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COMPLEXITY AND ALGORITHMS FOR COMPUTING
VORONOI CELLS OF LATTICES

MATHIEU DUTOUR SIKIRIĆ, ACHILL SCHÜRMANN, AND FRANK VALLENTIN

Abstract. In this paper we are concerned with finding the vertices of the
Voronoi cell of a Euclidean lattice. Given a basis of a lattice, we prove that
computing the number of vertices is a #P-hard problem. On the other hand,
we describe an algorithm for this problem which is especially suited for low-
dimensional (say dimensions at most 12) and for highly-symmetric lattices.
We use our implementation, which drastically outperforms those of current
computer algebra systems, to find the vertices of Voronoi cells and quantizer
constants of some prominent lattices.

1. Introduction

Let L = BZm ⊆ Rn be a lattice of rank m in Euclidean space given by a matrix
B ∈ Rn×m of rank m. By linL we denote the linear subspace spanned by the
elements of L. The Voronoi cell of L is

V(L) = {x ∈ linL : ‖x‖ ≤ ‖x − v‖ for all v ∈ L}.

The Voronoi cell of a lattice is a centrally symmetric, convex polytope. The poly-
topes V (L) + v for v ∈ L tile lin L. The study of Voronoi cells is motivated by the
fact that most important geometric lattice parameters have a direct interpretation
in terms of the Voronoi cell: The determinant detL equals the volume of V(L), the
packing radius λ(L) equals the inradius of V(L), the covering radius µ(L) equals
the circumradius of V(L), and the quantizer constant G(L) is

G(L) = (detL)−(1+2/n)

∫
V(L)

‖x‖2dx.
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In this paper we consider theoretical and practical aspects of the computation
of the covering radius as well as the quantizer constant of a lattice. These two pa-
rameters have many applications, we just name a few: By computing the covering
radius, we get an upper bound for the lattice sphere covering problem, which is the
problem of minimizing the covering radius among the lattices of fixed determinant
(see [CS99, Chapter 2] and [SV06]). The computation of the covering radius of the
Leech lattice in [CS99, Chapter 23] had a major impact on the study of hyperbolic
reflection groups (see [CS99, Chapter 27]). An upper bound for the Frobenius num-
ber of a set of integers can be obtained from the covering radius of a suitable lattice
(see [FR05]). A recent application comes from public key cryptography; Micciancio
[Mic04] found a new connection between the average-case complexity of finding the
packing radius and the worst-case complexity of determining the covering radius.
In information theory, the quality of a lattice as a vector quantizer is determined by
its quantizer constant (see [GG92, ELZ05, SB03] and [CS99, Chapter 2.3, Chapter
21]).

The structure of this paper is as follows. In Section 2 we discuss the compu-
tational complexity of the covering radius problem. We prove that the related
problem of counting vertices of the Voronoi cell is # P-hard. As a byproduct of our
construction, we show that the lattice isomorphism problem is at least as difficult as
the graph isomorphism problem. We turn to practical algorithms for the covering
radius problem in Section 3. There we describe an algorithm which computes the
vertices of the Voronoi cell of a lattice. Based on this algorithm we give an algo-
rithm for computing the quantizer constant in Section 4. In Section 5 we report on
computations with our implementation. We determine the exact covering radius
and quantizer constants of many prominent lattices which were not known before.

2. Computational complexity

We formulate the covering radius problem as a decision problem.

Problem 1. Covering radius problem
Input: m, n, B ∈ Qm×n, µ ∈ Q.
Output: Yes, if µ(BZn) ≤ µ, No otherwise.

It is conjectured (see [Mic04, Section 1.1]) that the covering radius problem is
NP-hard. Haviv and Regev [HR06] showed that there is a constant cp so that the
covering radius in the lp-norm is Π2-hard to approximate within a constant less
than cp for any large enough p. In [GMR05] Guruswami, Micciancio and Regev
proved that approximating it within a factor of O(

√
m/ log m) for a lattice of rank

m cannot be NP-hard unless the polynomial hierarchy collapses.
Currently, there is only one known general and practical method to compute

µ(L) for a lattice L: First one enumerates the vertices of V(L) and then one finds
the vertex with largest norm. The number of vertices of V(L) can be as large as
(m + 1)! and furthermore, as we show in Theorem 1, even computing this number
is # P-hard.

