

in Figure 3d. It is interesting that this fractional-order system generates chaos and hyperchaos, while

its integer-order counterpart is non-chaotic.

Figure 3. Phase diagrams of fractional-order hyperchaotic Lorenz system (k = 0.26) (a) periodic orbits

(q = 0.65); (b) hyperchaos (q = 0.72); (c) chaos (q = 0.89); (d) periodic orbits (q = 1.00).

Results with q = 0.96 and k varying are summarized as follows. (1) When k = 0.0.05, the

hyperchaos strange attractor is shown in Figure 4a, the attractor is similar with the hyperchaos strange

attractor in Figure 3a; (2) When k = 0.20, the chaos attractor is shown in Figure 4b, a typical chaotic

attractor of this system; (3) When k = 0.25, the periodic orbits is shown in Figure 4c; (4) When

k = 0.30, the periodic orbits is shown in Figure 4d; (5) When k = 0.40, the chaos attractor is shown

in Figure 4e; (6) When k = 0.50, a quasi-periodic orbits is shown in Figure 4f; (7) When k = 0.80, the

periodic orbits is shown in Figure 4g; (8) When k = 1.00, the periodic orbits is shown in Figure 4h, it

is different from those in the above situations.
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Figure 4. Phase diagrams of fractional-order hyperchaotic Lorenz system (q = 0.96) (a) hyperchaos

(k = 0.05); (b) chaos (k = 0.20); (c) periodic orbits (k = 0.25); (d) periodic orbits (k = 0.30); (e) chaos

(k = 0.40); (f) quasi-periodic orbits (k = 0.50); (g) periodic orbits (k = 0.80); (h) periodic orbits

(k = 1.00).

It can be seen from the simulation results that the system undergoes hyperchaos, chaos, and some

different periodic orbits when the parameter k and fractional-order q vary. Fractional order q should

be treated as a bifurcation parameter as it also determines dynamics of the system. By applying ADM,

the fractional-order Lorenz hyperchaotic system can be used in fields like secure communication,

image encryption and digital watermark.

3.3. Spectral Entropy Complexity Analysis

SE reflects the disorder in the Fourier transformation domain. A flatter spectrum has a larger

value of SE, which shows a higher complexity of the time series. SE is described as follows. Given a

time series {x(n), n = 0, 1, 2,..., N − 1} with a length of N, let x(n) = x(n)− x , where x is the mean

value of time series. Its corresponding Discrete Fourier Transformation (DFT) is defined by

X(k) =
N−1

∑
n=0

x(n)e−j2πnk/N , (21)

where k = 0, 1..., N − 1 and j is the imaginary unit. If the power of a discrete power spectrum with

the kth frequency is |X(k)|2, then the “probability” of this frequency is defined as

Pk =
|X(k)|2

∑
N/2−1
k=0 |X(k)|2

. (22)

When the DFT is employed, the summation runs from k = 0 to k = N/2 − 1. The normalization

entropy is denoted by [21]

SE =
∑

N/2−1
k=0 |Pkln(Pk)|

ln(N/2)
, (23)

where ln(N/2) is the entropy of completely random signal.

Complexity of x series of the fractional-order system (10) is calculated and illustrated in Figure 5.

The length N for SE is 4 × 104 after removing the first 104 points of data. It shows in Figure 5 that

the SE complexity agrees well with bifurcation results in Figures 1 and 2. Thus, it is a faster and more
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convenient way for dynamics analysis of fractional-order chaotic system. Compared with complexity

versus a parameter, complexity in the parameter plane can show us more information of the system.

SE complexity in the q − k parameter plane is calculated and shown in Figure 5c. It shows that

complexity of the fractional-order chaotic system decreases as fractional order q increases when k

is smaller than 0.2. When k is larger than 0.9, there is no chaos or hyperchaos generated for this

system. Overall, high complexity region takes up about 40 percent of total parameter plane. As

the SE algorithm estimates complexity very fast and illustrates the dynamics of the fractional-order

chaotic system, complexity analysis is a practical basis for parameter choice in real applications.

Figure 5. Spectral entropy (SE) complexity results (a) SE complexity versus fractional order q (k = 0.26);

(b) SE complexity versus fractional order k (q = 0.96); (c) SE complexity in the q − k parameter plane.

3.4. C0 Complexity Analysis

C0 complexity is also based on the DFT, but it reflects the ratio of irregular in the series.

The corresponding DFT process of the time series {x(n), n = 0, 1, 2, ..., N − 1} is shown as formula (21).

