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Abstract

The development of COVID-19 vaccine is highly concerned by all countries in the

world. So far, many kinds of COVID-19 vaccines have entered phase III clinical trial.

However, it is difficult to deliver COVID-19 vaccines efficiently and safely to the areas

affected by the epidemic. This paper focuses on vaccine transportation in a supply

chain model composed of one distributor and one retailer (clinic or hospital), in

which the distributor procures COVID-19 vaccines from the manufacturer and then

resells them to the retailer. Distributor detects the activity level of the vaccines, and

retailer is responsible for transportation of the vaccines. Firstly, we establish a

difference equations model with time-delay. Secondly, we investigate the impact of

time-delay on the stability of vaccine supply chain. In addition, we explore the

influence of decision adjustment speed of the distributor (or retailer) on the stability

of vaccine supply chain. Finally, we verify the theoretical results by a two-dimensional

bifurcation diagram, the largest Lyapunov exponent, entropy, and domain of

attraction. The results show that when the decision delay-time or the adjustment

speed of decision variables exceeds a certain threshold, it brings a negative impact on

the stability of vaccine supply chain system. The stability domain of the system

shrinks as customers’ sensitivity to cold chain transportation decreases and by

contrast expends as customers’ sensitivity to vaccine prices decreases. When the

vaccine supply chain is in a state of chaos, the effect of external control over the

system is superior to that of internal control over the system.

Keywords: Vaccine supply chain; Cold chain transportation; Time-delay;

Neimark–Sacker bifurcation; Chaos

1 Introduction

It is imperative to develop vaccines to prevent the rapidly spreading COVID-19 epidemic.

Fortunately, up to now, many vaccine candidates of COVID-19 have been progressing at

an unparalleled speed. 165 of them have been in the exploration or preclinical stage, 26

vaccine candidates have entered the clinical stage, and 6 of them with the fastest progress

had even entered the clinical stage III. Three COVID-19 vaccines have been approved for
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clinical test III in China, among which ChenWei’s team focusses on the adenovirus vector

vaccine.

It is very important how the vaccine is in time delivered to the patients infected with

the virus. However, the transportation of vaccines is much more complicated than ordi-

nary commodities. Transportation of the COVID-19 vaccines from the production plant

to the final retailers within a few days is a complex system including storage factories,

cargo stations, airplanes, warehouses, and so on. Therefore it is very urgent to build a safe

global vaccine supply chain. Once COVID-19 vaccines are available, there must be a co-

ordinated global strategy to ensure that they are delivered to millions of infected patients

as quickly and safely as possible. Although the logistics industry is hard by the COVID-

19 epidemic, the air cargo industries work hard to make the delivery process smoother.

TIACA (The International Air Cargo Association) and the cross-industry cooperation

platform Pharma.Aero have acted in advance to jointly compile guidelines for the global

air cargo industries to realize the safe transportation of the COVID-19 vaccines. Based on

the status quo that “the world is working hard to build a safe and efficient supply chain

to ensure that the COVID-19 vaccines reach delivery place safely”, the interesting conclu-

sions obtained in this paper may provide some references for the transportation of the

COVID-19 vaccines.

Vaccine supply chain has been studied from qualitative perspective. Evelot et al. [1] re-

viewed the relevant literature and found that the current research on vaccine supply chain

mainly focuses on the following four aspects: vaccine quality, demand, allocation, and

transport. Haidari et al. [2] found that an unmanned aerial system (UAS) to transport

vaccines could improve the safety of vaccines and reduce costs. Veronica et al. [3] discov-

ered that the inadvertent freezing of vaccine was an overlooked problem in the process of

vaccine transportation. Sarley et al. [4] documented the work that the backward vaccine

supply chain with Lagos State government was updated. Huang et al. [5] conducted a pilot

experiment in which the health zone (HZ) was set to optimize the vaccine supply chain

and assessed the incremental financial requirements for establishing a new system.

Many researchers have paid enormous attention to vaccine supply chain coordina-

tion from operation management perspective. Buyuktahtakm et al. [6] proposed a new

epidemics-logistics mixed-integer programming (MIP) model to provide explicit inter-

vention timing and intensity for these most affected countries. Abrahams et al. [7] pre-

sented a new binary integer programming model and a genetic algorithm to solve the

complex scheduling problem in vaccine transportation. Arifoglu et al. [8] investigated the

impact of self-interested consumers and yield uncertainty on the inefficiency of the in-

fluenza vaccine supply chain and revealed that government intervention could solve the

inefficient problem of influenza vaccine supply chain. Cho [9] tried to determine the op-

timal composition of Influenza vaccines when vaccine production was uncertain. Dai et

al. [10] investigated an influenza vaccine supply chain composed of a manufacturer and

a retailer, and analyzed late deliveries and lost sales. Lin et al. [11] established a vaccine

supply chain consisting of a distributor and a retailer, and discussed the impact of retailer’s

inspection at the end of transportation on the original decision-making of distributor. Niu

et al. [12] constructed two representative transportation channel structures, established

the game theory models, and derived the vaccine price equilibrium.

