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Abstract—This work identifies the computational reserves re-
quired for the maximum likelihood (ML)-based sphere decoding
solutions that achieve, in the high-rate and high-SNR limit, a
vanishing gap to the error-performance of the optimal brute
force ML decoder. These error performance and complexity
guarantees hold for most multiple-input multiple-output scenar-
ios, all reasonable fading statistics, all channel dimensions and
all full-rate lattice codes. The analysis also identifies a rate-
reliability-complexity tradeoff establishing concise expressions for
the optimal diversity gain achievable in the presence of any
run-time constraint imposed due to the unavailability of enough
computational resources required to achieve a vanishing gap.

I. INTRODUCTION

For multiple-input multiple-output (MIMO) systems, error
probability and encoding-decoding complexity are widely con-
sidered to be two limiting and interrelated bottlenecks (cf.
[1], [2]). Specifically, if a small gap to the brute-force maxi-
mum likelihood (ML) performance is acceptable then different
branch-and-bound algorithms such as the sphere decoder (SD)
[2]–[4] have been known to provide a complexity-performance
tradeoff. Albeit suboptimal in terms of the error-performance,
these SD based solutions might result in a preferable rate-
reliability-complexity tradeoff, a metric that is pertinent for
the practical implementations.

A. System model

We consider general m × n point-to-point MIMO channel
representation

y =
√
ρHx + w (1)

where x ∈ Rm, y ∈ Rn and w ∈ Rn respectively denote
the transmitted codewords, the received signal vectors, and
the additive white Gaussian noise with unit variance, where ρ
denotes the signal to noise ratio (SNR), and where the fading
matrix H ∈ Rn×m is assumed to be random, with elements
drawn from arbitrary statistical distributions.

The sphere decoding solutions require that the underlying
code be linear, an assumption that we adopt here and consider
encoding and decoding schemes relating to real lattices (cf.
[5]). Specifically for r ≥ 0, a (sequence of) full-rate linear (lat-
tice) code(s) Xr is given by Xr = Λr ∩R

′
where the shaping

regionR′ is a compact convex subset of Rκ that is independent
of ρ, where Λr , ρ

−rT
κ Λ and Λ , {Gs | s ∈ Zκ}, where

Zκ denotes the κ = min{m,n} dimensional integer lattice,
and where generator matrix G ∈ Rm×κ is full rank and
independent of ρ. After vectorization the codewords take the

form

x = ρ
−rT
κ Gs, s ∈ Sκr , Zκ ∩ ρ rTκ R, (2)

where R ⊂ Rκ is a natural bijection of the shaping region
R′ that preserves the code, and contains the all zero vector 0.
For simplicity we consider R , [−1, 1]κ to be a hypercube
in Rκ, although this could be relaxed. Combining (1) and (2)
yields the equivalent system model

y =Ms + w, (3a)

where M ,ρ
1
2−

rT
κ HG ∈ Rn×κ. (3b)

B. Sphere Decoder
Let QR = M be the thin QR factorization of the code-

channel matrix M and r , QHy, then (3a) yields r = Rs +
QHw and the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr
‖r−Rŝ‖2 . (4)

We use SD to implement the decoder in (4), which identifies
as candidates the vectors ŝ ∈ Sκr that for some search radius
ξ > 0, satisfy ‖r − Rŝ‖2 ≤ ξ2. The algorithm specifically
uses the upper-triangular nature of R to recursively identify
partial symbol vectors ŝk, k = 1, · · · , κ, for which

‖rk −Rkŝk‖2 ≤ ξ2, (5)

where ŝk and rk respectively denote the last k components of
ŝ and r, and where Rk denotes the k×k lower-right submatrix
of R.

We note that the error performance and the total number of
visited nodes is a function of the search radius ξ. We use fixed
search radius ξ =

√
z log ρ for some z > κd(r) such that

P
(
‖QHw‖2 > ξ2

)
≤ P

(
‖w‖2 > ξ2

κ

)
<̇ ρ−d(r), (6)

which implies a vanishing probability of excluding the trans-
mitted information vector from the search. We use .

= to denote
the exponential equality, i.e., we write f(ρ)

.
= ρB to denote

lim
ρ→∞

log f(ρ)

log ρ
= B, and

.
≤,

.
≥ are defined similarly.

