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Abstract The main goal of this work is to suggest new

indices for a correct identification of the intrauterine

growth-restricted (IUGR) fetuses on the basis of fetal heart

rate (FHR) variability analysis performed in the antepartum

period. To this purpose, we analyzed 59 FHR time series

recorded in early periods of gestation through a Hewlett

Packard 1351A cardiotocograph. Advanced analysis tech-

niques were adopted including the computation of the

Lempel Ziv complexity (LZC) index and the multiscale

entropy (MSE), that is, the entropy estimation with a

multiscale approach. A multiparametric classifier based on

k-mean cluster analysis was also performed to separate

pathological and normal fetuses. The results show that the

proposed LZC and the MSE could be useful to identify the

actual IUGRs and to separate them from the physiological

fetuses, providing good values of sensitivity and accuracy

(Se = 77.8%, Ac = 82.4%).

Keywords Lempel Ziv complexity �
Fetal heart rate analysis � Intrauterine growth restriction �
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1 Introduction

The term intrauterine growth restriction (IUGR) describes

a decrease in fetal growth rate that prevents a fetus from

obtaining his or her complete growth potential. The inci-

dence of IUGR is estimated to be approximately 5–7% [5].

A large number of etiologies are not yet identified and the

known associations involve fetal, placental and/or maternal

factors. The fetus is at risk of hypoxia and this condition is

often associated with increased perinatal mortality and

morbidity [13]. The recent imaging ultrasound technology

permits to assess with high resolution the fetal biometry

(i.e., abdominal and cranial circumferences, femur length,

estimation of gestational age, fetal weight, etc.). The

comparison with population standards can thus identify the

small-for-gestational-age (SGA) fetuses, characterized by

biometric dimensions\10th percentile. Unfortunately, this

group includes healthy fetuses of small size as well. A

crucial problem in fetal monitoring is therefore to decide if

the small dimensions are physiological or due to a patho-

logical condition [20]. Dating accurately the fetal growth,

early in pregnancy, is essential for a diagnosis of IUGR.

The interpretation of clinical data, although supported by

new and advanced technologies, is often very difficult in

the very preterm period and evidence-based guidelines do

not exist [1]. However, the early identification of a path-

ological state is fundamental to predict possible compli-

cations and to take appropriate decisions.

Since there are no effective therapies to reverse fetal

growth restriction, perinatal management is aimed pri-

marily at determining the ideal timing and mode of

delivery [19]. This decision depends on several variables:

gestational age of the fetus, maternal health, severity of the

IUGR and fetal condition. On one side, anticipating the

delivery time and removing the fetus from a suboptimal

environment can prevent risk of significant morbidities. On

the other hand, the risk of intrauterine compromise has to

be weighted against potential risks from iatrogenic pre-

mature delivery, which are typically higher before the
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32nd–34th gestational week. Beginning at the gestational

age of 27 weeks, the probability of survival is increased by

1% for every further day of permanence of the fetus in

uterus. Thus, it is crucial to accurately determine the real

condition of the fetus in order to avoid a cesarean section if

not strictly necessary.

The main goal of this work is to propose a new method

to identify the IUGRs in the antepartum period on the basis

of FHR variability analysis. To this purpose, we considered

FHR time series recorded in the early periods of gestation

through a cardiotocograph. The cardiotocography (CTG) is

the most common antepartum monitoring technique, which

permits detecting fetal heartbeats by Doppler ultrasounds

and autocorrelation method [26].

As reported in several review studies, the indices com-

monly adopted in CTG analysis are poorly suitable for a

clinical directive [11, 15]. Thus, more advanced analysis

techniques, already used for HRV analysis in adults, were

adopted and an attempt of a multiparametric approach was

performed. Our analyses included the computation of

Lempel Ziv complexity (LZC) index and the multiscale

entropy (MSE) estimation [8]. In addition, a preliminary

k-mean cluster analysis was carried out to show the sepa-

rability of IUGRs from physiological fetuses on the basis

of the computed indices.

2 Methods

2.1 Data collection

We analyzed FHR signals belonging to fetuses, whose

gestational age ranged from the 27th to the 34th week of

gestation at the recording time.

