
Complexity Analysis for Digital Hyperplane
Recognition in Arbitrary Fixed Dimension

Valentin E. Brimkov1 and Stefan S. Dantchev2

1 Fairmont State University, 1201 Locust Avenue, Fairmont,
West Virginia 26554-2470, USA
vbrimkov@fairmontstate.edu

2 University of Durham, Science Labs,
South Road, Durham DH1 3LE, England

s.s.dantchev@durham.ac.uk.

Abstract. We consider the following problem. Given a set of points
M = {p1, p2, . . . , pm} ⊆ R

n, decide whether M is a portion of a digi-
tal hyperplane and, if so, determine its analytical representation. In our
setting p1, p2, . . . , pm may be arbitrary points (possibly, with rational
and/or irrational coefficients) and the dimension n may be any arbitrary
fixed integer. We provide an algorithm that solves this digital hyperplane
recognition problem by reducing it to an integer linear programming
problem of fixed dimension within an algebraic model of computation.
The algorithm performs O (m log D) arithmetic operations, where D is
a bound on the norm of the domain elements.

Keywords: Digital hyperplane, digital plane recognition, integer pro-
gramming.

1 Introduction

Digital plane segment (DPS) recognition is a basic problem in image analysis, at-
tracting a lot of interest in recent years. Several algorithms for this problem have
been proposed. (See the recent survey [5] by Brimkov, Coeurjolly, and Klette).
[24] suggests an algorithm based on convex hull separability. Algorithm involving
plane characterization by evenness in grid adjacency models is discussed in [26].
[9] proposes an approach based on tests for existence of lower and upper support-
ing (“oblique”) planes for the given set of points. [14] suggests recognition by
least-square optimization. See also [27] for further contributions. A number of al-
gorithms exploit the idea to reduce the problem to a relevant linear program and
solve it by employing existing methods from linear programming. [10] suggests a
method by converting DPS to a system of m2 linear inequalities, where m is the
cardinality of the given set of points. The system is solved by the Fourier elimina-
tion algorithm. One can also apply Fukuda’s CDD algorithm for solving systems
of linear inequalities by successive intersection of half-spaces defined by the in-
equalities. An efficient incremental algorithm based on a similar approach is pro-
posed in [15]. In [8] Buzer presents an incremental linear time algorithm based on

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 287–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 V.E. Brimkov and S.S. Dantchev

solving a linear program by appropriate modification of Megiddo’s algorithm [18].
Most of the above-mentioned algorithms perform well in practice. However, with
a few exceptions (e.g., [8]), rigorous time complexity analysis is not available.

In the present theoretical work we consider somewhat more general version of
the DPS recognition problem: Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn,
decide whether M is a portion of a digital hyperplane and, if so, determine that
analytical digital hyperplane. Here p1, p2, . . . , pm may be arbitrary points, pos-
sibly with integer and/or irrational coefficients. Such kind of data may result,
e.g., from certain computational processes. The considerations take place in an
arbitrary dimension n, provided that n is fixed (i.e., bounded by an arbitrary
constant). We provide an algorithm that solves the above problem by reduc-
ing it to an integer linear programming problem of a fixed dimension within
an algebraic model of computation. This last problem is solved by a (theoreti-
cally) efficient algorithm based on a number of well-known results from theory
of algorithms and complexity (some of them earlier authors’ contributions). The
algorithm works on input data that are arbitrary real numbers. In particular,
it applies to problems with integer or rational data. Our algorithm solves the
problem with O (m log D) arithmetic operations, where D is a bound on the
norm of the domain elements. The obtained theoretical results are somewhat in
the spirit of Buzer’s results [8] (first reported at DGCI’02).

To our knowledge of the available literature, this is the first integer program-
ming based algorithm for a DPS recognition problem. The reason for absence of
other similar methods is that ILP was believed to be inapplicable to DPS recog-
nition due to its NP-hardness (see, e.g., related discussion in [8]). The present
paper illustrates that from a theoretical point of view, for fixed dimensions, an
integer linear program is almost as easy to solve as a linear program. Moreover,
in some cases the proposed integer programming approach may have certain ad-
vantages over a linear programming approach, especially in avoiding very large
integers that may result from a LP formulation. It also seems to us that our
algorithm is the first one for DPS in higher dimensions, whose description is ac-
companied with rigorous complexity analysis. Another purpose of this work is to
demonstrate the wealth of applying knowledge and results from other branches
of theoretical computer science (such as theory of algorithms and complexity)
to problems of digital geometry.

