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Abstract 

Magnetoencephalography (MEG) allows the real-time recording of neural activity and oscillatory activity in distributed neural networks. We applied a 

non-linear complexity analysis to resting-state neural activity as measured using whole-head MEG. Recordings were obtained from 20 unmeditated 

patients with major depressive disorder and 19 matched healthy controls. Subsequently, after 6 months of pharmacological treatment with the 

antidepressant mirtazapine 30mg/day, patients received a second MEG scan. A measure of the complexity of neural signals, the Lempel-Ziv 

Complexity (LZC), was derived from the MEG time series. We found that depressed patients showed higher pre-treatment complexity values compared 

with controls, and that complexity values decreased after 6 months of effective pharmacological treatment, although this effect was statistically 

significant only in younger patients. The main treatment effect was to recover the tendency observed in controls of a positive correlation between age 

and complexity values. Importantly, the reduction of complexity with treatment correlated with the degree of clinical symptom remission. We suggest 

that LZC, a formal measure of neural activity complexity, is sensitive to the dynamic physiological changes observed in depression and may potentially 

offer an objective marker of depression and its remission after treatment. 
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Introduction 

Major depressive disorder (MDD) affects one out of five 

women and one out of ten men during their lifespan (Stein 

et al., 2006). According to the World Health Organization, 

depression was the third leading contributor to the Global 

Burden of Disease in terms of Disability Adjusted Life Years 

in 2004 (WHO, 2004). Currently, there is no consensus about 

the pathophysiology of depression, and there are no biological 

measures widely used in clinical practice for the diagnosis of 

depression or in order to monitor treatment response. 

Neuroimaging techniques such as functional Magnetic 

Resonance Imaging (fMRI) and Positron Emission 

Tomography (PET) have revealed changes in cerebral blood 

flow and metabolism in several brain areas, but findings are 

complex and often contradictory (Steele et al., 2006). Brain 

regions in which functional disturbances have been observed 

include the orbitofrontal cortex, ventromedial and ventrolat­

eral prefrontal cortex, pregenual and subgenual portions of 

the anterior cingulate cortex, posterior cingulate cortex, para-

hippocampal cortex, superior temporal cortex, ventromedial 

striatum, amygdala, and medial thalamus. Metabolic rates 

in these regions are either positively or negatively correlated 

with the degree of symptomatology in patients assessed with 

instruments such as the Hamilton Rating Scale for Depression 

(HAMD) (Kennedy et al., 2001; Preskorn and Drevets, 

2009). 

Electroencephalography (EEG) and magnetoencephalog­

raphy (MEG) have also been used to investigate neurophys-

iological changes in depression. Compared with fMRI and 

PET they offer the advantage of a much higher temporal res­

olution, allowing the real-time recording of neural activity 
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and oscillatory activity in distributed neural networks. 

Compared with EEG, MEG offers a better spatial resolution 

and is sensitive to a broader frequency spectrum than EEG, 

because the skull acts as a low-pass filter for electric currents, 

but not for magnetic fields (Breier et al., 1999; Ilmoniemi, 

1993; Lounasmaa et al., 1996; Nunez et al., 2001). 

For example, several studies have reported increased alpha 

power over left frontal sites, a finding referred to as the frontal 

alpha asymmetry (Davidson, 2004; Debener et al., 2000; Hughes 

and John, 1999; Knott et al., 2001; Monakhov and Perris, 1980). 

This has been considered a marker of reduced left frontal acti­

vation, associated with negative affective tendencies, given that 

alpha oscillations are thought to reflect a reduced activation. 

However, results from EEG/MEG studies have not pro­

vided consistent results either. Other EEG studies, for example 

Knott et al. (2001), described increased beta activity and mean 

frequency values in depressed patients compared with controls, 

and did not find any significant changes in the alpha 

band (Knott et al., 2001). Similar results, affecting the beta 

but not the alpha band, were found by Pizzagalli et al., 

(2002). Wienbruch et al. studied the brain's slow focal activity 

in depressed patients using MEG and found reduced slow-wave 

(delta and theta band) activity in prefrontal and frontal areas 

when compared with controls (Wienbruch et al., 2003), yet 

Fernández et al. described significantly higher right occipital 

delta activity in depressive patients versus controls 

(Fernandez et al., 2005). 