Some researchers have investigated in supply chain with methods of system dynam-

ics. Ma and Xie [13] showed complex dynamic characteristics of the evolution process in
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a supply chain. Li et al. [14] analyzed the influence of different parameter values on the

stability and utility of low-carbon supply chain system by means of a two-dimensional

bifurcation diagram, parameter plot basin, the domain of attraction, and chaos attractor.

Elsadany et al. [15] focused on the price and quantity competition in a mixed duopoly

game and explored the dynamical behaviors of the models. Scholars have also found sim-

ilar phenomena in the vaccine supply chain. Duijzer et al. [16] used the SIR model and

nonlinear dynamics of epidemic to formulate disease progression and analyzed the best

time for vaccination. Duijzer et al. [17] established a differential equation of epidemic time

course and analyzed the relation between the “herd effect” (when people may escape in-

fection without being vaccinated) and vaccination fraction. Dushoff et al. [18] established

an epidemic mathematical model and found that a small change of the parameter value in

the vaccine supply chain would make a huge change to the optimal vaccination strategy.

The existing literature mainly focuses on the analysis of complex dynamic characteristics

of vaccination rate in a supply chain. However, there is little literature on complex analysis

of vaccine transportation in a supply chain.

In this paper, we investigate cold transportation in a vaccine supply chain consisting of

a distributor and a retailer, who are of bounded rationality. The entropy theory is used to

analyze the complex dynamic characteristics of vaccine supply chain according to differ-

ent parameters, such as sensitivity coefficient of vaccine retail price, sensitivity coefficient

of cold chain transportation, and the adjustment speed of make decision variables. This

paper is organized as follows. In Sect. 2, we make description and assumptions of the

problem. In Sect. 3, we formulate the problem discussed. In Sect. 4, we obtain the condi-

tions for the bifurcation of the system caused by time delay. In Sect. 5, we discuss in detail

the simulation results. In Sect. 6, we analyze control of the chaotic system, and Sect. 7

concludes the paper.

2 Description and assumptions of the problem

2.1 Model construction and assumptions

In this paper, we mainly consider cold transportation in a vaccine supply chain consisting

of a distributor and a retailer in which the for-profit distributor procures vaccines from

the pharmaceutical manufacturer and then resells them to the retailer. To ensure effec-

tive vaccination for every patient infected, distributor must carry out quality sampling of

vaccines to be delivered, and the retailer is responsible for transportation of the vaccines

and retails them to the infected patients. Because vaccines are sensitive to temperature,

retailer must choose a cold chain to transport them.

Our main assumptions are as follows:

(i) The distributor and the retailer are bounded rational.

(ii) We only consider one-time investment. If the quality sampling level for vaccines is

y, then the distributor incurs the investment cost k1y
2

2
. If cold chain transportation

level is b, then the retailer incurs the investment cost k2b
2

2
, where k1 and k2 are cost

coefficients [19].

(iii) To ensure that the distributor and retailer can make normal profits, let p > w > c.

2.2 Symbolic description

The meanings of β ,p,w,A,B, y,b, and c are described concisely in Table 1.
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Table 1 The parameters description for system

Parameter Symbolic description

β Sensitivity coefficient of consumers to the retail price of vaccines.

p Retail price of unit vaccine.

w Wholesale price of unit vaccine.

c Unit sale cost of vaccine.

A Sales saturate asymptote.

B Cold chain transport sensitivity.

y The vaccine activity inspection level.

b The cold chain transportation level.

The functional form of market demand can be written as follows:

D = (1 – βp)

[

A +
yrbn

B

]

. (1)

3 Multiperiod decision-making gamemodel with delay-time

The profit functions of the distributor and retailer are expressed as follows, respectively:

πm = (w – c)(1 – βp)

[

A +
yrbn

B

]

–
k1y

2

2
, (2)

πr = (p –w)(1 – βp)

[

A +
yrbn

B

]

–
k2b

2

2
. (3)

From Eqs. (2) and (3), the decision variable of the distributor is the vaccine activity in-

spection level y, the retailer’s decision variable is the cold chain transportation level b, the

marginal profit function can be written as

⎧

⎨

⎩

∂πm
∂y

= (w – c)(1 – βp)(
ryr–1bn

B
) – k1y,

∂πr
∂b

= (p –w)(1 – βp)( ny
rbn–1

B
) – k2b.