C. Rate-reliability-complexity tradeoff in outage-limited
MIMO communications

In the high SNR regime, a given encoder Xr and decoder
Dr are said to achieve a multiplexing gain r and diversity gain
dD(r) if (cf. [1])

lim
ρ→∞

R(ρ)

log ρ
= r, and − lim

ρ→∞

logPe
log ρ

= dD(r) (7)



where Pe denotes the probability of codeword error with a
ML-based sphere decoder Dr employing time-out policies.

We characterize complexity in terms of the complexity
exponent in [6] which can be seen as a refined version of
the sphere decoding complexity exponent in [4]. Let Nmax

denote the amount of computational reserves, in floating point
operations (flops) per T channel uses, that the transceiver
is endowed with, in the sense that after Nmax flops, the
transceiver must simply terminate, potentially prematurely and
before completion of its task. The complexity exponent then
takes the form

c(r) := lim
ρ→∞

logNmax

log ρ
. (8)

We note that the complexity exponent is intimately intertwined
with the achievable error performance and that any attempt to
reduce c(r) may be at the expense of a substantial degradation
in error-performance.

For ML-based SD a vanishing performance gap to ML can,
in the high SNR regime, be quantified as

g(c) , lim
ρ→∞

Pe
P (̂sML 6= s)

= 1 (9)

where P (̂sML 6= s)
.
= ρ−d(r) describes the error probability

of the brute force ML decoder, and where c is the complexity
exponent that describes the computational resources required
to achieve this performance gap. Generally a smaller perfor-
mance gap requires a larger complexity exponent.

At this point a natural question to ask would be - how large
computational reserves are required to achieve a vanishing
gap to the brute force ML performance. While this question
was first addressed and partially answered in [4] for the
specific settings of i.i.d. Rayleigh fading quasi-static channels
with specific channel dimensions, specific codes, and specific
permutation orderings, we here provide answers for the most
general MIMO settings, i.e., for all reasonable fading statistics,
all channel dimensions, all MIMO scenarios and all full-rate
lattice codes.

II. COMPLEXITY OF ML-BASED SPHERE DECODING

The total number of visited nodes is commonly taken as a
measure of the sphere decoder complexity1 which is given by

NSD =

κ∑
k=1

Nk, (10)

where Nk denotes the number of visited nodes at layer k that
corresponds to the kth component of the transmitted symbol
vector s and is given by Nk , |Nk| where Nk , {ŝk ∈
Sκr | ‖rk −Rkŝk‖2 ≤ ξ2}.

At this point we want to clarify that the analysis presented
here is specific to sphere decoding, and that it does not
account for any other ML based solutions that could, under
some (arguably rare) circumstances, be more efficient. A
classical example of such rare circumstances would be a

1It is easy to show that in the scale of interest the SD complexity exponent
c(r) would not change if instead of considering the total number of visited
nodes, we considered the total number of flops spent by the decoder.

MIMO scenario, or equivalently a set of fade statistics, that
always generate diagonal channel matrices.

We are interested in the ML-based SD complexity required
to achieve a vanishing gap to brute force ML performance.
We recall that a ML-based SD with run-time constraints, in
addition to making the ML errors (̂sML 6= s), also makes
errors when the run-time limit of ρx flops for x > c(r)
becomes active, as well as when the fixed search radius ξ
causes Nκ = ∅. Consequently the corresponding performance
gap to the brute force ML decoder, takes the form (cf. (9))

g(x) = lim
ρ→∞

P ({ŝML 6= s} ∪ {NSD ≥ ρx} ∪ {Nκ = ∅})
P (̂sML 6= s)

.

We apply the union bound along with the fact that
P (Nκ = ∅) ≤ P

(
‖QHw‖ > ξ

)
<̇ ρ−d(r) (cf. (6)), to get

that g(x) ≤ lim
ρ→∞

(
1 +

P (NSD ≥ ρx)

P (̂sML 6= s)

)
. Thus a vanishing

gap to the brute force ML decoding requires that

lim
ρ→∞

P (NSD ≥ ρx)

P (̂sML 6= s)
= 0.