A Hewlett Packard M1351A CTG fetal monitor was

used to collect FHR tracings. This system is based on

ultrasound echo-Doppler technology to detect fetal heart-

beats, and includes an autocorrelation technique to com-

pare the demodulated Doppler signal of a heartbeat with

the next one. A peak detection firmware, embedded in the

CTG monitor, then determines the heart period (the

equivalent of RR period) from the autocorrelation function.

Through a peak position interpolation algorithm, the

effective resolution is better than 2 ms [26]. The resulting

heart period is then converted into a heart frequency as

soon as a new heart event is detected and accepted. Due to

historical reasons, almost all commercially available fetal

CTG monitors display only the fetal heart rate expressed in

the number of beats per minute (bpm) and do not offer the

series of interbeat intervals, usually employed in HRV

analysis. The HP 1351A produces a new FHR value in bpm

every 250 ms and stores it in a digital buffer. In the com-

mercially available system, a computer reads through a

serial interface (RS-422) ten consecutive values of the

buffer every 2.5 s and determines the actual FHR as the

average of the ten values (equivalent to a sampling fre-

quency of 0.4 Hz). We modified the software in order to

read the FHR from the CTG device every 0.5 s without

averaging. This allows increasing the ‘‘equivalent’’ FHR

sampling frequency up to 2 Hz.

The signals were selected from a database of recordings

collected during periodic ambulatory checkups in a uni-

versity hospital in Rome. The recording length was at least

40 min. In order to set homogenous groups without spu-

rious data, we excluded the recordings belonging to ges-

tations complicated by other pathologies such as diabetes,

hypertension, etc. The fetuses were selected by considering

three groups: normal, severe IUGR and not severe IUGR.

The normal group includes 17 fetuses without pathologies,

delivered at term by spontaneous labor and having a good

Apgar score. The severe IUGR group comprises 23 small

fetuses, prematurely delivered by a cesarean section

(before the 34th gestational week) because of the appear-

ance of life-threatening conditions. The not severe IUGR

group includes 19 small fetuses delivered after the 34th

gestational week and classified as IUGR at delivery by

clinicians. For this group, we supposed that they were only

small-for-gestational-age fetuses. The description of the

subjects is reported in Table 1. The severe IUGR fetuses

were prematurely delivered (before the 34th gestational

week); therefore, for all fetuses, we limited the analysis to

the recordings performed at the gestational ages ranging

from the 27th to the 34th week. This choice was motivated

by the fact that CTG traces belonging to very different

gestational period are not comparable, as the patterns of

HRV signal undergo physiological changes during gesta-

tion, according with increasing fetal parasympathetic ner-

vous system development. Moreover, the choice of this

gestational time window was supported by the fact that

the potential risks associated with iatrogenic premature

Table 1 Details about data collection used in the analysis

Normal Severe IUGR Not severe IUGR

Recordings 17 19 23

CTG g.w. 33.06 ± 1.78 30.34 ± 2.18 32.86 ± 1.80

Delivery g.w. 39.34 ± 1.36 31.57 ± 2.47 35.86 ± 1.61

Weight (g) 3251 ± 397g 1331 ± 620g 1927 ± 423g

pc Weight 53 ± 24 9 ± 2 9 ± 1

Type of delivery All spont. All c. s. 21 c. s., 2 spont.

For each group are reported: number of recordings, gestational week

of the fetus at the CTG monitoring time (CTG g.w.), gestational week

of the fetus at delivery time, weight of the newborn, the corre-

sponding percentile (pc) and type of delivery (spontaneous or by

cesarean section). The values are reported as avg ± std
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delivery are typically higher before the 32nd–34th gesta-

tional week [20].

Signal loss and signal subsets with insufficient quality

have been excluded from the analysis, as already reported

in [26].

2.2 Multiscale entropy

The approximate entropy is an index introduced by Pincus

SM [22] that measures, with a tolerance r, the regularity

of patterns comparing them to a given pattern of length m

(m and r are fixed values; m is the detail level at which

the signal is analyzed and r is a threshold that filters out

irregularities).