(4)

In the face of unfamiliar viruses, the research and development of vaccines need to invest

much capital. Therefore the distributor and retailer must make an appropriate decision to

reduce risk, that is, they adjust the next decision according to the current marginal profit.

When the marginal profit of distributor or retailer is positive (or negative), this means

that the increase of decision variables of distributor or retailer can increase (or reduce)

the profit at the next period. Due to bounded rational distributor and retailer, the values

of decision variables in period t +1 are the values of decision variables at period t plus the

changes of decision variables at period t [20]:

⎧

⎨

⎩

y(t + 1) = y(t) + v1y(t)
∂πm
∂y

,

b(t + 1) = b(t) + v2b(t)
∂πr
∂b

,
(5)

where v1 and v2 are the adjustment speeds of decision variables of the distributor and

retailer, respectively.

Even though many scholars have investigated the vaccine supply chain, they assume

that decision-makers make decisions instantaneously. However, this assumption in prac-

tice seems not realistic. The decision-makers cannot receive enough information in time
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when an epidemic breaks out. So we introduce the time-delay parameter into differential

equations. Themeaning of τ is the interval between the timewhen decision-maker should

make a decision and the time when decision-maker takes a decision. We establish model

I:

⎧

⎨

⎩

y(t + 1) = y(t) + v1y(t)[(w – c)(1 – βp)( ry
r–1(t–τ )bn(t–τ )

B
) – k1y(t – τ )],

b(t + 1) = b(t) + v2b(t)[(p –w)(1 – βp)( ny
r (t–τ )bn–1(t–τ )

B
) – k2b(t – τ )].

(6)

4 Existence and local stability of Neimark–Sacker bifurcation

4.1 Positive equilibrium points and characteristic equation of model I

By calculation we obtain two equilibrium points of model I:

E1(0, 0),E2

(

e

log(
kn2 z

n–2
1

kn–21 zn2

)

2(n+r–2) , e

log(
kr1z

r–2
2

kr–22 zr1

)

2(n+r–2)
)

,

where

z1 =
cβpr + rw – cr – βprw

B
,

z2 =
np + βpnw – βp2n – nw

B
.

It is not hard to see that only E2 is a positive equilibrium point. The point E1 is non-

positive, and it may be an unstable equilibrium point. We can solve the Jacobian matrix of

each equilibrium point to verify the observation.

We obtain the Jacobian matrix J of model I and judge its stability according to the mag-

nitude of its eigenvalues. If all the eigenvalues of the Jacobian matrix are less than 1, then

this equilibrium point is stable;otherwise, it is unstable.

The Jacobian matrix J of model I can be written as

J =

∣

∣

∣

∣

∣

l1 0

0 l2

∣

∣

∣

∣

∣

,

where

l1 = 1 + v1

[

(w – c)(1 – βp)

(

r(y∗)r–1(b∗)n

B

)

– k1y
∗

]

,

l2 = 1 + v2

[

(p –w)(1 – βp)

(

n(y∗)r(b∗)n–1

B

)

– k2b
∗

]

.

The Jacobian matrix J1 at the equilibrium point E1(0, 0) can be written as

J1 =

∣

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

∣

.

We can see that the eigenvalues of J1 are not all less than 1, so the equilibrium point

E1(0, 0) is an unstable equilibrium point. Similarly, it can be proved that only the equilib-

rium point E2 is a stable equilibrium point of model I.
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For brevity, let u1 = y(t) – y∗,u2 = b(t) – b∗, and we can transform the stability of the

model I at the equilibrium point E2 to the stability at the point (0,0), y(t) = u1 + y∗,b(t) =

u2 + b∗. We use the Taylor expansion to expand Eq. (6) at the equilibrium point E2:

⎧

⎨

⎩

y(t + 1) = t1y(t) + s1y(t – τ ) + s2b(t – τ ),

b(t + 1) = t2b(t) + s3y(t – τ ) + s4b(t – τ ),
(7)

where

t1 = 1 + v1

[

(w – c)(1 – βp)

(

r(y∗)r–1(b∗)n

B

)]

,

s1 = v1y
∗

[

(w – c)(1 – βp)

(

r(r – 1)(y∗)r–2(b∗)n

B

)

– k1

]

,

s2 = v1y
∗

[

(w – c)(1 – βp)

(

rn(y∗)r–1(b∗)n–1

B

)]

,

t2 = 1 + v2

[

(p –w)(1 – βp)

(

n(y∗)r(b∗)n–1

B

)]

,

s3 = v2b
∗

[

(p –w)(1 – βp)

(

nr(y∗)r–1(b∗)n–1

B

)]

,

s4 = v2b
∗

[

(p –w)(1 – βp)

(

n(n – 1)(y∗)r(b∗)n–2

B

)

– k2

]

.