The paper is organized as follows. In Section 2 we recall some basic defini-
tions from the theory of arithmetic planes and obtain the integer linear program
corresponding to the considered problem. In Section 3 we present an integer
programming algorithm that solves any integer program of the considered type.
We conclude with some remarks in Section 4.

2 Feasible Digital Plane Recognition

In order to make our further considerations clearer, we first consider the 2D ver-
sion of the DPS recognition problem, that is, a digital line segment recognition.

Complexity Analysis for Digital Hyperplane Recognition 289

(b)(a)

p
1

p
3

p
4

p
5

p
6

p
7

p
8

p
2

Fig. 1. Illustrations to the notions of feasibility. a) Feasible region related to a digital
line. b) Feasible parts of pixels forming the feasible set of a digital line

Here we are given a set M = {p1, p2, . . . , pm} of integer points in the plane, and
we look for a digital line that contains these points.

Several equivalent definitions of a digital line are known (see the survey by
Rosenfeld and Klette [22].) Here we conform to the analytical definition proposed
by Reveillès [21].

A (naive) digital line1 is a set of pixels L(a1, a2, b, max(|a1|, |a2|)) = {(x1, x2) ∈
Z2|0 ≤ a1x1 +a2x2 + b+ �max(|a1|, |a2|)/2� < max(|a1|, |a2|)}, where a1, a2, µ ∈
Z. L(a1, a2, b, max(|a1|, |a2|)) can be considered as a discretization of a straight
line with equation ax1 + ax2 + b = 0. It involves all pixels (unit squares cen-
tered at integer points of the plane) whose centers fall in between two par-
allel boundary straight lines a1x1 + a2x2 + b + �max(|a1|, |a2|)/2� = 0 and
a1x1 + a2x2 + b + �max(|a1|, |a2|)/2� = max(|a1|, |a2|).2 We will call the strip
F (a1, a2, b) = {(x1, x2) ∈ R2|0 ≤ a1x1 + a2x2 + b + �max(|a1|, |a2|)/2� <
max(|a1|, |a2|)} a feasible region of R2 relative to L(a1, a2, b, max(|a1|, |a2|)). See
Fig. 1a.

Now consider a pixel p ∈ L(a1, a2, b, max(|a1|, |a2|)). As Fig. 1b suggests, a
part of p is inside the feasible region F (a1, a2, b), while the rest of it is outside
F (a1, a2, b). The former will be called the feasible part of p relative to the line
L(a1, a2, b, max(|a1|, |a2|)) and denoted Fa1,a2,b(p). The points of Fa1,a2,b(p) will
be referred to as feasible points of p. Finally, the union of all feasible parts of all
pixels in a segment of a digital line L will be called the feasible set of the digital
line segment and denoted FL(a1, a2, b) (see Fig. 1b).

All above definitions and notions trivially extend to arbitrary dimension n.
Thus a (naive) digital hyperplane is a set of n-cells3

1 also called “arithmetic line.”
2 Because of the strict right inequality in the definition, pixels’ centers cannot lie on

the second line.
3 n-dimensional counterparts of pixels.

290 V.E. Brimkov and S.S. Dantchev

H(a1, a2, . . . , an, b, |a|max)

=
{

(x1, x2, . . . , xn) ∈ Zn|0 ≤ a1x1 + a2x2 + . . . + anxn + b +
⌊ |a|max

2

⌋
< |a|max

}
,

where |a|max = max(|a1|, |a2|, . . . , |an|). (See [1, 2] for basic definitions and facts
and [4] for further studies.) Its feasible region is

F (a1, a2, . . . , an, b)

=
{

(x1, x2, . . . , xn) ∈ Rn|0 ≤ a1x1 + a2x2 + . . . + anxn + b +
⌊ |a|max

2

⌋
< |a|max

}
.

A feasible part Fa1,a2,...,an,b(p) of an n-cell p and a feasible setFH(a1, a2, . . . , an, b)
of a digital hyperplane H are defined analogously to the 2D case.

With this preparation, we are able to state the following generalization of a
digital hyperplane segment recognition problem, which we call the feasible digital
hyperplane segment recognition problem and abbreviate FeasDHS.