Recently, Richman and Moorman developed a modifi-

cation of this algorithm in order to remove what they

considered the defects of ApEn: the name of this new

statistic is sample entropy (SampEn) [17, 24].

In order to capture signal fluctuations on different time

scales, a new method was introduced with the goal of

computing the entropy at different degrees of resolution,

i.e., in a multiscale manner [8, 9]. The idea is that the

signal may contain information at different time scales, and

therefore methods working only on a single scale are

unsuitable. The procedure to compute the multiscale

entropy (MSE) consists of setting up of consecutive coarse-

grained time series y(s), as a function of the factor s:

y
ðsÞ
j ¼

Xjs

i¼ðj�1Þsþ1

xi; 1� j�N=s ð1Þ

where y(1) is the original time series, while the length of

each coarse-grained time series is equal to N/s. For each

sequence y(s), an entropy measure is then calculated and it

is plotted as function of the scale factor s. The rationale

beyond this procedure is an enhancement of time series

repetitive patterns as a function of different scales. The

distribution of the MSE values at various time scales could

help understand the time series in terms of regularity and

structure (i.e., short versus long range). In fact, as it was

obtained in previous works [10, 12], different MSE trends

can be associated with different dynamical systems and/or

different pathological conditions.

Moreover, as previous results show [10], not only the

singular entropy values can be a pathology marker but also

their distribution along the different scale factors. In fact,

the trend of entropy values along s can provide important

hints on the signal structure. For this reason, in this work

we decided to interpolate the single MSE values at dif-

ferent s and to consider the slope of the resulting curve as

an additional index.

In particular, we selected from each FHR signal a 5000

point length subset by removing the first minute of

recording, which corresponds to about 40 min of recording.

The parameters adopted for the computation of ApEn and

SampEn were: m = 1 and r = 0.1, m = 2 and r = 0.15

and 0.2 and the scale factor s ranged from 1 to 15 (the

parameter r is a percentage of the standard deviation SD of

the original time series). The slope a of the curve inter-

polating MSE values corresponds to the first coefficient of

a linear equation that fits the entropy values in a least

squares sense. Different ranges of scale factors were

considered.

2.3 Lempel Ziv complexity analysis

The measure of complexity introduced by Lempel and Ziv

assess the so-called algorithmic complexity, which is

defined according to the Information Theory as the mini-

mum quantity of information needed to define a binary

string [18]. For a sequence of binary values dynamically

presented to a device, the LZC quantifies the rate of new

patterns arising with the time evolution of the incoming

string. A detailed description of the algorithm can be found

in [11, 30]. When dealing with strings different in length, it

was suggested to adopt a normalized LZC measure [16],

i.e., the measure of complexity normalized by a factor

depending on the sequence length.

A crucial point in the application of the LZC analysis to

a biological time series is the process needed to transform

the signals into a symbolic sequence of a finite alphabet.

One can consider several methods to convert a real values

time series into a symbolic string (e.g., by setting thresh-

olds). Nonetheless, LZC analysis has found large applica-

tion in biosignals analysis, such as event detection

(epileptic seizure [23], onset of ventricular tachycardia or

fibrillation [31] and modifications from sleep to awake

state in-depth anesthesia [30]), and also in characterizing

neural spike trains [27] or in studying DNA sequences [21].

Those attempts to apply the LZC method in event detection

did not produce any improvement with respect to the

application of the entropy estimators (ApEn, SampEn at

single scale). The explanation can be found in the coding

procedure because they mostly adopted methods based on

moving thresholds to code signal values. This approach

reproduces exactly what the entropy estimators do and does

not take into account changes in signal slope.

The coding criteria based on a moving average threshold

adopt the following rules. For a given time series {xn}, the

signal average is computed on a time window of N samples

and then the current sample xn is encoded with 1 if

xn [ avg, with 0 if xn B avg. In case of a ternary coding

(alphabet composed of three symbols), the minimum and

maximum values of the signal are estimated on a time

window of N samples and then the range [min, max] is
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divided in order to obtain three levels of the same ampli-

tude A. The current sample is then encoded as follows:

Ynþ1 ¼
0; if xn�minþ A
1; if minþ A\xn�max� A
2; if xn [ max� A

8
<

: ð2Þ

Our work proposes an encoding approach based on the

change in the direction of the signal (sign of the slope).