Next, the characteristic determinant of model I can be written as

∣

∣

∣

∣

∣

λ – t1 – s1e
–λτ –s2e

–λτ

–s3e
–λτ λ – t2 – s4e

–λτ

∣

∣

∣

∣

∣

.

Then we obtain the characteristic equation of model I

λ2 – (t1 + t2)λ + t1t2 +
[

(–s4 – s1)λ + t1s4
]

e–λτ + (s1t2 + s1s4)e
–2λτ = 0. (8)

4.2 Conditions for local stability at equilibrium point E2 when τ = 0

When τ = 0, Eq. (8) can be simplified as follows:

λ2 – (t1 + t2 + s4 + s1)λ + t1t2 + +t1s4 + s1t2 + s1s4 = 0. (9)

According to the Routh–Hurwitz criterion, if (H2) : –(t1 + t2 + s4 + s1) > 0, t1t2 + +t1s4 +

s1t2 + s1s4 > 0, and –(t1 + t2 + s4 + s1) > t1t2 + t1s4 + s1t2 + s1s4, then the equilibrium point

E2 is locally asymptotically stable.

4.3 Conditions for local stability at equilibrium point E2 when τ > 0

Multiplying both sides of Eq. (8) by eλτ , we obtain

(–s4 – s1)λ + t1s4 +
[

λ2 – (t1 + t2)λ + t1t2
]

eλτ + (s1t2 + s1s4)e
–λτ = 0. (10)
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Let λ = iω(ω > 0) be a root of Eq. (10). Then

⎧

⎨

⎩

�1 cos(ωτ ) +�2 sin(ωτ ) = �4,

–�2 cos(ωτ ) +�3 sin(ωτ ) = �5,
(11)

where

�1 = –ω2 + t1t2 + s1t2 + s1s4,

�2 = ω(t1 + t2),

�3 = –ω2 + t1t2 – s1t2 – s1s4,

�4 = –s1t2 – s1s4 – t1s4,

�5 = s4 + s1.

By Eq. (11) we obtain

⎧

⎨

⎩

cos(ωτ ) = –ω2�4–ω(t1+t2)�5+q2�4

ω4+ω2[(t1+t2)2–(q1+q2)]+q1q2
,

sin(ωτ ) = –ω2�5+ω(t1+t2)�4+q1�5

ω4+ω2[(t1+t2)2–(q1+q2)]+q1q2
,

(12)

where

q1 = t1t2 + s1t2 + s1s4,

q2 = t1t2 – s1t2 – s1s4.

By Eq. (12) we have

ω8 +ω6m1 +ω4m2 +ω2m3 +ωm4 +m5 = 0, (13)

where

m1 = 2(t1 + t2)
2 – 2(q1 + q2),

m2 =
[

(t1 + t2)
2 – (q1 + q2)

]2
+ 2q1q2 –�2

4 –�2
5,

m3 =
[

2q1q2(t1 + t2)
2 – (q1 + q2)

]

– (t1 + t2)
2
(

�2
5 +�2

4

)

+ 2�2
4q2 + 2�2

5q1,

m4 = 2(t1 + t2)�4�5(q2 – q1),

m5 = (q1q2)
2 – q22�

2
4 – q21�

2
5.

Define f (ω) = ω8 + ω6m1 + ω4m2 + ω2m3 + ωm4 +m5 = 0. To derive the main results of

this paper, we assume that

(H2) : f (ω) has k positive roots, denoted by f1, f2, . . . , fk , 0 < k ≤ 8. From Eq. (12) we have

τ
(j)
i =

1

ωi

arccos

{

–ω2�4 –ω(t1 + t2)�5 + q2�4

ω4 +ω2[(t1 + t2)2 – (q1 + q2)] + q1q2

}

+
2jπ

ωk

,

i = 1, 2, 3, . . . ,k; j = 1, 2, . . . .