FeasDHS Recognition:

Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn, decide whether M is included
in the feasible part FH(a1, a2, . . . , an, b) of some digital hyperplane H(a1, a2, . . . ,
an, b, |a|max), and, if so, determine its coefficients a1, a2, . . . , an, b.

Note that in this setting more than one point pi may belong to the same
pixel of the discrete space. Moreover, a point pi may have irrational coordinates,
such as the point p2 in Fig. 1b.

We now obtain formulation of FeasDHS in terms of an integer programming
program.

It is not hard to realize that an element pi of M is a feasible point of some n-
cell v (i.e., pi ∈ Fa1,a2,...,an,b(v)) if and only if there exist integers a1, a2, . . . , an,
and b, such that the following conditions are met:

1. 0 ≤ a1p
i
1 + a2p

i
2 + . . . + anpi

n + b +
⌊

|a|max
2

⌋
< |a|max, and

2. 0 ≤ a1
⌈
pi
1
⌋

+ a2
⌈
pi
2
⌋

+ . . . + an

⌈
pi

n

⌋
+ b +

⌊
|a|max

2

⌋
< |a|max.

(�.� denotes the operator “the closest integer” to a given real number. If x
is a “half-integer”, we set �x� = �x�, e.g., �3.5� = 4.)

The first condition causes pi to belong to the feasible region relative to a digital
hyperplane with coefficients a1, a2, . . . , an and b, while the second one ensures
that pi belongs to an n-cell from the same digital hyperplane. Note that both
conditions are essential: If Condition 1 is missing, then pi may be outside the
feasible region. If Condition 2 does not hold, then pi may not belong to all n-cells
from the digital hyperplane with coefficients a1, a2, . . . , an, b.

When i runs from 1 to m, we get an integer linear problem with n + 1
unknowns a1, a2, . . . , an, b and 4m linear constraints.

As already mentioned, we will deal with the case when the dimension n is an
arbitrary fixed integer. We will also suppose that the coefficients a1, a2, . . . , an, b

Complexity Analysis for Digital Hyperplane Recognition 291

we look for are bounded in size, i.e. |a1| ≤ d1, |a2| ≤ d2, . . . , |an| ≤ dn, |b| ≤ dn+1,
as the bounds d1, d2, . . . , dn+1 are a part of the problem input. In the next sec-
tion we will see that this condition is dictated by the very nature of the problem,
especially by the fact that some of the coefficients may be irrational numbers.
From a practical point of view, this condition does not restrict the generality,
as we can always suppose that the absolute value of the largest coefficient is
bounded by, e.g., the largest positive integer that we may use in practice. More-
over, by assuming bounds on the plane coefficients one can avoid occurrance of
very large numbers in the problem solution.

3 Algorithm for Integer Programming of Fixed
Dimension

In this section we describe an efficient algorithm for integer linear programming
programs as those corresponding to FeasDHS. Consider the following integer
linear program:4

(ILP) Given a matrix A ∈ Rm×n and vectors b ∈ Rm, d ∈ Rn,
find x ∈ Zn such that Ax ≤ b, where 0 ≤ x ≤ d.

To simplify our further considerations, we have assumed that the coordinates
of a domain element x = (x1, . . . , xn) satisfy the conditions 0 ≤ xi ≤ di rather
than |xi| ≤ di, 1 ≤ i ≤ n. Clearly, a problem with constraints of the first type
is equivalent to one with constraints of the second type up to a change of the
variables.

The input entries are arbitrary real numbers and the adopted model of com-
putation is an algebraic computation model. This kind of model has been
traditionally used in scientific computing, algebraic complexity, computational
geometry, and (although not explicitly) numerical analysis (see, e.g., [19, 20, 25]).
In that model, the assumption is that all the real numbers in the input have
unit size, and the basic algebraic operations +,−, ∗, / and the relation ≤ are
executable at unit cost. Thus the algebraic complexity of a computation on a
problem instance is the number of operations and branchings performed to solve
the instance.

At this point it is important to mention that the requirement in the ILP
formulation for bounded domain (i.e., 0 ≤ x ≤ d) is essential and predetermined
by the intrinsic nature of the problem, namely by the fact that the coefficients
may be irrational numbers. In such a case, a problem with unbounded domain
may be, in general, undecidable, as shown in [6].