Problem 2. Vertices of a lattice Voronoi cell
Input: m, n, B ∈ Qm×n.
Output: Number of vertices of V(BZn).
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Theorem 1. The problem “Vertices of a lattice Voronoi cell” is # P-hard.

It will be obvious from the proof that we could restrict the problem to the case
m = n. We reduce the problem “Acyclic orientations of a graph”, which Linial
[Lin86] showed to be # P-complete, to Problem 2.

Problem 3. Acyclic orientations of a graph
Input: A graph G = (V, E).
Output: The number of orientations of G with no directed circuit.

The structure of the proof of Theorem 1 is as follows: In Section 2.1 we construct
a matrix B with columns indexed by E defining a lattice L(G) = BZE from G in
polynomial time. Then we show that the vertices of the Voronoi cell of V (L(G))
are in bijection with the acyclic orientations of G. To establish this bijection we
need several intermediate steps. In Section 2.2 we associate to G a hyperplane
arrangement H(G) whose chambers are in bijection with the acyclic orientations of
G. In Section 2.3 we recall that the chambers of a hyperplane arrangement are in
bijection with the vertices of a zonotope associated to the hyperplane arrangement.
These two steps are standard and we cover them rather briefly. In Section 2.4 we
show that the Voronoi cell of L(G) is a zonotope which, up to a linear transforma-
tion, is the one associated to the hyperplane arrangement H(G). In Section 2.5,
as a byproduct of this construction, we show that the lattice isomorphism problem
is at least as difficult as the graph isomorphism problem. Some related complexity
results concerning vertex enumeration of polyhedra given by linear inequalities are
in [KBBEG08, Dy83].

2.1. From graphs to lattices. Let G = (V, E) be a connected graph with vertex
set V = {1, . . . , n} and edge set E. We consider the following orientation of the
edges of G: The head of an edge e = {v, w} ∈ E is e+ = max{v, w} and the tail is
e− = min{v, w}.

Let T ⊆ E be the edge set of a spanning tree of G, and let e ∈ T . Deleting
e from T divides T into two connected components with vertex sets T+

e and T−
e ,

where e+ ∈ T+
e and e− ∈ T−

e . Define the vector bT,e ∈ ZE by

bT,e(f) =

⎧⎨
⎩

1, if f+ ∈ T+
e and f− ∈ T−

e ,
−1, if f− ∈ T+

e and f+ ∈ T−
e ,

0, otherwise.

Then

L(G, T ) =

{∑
e∈T

αebT,e : αe ∈ Z

}
⊆ ZE

is a lattice of rank n − 1.

Proposition 1. Let T and T ′ be spanning trees of G. Then, L(G, T ) = L(G, T ′).

Proof. Since one can connect any two spanning trees by a sequence of transfor-
mations of the form T ↔ T \ {e} ∪ {f}, it suffices to prove the proposition for
T ′ = T \ {e} ∪ {f}. Let g ∈ T ′. If g = f , then bT ′,f = ±bT,e. If g ∈ T , then denote
by C the cycle containing e and f . If g /∈ C, then bT ′,g = bT,g. The subgraph of
G with edge set T \ {e, g} has three connected components, denoted by C1, C2,
C3. Given h = {v, w} ∈ E, the value of bT ′,g(h), bT,g(h) and bT,e(h) depends only
on which connected component v and w belong to. So, in computing bT ′,g, we can
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reduce ourselves to the case when G is the complete graph on {1, 2, 3}, g = {1, 3},
e = {1, 2} and f = {2, 3}. An easy computation gives bT ′,g = bT,g + bT,e and so we
conclude that bT ′,g = bT,g + αbT,e with α ∈ {−1, 0, +1}. �

In the following we omit the spanning tree T from the notation L(G, T ) and just
write L(G). Note that one can find a basis of L(G) given G in polynomial time.

2.2. From graphs to hyperplane arrangements. A matrix

(1) V = (v1, . . . , vm) ∈ Rn×m

with nonzero column vectors vi ∈ Rn gives an arrangement of hyperplanes

H(V ) = {H1, . . . , Hm} with Hi = {c ∈ Rn : c · vi = 0}.
The hyperplane arrangement H(V ) divides the space Rn into polyhedral cones,
called regions, of different dimensions. The regions are partially ordered by inclusion
and full-dimensional regions are called chambers.