(14)



Dai et al. Advances in Difference Equations         ( 2021)  2021:39 Page 8 of 18

Let

τ0 = min
{

τ
(j)
i , i = 1, 2, . . . ,k; j = 0, 1 · · ·

}

= min
{

τ
(0)
i , i = 1, 2, . . . ,k

}

= τ
(0)
i0
. (15)

Differentiating both sides of Eq. (10) with respect to τ , we get

[

dλ

dτ

]–1

=
(–s4 – s1) + 2λeλτ

(t1 + t2)eλτ + λe–λτ (s1t2 + s1s4) – λeλτ [λ2 – (t1 + t2)λ + t1t2]
–

τ

λ
. (16)

When τ = τ0, substituting λ = iω0 into Eq. (16), we get

Re

[

dλ

dτ

]–1

τ=τ0

=
R1R2 + S1S2

R2
1 + S21

, (17)

where

R1 = (t1 + t2)
(

1 –ω2
0

)

cos(ω0τ0) +
[

ω0(s1t2 + s1s4) –ω3
0 +ω0t1t2

]

sin(ω0τ0),

S1 =
[

ω0(s1t2 + s1s4) –ω3
0 –ω0t1t2

]

cos(ω0τ0) + (t1 + t2)
(

1 –ω2
0

)

sin(ω0τ0),

R2 = (–s4 – s1) – 2ω0 sin(ω0τ0),

S2 = 2ω0 cos(ω0τ0).

To ensure the condition of the occurrence forNeimark–Sacker bifurcation, we introduce

have the following hypothesis:

(H3) : R1R2 + S1S2 �= 0.

Then we have the following results.

Theorem1 ForModel I, if conditions (H1), (H2), and (H3) hold, then the equilibrium point

E2 is asymptotically stable for τ ∈ [0, τ0);when τ = τ0,model I undergoes aNeimark–Sacker

bifurcation at equilibrium point E2, and it is unstable at equilibrium point E2 when τ > τ0.

Proof The proof of Theorem 1 is completed by investigating the distribution of the roots

of Eq. (8). To analyze the distribution of roots of the transcendental Eq. (8), we need the

following lemmas. �

Lemma 1 For the transcendental equation

P
(

λ, e–λτ1 , . . . , e–λτm
)

= λn + p
(0)
1 λn–1 + · · · + p

(0)
n–1λ + p(0)n

+
[

p
(1)
1 λn–1 + · · · + p

(1)
n–1λ + p(1)n

]

e–λτ1 + · · ·

+
[

p
(m)
1 λn–1 + · · · + p

(m)
n–1λ + p(m)

n

]

e–λτm ,

(18)

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e–λτ1 , . . . , e–λτm ) in the open

right half-plane can change, and only a zero appears on or crosses the imaginary axis [21].
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When τ = 0, Eq. (8) can be rewritten as

λ2 – (t1 + t2 + s4 + s1)λ + t1t2 + +t1s4 + s1t2 + s1s4 = 0. (19)

From the Routh–Hurwitz criterion we know that a necessary and sufficient condition

for all roots of Eq. (19) to have negative real parts is

(H1) : –(t1 + t2 + s4 + s1) > 0, t1t2 + +t1s4 + s1t2 + s1s4 > 0,

–(t1 + t2 + s4 + s1) > t1t2 + t1s4 + s1t2 + s1s4.

When τ > 0, Eq. (8) becomes

(–s4 – s1)λ + t1s4 +
[

λ2 – (t1 + t2)λ + t1t2
]

eλτ + (s1t2 + s1s4)e
–λτ = 0. (20)

iω is a root of Eq. (20) if and only if

(–s4 – s1)iω + t1s4 +
[

–ω2 – (t1 + t2)iω + t1t2
](

cos(ωτ ) + i sin(ωτ )
)

+ (s1t2 + s1s4)
(

cos(ωτ ) – i sin(ωτ )
)

= 0.
(21)

From Eq. (21) we obtain

⎧

⎨

⎩

�1 cos(ωτ ) +�2 sin(ωτ ) = �4,

–�2 cos(ωτ ) +�3 sin(ωτ ) = �5,
(22)

which leads to

ω8 +ω6m1 +ω4m2 +ω2m3 +ωm4 +m5 = 0. (23)

Without loss of generality, we assume that

(H2): Eq. (23) has k positive roots, denoted by f1, f2, . . . , fk , 0 < k ≤ 8.

By Eq. (22) we have

cos(ωτ ) =
–ω2�4 –ω(t1 + t2)�5 + q2�4

ω4 +ω2[(t1 + t2)2 – (q1 + q2)] + q1q2
. (24)

Denote

τ
(j)
i =

1

ωi

arccos

{

–ω2�4 –ω(t1 + t2)�5 + q2�4

ω4 +ω2[(t1 + t2)2 – (q1 + q2)] + q1q2

}

+
2jπ

ωi

,

i = 1, 2, . . . ,k; j = 0.1 · · · ,

(25)

that is, ±iωi is a pair of purely imaginary roots of Eq. (8).