In the rest of this paper we present an algorithm for ILP when the value of
n is fixed. The algorithm consists of two stages: a reduction of the given real

4 In the feasDHS formulation we have certain rounding operations. It is well-known [3]
that rounding of a real number x can be performed in log |x| basic arithmetic opera-
tions. Thus the coefficients of the second inequality in the feasDHS definition can be
computed in O(m log |x|max) time overall, where |x|max = max(|x1|, |x2|, . . . , |xn|).

292 V.E. Brimkov and S.S. Dantchev

input to an integer input determining the same admissible set, followed by an
application of Lenstra’s algorithm [16]. The first stage involves simultaneous Dio-
phantine approximation techniques, while the second employs two well-known
algorithms: the Lovász’ basis reduction algorithm [17] and the Hermite normal
form algorithm (see, e.g., [13]).

3.1 Subroutines to the Main Algorithm

Lovász Lattice Basis Reduction Algorithm. The input to Lovász algorithm
consists of linearly independent vectors b1, b2, . . . bn ∈ Qn, considered as a basis
for a lattice L. The algorithm transforms them iteratively. At the end, they form
a basis for L which is reduced in the Lovász sense. First we recall some definitions,
then describe the Lovász lattice basis reduction algorithm itself, following [11].

With a basis b1, b2, . . . bn, we associate the orthogonal system b∗
1, b

∗
2, . . . b

∗
n,

where b∗
i is the component of bi which is orthogonal to b1, b2, . . . bi−1. The vectors

b∗
1, b

∗
2, . . . b

∗
n can be computed by Gram-Schmidt orthogonalization:

b∗
1 = b1, b∗

i = bi − ∑i−1
j=1 µi,jb

∗
j , 2 ≤ i ≤ n, µi,j =

〈
bi, b

∗
j

〉 /∥∥b∗
j

∥∥2 .

The basis b1, b2, . . . bn is size-reduced if all |µi,j | ≤ 1
2 . Given an arbitrary

basis b1, b2, . . . bn, we can transform it into a size-reduced basis with the same
Gram-Schmidt orthogonal system, as follows:
For every i from 2 to n; for every j from i − 1 to 1;
Set bi := bi − �µi,j� bj and update µi,k for 1 ≤ k ≤ i − 1, by setting µi,k =
µi,k − �µi,j� µj,k.

We outline a variant of the Lovász lattice basis reduction algorithm next.

1. Initiation. Compute the Gram-Schmidt quantities µi,j and b∗
i for 1 ≤ j <

i ≤ n. Size-reduce the basis.
2. Termination condition. If ‖b∗

i ‖2 ≤ 2
∥∥b∗

i+1

∥∥2 for 1 ≤ i ≤ n − 1, then stop.
3. Exchange step. Choose the smallest i such that ‖b∗

i ‖2
> 2

∥∥b∗
i+1

∥∥2. Exchange
bi and bi+1. Update the Gram-Schmidt quantities. Size-reduce the basis. Go
to 2.

Gram-Schmidt quantities in Step 3 are updated as follows:

‖b∗
i ‖2

new =
∥∥b∗

i+1

∥∥2 + µ2
i+1,i ‖b∗

i ‖2,
∥∥b∗

i+1

∥∥2
new

= ‖b∗
i ‖2 ∥∥b∗

i+1

∥∥2
/

‖b∗
i ‖2

new

µnew
i+1,i = µi+1,i ‖b∗

i ‖2
/

‖b∗
i ‖2

new(
µnew

i,j

µnew
i+1,j

)
=

(
µi+1,j

µi,j

)
for 1 ≤ j ≤ i − 1

(
µnew

j,i

µnew
j,i+1

)
=

(
1 µnew

i+1,i

0 1

) (
0 1
1 −µi+1,i

) (
µj,i

µj,i+1

)
for i + 2 ≤ j ≤ n.

The other ‖b∗
i ‖2’s and µi,j ’s do not change.

After termination of the above algorithm, we have a size-reduced basis for
which ‖b∗

i ‖2 ≤ 2
∥∥b∗

i+1

∥∥2, 1 ≤ i ≤ n − 1. We call such a basis reduced in the
Lovász sense. The following lemma was proved in [7].

Complexity Analysis for Digital Hyperplane Recognition 293

Lemma 1. The algebraic complexity of Lovász’ basis reduction algorithm ap-
plied to an n × n rational matrix with entries of size O(S), is O(Sn5 log n), and
the bit-size of the entries in the reduced basis is O(Sn3).