As the biological systems are often driven by nonlinear

mechanisms and they are intrinsically noisy systems, the

simple increase or decrease of the signal was adopted as the

coding criterion, as suggested in [29]. Therefore, for a

given time series {xn}, the most straightforward procedure

is to assign 1 to an increase in the the signal (xn?1 [ xn)

and 0 to a decrease (xn?1 B xn). In case of a ternary coding,

the equivalent procedure should be to denote with 1 an

increase in the the signal (xn?1 [ xn), with 0 a decrease

(xn?1 \ xn) and with 2 a stationary state (xn?1 = xn).

Unfortunately, this procedure could produce a depen-

dence of the encoded string on the level of quantization by

which the signal was obtained. For this reason, a factor p

was introduced, which represents a minimum quantization

level for a symbol change in the coded string. The intro-

duction of this parameter limits the effect of additive noise

as well. Then, given a signal {xn}, the encoding rule

adopted for the binary alphabet is the following:

Ynþ1 ¼
0; if xnþ1� xn þ p � xn

1; if xnþ1 [ xn þ p � xn

�
ð3Þ

The rule for the ternary alphabet is instead:

Ynþ1 ¼
0; if xnþ1\xn � p � xn

1; if xnþ1 [ xn þ p � xn

2; if xn � p � xn� xnþ1� xn þ p � xn

8
<

: ð4Þ

The current value xn?1 is therefore classified as stationary,

denoted by 2, if it lies in a p range around the previous

sample. Figure 1 shows the results of the outlined encoding

procedures.

The LZC index was computed over 50% overlapping

360 point-long FHR sequences (3 min), by adopting both

the new coding criterion and a moving average threshold.

The evaluated index is the mean value of parameters

computed on the intervals. For these analyses, we consid-

ered the encoding parameter p = 0.5, 1, 2 and 0% as well.

The moving average threshold was computed on time

windows of length N = 360, i.e., the length of the

subsequence.

2.4 Frequency domain parameters

The HRV signals were evaluated by a spectral analysis as

well. The power spectral density (PSD) estimation was

carried out on the RR sequences obtained by the CTG

signal through RR(i) = 60,000/ctg(i) (where ctg(i) gives

the instantaneous frequency in beats per minute). The

computation was performed on short subsequences (3 min)

and the considered indices were the mean value of

parameters computed on the intervals [11, 26]. Both the

spectral power and the normalized spectral power at dif-

ferent frequency bands were estimated. The normalized

spectral components represent the relative value of each

power component in proportion to the total power minus

the very low frequency (VLF) component.

Different from what one can observe in a PSD of an adult

subject [28], in the FHR spectrum we can identify four

contributions: the very low frequency (VLF: 0–0.03 Hz-eq)

is related to long period and nonlinear contributions, the low

frequency (LF: 0.03–0.15 Hz-eq) is mainly correlated with

neural sympathetic activity, whereas high frequency (HF:

0.5-fNyquist Hz-eq) marks the presence of fetal breathing.

The movement frequency (MF: 0.15–0.5 Hz-eq) is typical

of the FHR spectrum. Evidence of this component in the

presence of fetal movements (basically of the trunk) is also

reported in [4, 25]. It depends also on maternal breathing, in

fact, the analysis between the maternal and fetal heart rate

signals showed a high correlation between the fetal MF

component and the maternal respiratory frequency. This

would confirm the complex interaction between the

mechanical influence of the maternal respiratory activity

and the fetal neural reflexes [6]. The LF/(HF ? MF) ratio

was estimated as well and it quantifies the autonomic bal-

ance between neural control mechanisms from different

origin (in accordance with the LF/HF ratio normally cal-

culated in adults [28]).
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Fig. 1 Example of two different encoding procedures. The upper
panel refers to the proposed coding criterion, which is simply the

increase or decrease of the signal. The lower panel refers to the

moving threshold approach: the current sample is encoded with 1 or 0

if it is greater or less than the signal average, respectively. Signal

average is computed over a time window of 25 sample and indicated

by the horizontal line
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2.5 Multiparametric approach