To associate a hyperplane arrangement H(G) with G we consider the incidence
matrix DG ∈ RV ×E of G which is given by

DG(v, e) =

⎧⎨
⎩

1, if v = e+,
−1, if v = e−,
0, otherwise.

Then we define the hyperplane arrangement of G by H(G) = H(DG).
In [GZ83, Lemma 7.1] Greene and Zaslavsky show that the chambers of H(G)

are in bijection with the acyclic orientations of G: Let �E be an acyclic orientation
of E. Then a chamber of H(G) is given by

Reg( �E) = {x ∈ RV : xv < xw if (v, w) ∈ �E}.
Let R be a chamber of H(G). Then an acyclic orientation of E is given by

�E(R) = {(v, w) : {v, w} ∈ E and xv < xw for every x ∈ R}.

Obviously, Reg( �E(R)) = R.

2.3. Hyperplane arrangements and zonotopes. The matrix V in (1) defines
a zonotope Z(V ) by

Z(V ) =

{
m∑

i=1

αivi : −1 ≤ αi ≤ 1

}
.

The faces of Z(V ) are partially ordered by inclusion. It is a well-known fact (see e.g.
[Zie95, Theorem 7.16]) that the partially ordered set of regions of the hyperplane
arrangement H(V ) is anti-isomorphic to the partially ordered set of faces of Z(V ):
Let R be a region of H(V ). Let x ∈ R. Then the corresponding face Face(R) of
Z(V ) given by

Face(R) =
{

y ∈ Z(V ) : x · y = max
z∈Z(V )

x · z
}

,

does not depend on the choice of x. Let F be a face of Z(V ). Let y be in the
relative interior of F . Then the corresponding region Reg(F ) of H(V ) given by

Reg(F ) =
{

x ∈ Rn : max
z∈Z(V )

x · z = x · y
}

,
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does not depend on the choice of y. Obviously, Face(Reg(F )) = F and F ′ ⊆ F if
and only if Reg(F ′) ⊇ Reg(F ). In particular, the chambers of H(V ) are in bijection
with the vertices of Z(V ).

2.4. From lattices to zonotopes. Let L ⊆ Rn be a lattice. The support of a
vector v ∈ L is v = {i ∈ {1, . . . , n} : vi �= 0}. The vector v is called elementary if
v ∈ {−1, 0, +1}n \ {0} and if v has minimal support among all vectors in L \ {0}.
We say that two vectors v, w ∈ L are conformal if viwi ≥ 0 for all i = 1, . . . , n. The
lattice L is called regular if for every vector v ∈ L \ {0} there exists an elementary
vector u ∈ L with u ⊆ v.

Lemma 1 ([Tut71, Chapter 1]).
(i) For any graph G the lattice L(G) is regular.
(ii) If L is a regular lattice, then every v ∈ L can be written as a sum of pairwise

conformal elementary vectors.
(iii) If L is a regular lattice, v ∈ L is elementary, and u ∈ L satisfies u = v, then

there exists a factor α ∈ Z such that u = αv.

A vector v ∈ L for which V(L) ∩ {x ∈ Rn : x · v = 1
2v · v} is a facet of V(L) is

called relevant. Voronoi characterizes in [Vor08, page 277] the relevant vectors of
L: A nonzero vector v ∈ L is relevant if and only if ±v are the only shortest vectors
in v + 2L.

Proposition 2. In a regular lattice, a vector is elementary if and only if it is
relevant.

Proof. Let v ∈ L be a relevant vector. By Lemma 1 (ii), we can write v =
∑m

k=1 wk

as a sum of pairwise conformal elementary vectors wk ∈ L. Assume that m ≥ 2.
Defining u = v − 2w1 gives u �= ±v and u · u = v · v − 4(v − w1) · w1. Since the
vectors wk, k = 1, . . . , m, are pairwise conformal we have (v − w1) · w1 ≥ 0, and
±v is not the unique shortest vector in v + 2L. In this case v cannot be a relevant
vector. Hence, m = 1 and v is an elementary vector.