Hermite Normal Form Algorithm. In the algorithm’s description we follow
[23]. The input for the algorithm is an m × n (m ≤ n) integer matrix A of full
rank. The algorithm uses a matrix of the form

A′ =

⎛
⎜⎝A

∣∣∣∣∣∣∣
M

. . .
M

⎞
⎟⎠ ,

where M is the absolute value of some nonsingular m × m minor of A. A′ has
the same Hermite normal form as A. The algorithm consists of the following five
steps:

1. Cause all the entries of the matrix A to fall into the interval [0, M), by adding
to the first n columns of A′ proper integer multiples of the last n columns;

2. For k from 1 to m do 3-4;
3. If there are i
= j, k ≤ i, j ≤ n + k, such that a′

k,i ≥ a′
k,j > 0, then subtract

from the ith column the jth one multiplied by
⌊

a′
k,i

a′
k,j

⌋
. Then reduce the ith

column modulo M . Go to 3;
4. Exchange the kth column and the only column with a′

k,i > 0;
5. For every i from 2 to n; for every j from 1 to i − 1, add an integer multiple

of the ith column to the jth one, to get a′
i,i > a′

i,j ≥ 0.

We have the following lemma [7].

Lemma 2. Let A be an m×n (m ≤ n) integer matrix of full rank with entries of
size O(S). Then the algebraic complexity of the Hermite normal form algorithm
that reduces A into its Hermite normal form, is O(m2n(log m + S)), and the
bit-size of all resulting integers is O(Smn).

Since the above lemma admits a short proof, we sketch it next in order to provide
the reader with an idea how statements of this kind can be demonstrated.

We introduce the function

F
(
a′

k,k, a′
k,k+1, . . . a

′
k,n+k

)
:=

∏
k ≤ i ≤ n + k

a′
k,i

for a′
k,i > 0. After one iteration of Step 3, we have

Fnew/F = (a′
k,i − ⌊

a′
k,i/a′

k,j

⌋
a′

k,j)/a′
k,i,

which implies both Fnew/F < 1/2 and Fnew/F < a′
k,j/a′

k,i. It is not hard to see

that one iteration of Step 3 can be performed in time O
(
m log(a′

k,i/a′
k,j)

)
=

294 V.E. Brimkov and S.S. Dantchev

O (m log(F/Fnew)). So, Step 3 takes O
(
m log Fstart

Fend

)
time. We have that Fstart <

Mn+1 , Fend ≥ 1. Moreover, we have the following simple fact: if a is a non-
zero rational number of bit-size at most S, then 1

/
2S ≤ |a| ≤ 2S . This last fact

implies the following property of matrices: given a non-singular n×n rational ma-
trix B whose entries are of bit-size at most S, then 1

/
2n2S ≤ |det (B)| ≤ n!2nS .

From here we obtain M = O
(
m!2mS

)
. Hence, the overall running time of Step

3 is O (nm (log m + S)). Then, the complexity of the Hermite normal form al-
gorithm is O

(
nm2 (log m + S)

)
. Since all the resulting integers are smaller than

M , their bit-size is O (Smn).

3.2 Simultaneous Diophantine Approximation

Our algorithm employs in one of its steps the well-known algorithm for finding a
simultaneous Diophantine approximation to a given rational vector. Specifically,
we will use the following lemma.

Lemma 3. (see, e.g., [23–Corollary 6.4c]) There exists a polynomial algorithm
which, given a vector a ∈ Qn and a rational number ε, 0 < ε < 1, finds an integral
vector p and an integer q such that ||a − 1

q p|| < ε/q, and 1 ≤ q ≤ 2n(n+1)/4ε−n.

We will also need an algorithm that reduces the constraints with real coeffi-
cients to constraints with integer coefficients, determining the same admissible
set. The first phase of this reduction is a substitution of a given real vector with
an appropriate rational vector, justified by the following lemma.

Lemma 4. Given a vector α ∈ Rn with |αj | ≤ 1, j = 1, 2, . . . , n, and D ∈ Z+,
there exists an O(n4 log n(n + log D)) algorithm that finds p ∈ Zn and q ∈ Z+
such that |αj − pj/q| < 1/(qD), j = 1, 2, . . . , n, and 1 ≤ q ≤ �2n(n+5)/4Dn�.

The required p ∈ Zn and q ∈ Z+ can be found as follows.