The indices evaluation was completed by a multiparametric

analysis. The adopted method was the k-mean cluster

analysis, which treats each observation (measured indices)

as an object having a location in space. Computationally,

this method can be thought as an analysis of variance

(ANOVA) ‘‘in reverse’’. The algorithm starts with k ran-

dom clusters, and then iteratively move objects among

those clusters with the goal to (i) minimize variability

within clusters and (ii) maximize variability among clus-

ters. Each cluster in the partition is defined by its member

objects and by its centroid, or center. The centroid for each

cluster is the point to which the sum of distances from all

objects in that cluster is minimized. The analogy to

‘‘ANOVA in reverse’’ is in the sense that the significance

test in ANOVA evaluates the between-group variability

against the within-group variability when computing the

significance test for the hypothesis that the means in the

groups are different from each other. In k-means clustering,

the algorithm tries to move objects in and out of groups

(clusters) to get the most significant ANOVA results.

3 Results

The entropy values computed for scale factors s[ 3 were

able to significantly separate the severe IUGRs from both

the not severe IUGRs and the normal fetuses (ANOVA test

and Kruskall–Wallis test were performed, then post hoc

comparisons were made by Scheffé test, p-value

ANOVA \1% and p-value Scheffé test\5%). As shown in

Fig. 2, the entropy values of severe IUGRs are lower than

the values of the other groups, whereas the entropy values

of not severe IUGRs and healthy subjects are very similar.

In addition, the a slopes were able to significantly separate

the three groups. In particular, the slope values associated

with pathological fetuses were smaller than in the healthy

condition for all the entropy estimators adopted in this study.

Table 2 shows the slope values obtained with SampEn(2,0.2).
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Fig. 2 MSE analysis. Entropy

values of MSE analysis plotted

versus the scale factor s (from 1

to 15). Upper panels refer to the

values obtained by ApEn(1,0.1)

and SampEn(1,0.1). Lower

panels refer to the values

obtained by ApEn(2,0.15) and

SampEn(2,0.15)

Table 2 Slope values estimated on the MSE curves obtained by SampEn(2,0.2)

a
y
1�2 a

y
1�3 a

y
1�4 a

y
1�5 a

y
1�6 a

y
1�7

Normal 0.160 ± 0.036 0.146 ± 0.031 0.136 ± 0.029 0.126 ± 0.026 0.118 ± 0.024 0.107 ± 0.020

Sev. IUGR 0.125 ± 0.068 0.114 ± 0.060 0.105 ± 0.054 0.098 ± 0.049 0.090 ± 0.044 0.082 ± 0.039

Not sev. IUGR 0.132 ± 0.055 0.124 ± 0.045 0.113 ± 0.040 0.105 ± 0.036 0.098 ± 0.033 0.090 ± 0.031

The slopes are assessed on different ranges of scale factors. The symbol y refers to the indices, which significantly separate the three groups

(p-value ANOVA \1% and p-value Scheffé test \5%)
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As regards LZC analysis, the proposed encoding pro-

cedure demonstrated a significant separation of the

groups. (ANOVA test and Kruskall–Wallis test were

performed among the three patient groups, then post hoc

comparisons were made by Scheffé test, p-value

ANOVA \1% and p-value Scheffé test \5%). Moreover,

the discriminating ability of the ternary LZC seems to be

weakly dependent on the choice of the encoding param-

eter p. Actually, significant results were obtained with

different encoding factors: p = 0, 0.5 and 1%. On the

contrary, the LZC values computed by the moving

threshold encoding procedure did not produce significant

results. In addition, the LZC values obtained from this

procedure are much lower than those computed with the

proposed coding approach, as Table 3 shows. This con-

firms that the index in case of thresholds encoding mainly

captures the seemingly stationary oscillations of the FHR

signal, but not the inherent dynamics.