Define the mean square value of X(k) as

GN = (1/N)
N−1

∑
k=0

|X(k)|2. (24)

Let

X̃(k) =

{

X(k) i f |X(k)|2 > rGN

0 i f |X(k)|2 ≤ rGN
, (25)

where r (r > 0) is the control parameter. The inverse Fourier Transformation of X(k) is

x̃(n) = (1/N)
N−1

∑
k=0

X̃(k)ej2πnk/N , (26)

where n = 0, 1, ..., N − 1. Finally, the C0 complexity [22] is defined as

C0(r, N) =

N−1

∑
n=0

|x(n)− x̃(n)|2

N−1

∑
n=0

|x(n)|2
. (27)

In this paper, we set r = 15 to calculate the C0 complexity.

C0 complexity of x series of the fractional-order system (10) is calculated as shown in Figure 6.

The data applied for complexity calculation is the same as above. According to Figure 6, C0

complexity is consistent with SE complexity as shown in Figure 5. As C0 algorithm is also

fast at complexity estimation, thus it can be employed to analyze dynamics and complexity of

fractional-order Lorenz hyperchaotic system. It shows that C0 algorithm provides a parameter

selection method for a fractional-order Lorenz hyperchaotic system in practical application.
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Figure 6. C0 complexity results (a) C0 complexity versus fractional order q (k = 0.26); (b) C0 complexity

versus fractional order k (q = 0.96); (c) C0 complexity in the q − k parameter plane.

4. Digital Circuit Implementation

4.1. DSP Implementation

In this section, the digital circuit of the fractional-order Lorenz hyperchaotic system is

implemented based on DSP technology. A hardware block diagram of the digital circuit is shown in

Figure 7, and the DSP board used to perform digital implementation is shown in Figure 8. The DSP

board is chosen for its powerful computing ability, and the key chip in this board is the fixed-point

DSP TMS320F2812. A 16-bit dual-channel DA converter DAC8552 is used to convert time series

generated by DSP. It is controlled by the DSP development board via a SPI interface. Then the

converted data is sent to a oscilloscope (tektronix MDO3104) which is used to record phase portraits

of the system.

Figure 7. Hardware block diagram.

Figure 8. Digital signal processor (DSP) board used to perform digital implementation.

The flow diagram for DSP implementation of the fractional-order system is shown in

Figure 9, and Equation (11) provides a necessary iterative algorithm for the fractional-order Lorenz

hyperchaotic system. C language is used to realized the discrete iterative equation and then the

program is downloaded to the DSP board. To improve the iteration speed, we use a function to

calculate some items like hq, Γ(q + 1), hq/Γ(q + 1), h2q, Γ(2q + 1), h2q/Γ(2q + 1) and so on in

Equations (15)–(18) before iteration. In the step of data processing, all data is converted to analog

signals. To reduce the impact of the data processing on the iterative computation, the operations of

pushing and popping are introduced. This means that values of the state variables are placed and

protected at a location pointed to a stack pointer. In a real world application, proper parameter q and

k can be chosen based on the above complexity results or bifurcation results.
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Figure 9. Flow diagram for DSP implementation of the fractional-order system.

To compare computer simulation results with digital circuit simulation results, we set the

simulation parameter k = 0.26 and vary q (q = 0.65, 0.72, 0.89, and 1.00) as previously mentioned,

then x − z phase diagrams are shown in Figure 10. We also set q = 0.96 and vary k (k = 0.05, 0.20,

0.50, and 1.00), and x − z phase diagrams are shown in Figure 11. It shows in Figures 10 and 11 that

phase diagrams of fractional-order Lorenz hyperchaotic system by DSP consist with the computer

simulation results. In conclusion, the fractional-order hyperchaotic Lorenz system is implemented in

the digital circuit.

Figure 10. Phase diagrams of the fractional-order Lorenz hyperchaotic system by DSP (k = 0.26)

(a) periodic orbits (q = 0.65); (b) hyperchaos (q = 0.72); (c) chaos (q = 0.89); (d) periodic orbits

(q = 1.00).

Figure 11. Phase diagrams of the fractional-order Lorenz hyperchaotic system by DSP (q = 0.96)

(a) hyperchaos (k = 0.05); (b) chaos (k = 0.20); (c) quasi-periodic orbits (k = 0.50); (d) periodic orbits

(k = 1.00).
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4.2. Pseudo-Random Sequence Generator

In this section, a pseudo-random bit generator is designed and implemented on DSP board.