Diophantine Approximation to a Real Vector

1. For each αj , 1 ≤ j ≤ n, find the closest rational fraction aj with denominator
G = �2n(n+5)/4Dn+1�.

2. Apply the algorithm of Lemma 3 with input a = (a1, . . . , an) ∈ Qn and
ε = 1/(2D). �
By Lemma 3, the output is a vector p ∈ Zn and an integer q ∈ Z+ with

||a − (1/q)p|| < 1/(2qD) and 1 ≤ q ≤ �2n(n+5)/4Dn�.
Clearly, |αj − aj | ≤ 1/(2G). Then we have

∣∣∣∣αj − pj

q

∣∣∣∣ ≤ |αj − aj | +
∣∣∣∣aj − 1

q
pj

∣∣∣∣
≤ |αj − aj | +

∥∥∥∥a − 1
q
p

∥∥∥∥ <
1

2G
+

1
2qD

Complexity Analysis for Digital Hyperplane Recognition 295

≤ 1
2.�2n(n+5)/4Dn�.D +

1
2qD

≤ 1
qD

,

i.e., the obtained vector p and integer q are as desired.
Consider first Step 1. For a given real number αj , the closest rational fraction

with denominator G = �2n(n+5)/4Dn+1� can be found in time O(log G) = O(n2+
n log D). Thus the overall time complexity of Step 1 is O(n3 + n2 log D).

Step 2 involves the simultaneous Diophantine approximation algorithm ap-
plied to the particular class of inputs a ∈ Qn, ε = 1/(2D) obtained in Step 1.
As a matter of fact, this is a specialization of the Lovász basis reduction algo-
rithm, applied to a certain matrix. It has been proved in [6–Lemma 4.4] that the
number of iterations performed in this step is O(n4 log n(n + log D)). Then the
overall time complexity of the algorithm of Lemma 4 is O(n4 log n(n + log D)),
as well.

The algorithm of Lemma 4 can be used to substitute any real constraint
ax ≤ b with an integer one, preserving the same admissible integer points x with
0 ≤ x ≤ d, d ∈ Rn. More precisely, we have the following lemma.

Lemma 5. Let T = {x ∈ Zn : ax ≤ b;0 ≤ x ≤ d}, where a ∈ Rn, b ∈ R,
d ∈ Zn

+. Then there exists an algorithm which finds a vector r ∈ Zn and a
number r0 ∈ Z such that T = {x ∈ Zn : rx ≤ r0;0 ≤ x ≤ d}. The algorithm
involves at most n applications of the algorithm from Lemma 4, with D = ||d||.

Proof of the above fact is available in [6–Lemma 5.1]. Now we are able to
complete the algebraic complexity analysis of integer programming of fixed di-
mension, which we do in the next section.

3.3 Algorithm for ILP

In this section we use the results from the previous section to obtain an O(m log D)
algorithm for ILP, where D = ||d||, as defined in Lemma 5.

As already mentioned, the algorithm consists of two stages. In the first stage,
it reduces the constraints with real coefficients to constraints with integer coef-
ficients which determine the same admissible set of integer points. In the second
stage, the Lenstra’s algorithm [16] is applied to the integer data problem ob-
tained as an output of the first stage.

From Lemmas 4 and 5, we obtain that the overall time complexity of the
reduction stage is O(mn5 log n(n+log D)). Furthermore, the bit-size of the gen-
erated integers is O(n2(n+log D)). Therefore, the overall bit-size of the reduced
problem is O(mn3(n + log D)).

We now complete the complexity analysis of the second stage of the algo-
rithm. That stage is an application of the Lenstra’s [16] algorithm to the integer
linear problem obtained as output of the first stage. A recursive step of Lenstra’s
algorithm reduces an n-dimensional problem to a set of subproblems of dimen-
sion n − 1, whose number is exponential but depending only on n. The basic
algorithms used in this reduction are the Lovász basis reduction algorithm and
the Hermite normal form algorithm. In addition, in order to compute a homoth-
etic approximation to the underlying polyhedron with constant homothety ratio,

296 V.E. Brimkov and S.S. Dantchev

a number of linear programming problems of dimension (m + 2n) × n have to
be solved.

The Lovász basis reduction algorithm and the Hermite normal form algorithm
are both applied to matrices of dimension depending only on n. Moreover, all
entries of these matrices are of bit-size O(log D), as the value of n is fixed. Then,
by Lemmas 1 and 2, the complexity of the two algorithms as well as the bit-size
of the integers they generate, are bounded by O(log D).