Now going back to (8), and having in mind appropriate
timeout policies that guarantee a vanishing gap, the complexity
exponent c(r) can be bounded as c(r) ≤ c(r) ≤ c(r), where

c(r) , inf{x | − lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
> d(r)}, and

(11a)

c(r) , sup{x | − lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
< d(r)}, (11b)

respectively denote sufficient and necessary conditions that
guarantee a vanishing gap to ML performance.

Though our complexity results are applicable for all channel
dimensions, we here assume2 n ≥ m and define µi ,
− log σi(H

HH)
log ρ , i = 1, · · · ,m. The upper bound follows from

[4, Theorem 2] and is given by c(r) ≤ c̃(r) where

c̃(r) , max
µ

κ∑
i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

(12a)

s.t. I(µ) ≤ d(r), (12b)
µ1 ≥ · · · ≥ µκ ≥ 0. (12c)

where µ , (µ1, · · · , µκ) satisfies the large deviation principle
with rate function I(µ). Equivalently for µ∗ = (µ∗1, · · · , µ∗κ)
being one of the maximizing vectors such that I(µ∗) = d(r),
we have that c̃(r) =

∑κ
i=1 min

(
rT
κ −

1
2 (1− µ∗i ), rTκ

)+
. Fur-

thermore given the monotonicity of the rate function I(µ), and
the fact that the objective function in (12) does not increase
in µi beyond µi = 1, we may also assume without loss of
generality that µ∗i ≤ 1 for i = 1, · · · , κ. It then follows that

c(r) ≤ c̃(r) =

κ∑
i=1

(
rT

κ
− 1

2
(1− µ∗i )

)+

. (13)

2For n < m, we can consider a new G̃ = ŨTG ∈ Rn×n which is
full-rank and square matrix, and where Ũ ∈ Rm×n has orthogonal columns
and a new H̃ = HŨ ∈ Rn×n. As no explicit assumption is made regarding
the fading distribution of H, results will directly apply for H̃ and G̃, after
noting of course the potentially different statistics of H̃.



A. Universal Lower Bound on Complexity
In this section we establish that c(r) = c̃(r), i.e., the sphere

decoder visits a total number of nodes that is close to ρc̃(r)

with a probability that is large compared to the probability of
decoding error P (̂sML 6= s)

.
= ρ−d(r).

We let q ∈ [1, κ] be the largest integer for which rT
κ −

1
2 (1−

µ∗q) > 0, in which case (13) takes the form

c̃(r) =

q∑
i=1

(
rT

κ
− 1

2
(1− µ∗i )

)
. (14)

We quickly note that without loss of generality we can assume
that q ≥ 1 as otherwise c(r) = c(r) = 0. Consequently it is
the case that µ∗i > 0 for i = 1, · · · , q.

We proceed to define three events Ω1, Ω2 and Ω3 which
we will prove to be jointly sufficient so that the total number
of nodes visited by the sphere decoder, employing a channel
dependent fixed decoding order, is close to ρc̃(r). These events
are given by

Ω1 , {µ∗i − 2δ < µi < µ∗i − δ, j = 1, · · · , q
0 < µi < δ, i = q + 1, · · · , κ},

(15)

for a given small δ > 0,

Ω2 ,

{
‖w‖2 < ξ2

κ

}
, (16)

Ω3 ,

{
‖s‖ < 1

2
ρ
rT
κ

}
. (17)

Note also that by choosing δ sufficiently small, and using the
fact that µ∗i > 0 for i = 1, · · · , q, we may without loss of
generality assume that Ω1 implies that µi > 0 for all i =
1, · · · , κ.

Following the footsteps of [4, Lemma 2] it can be shown
that in the presence of events Ω1, Ω2 and Ω3 we can remove
the ML-based SD boundary constraints Sκr (cf.(4)). This re-
moval allows us to lower bound the number of nodes visited
at layer k as (cf. [4, Lemma 1])

Nk ≥
k∏
i=1

[
2ξ√

kσi(Rk)
−
√
k

]+

. (18)