All of these studies used a conventional approach to the 

analysis of EEG/MEG data, namely frequency-power analysis: 

simply speaking, measuring the amplitude of neural oscilla­

tions within a given predefined frequency band. However, 

while useful in many cases, this approach only measures one 

aspect of the EEG/MEG time series, which contains much rich 

information which is not captured by such an analysis. 

We decided to adopt a complementary approach, complex­

ity analysis, in order to investigate neural activity in major 

depression. The theoretical background to this approach has 

been discussed previously (Glass and Mackey, 1979; Mackey 

and Milton, 1987; Sarbadhikari and Chakrabarty, 2001) with 

reference to the concept of'dynamical disease': essentially, the 

idea that depression is a certain pattern or stable state of brain 

activity which the brain can become fixed into as a result of 

genetic, biological or environmental factors (Belair et al., 1995). 

A non-linear analysis of MEG/EEG time series offers an 

approach to understanding such states. The Lempel-Ziv com­

plexity (LZC) (Lempel and Ziv, 1976) is a complexity measure 

which has been used to analyse EEG and MEG signals in 

patients with Alzheimer's disease (Abasólo et al., 2006; Gomez 

et al., 2006), attention-deficit hyperactivity disorder (ADHD) 

(Fernandez et al., 2009), as well as to measure the depth of anaes­

thesia (Zhang et al., 2001), amongst other conditions. 

The LZC is essentially a measure of the unpredictability, 

complexity or 'randomness' of the neural signal. Aboy et al. 

(2006) investigated the factors which affect this complexity 

estimate and concluded that the main determinant of the 

LZC is the bandwidth of the signal. In other words, the 

more the variability in frequency components, the higher 

the LZC values. Other similar measures of complexity have 

been applied to resting-state neural activity using fMRI, for 

example the Hurst exponent in autism (Lai et al., 2010). 

In this study, we decided to further investigate the rela­

tionship between depression and neural complexity. We 

hypothesized that there would be a pattern of increased 

LZC values in major depression (see Li et al., 2008), especially 

in anterior brain regions. We also expected an interaction of 

diagnosis with age, given the fact that previous studies have 

shown an increased frontal EEG/MEG complexity as a func­

tion of age in healthy controls (Anokhin et al., 1996). Finally, 

we studied the effects of 6 months of antidepressant treatment 

in order to elucidate whether changes seen in currently 

depressed patients represent a 'trait' vulnerability marker or 

a 'state' marker of active depression. 

Methods 

Subjects 

In total, 20 right-handed patients (12 female, eight male) 

referred from the Hospital Central de la Defensa Psychiatry 

unit, Madrid, Spain, who fulfilled the Diagnostic and 

Statistical Manual of Mental Disorders, fourth edition (DSM-

IV) criteria for MDD participated in the study. None of the 

patients had a history of substance abuse, other neurological or 

medical conditions, or Axis I or Axis II psychiatric disorders. 

Clinical interviews and diagnosis were performed by their treat­

ing psychiatrist. 

The mean age of patients with depression was 47.55 ± 12.98 

years. Patients were moderately to severely depressed as 

reflected by the 17-item HAMD scores (Hamilton, 1960), 

(mean: 24.75 ± 5.78). In order to avoid the confounding effects 

of medication in the baseline measures and to allow the effects 

of subsequent treatment to be assessed, all patients completed a 

minimum 3-week medication washout before the first MEG 

recordings. 

Immediately after the first (baseline i.e. pre-treatment) 

MEG scan, patients started antidepressant pharmacotherapy 

with mirtazapine 30 mg once a day. Following 6 months of 

treatment, patients received a second MEG (post-treatment) 

scan. 