The spectral components were not sufficient to separate

the severe from the not severe IUGRs. As Table 4 shows,

the severe IUGRs provided significant lower values in most

spectral bands (LF, MF, HF) with respect to the healthy

fetuses (ANOVA test was performed among the three

patients groups, p-value \5%). However, the not severe

IUGRs present values whose range overlaps with the val-

ues of healthy and severe IUGRs. Actually, the post hoc

comparisons shows that these indices could not separate

the three groups.

Finally, the analysis was completed by a multipara-

metric approach. The method adopted was the k-mean

cluster analysis and the distance measure was the squared

Euclidean distance. The most interesting results were

obtained by considering both the ternary LZC and the slope

a1-2 assessed from MSE analysis as the intercept of scale

factors s = 1 and 2. The k-mean cluster analysis applied to

these indices produced the following results: the severe

IUGRs were gathered and separated from both the not

severe IUGRs and normal fetuses, which were instead

included in the same cluster. In particular, the best results

were achieved by choosing the parameters LZC(3,0) and

the a1-2 slope, computed on the multiscale SampEn(2,0.15)

and on the multiscale SampEn(2,0.2). The discrimination

between the two clusters has sensitivity (Se) = 72.2%

and accuracy (Ac) = 80.4% in the first case, whereas

Se = 77.8% and Ac = 82.4% in the second case (see

Fig. 3). Notice that the same indices separately analyzed

would have produced a worse performance in term of

accuracy. In fact, the discrimination based on the LZC(3,0)

obtains Se = 88.9% and Ac = 70.6%. The classification

based on a1-2 slope, computed on the multiscale Sam-

pEn(2,0.15) and SampEn(2,0.2), provides Se = 61.1%

Ac = 74.4% and Se = 77.8% Ac = 70.6%, respectively.

4 Discussion and conclusion

The results show that the LZC index computed with the

proposed coding procedure and the MSE could be prom-

ising indices to identify the actual IUGRs and to separate

them from the not severe IUGRs and the normals.

However, one must carefully choose the encoding pro-

cedure for the computation of the LZC index. As a matter

of fact, LZC values, obtained with the encoding procedure

based on moving threshold, did not produce good results.

Table 3 LZC(k, p) values (avg ± std), where k refers to the number of symbols used and p is the encoding parameter (p = 0, 0.5, 1, 2%)

LZC(3,0)y LZC(3,0.5)y LZC(3,1)y LZC(3,2) LZCma (3)

Normal 0.886 ± 0.032 0.886 ± 0.032 0.887 ± 0.031 0.889 ± 0.027 0.287 ± 0.036

Sev. IUGR 0.952 ± 0.028 0.952 ± 0.028 0.952 ± 0.027 0.954 ± 0.023 0.304 ± 0.054

Not sev. IUGR 0.915 ± 0.035 0.915 ± 0.035 0.915 ± 0.035 0.921 ± 0.033 0.306 ± 0.037

The last column refers to the LZC values obtained with the traditional encoding procedure (moving average threshold). The symbol y refers to

the indices, which significantly separate the three groups (p-value ANOVA \1% and p-value Scheffé test \5%)

Table 4 Values of power of spectral components (avg ± std)

Mean RRI

(ms)

VLF (ms2) LF ðms2Þy MF ðms2Þy HF ðms2Þy LF% MF% HF% LF/

(MF?HF)

Normal 418.37 ± 22.22 274.82 ± 234.41 136.76 ± 84.21 19.13 ± 10.93 4.81 ± 3.61 83.82 ± 4.79 12.26 ± 2.51 3.93 ± 2.55 6.30 ± 1.50

Sev. IUGR 422.21 ± 25.46 151.34 ± 185.91 62.27 ± 50.43 8.78 ± 8.50 2.50 ± 1.86 81.99 ± 7.38 12.22 ± 3.78 5.79 ± 4.01 6.28 ± 2.69

Not sev. IUGR 423.13 ± 26.02 166.00 ± 118.07 100.03 ± 47.98 12.72 ± 6.68 3.82 ± 1.49 84.39 ± 4.14 11.41 ± 2.77 4.20 ± 2.18 6.73 ± 2.09