Firstly, the coding algorithm for the pseudo-random bit generator on DSP is described as:

(1) Set n = 1, k = 0.26, q = 0.7, the initial value x0 = [1, 2, 3, 4], M = 0.125 × 108 + 100, and

iterate the Equation (11) 1000 times. Let n = 1001, thus x0 = [x(n), y(n), z(n), u(n)].

(2) Iterate the Equation (11) once then obtain the new value of data = x(n + 1) for

further calculation

data = round
(

data × 1011
)

. (28)

Thus data can be expressed as a 64-bit binary number DB63-DB0.

(3) Define data1 = DB7-DB0. Then the bit sequences data1 is sent to a personal computer by the

serial communication interface (SCI) and MAX3232 (RS-232 transceiver).

(4) Set n = n + 1 and x0 = [x(n), y(n), z(n), u(n)].

(5) Do steps (2)–(4) in a loop until n > M.

By applying the coding algorithm, we can obtain a pseudo-random bit sequence in a computer

for further statistical test. Among the numerous standard tests for pseudo-random sequences, we

choose the statistical test suite of NIST to test the generated bit sequence. The suite used is the

sts-2.1.2, which is available in Reference [29]. There are two indicators, namely, the uniformity of

p-values and the proportion of passing sequences determining whether a PRBG passes the standard

test. Here, the minimum uniformity of p-value is 0.0001. If all p-values are larger than 0.0001 and the

confidence interval satisfies

[

(1 − α)− 3

√

(1 − α)α

m
, (1 − α) + 3

√

(1 − α)α

m

]

, (29)

where m is the sample size and α is the the given significance level, then the pseudo-random bit

generator passes the test successfully. More details about tests in NIST can be found in Reference [30].

The length of the pseudo-random bit sequence is 106 bits, and 100 such sequences are tested.

If α = 0.01, then the confidence interval is [96.015%, 1] for most tests. The test result is illustrated

in Table 1. For some items tested more than once (for example, N.O.Temp. is tested 148 times), we

only illustrate the worst results. It shows that all p-values are larger than 0.0001 and the computed

proportion for each test lies inside the confidence interval. Hence the tested binary sequences

generated by the proposed pseudo-random bit generator are random.

Table 1. Nist test result of the pseudo-random bit generator.

p-Value Proportion Success

Frequency 0.366918 100%
√

B. Frequency 0.002559 99%
√

C. Sums 0.275709 99%
√

Runs 0.048716 98%
√

Longest Run 0.935716 99%
√

Rank 0.883171 99%
√

FFT 0.574903 100%
√

N.O.Temp. 0.002203 97%
√

O.Temp. 0.834308 100%
√

Universal 0.759756 99%
√

App. Entropy 0.759756 98%
√

R.Excur. 0.005166 96.7%
√

R.Excur.V. 0.105618 96.7%
√

Serial 0.075719 99%
√

L. Complexity 0.554420 99%
√
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Currently, based on DSP/FPGA technology, chaos-based applications are widely used in the

engineering fields, especially in image encryption [31] and secret communication [32]. In these

applications, the pseudo-random bit generator usually plays an important role. Moreover, it shows

in this paper that the fractional-order chaotic systems can be used in the engineering fields.

5. Conclusions

The dynamics of the fractional-order Lorenz hyperchaotic system is investigated in this paper.

It is solved as a discrete map by applying ADM. The algorithm used to calculate LCEs of the

fractional-order chaotic system is presented based on the discrete map and QR decomposition

algorithm. Dynamics of the fractional-order Lorenz hyperchaotic system are analyzed by means of

LCEs, bifurcation diagram, phase diagram, SE and C0 complexity algorithms. Finally, the system is

implemented in the digital circuit. The conclusions are drawn as follows.

(1) This fractional-order Lorenz hyperchaotic system contains rich dynamical behaviors. It is

interesting that the system with integer-order is periodic, but chaos and hyperchaos are observed

with the decrease of the fractional-order q.

(2) SE and C0 complexities agree well with LCEs and bifurcation diagram results. It shows that

complexity analysis is a more convenient method to choose parameters of fractional-order chaotic

system in the real applications. We also find that the complexity of this system decreases when

q increases.

(3) The fractional-order Lorenz hyperchaotic system is implemented on DSP digital circuit.

According to the implemented fractional-order system, a DSP-based pseudo-random bit generator

is designed, which passes the NIST test successfully. Our further work will focus on the information

encryption application of the fractional-order Lorenz hyperchaotic system.
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