Let v ∈ L be an elementary vector, and let u ∈ v + 2L be a lattice vector with
u �= ±v. We have v − u ∈ 2L ⊆ 2Zn and vi ∈ {−1, 0, +1}, which shows v ⊆ u. The
case v �= u immediately leads to v · v < u ·u. If v = u, then by Lemma 1 (iii), there
exists a factor α ∈ Z \ {−1, +1} so that u = αv, hence v · v < u · u. In both cases
±v are the only shortest vectors in v + 2L. Hence, v is a relevant vector. �

The following special case of the Farkas lemma is proved, e.g., in [Roc70, Theo-
rem 22.6].

Lemma 2. Let L ⊆ Rn be a regular lattice. Let x ∈ Rn be a vector, and
let α1, . . . , αn ∈ R ∪ {±∞}. Either there exists a vector y′ ∈ (lin L)⊥ lying
in x +

∏n
i=1[−αi, αi], or there exists a vector y ∈ linL such that for all z ∈

x +
∏n

i=1[−αi, αi] the inequality y · z > 0 holds. If the second condition holds,
then one can choose y to be an elementary vector of L.

Theorem 2. Let L ⊆ Rn be a regular lattice. Let P ∈ Rn×n be the matrix of the
orthogonal projection of Rn onto linL. Then, V(L) = 1

2Z(P ) = P ([−1/2, 1/2]n).

Proof. Suppose that x ∈ [−1/2, 1/2]n. For all v ∈ Zn\{0} the inequality x·v ≤ 1
2v·v

holds. Write x = y + y′ with y = Px ∈ lin L and y′ ∈ (lin L)⊥. For all v ∈ L \ {0}
we have y · v = x · v − y′ · v ≤ 1

2v · v. Thus, Px ∈ V(L).
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Suppose now that y ∈ V(L). If there exists x ∈ (−y + [−1/2, 1/2]n) ∩ (lin L)⊥,
then y + x ∈ [−1/2, 1/2]n and P (y + x) = y. Assume that such a vector does
not exist. Then by Lemma 2 there is an elementary lattice vector v ∈ L so that
v · (−y + [−1/2, 1/2]n) > 0. This implies v · (−y − 1

2v) > 0. Hence, −y �∈ V(L).
Since V(L) is centrally symmetric, this contradicts the assumption y ∈ V(L). �

In [Big97, Proposition 8.1] Biggs shows that for the lattice L(G) the matrix P
can be written in the form P = XDG where DG ∈ RV ×E is the incidence matrix
of G and X ∈ RE×V is given by

(2) X(e, v) =
number of spanning trees T with e ∈ T and v ∈ T+

e

number of spanning trees of G
.

Furthermore, the linear map given by X restricted to the image of DG is a bijection.
Thus, the zonotope Z(P ) which is the Voronoi cell of L(G) equals 1

2XZ(DG).
Hence, there is a linear isomorphism between the faces of V(L(G)) and those of
Z(DG). This completes the proof of Theorem 1.

Using a straightforward computation we get the following proposition.

Proposition 3. Using the notation in (2), the covering radius of the lattice L(G)
is given by

(3) µ(L(G))2 = max
x∈[−1/2,1/2]E

∑
e∈E

⎛
⎝∑

f∈E

(X(e, f+) − X(e, f−))x(f)

⎞
⎠

2

.

Unfortunately, we do not have a combinatorial interpretation of (3). Finding
one could lead to a proof of the NP-hardness of the covering radius problem.

2.5. Lattice isomorphism problem. Using the construction L(G) used in the
proof of Theorem 1, we reduce the graph isomorphism problem to the lattice iso-
morphism problem in polynomial time. We don’t know whether one can give a
reverse polynomial time reduction. For the graph isomorphism problem no polyno-
mial time algorithm is known. It is generally believed to lie in NP∩ co-NP. So it is
unlikely that it is NP-hard. For more information on the computational complexity
of this problem, see the book [KST93] of Köbler, Schöning and Tóran.

Problem 4. Lattice isomorphism problem
Input: m, n, B, B′ ∈ Qm×n matrices of rank m.
Output: Yes, if there is an orthogonal transformation O so that OBZn =

B′Zn, No otherwise.