The mean interbeat time interval (mean RRI) values are reported as well. The symbol y refers to the indices, which provided a p-value ANOVA \5%. However, in

the post hoc comparisons, the same indices significantly separate the severe IUGRs from healthy fetuses only (p-value Scheffé test \5%)
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The main question could be: why this procedure, com-

monly adopted in HRV analysis seems to provide less

information than the proposed coding procedure? As

highlighted in the Appendix, the moving threshold is

mainly responsive to large changes in signal amplitude, so

as to be less suitable for the analysis of the FHR signal,

which, particularly in the early period of development,

presents very small amplitude variations. On the contrary, a

coding procedure based on the increase/decrease in the

signal enhances information on the small oscillations of the

signal.

Concerning the potential application to clinical diagno-

sis in antenatal medicine, our study provides interesting

hints on IUGR pathological state. In fact, the IUGR con-

dition was characterized by higher LZC values, very close

to 1 (namely the theoretical value associated with a com-

pletely random string) advancing the hypothesis that the

HR belonging to the severe IUGRs goes up and down more

randomly than in physiological conditions. These are only

preliminary results, which should be further investigated

and validated in relation to different pathologies affecting

the mechanisms of HR regulation.

Furthermore, the MSE analysis confirms that the entropy

estimators computed on single scale are not sufficient to

discriminate the pathological fetuses: actually for the scale

factor 1, none of the entropy indices adopted in this study is

able to separate the groups. As already demonstrated in

studies dealing with HR variability in adults [10], patho-

logical condition can affect the regularity of signal at dif-

ferent time scales.

The k-mean cluster analysis has shown a better dis-

criminant ability when the LZC and the a1-2 slope are

considered together, with respect to each single index. This

fact reinforces the opinion that a multiparametric approach

generally improves the identification of risky conditions in

clinical applications. In particular, in antenatal monitoring,

the indices related to HRV can reflect different develop-

mental stages of HR regulation mechanisms and thus they

can assume different weights along the gestational period.

Thus, it appears extremely helpful to face the diagnostic

problem in fetal medicine with multiparametric analysis.
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Appendix

The encoding procedure has a strong influence on the

estimation of the LZC index. Simulations were performed

to better understand this point. The simulated signals

considered for this analysis are generated from self-similar

and long-term correlated processes. Many works confirmed

that the long-term variations in the beat-to-beat heart rate

intervals are similar to those displayed by long-memory

stochastic processes, such as fractional Gaussian noise

(fGN) or fractional Brownian motion (fBm) [2, 3, 7, 14]. In

our study, the fractional Gaussian noise (fGn) was built by

generating a 1/f a power spectral density (-1 \ a\ 1)

with random phases (uniformly distributed on [0, 2p]) and

by successively applying the inverse fast Fourier transform

(FFT). The fractional Brownian motion (fBm) was gener-

ated by integrating the fGn time series [2], and so they are

characterized by a values [ [1, 3]. The generated time

series are N = 215 samples long. For the coding procedure

proposed in this paper, the adopted encoding parameter p

was 0.005, 0.01, 0.025 and 0.05%, whereas for the moving

average coding procedures, the adopted time windows W

were 128, 256, 512 and 1024 sample long.

In addition, we compared the obtained values with those

of the entropy estimators: the approximate entropy (ApEn)

and the sample entropy (SampEn).

As Fig. 4 shows, the coding procedure affects the

estimation of the LZC index. In fact, two different per-

formances were obtained. In particular, when coding

procedures based on thresholds are adopted, the LZC index

produced the same value distribution of the entropy
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estimators and, in general, for a[ 1 the values were lower

than those obtained by adopting the proposed encoding

procedure.

These results confirm that the entropy estimators and the

LZC with the threshold coding approach produce similar

trends and, therefore, they seem to provide the same

information. Moreover, they are not able to distinguish the

degree of signal organization, e.g., to separate a simple

periodic time series from an apparently regular signal, but

with long-term correlations and self-similar properties (see

Fig. 5). In fact, LZC with traditional coding procedure and

entropy values achieve zero value, which represents the

highest level of predictability, as it is associated with a

completely periodic time series.
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