Denote

τ0 = min
{

τ
(0)
i ,k = 1, 2i, . . . ,k

}

= τ
(0)
i0
.
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Lemma 2 If conditions (H1) and (H2) hold, then for τ ∈ [0, τ0), all roots of Eq. (8) have

negative real parts, and for τ = τ
(j)
i (i = 1, 2, . . . ,k; j = 0, 1, . . .), Eq. (8) has a pair of pure

imaginary roots.

We define λ(τ ) = α(τ ) + iω(τ ) as the root of Eq. (8) satisfying α(τi) = 0 and ω(τi) = ω0.

Multiplying both sides of Eq. (8) by eλτ and differentiating both sides of Eq. (8) with respect

to τ , we get

[

dλ

dτ

]–1

=
(–s4 – s1) + 2λeλτ

(t1 + t2)eλτ + λe–λτ (s1t2 + s1s4) – λeλτ [λ2 – (t1 + t2)λ + t1t2]
–

τ

λ
. (26)

Then

Re

[

dλ

dτ

]–1

τ=τ0

=
R1R2 + S1S2

R2
1 + S21

. (27)

Assuming that

(H3) : R1R2 + S1S2 �= 0 and sign
(

Re(a + ib)
)

= sign
(

Re(a + ib)–1
)

,

we obtain

α′(τi) > 0. (28)

From Lemmas 1–2 we have the following results on the distribution of the roots of

Eq. (8): if conditions (H1), (H2), and (H3) hold, then for τ ∈ [0, τ0), all roots of Eq. (8) have

negative real parts; and for τ = τ0, Eq. (8) has a pair of pure imaginary roots; Eq. (8) has

at least one pair of roots with positive real parts for τ > τ0. Then combining the results

obtained by Hale [22], we get Theorem 1, and the proof is complete.

5 Numerical simulation

In this section, we mainly verify the theoretical results. Set p = 4.8,w = 3.4,β = 0.26, c =

2,A = 3,B = 0.65, y = 2,b = 3,k1 = k2 = 0.5. We use the largest Lyapunov exponent and

entropy to measure the features of system changes. The principle of the largest Lyapunov

exponent is that the system is stable when the exponent is less than zero; otherwise, it is

unstable. The rules of entropy to judge the system stability are as follows: the system is in

a stable state when the entropy is zero; otherwise, it is unstable.

5.1 Neimark–Sacker bifurcation diagram caused by time-delay

Figures 1(a)–(c) show how the system stability changes with time-delay. As can be seen

from Fig. 1(a), with the increase of τ , at first, Model I remains stable, then it gradually

produces aNeimark–Sacker bifurcation, and, finally, it becomes chaotic. The critical point

τ0 of bifurcation is equal to 0.19. That is, when τ < 0.19, the equilibrium point E2(y
∗,b∗) is

asymptotically stable; when τ increases and passes through τ0, the model I bifurcates and

loses its stability.

From Fig. 1(a) we can see that the vaccine transportation equilibrium point is locally

asymptotically stable if the time-delay parameters is less than the critical value. When



Dai et al. Advances in Difference Equations         ( 2021)  2021:39 Page 11 of 18

Figure 1 The impact of τ on the stability

vaccine transportation is stable, the distributors and retailers can calmly respond to the

epidemic and take reasonable decisions to ensure that the vaccine can reach its destination

safely. However, once the time-delay parameter exceeds a certain threshold, the system

undergoes a Neimark–Sacker bifurcation and goes into chaos. In this case, the distributor

and retailer must bear the losses caused by the failure to respond to the epidemic in time.

Figures 1(b) and (c) show the corresponding largest Lyapunov exponent and entropy of

Fig. 1(a). When τ < 0.19, the largest Lyapunov exponent is less than zero, and the entropy

is equal to zero, and the system keeps a stable state; otherwise, the largest Lyapunov expo-

nent is greater than zero, the entropy of the system continues to increase, and the system

falls into chaos state.

5.2 Bifurcation diagram caused by adjusting speed of decision variable

To further understand the dynamic characteristics of the system, in this section, we use

the bifurcation diagram, largest Lyapunov exponent, and entropy to analyze the influence

of the adjustment speed of decision variables on the system stability. Ceteris paribus, let-

ting τ = 0.1, the influence of time-delay on the stability of the system can be eliminated.