During the execution of the Lenstra’s algorithm, there are O(log D) linear
programming problems to be solved. Each of them can be solved in time O(m+n)
(i.e., linear in m) using the well-known Megiddo’s algorithm [18]. Hence, if n is
fixed, the overall complexity of this stage is O(m log D). This completes the proof
of the following theorem.

Theorem 1. There is an O(m log D) algorithm for ILP with a fixed number of
variables, where D = ||d||.

3.4 Theoretical Versus Practical Efficiency

The proposed algorithm solves the considered problem ILP within an algebraic
computation model by performing O(m log D) = O(m log ||d||) arithmetic oper-
ations for any fixed dimension n. Usually, algorithms of such kind of complexity
are considered as theoretically efficient. However, in order to make a reason-
able foresight about the practical efficiency of the computation, one also has to
evaluate the implicit constant hidden in the big-O notation.

Specifically, in order to solve an ILP (and thus the original hyperplane recog-
nition problem) the algorithm uses as subroutines a number of well-known algo-
rithms for some basic combinatorial problems. Keeping in mind the algorithm
description, it is not hard to realize that the overall number of these problems
is exponential in n. In practice, however, it might not be a problem for two
reasons. First, n is a constant (usually a small one) and, second, the average-
case time complexity of ILP is believed to be much lower than the worst-case
time complexity. Moreover, the Lovász lattice basis reduction algorithm and the
Hermite normal form algorithm are polynomial in n and therefore very efficient
even for relatively large dimensions. The only exception is the Megiddo’s linear
programming algorithm, whose time complexity involves an implicit constant
factor of the order Ω(2n2

). For relatively small dimensions Megiddo’s algorithm
is known to perform well in practice. For moderately large dimensions one can
use instead of Megiddo’s algorithm some recent more practical algorithms that
have better theoretical running time,5 are easier to implement, and perform well
in practice.

For large dimensions n, however, the algorithm is clearly inefficient, like all
other algorithms involving the Megiddo’s method (in particular, Buzer’s digital
plane recognition algorithm mentioned above). Nevertheless, results of this kind

5 For example, [12] provides a randomized linear programming algorithm whose run-
ning time involves an implicit constant factor that is subexponential in n.

Complexity Analysis for Digital Hyperplane Recognition 297

provide useful insight on certain limitations that an efficient computation may
feature.

The ultimate test for our algorithm is, of course, an efficient implementation
that would allow us to run it on real data and compare it with the existing
algorithms. We see this as an important direction for future research.

4 Concluding Remarks

We have presented an O(m log D) algorithm for solving the digital hyperplane
segment recognition problem in arbitrary fixed dimension, where D = ||d|| is a
bound on the norm of the domain elements (possible hyperplane coefficients).
The input may be a set of points with arbitrary real coordinates. The algorithm
also applies to classical digital plane recognition where the given points have
integer coefficients.

The algorithm works on an integer linear program formulation and solves it
theoretically efficiently. We believe that this result, together with some other
theoretical results, will contribute to the better understanding structural, algo-
rithmic, and complexity issues of digital plane recognition.

Acknowledgements

The authors thank the two anonymous referees for their useful remarks and
suggestions.

References

1. Andres, E., Modélisation Analytique Discrète d’Objets Géométriques, Thèse de
habilitation à diriger des recherches, Universit‘’e de Poitiers, Poitiers, France, 2001

2. Andres, E., R. Acharya, C. Sibata, Discrete analytical hyperplanes, Graphical Mod-
els Image Processing 59, 302–309 (1997)

3. Blum, L., M. Shub, S. Smale, On a Theory of Computation and Complexity
over the Real Numbers: NP-Completeness, Recursive Functions and Universal Ma-
chines, Bull. Amer. Math. Soc. (NS) 21, 1–46 (1989)

4. Brimkov, V.E., E. Andres, R.P. Barneva, Object Discretizations in Higher Dimen-
sions, Pattern Recognition Letters, 23, 623–636 (2002)

5. Brimkov, V.E., D. Coeurjolly, R. Klette, Digital Planarity - A Review, CITR-TR
142, 2004

6. Brimkov, V.E., S.S. Danchev, Real Data – Integer Solution Problems within the
Blum-Shub-Smale Computational Model, J. of Complexity 13, 279–300 (1997)