Some 19 right-handed healthy control subjects (13 female, 

six male) also participated in the study. None of them had a 

history of MDD, substance abuse, or a neurologic or medical 

disorder. Their HAMD scores were under the normal range 

(mean: 4.26 ± 1.52). Controls were recruited by advertisement 

in the Madrid area and selected after a preliminary phone 

interview. The mean age of controls was 45.89 ±16.48 

years. No statistically significant differences were found 

between patients and controls, in terms of mean (p = 0.728) 

or variance (p = 0.309). Handedness was evaluated using the 

Edinburg Inventory (Oldfield, 1971). 

Before entering the study, all participants provided 

written informed consent. The study was approved by the 

Investigation and Ethics Committee of the Hospital Central 

de la Defensa 'Gómez Ulla'. 

Data collection 

MEGs were acquired with a 148-channel whole-head magne­

tometer (MAGNES 2500 WH®, 4D Neuroimaging, San 

Diego, CA, USA) located in a magnetically shielded room. 



Subjects were awake and in a resting state with their eyes 

closed and under observation control during the recording. 

They were asked to avoid blinking and making movements. 

For each subject, 5min of MEG signal were acquired at a 

sampling frequency of 678.17 Hz using a hardware band-pass 

filter of 0.1-200 Hz. Afterwards, these recordings were down-

sampled by a factor of 4 (169.549 Hz). Artefact-free epochs of 

20 s (3392 time points) were selected. Finally, these epochs 

were filtered between 1.5 and 40 Hz then copied to a computer 

as ASCII (American Standard Code for Information 

Interchange) files for further complexity analyses. 

LZC calculation 

LZC is a non-parametric measure for finite sequences related 

to the number of distinct substrings and the rate of their 

occurrence along the sequence, with larger values correspond­

ing to greater complexity in the data (Lempel and Ziv, 1976). 

In this study, we used the simplest method for pre­

processing data into a form which allows the calculation of 

the LZC: a binary sequence conversion (zeros and ones). By 

comparison with a threshold Td, the original data are 

converted into a 0-1 sequence. We used the median as the 

threshold Td due to its well-known robustness to outliers. 

Essentially, therefore, the MEG time series is converted into 

a string of 1 s and 0 s, with a 1 representing that the signal at 

that point in time is higher than the median while a 0 indicates 

that it is lower than the median signal at that channel. 

The LZC is then calculated by scanning the string from left 

to right and increasing a complexity counter c(w) by one unit 

every time a new subsequence of consecutive characters is 

encountered (Zhang et al., 2001). 

In order to obtain a complexity measure which is indepen­

dent of the sequence length n, c(w) should be normalized. In 

general, b(w) = w/log2(w) is the upper bound of c(w) for a 

binary sequence (Lempel and Ziv, 1976). Thus, c(w) can be 

normalized via b(w): C(w) = c(w)/b(w). The normalized LZC, 

C(w), reflects the rate at which new patterns occur along with 

the sequence. 

Data reduction 

LZC values were obtained for each of the 148 channels for 

each participant. Hence, 148 LZC scores per subject were 

submitted to statistical analyses. In order to avoid the statis­

tical problem of multiple comparisons, these 148 scores were 

grouped into five regions (see Figure 1) as performed previ­

ously: Anterior, Central, Left Lateral, Right Lateral, and 

Posterior (Fernandez et al., 2009, 2010) and the average 

LZC score across all channels within a region was used in 

all subsequent analyses. 

Statistical analyses 

We examined the differences between groups' means and stan­

dard deviations for statistical significance with a one-way anal­

ysis of variance (ANOVA) with a covariate. The relationship 

between LZC scores and age was determined using linear 

regression models. A Spearman Rho's correlation coefficient 

was utilized to examine the relationship between age and 

changes in HAMD scores. Finally, we fitted a logistic regres­

sion model to evaluate the contribution of LZC variables and 

age to the explanation of depression versus control group dif­

ferences. A Receiver Operating Characteristic (ROC) curve 

was used to evaluate the precision of the final model. 

Results 

Age and sex effects 

We first studied the effect of age and sex on LZC scores. 