In the following, and up until (28), we will work toward
upper bounding σi(Rk) for the case of q ∈ [1, κ−1], the case
of q = κ is treated separately later on. Towards this we first
consider a Greedy QR decomposition (cf. [7]) of M resulting
in a column permutation matrix Π such that MΠ = Q̃R̃
where Π = Π1 · · ·Πp and unitary matrix Q̃ , Q̃1 · · · Q̃p is
obtained by applying p (p , κ− q) recursive steps of Greedy
QR decomposition. The diagonal elements of R̃ satisfy r̃11 ≥
· · · ≥ r̃pp. Let M|p ∈ Rn×p contains the first p columns of
MΠ. It then follows that

M|p , MΠp = Q̃R̃p, (19)

where, Πp and R̃p denote the sub matrices consisting of the
first p columns of Π and R̃ respectively. Now let Rp be the
p × p upper triangular matrix consisting of the first p rows
of R̃p, then we get that σi(MH

|pM|p) = σi(R
H
p Rp) for i =

1, · · · , p. For RH
p Rp, having diagonal entries r̃2

11 ≥ · · · ≥ r̃2
pp

and singular values σ1(MH
|pM|p) ≤ · · · ≤ σp(M

H
|pM|p), we

have that for k = 1, · · · , p then (cf. [8, Theorem 2.3])
k∏
i=1

r̃2
ii ≤

k∏
i=1

σp−i+1(MH
|pM|p). (20)

From [7, Lemma 4.3] regarding the Greedy QR decomposi-
tion, we have that r̃2

kk ≥
σκ−k+1(MHM)

κ−k+1 for k = 1, · · · , p, and
it follows that

k∏
i=1

r̃2
ii ≥

k∏
i=1

σκ−i+1(MHM)

κ− i+ 1
. (21)

Consequently we have that for k = 1, · · · , p

σp−k+1(MH
|pM|p) ≥ σκ−k+1(MHM)

k∏
i=1

1

κ− i+ 1
. (22)

We then have σp−k+1(MH
|pM|p) ≤ σκ−k+1(MHM), k =

1, · · · , p (cf. [9, Theorem 4.3.15]), and it follows that for k =
1, · · · , p

σp−k+1(MH
|pM|p)

.
= σκ−k+1(MHM). (23)

Recalling that σ1(MHM) ≤ · · ·σm(MHM), we have that

σ1(MH
|pM|p) ≥σi(MHM) for i = 1, · · · , q. (24)

The above inequality allows us to apply Lemma 3 from [4],
which in turn gives that

σi(Rk) ≤
[
σκ(M)

σ1(M|p)
+ 1

]
σi(M)

.
=

[
σκ(M)

σq+1(M)
+ 1

]
σi(M),

(25)

for i = 1, · · · , q, where exponential equality follows from
(23). From (3b) for i = 1, · · · , κ we have that

σi(M)
.
= ρ

−rT
κ + 1

2 (1−µi). (26)

Furthermore (15) gives that

σi(M)
.
≤ρ− rTκ +δ+ 1

2 (1−µ∗i ) for i = 1, · · · , q (27a)

σκ(M)
.
≤ρ− rTκ + 1

2 (1−µκ) ≤ ρ 1
2−

rT
κ , (27b)

σq+1(M)
.
=ρ−

rT
κ + 1

2 (1−µq+1) ≥ ρ− rTκ + 1
2 (1−δ). (27c)

Substituting (27) in (25) gives that

σi(Rk)
.
≤ ρ− rTκ + 3

2 δ+
1
2 (1−µ∗i ), i = 1, · · · , q. (28)

Consequently, going back to (18), we have that[
2ξ√

kσi(Rk)
−
√
k

]+
.
≥ ρ( rTκ −

3
2 δ−

1
2 (1−µ∗i )). (29)

As a result, for k = q with q ∈ [1, κ− 1] we have that

Nq
.
≥ ρ(

∑q
i=1 ( rTκ −

1
2 (1−µ∗i ))− 3

2 qδ) = ρ(c̃(r)− 3
2 qδ), (30)

where the last equality follows from (14). For the case of
q = κ, from (18) and (27a) we have that

Nq
.
≥ ρ

∑κ
i=1( rTκ −δ−

1
2 (1−µ∗i )) = ρ(c̃(r)−κδ). (31)



Consequently for q ∈ [1, κ] we have that NSD
.
≥ ρc̃(r)−Kδ for

small δ > 0, where K ∈ { 3
2q, κ}.