7. Brimkov, V.E., S.S. Dantchev, On the Complexity of Integer Programming in
the Blum-Shub-Smale Computational Model, In: Theoretical Computer Science.
Exploring New Frontiers of Theoretical Informatics, van Leeuwen, J., O. Watanabe,
M. Hagiya, P.D. Mosses, T. Ito (Eds.), LNCS-1872, 286-300 (2000)

8. Buzer, L., A Linear Incremental Algorithm for Naive and Standard Digital Dines
and Planes Recognition, Graphical Models 65 61–76 (2003)

298 V.E. Brimkov and S.S. Dantchev

9. Debled-Rennesson, I., J.-P. Reveillès, A New Approach to Digital Planes, Vision
Geometry III, SPIE-2356, 12–21 (1994)

10. Françon, J., J.M. Schramm, M. Tajine, Recognizing Arithmetic Straight Lines and
Planes, 6th Int. Conf. Discrete Geometry for Computer Imagery, Springer, LNCS-
1176, 141–150 (1996)

11. Hastad, J., B. Just, J.C. Lagarias, C.P. Schnoor, Polynomial Time Algorithms for
Finding Integer Relations among Real Numbers, SIAM J. Comput. 18, 859–881
(1989)

12. Kalai, G., A Subexponential Randomized Simplex Algorithm, 24th Annual ACM
Symposium on the Theory of Computation, ACM Press, 475-482 (1992)

13. Kannan, R., A. Bachem, Polynomial Algorithms for Computing the Smith and
Hermite Normal Forms of an Integer Matrix, SIAM J. Comput. 8, 499–507 (1979)

14. Klette, R., I. Stojmenović, J. Žunić, A Parametrization of Digital Planes by Least
Square Fits and Generalizations, Graphical Models Image Processing 58, 295–300
(1996)

15. Klette, R., H.-J. Sun, Digital Planar Segment Based Polyhedrization for Surface
Area Estimation, In: Arcelli, C., L.P. Cordella, and G. Sanniti di Baja, editors,
Visual Form 2001, Springer, Berlin, pages 356–366 (2001)

16. Lenstra, H.W., Jr., Integer Programming with a Fixed Number of Variables, Math.
Oper. Res. 8, 538–548 (1983)

17. Lenstra, A.K., H.W. Lenstra, Jr., L. Lovász, Factoring Polynomials with Rational
Coefficients, Math. Ann. 261, 515–534 (1982)

18. Megiddo, N., Linear Programming in Linear Time when the Dimension is Fixed,
J. of ACM 31 (1), 114–127 (1984)

19. Novak, E., The Real Number Model in Numerical Analysis, J. of Complexity 11,
57–73 (1994)

20. Preparata, F.P., M.I. Shamos, Computational Geometry, Springer-Verlag, Berlin
Heidelberg New York, 1985

21. Reveillès, J.-P., Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique,
Thèse d’état, Univ. Louis Pasteur, Strasbourg, 1991

22. Rosenfeld, A., R. Klette, Digital Straightness, In: Electronic Notes in Theoretical
Computer Science 46 (2001)

23. Schrijver, A., Theory of Linear and Integer Programming, Wiley, Chichester New
York Brisbane Toronto Singapore, 1986

24. Stojmenović, I., R. Tosić, Digitization Schemes and the Recognition of Digital
Straight Lines, Hyperplanes and Flats in Arbitrary Dimensions, Vision Geometry,
Contemporary Mathematics Series, 119 197–212 (1991)

25. Strassen, V., Algebraic Complexity Theory, In: van Leeuwen, J. (Ed.), Handbook
of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 633–672 (1990)

26. Veelaert, P., Digital Planarity of Rectangular Surface Segments, IEEE Pattern
Analysis and Machine Int, 16, 647–652 (1994)

27. Vittone, J., J.-M. Chassery, Recognition of Digital Naive Planes and Polyhedriza-
tion, 9th Int. Conf. Discrete Geometry for Computer Imagery, Springer, LNCS-
1953, 296–307 (2000)

	Introduction
	Feasible Digital Plane Recognition
	Algorithm for Integer Programming of Fixed Dimension
	Subroutines to the Main Algorithm
	Simultaneous Diophantine Approximation
	Algorithm for ILP
	Theoretical Versus Practical Efficiency

	Concluding Remarks