Assuming that v2 = 0.015 and v1 changes from 0 to 0.5, we analyze the effect of v1 on the

system stability. From Fig. 2(a) we see that when v1 increases from 0 to 0.261, the vaccine

activity inspection level y (indicated by yellow line) and the cold chain transportation level

b (indicated by brown line) are asymptotically stable; when v1 reaches 0.261, y and b start

to bifurcate, and the system turns into stable cycles of period 2; as the v1 continues to

increase, the system eventually enters into a chaotic state.

Figure 3(a) presents the effect of v2 on the system stability, which is similar to Fig. 2(a).

When v2 ∈ [0, 0.146), the system is in a stable state; when v2 increases to 0.146, the first
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Figure 2 Dynamic evolution of decision variables with v1

bifurcation occurs, and the system turns into stable cycles of period 2; with the increase

of v2, the system finally enters into chaotic state.

The largest Lyapunov exponent can further verify the dynamic characteristics of the sys-

tem. Take Fig. 2(b) for an example: when the Lyapunov exponent first returns to the zero

axis, the system appears the first bifurcation; when Lyapunov exponent is always greater

than zero, then the system enters into a chaotic state, which is consistent with the dynamic

characteristics shown in Fig. 2(a). Similarly, we also can illustrate the dynamic charac-

teristics of the system through the change of entropy. From Fig. 2(c) we see that when

v1 ∈ (0, 0.261), the entropy of the model I is equal to zero, and at this time, y and b are

asymptotically stable; when v1 > 0.261,the entropy of model I is greater than zero, and the

model I undergoes a period doubling bifurcation state; with the further increase of v1, the

entropy also continues to increase. At this time, y and b are unstable and may take multi-

ple possible values. Due to increase of the entropy, the distributor and retailer need more

additional information to make reasonable decisions. Similar insights can be obtained in

Figs. 3(b) and (c).

From Figs. 2–3 we see that the faster the adjustment speed of the vaccine activity in-

spection level (or the cold chain transportation level), the more chaotic the vaccine supply

chain. From the perspective of entropy theory, when the vaccine supply chain falls into

chaos, its entropy will be high. So the distributor and the retailer may obtain additional

information to choose an appropriate adjustment speed. Therefore the distributor and

retailer should collect abundant market information in advance and make rational de-

cisions to prevent the vaccine supply chain from getting into chaos. Comparing Fig. 2(a)

with Fig. 3(a), the critical value of system bifurcation caused by the adjustment speed v2 of

cold chain transportation level is less than that caused by the adjustment speed v1 of activ-
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Figure 3 Dynamic evolution of decision variables with v2

ity inspection level. This interesting phenomenon means that the reasonable adjustment

range of activity inspection level is larger than that of cold chain transportation level, and

consumers may be more sensitive to cold chain transportation level. Thus the improve-

ment of the cold chain transportation level in the vaccine supply chain seems to be in the

first place.

5.3 Global stability analysis

To further explore the dynamic characteristics of model I with the change of v1, v2, β ,

and B, ceteris paribus, letting y and b ∈ (0,1), we obtain that the domain of attraction

of the model I is as in Fig. 4, in which the dark blue region denotes the stable attraction

domain, light blue denotes the period-2 attraction region, and the deep red denotes the

escape area. Figs. i (i = 5, 6, 7, 8) show the domain of attraction when v1, v2, β , B change in

turn. Comparing Fig. 4 with Figs. 5 and 6, we can see that the stable attraction domains

decrease with the increase of v1 or v2, which is consistent with the conclusions reflected

in Figs. 2 and 3. Comparing Fig. 4 with Fig. 7, the stable attraction domain decreases with

the increase of β , which means that the lower the sensitivity of consumers to the vaccine

price, the stabler the vaccine supply chain. Similarly, comparing Fig. 4 with Fig. 8, the

stable attraction domain decreases with the decrease of B, which means that the higher

the sensitivity of consumers to the cold chain transportation, the stabler the vaccine supply

chain.

From Figs. 4–8 we see that the increase of consumers’ sensitivity to vaccine prices has a

negative impact on vaccine transportation. It is very necessary for the government to take

measures to eliminate consumers’ concerns about vaccine prices, such as providing subsi-
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Figure 4 Domain of attraction of the model I

Figure 5 Domain of attraction of the model I when

v1 increases to 0.15

Figure 6 Domain of attraction of the model I when

v2 increases to 0.13

dies to consumers. On the other hand, consumers’ sensitivity to cold chain transportation

is beneficial to the vaccine transportation system.