Following our analysis design, we found that in the depressed 

group, neither Sex (all ^-values were >0.438) nor Age (all 

p-values were >0.125) were correlated with LZC. 

In the control group, Sex had no effect (all ^-values 

were >0.271), but there was a strong association between 

Age and LZC values in all five regions (all ^-values were 

<0.008). Because the variable Sex had no effect on LZC 

values, both samples were grouped independently of it for 

further analysis, while Age was entered as a covariate. 

Differences in LZC variables between depression and con­

trol group were evaluated using a one-way ANOVA with one 

covariate (Age). Age showed a significant effect on all LZC 

variables (^-values < 0.003). Only the variables Anterior 

(p = 0.045) and Right (p = 0.035) were statistically different 

between the two groups. 

Following this, the relationship between Age and LZC was 

analysed with two linear regression models, one for each 

group. In both groups all regression coefficients were positive 

(see Table 1), indicating a tendency to increased LZC scores 

as a function of age. While in controls LZC values increased 

significantly as a function of age in all sensor groups (all p-

values < 0.007), this tendency was not significant within 

the depression group (all p-values >0.140). The last row in 

Table 1 shows the ^-values of the comparison of regression 

lines' slopes between controls and MDD patients. The signif­

icantly different slope values in the Anterior (p = 0.0491), 

Central 0 = 0.0501), Left 0 = 0.038) and Right (p= 0.038) 

regions supports the notion of a significant positive tendency 

in controls that patients did not show. 

Comparison of patients and controb 

The statistical tendency observed in Figure 2 indicates that 

LZC values were greater in the depression group when com­

pared with controls, and that this tendency was present in all 

brain regions. Furthermore, LZC scores were age dependent. 

Considering this tendency, we carried out a logistic regres­

sion model to understand the contribution of the five regional 

LZC variables (see above), and Age, to the differences 

between depression versus control group. Following the oper­

ation as suggested by Hosmer and Lemeshow (1989), the final 

model which optimizes its discriminating capability contained 

Age (coefficient = 1.763), Anterior LZC (coefficient = 15.641) 

and Age*Ln(Age) (coefficient = —0.370) variables. The statis­

tical relevance of the logarithmic term (Age*Ln (Age)) indi­

cates that Age exhibits a non-linear behaviour, thus 

explaining why both groups tend to show an intersection 

point at certain Age values when the increase in LZC scores 

in healthy controls reach an upper limit. 



Figure 1. Sensor space representation of the five regions submitted to statistical analyses: Anterior, Central, Left lateral, Right lateral and Posterior. 

The area under the ROC curve was 0.763 (p = 0.005). The 

fitted model shows that Anterior is the sensor group with the 

greatest predictive power for depression. 

Effects of antidepressant treatment 

HAMD scores for all patients were lower after treatment 

(mean 5.10 ±2.36; p = 0.000) indicating that patients 

improved considerably. There was no significant correlation 

between age and the pre-post decrease in HAMD score 

(¿> = 0.120, Spearman Rho's correlation coefficient 

(rho = -0.359). 

As described previously, LZC scores in the Anterior sensor 

group could discriminate between patients and controls at 

baseline. In order to discover whether this measure was also 

sensitive to clinical improvement, we computed a new vari­

able called 'Anterior-Dif, which represented the change in 

Anterior LZC scores before and after treatment. 

The mean value of Anterior-Dif variable was positive 

(0.00950 ±0.4100), indicating that LZC scores in the 

Anterior area generally decreased with treatment in MDD 

patients, bringing them into line with controls' baseline 

LZC scores (see Figure 3) but the pre-treatment versus 

post-treatment mean comparison was not statistically signif­

icant (p = 0.156). However, since Age was previously associ­

ated with LZC values, and younger patients showed a slightly 

better clinical outcome than older patients, we studied the 

role of the variable Age in the post-treatment reduction of 

LZC values within the MDD group. 