We note that (15)-(17) jointly imply that NSD
.
≥ ρc̃(r)−Kδ .

For some δ′ , Kδ + δ1, where δ > δ1 > 0, it follows that

P
(
NSD ≥ ρc̃(r)−δ

′
)
≥ P (Ω1 ∩ Ω2 ∩ Ω3)

.
= P (Ω1) (32)

where exponential equality follows from the independence of
the events Ω1, Ω2 and Ω3 and from the fact that P (Ω2)

.
= ρ0

(cf.(6)) and P (Ω3)
.
= ρ0. With Ω1 being an open set, we have

that

− lim
ρ→∞

P (Ω1)

log ρ
≤ inf

µ∈Ω1

I(µ) = I(µ̃) < I(µ∗) = d(r) (33)

where µ̃ = {µ∗1 − 2δ · · · , µ∗q − 2δ, 0, · · · , 0}, where the last
inequality follows from the monotonicity of the rate function
I(µ) and where the last equality follows from the fact that,
by definition, I(µ∗) = d(r).

Consequently (32) and (33) along with the definition of the
lower bound in (11b) imply that c(r) = c̃(r), for arbitrarily
small δ > 0. The following lemma directly holds correspond-
ing to a vanishing performance gap.

Lemma 1: Irrespective of channel fading statistics and of
the full-rate code applied, for every realization of channel M
there exists a channel dependent column permutation matrix
Π such that the ML-based sphere decoder with decoding order
Π has the complexity exponent c(r) = c̃(r).

To show the dependence of Π on M , we henceforth use
ΠM instead of Π. Under the assumption that each column
permutation matrix ’appears’ with non-zero probability, then
for every column permutation matrix Πκ ∈ Rκ×κ we have that
P (ΠM = Πκ)

.
= ρ0, where probability is taken over random

M . Then the following theorem is a consequence of Lemma 1.
Theorem 1: For any full-rate code and fading distribution

such that P (ΠM = Πκ) > ε ∀ Πκ, for some ε > 0, the
complexity exponent of the ML-based sphere decoder with
any fixed decoding order is given by c(r) = c̃(r).
The following also holds directly from the above, and it
holds for any full rate lattice design, and any fading statistical
distribution.

Corollary 1a: There exists a fixed decoding order for which
ML-based sphere decoding introduces a complexity exponent
given by c(r) = c̃(r).

III. RATE-RELIABILITY-COMPLEXITY TRADEOFF

We have seen the dependence of c(r) as a function of
the desired DMT. In this section we understand more on the
rate-reliability-complexity tradeoff for ML-based SD, by also
identifying the optimal DMT in the presence of any run-
time constraint imposed due to the unavailability of enough
computational resources required to achieve a vanishing gap.
The proofs are omitted from this writeup due to the lack of
space.

Theorem 2: For any full-rate code with ML-based di-
versity gain d(r) and any fading distribution such that
P (ΠM = Πκ) > ε ∀ Πκ, for some ε > 0, the achievable
diversity performance dD(r) for ML-based SD with any fixed

decoding order and a run-time constraint ρcD(r) flops, is
uniquely described by

dD(r) = min{d(r), dD(r, x)} ∀ cD(r) ≥ 0, (34)

where dD(r, x) , limε→0+ dD(r, cD(r) + ε), and where

dD(r, cD(r) + ε) , inf I(µ)

s.t.
κ∑
i=1

(
rT

κ
− 1

2
(1− µi)

)+

≥ cD(r) + ε,

1 ≥ µ1 ≥ · · · ≥ µκ ≥ 0.

Example: For a 2× 2 i.i.d. Rayleigh channel with the 2× 2
Perfect code [5] and a ML-SD with run-time constraint of ρ

1
2

flops, the achievable diversity gain is depicted in Fig.1.
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Fig. 1. Achievable diversity gain for 2× 2 Perfect codes.

IV. CONCLUSIONS

The presented performance guarantees hold for the most
general MIMO settings, i.e., for all reasonable fading statistics,
all channel dimensions, all MIMO scenarios and all full-rate
lattice codes. Such guarantees may be utilized for the practical
implementation of telecommunication systems.
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