6 Chaos control

The vaccine transportation cannot be carried out smoothly by chaos in the vaccine sup-

ply chain, and the vaccines may be inactivated. Chaos in vaccine supply chain can be

controlled by the adjustment parameter control method and variable feedback control

method. The chaotic control effect of adjusting the parameters on model I is analyzed by

numerical simulation. As mentioned before, ceteris paribus, when τ = 0.4, v1 = 0.35, v2 =

0.35, the vaccine supply chain is in chaos.
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Figure 7 Domain of attraction of the model I when

β increases to 0.342

Figure 8 Domain of attraction of the model I when B

increases to 0.152

6.1 Adjustment parameter control method

The original vaccine supply chain system is

⎧

⎨

⎩

y(t + 1) = y(t) + v1y(t)
∂πm
∂y

,

b(t + 1) = b(t) + v2b(t)
∂πr
∂b

.
(29)

The vaccine supply chain system after parameter adjustment control is as follows [23]:

⎧

⎨

⎩

y(t + 1) = (1 – u)[y(t) + v1y(t)
∂πm
∂y

] + uy(t),

b(t + 1) = (1 – u)[b(t) + v2b(t)
∂πr
∂b

] + ub(t).
(30)

With the variation of the adjustment parameter u, the system changes as shown in Fig. 9.

When u is less than the threshold (0.358), the system is in chaotic state, which indicates

that the distributor and retailer did not take any effective joint measures to control chaos.

With the increase of u, the system reaches a stable state, which indicates that the distrib-

utor and retailer can effectively reduce chaos by taking joint measures, such as signing

contracts and so on.

6.2 Variable feedback control method

The main principle of variable feedback control method is using an equation variable as

control signal to eliminate chaos. Compared with other control methods, this method has

the advantages of simple controller design and strong timeliness. Therefore it is widely
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Figure 9 Systematic bifurcations with variation of

the adjustment parameter u

Figure 10 Systematic bifurcations with variation of

adjustment parameter u

used in general discrete dynamic systems. Based on this, the dynamic system with new

controllers is established as follows [24]:

⎧

⎨

⎩

y(t + 1) = y(t) + v1y(t)
∂πm
∂y

– uy(t),

b(t + 1) = b(t) + v2b(t)
∂πr
∂b

– ub(t).
(31)

Figure 10 shows that the chaotic system gradually returns to the stable state through

variable feedback control method. When u is less than the threshold (0.118), the system

is in chaotic state, which indicates that the government does not take effective control

measures for the chaotic system at this time. When u > 0.118, the system remains asymp-

totically stable, which indicates that the government takes external intervention measures

to accelerate the system to the stable state and ensures stable economic development.

Comparing Fig. 9 with Fig. 10, it is obvious that the control system in Fig. 10 enters the

stable state earlier than that in Fig. 9, which means that the control effect of the variable

feedback control method is better than that of the adjustment parameter control method.

Because of the extra cost of control, it is difficult for the distributor and retailer to ac-

tively control the chaotic vaccine supply chain. In addition, the safety of vaccines cannot

be guaranteed in the chaotic vaccine supply chain, so external forces (for example, the

regulation and policy of the government) usually are used to control the chaos of vaccine

supply chain in time.
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7 Conclusion

In this study, we mainly investigated the vaccine supply chain composed of a distribu-

tor and retailer. The distributor is responsible for the vaccine activity inspection of the

vaccines before they are delivered to the retailer, whereas the retailer carries out the cold

chain transportation of the vaccines. In addition, the decision-making of the distributor

and retailer is not instantaneous, but rather time-delayed. We analyzed the complex dy-

namic characteristics of the system are by using the Neimark–Sacker bifurcation diagram,

attraction domain, and entropy. We used the adjustment parameter control and variable

feedback control methods to control the chaotic system. We obtained the following con-

clusions.

(1) When the time-delay parameter τ ∈ [0, τ0), the vaccine transportation equilibrium

is locally asymptotically stable. At this time, the distributor and retailer can cooperate

well to ensure the vaccine activity. When the time-delay parameter τ ≥ τ0, the vaccines

transportation systemproduces aNeimark–Sacker bifurcation and loses stability. (2) If the

distributor and retailer adjust the decision variables too quickly, then the vaccine supply

chain will bifurcate and even fall into chaos, which means that the distributor and retailer

should choose appropriate adjustment speeds of the decision variables to prevent the vac-

cine supply chain from get into chaos. (3) The stability domain of the system shrinks as

customers’ sensitivity to cold chain transportation decreases, and by contrast it expends

as customers’ sensitivity to vaccine prices decreases. (4) Compared with the internal joint

control of the distributor and retailer, the effect of external control, such as government

intervention, will have a better control effect on the chaos of the system.
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