Taking into account the mean age of the sample (47.55 

years), we divided the MDD sample in two groups: younger 

(<47 years) and older (>47 years). As shown in Figure 4; we 

found a significant reduction (p = 0.048) of Anterior LZC 

values in younger patients; however, this was not observed 

in the older ones (p= 0.546). Interestingly, these results indi­

cate a parallel tendency between HAMD and LZC values. 



Table 1. Slope coefficients of regression lines for the five areas, p-values and correlation coefficients (r) in patients with major depressive disorder 

(MDD) and controls for tempel-Ziv Complexity (tZC) scores. The last row shows p-values of regression lines' slopes in controls and MDD patients 

Anterior Central Left lateral Right lateral Posterior 

MDD Group 

Control Group 

Slope test 

0.0006 

(r= 0.2081) 

p = 0.3785 

0.0024 

(r = 0.5974) 

p = 0.0069 

p = 0.0491 

0.0005 

(r= 0.1864) 

p = 0.4312 

0.0019 

(r= 0.6589) 

p = 0.0022 

p = 0.0501 

0.0009 

(r = 0.2929) 

p = 0.2101 

0.0027 

(r = 0.7220 

p = 0.0005 

p = 0.0389 

0.0010 

(r= 0.3423) 

p = 0.1396 

0.0028 

(r=0.7123) 

p = 0.0006 

p = 0.0380 

0.0010 

(r= 0.3035) 

p = 0.1932 

0.0020 

(r= 0.7164) 

p = 0.0006 

p = 0.1234 

0.78 

0.76 
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Figure 2. Mean and Standard Deviation of Lempel-Ziv Complexity (LZC) variables, for control and major depressive disorder (MDD) groups. 

A greater reduction in LZC values in younger patients seems 

to be associated with a better clinical outcome according to 

the HAMD severity scale. 

Figure 5 displays the regression lines of the variables 

Anterior versus Age for MDD patients before treatment, 

MDD patients after treatment, and controls. The regression 

coefficient of Anterior LZC scores after treatment was posi­

tive and statistically significant (p = 0.008), which suggests 

that the most important effect of an effective pharmaco­

logical treatment in patients with MDD was to recover the 

'normal' tendency initially observed in controls, with greater 

complexity values as a function of age. Furthermore, in post-

treatment evaluation no statistically significant differences 

were found between the slopes (p = 0.2360) and intercepts 

(¿> = 0.1383) of regression lines in controls and patients. 

Discussion 

We found that neural complexity, as measured using MEG 

and quantified using the LZC, was abnormal in patients with 

depression. LZC scores increased linearly with age in control 

subjects but this tendency was not observed in patients with 

depression. 

Secondly, we found that LZC values were higher in 

depressive patients in the anterior brain regions when com­

pared with controls and this difference, combined with the 



Depression prs-Lrealment Depression pcsl-lreatment 

Figure 3. Average Lempel-Ziv Complexity (LZC) values in major depressive disorder (MDD) patients and control subjects for aLL channels, from Al to 

A148, displayed in a colour scale. A significant reduction of Anterior scores can be observed in the sensor space representation within the MDD group. 
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Figure 5. Anterior sensor group Lempel-Ziv Complexity (LZC) x Age 

relationship in major depressive disorder (MDD) patients pre-treatment 

(Dep.pre-treat), MDD patients post-treatment (Dep.post-treat) and 

controls. 

effect of age, allowed the classification of patients and con­

trols in a logistic regression model. Finally, we found that 

after 6 months of treatment with 30 mg of mirtazapine, 

LZC values decreased in patients with depression, especially 

in the younger patients, bringing them close to the controls' 

LZC values. However, the main effect of mirtazapine was to 

recover the tendency observed in controls, where LZC values 

increased linearly with age. 

The linear association of complexity with age in healthy 

people has been observed in previous studies (Anokhin et al., 

1996; Fernandez et al., 2009) Anokhin et al. found increased 

EEG dimensional complexity (another measure of complex­

ity) with age and a regional heterogeneity in the increase of 

EEG dimensional complexity within the first two decades of 

life, suggesting faster maturational changes in the anterior 

areas of the brain (Anokhin et al., 1996). Their findings sug­

gest that an increase in the complexity of brain dynamics lasts 

throughout the whole life span. 