Problem 5. Graph isomorphism problem
Input: Graphs G = (V, EG), H = (V, EH).
Output: Yes, if there is a permutation σ : V → V so that for all v, w ∈ V we

have {v, w} ∈ EG if and only if {σ(v), σ(w)} ∈ EH , No otherwise.

Theorem 3. There is a polynomial time reduction of the graph isomorphism prob-
lem to the lattice isomorphism problem.

Proof. Let G = (V, EG) and H = (V, EH) be graphs. We modify G and H by
adding three extra vertices to V each adjacent to all vertices in V . We call the new
graphs G′ and H ′ which are by construction 3-connected and they are isomorphic
if and only if G and H are isomorphic.
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It is clear that the lattices L(G′) and L(H ′) defined in Subsection 2.1 are iso-
morphic whenever G′ and H ′ are. For this direction it would be enough to consider
the original graphs G and H.

Now suppose that the lattices L(G′) and L(H ′) are isomorphic. We apply the
2-isomorphism theorem of Whitney (actually we only use the easy subcase of 3-
connected graphs [Oxl92, Lemma 5.3.2]): Because the graphs G′ and H ′ are 3-
connected and there is a bijection between the elementary vectors preserving con-
formality, the graphs G′ and H ′ are isomorphic. �

3. Algorithms

In this section we describe an algorithm which computes all vertices of a lattice
Voronoi cell. Our focus is on implementability and practical performance, using
the symmetries of the lattice. In fact, the algorithm computes all full-dimensional
Delone cells and the adjacencies between them up to equivalence. We give necessary
definitions in Section 3.1. In Section 3.2 we describe the algorithm’s main steps
and in the following sections we give details about its subalgorithms. In Section
3.6, we explain how to use Gram matrices instead of lattice basis and in Section
3.7 we compare our method with existing algorithms.

3.1. Notation. From now on, we assume lattices L ⊆ Rn to have full rank n.
To encode the vertices of V(L) we use Delone cells. A point x ∈ Rn defines a

Delone cell D(x) by

D(x) = conv
{

v ∈ L : ‖x − v‖ = min
w∈L

‖x − w‖
}

.

Denote by S(x, r) the sphere with center x and radius r. For r = minv∈L ‖x − v‖,
the sphere S(x, r) is called empty, since there is no lattice point inside. In this case
the polytope D(x) is the convex hull of S(x, r) ∩ L. The Delone cell of a vertex
of V(L) is characterized among all Delone cells by the following properties: The
origin is a vertex of D(x) and D(x) is full-dimensional.

It is well known (see e.g. [Ede01]) that the Delone cells are the projections of
the faces of the infinite (n + 1)-dimensional polyhedral set

Lift(L) = conv
{
(x, ‖x‖2) : x ∈ L

}
.

The task of finding a vertex of a Delone cell of a point x, given a lattice basis
of L, is called the closest vector problem. Generally this is an NP-hard problem
[DKS03]; however, there are algorithms and implementations available which can
solve this problem rather fast in low dimensions.

The orthogonal group O(L) of L is the group of all orthogonal transformations
A ∈ O(Rn) fixing L, i.e. A(L) = L. The isometry group Iso(L) of L is the group
generated by O(L) and all lattice translations tv : Rn → Rn with tv(x) = x + v for
v ∈ L.

We say that two vertices x and x′ of V(L) are equivalent if there is an A ∈ O(L)
so that A(x) = x′. Correspondingly, we say that two Delone cells D(x) and D(x′)
are equivalent if there is an A ∈ Iso(L) so that A(D(x)) = D(x′).

3.2. Main algorithm. Our algorithm finds a complete list of inequivalent full-
dimensional Delone cells of L with respect to Iso(L). The enumeration process is
a graph traversal algorithm of the graph of equivalence classes of full-dimensional
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Delone cells of L. Two equivalence classes are adjacent whenever there is a facet
between two of its representatives. Note that this graph can have loops and multiple
edges.

For the graph traversal algorithm below one needs four subalgorithms, which we
explain in the following sections.