Our finding of higher LZC values in depressive patients in 

anterior brain regions mirrors Li et al.'s (2008) results using 

EEG to measure LZC in patients with schizophrenia and in 

patients with psychotic depression. Depressive patients 

showed higher LZC values in most electrode sites compared 

with controls (Li et al., 2008). Also, Thomasson et al. (2000) 

observed that averaged global entropy (an estimate of EEG/ 

MEG complexity) slightly decreased during treatment in 

patients with depression (Thomasson et al., 2000). 

How can we explain this increased complexity of neural 

activity in patients with depression? EEG/MEG neural com­

plexity is closely related to the integrity of inter-neuronal 



connectivity, and increases with the number of different oscil­

latory systems active at the same time (Tononi and Edelman, 

1998). 

Using other methods, several authors have described 

increased functional connectivity in depression. Greicius 

et al. (2007) described increased functional connectivity 

using fMRI in depressive patients between subgenual anterior 

cingulate cortex, thalamus, orbitofrontal cortex, and precu­

neus (Greicius et al., 2007). Fingelkurts et al. described 

'strengthened' functional connectivity, mainly between short 

distance areas, using EEG structural synchrony in depressive 

patients during a resting condition (Fingelkurts et al., 2007). 

Increased functional connectivity might partially explain the 

elevated LZC values observed in patients with MDD, but as 

described in the introductory section, the key factor to explain 

higher complexity scores is increased frequency variability. 

Is increased frequency variability seen in MDD? In their 

excellent study, Fingelkurts et al. examined the composition 

of EEG brain oscillations in unmedicated MDD patients 

(Fingelkurts et al., 2006). They demonstrated that the EEG 

of depressed patients was characterized by more segments of 

polyrhythmic/disorganized activity as compared with con­

trols, and interpreted such disorganized activity as a sign of 

brain pathology. 

Finally, we observed that after 6 months of treatment with 

mirtazapine, LZC values decreased in patients with depres­

sion (especially within the younger patients), thus bringing 

LZC scores closer to those observed in controls. This could 

be considered one of the critical findings of our study. 

Our results indicate that clinical improvement, as revealed 

by a significant reduction in HAMD scores after 6 months of 

treatment with mirtazapine, is correlated with a decrease in 

complexity values which was significant in the group of 

patients younger than 47 years old. Marie-Mitchell et al. 

(2004) identified age as a non-specific predictor of treatment 

outcome in depression with both drug (fluoxetine or venlafax-

ine) and placebo treatment (Marie-Mitchell et al., 2004). 

Our study was limited by a relatively small sample size. 

This limitation might particularly affect pre-treatment versus 

post-treatment statistical comparisons, hence preventing the 

tendency of lower post-treatment LZC scores to reach statis­

tical significance. When we included the Age variable in the 

statistical model (either using linear regression or when the 

MDD sample was divided in two groups according to age) 

the reduction of post-treatment LZC scores emerged as a sig­

nificant effect. 

Also, because all of the patients in this study were treated 

with the same regimen of pharmacotherapy, it is not possible 

to determine whether the changes seen on the EEG after 6 

months of treatment were specifically related to the drug 

treatment (mirtazapine 30 mg), or whether they are related 

more broadly to the clinical improvement which may have 

been driven by other factors such as the placebo effect and 

the passage of time. 

Nevertheless, we conclude that complexity analysis of neural 

activity is a sensitive measure of detecting abnormal brain activ­

ity in clinical depression and may offer a potential approach 

in the evaluation of clinical improvement with treatment. 

To the best of our knowledge this is the first study to evaluate 

LZC after antidepressant treatment using EEG or MEG. 

Future studies should aim to replicate and build on these 

results. Also, we suggest that it would be necessary to evalu­

ate the effects of different treatment approaches such as psy­

chotherapy (i.e. cognitive behavioural therapy) and/or 

selective serotonin reuptake inhibitors, which are widely 

used as first line of treatment of depression in clinical practice. 
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