Input: n, B ∈ Qn×n matrix of rank n.
Output: Set M of all inequivalent full-dimensional Delone cells of the lattice
BZn with respect to the group Iso(BZn).

x ← an initial vertex of V(BZn). (Section 3.3)
T ← {D(x)}.
M ← ∅.
while there is a D ∈ T do

M ← M∪ {D}.
T ← T \ {D}.
F ← facets of D. (Section 3.4)
for F ∈ F do

D′ ← full-dimensional Delone cell with F = D ∩ D′. (Section 3.4)
if D′ is not equivalent to a Delone cell in M∪ T then (Section 3.5)

T ← T ∪ {D′}.
end if

end for
end while

Two full-dimensional Delone cells D(x) and v+D(x), both containing the origin,
are equivalent under O(L) if and only if 0 and −v are equivalent under the stabilizer
group of D(x) in Iso(L). As a consequence, we can compute the vertices of V(L)
under O(L) in the following way: For every orbit of full-dimensional Delone cells
given by a representative D(x), we compute the orbits of vertices of D(x) under the
stabilizer group and get the corresponding orbits of vertices of V(L) under O(L).

3.3. Finding an initial vertex. Now we explain a method for computing an initial
vertex of the Voronoi cell of a lattice, i.e. a full-dimensional Delone cell containing
the origin. The method we propose is a so-called cutting-plane algorithm, which is
a well-known technique in combinatorial optimization.

Let us describe the geometric idea. We start with an outer approximation of
the Voronoi cell given by linear inequalities. The first outer approximation is the
polytope defined by the inequalities ±bi · x ≤ 1

2bi · bi for given lattice basis vectors
b1, . . . , bn. Then we find a vertex x of the approximation by linear programming
(see e.g. [Sch86]). Deciding whether the vertex x belongs to the Voronoi cell V(L)
can be done as follows: Compute the vertices of the Delone cell D(x). If the origin
is a vertex of D(x), then x is a vertex of V(L). Otherwise x is not contained in
V(L), and for all vertices v of D(x) we have the strict inequality ‖x − v‖ < ‖v‖.
So the new linear inequalities v · x ≤ 1

2v · v together with the old ones provide a
tighter outer approximation of the Voronoi cell. Since we started with a compact
outer approximation, finitely many iterations of these steps suffice to find a vertex
of the Voronoi cell.

One advantage of this method is that the computation of all facets of the Voronoi
cell is not required, i.e. we do not use Voronoi’s characterization (see Section 2.4)
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1b

b2

1b

b2

x

x c
c

v

Figure 1. Finding an initial vertex of V(L)

of facet defining vectors, which involves solving exponentially many closest vector
problems. Figure 1 illustrates this algorithm.

Input: n, B = (b1, . . . , bn) ∈ Qn×n matrix of rank n.
Output: vertex x of V(BZn).

c ← random vector in Qn.
B ← {±b1, . . . ,±bn}.
do

x ← a vertex of the polytope {x : b · x ≤ 1
2b · b for all b ∈ B},

which maximizes c · x.
E ← set of closest lattice vectors in BZn to x.
if 0 ∈ E then

return x.
end if
B ← B ∪ E .

end do

3.4. Computing facets of, and finding adjacent Delone cells. We want to
determine the facets of a full-dimensional Delone cell, which is given by its ver-
tex set. This representation conversion problem can be solved by many different
methods. For details and implementations we refer to cdd [Fuk95], lrs [Avi93], pd
[Mar97] and porta [CL97].

In order to exploit the symmetries we use the adjacency decomposition method
(see [CR96, BDS07, DSV07]). It allows us to compute a complete list of inequivalent
facet representatives: We compute an initial facet by linear programming and insert
it into the list of orbit representatives of facets. From any such orbit, we compute
the list of facets adjacent to a representative and insert it, if necessary, into the list
of representatives until all orbits have been treated. Computing adjacent facets is
itself a representation conversion problem in one dimension lower. So this method
can be applied recursively (see [BDS07, DSV07]). Note that our main algorithm is
itself an adjacency decomposition method.

After the computation of facets, we can compute adjacent full-dimensional De-
lone cells: We take an initial vertex v and thus get a tentative empty sphere. If the
sphere is not empty, then we find another vertex v and iterate until the sphere is
indeed empty. Figure 2 illustrates this algorithm.
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F

c

v

F

c

v

DD

D’

Figure 2. Finding D′, the full-dimensional Delone cell adjacent
to D at F

Input: n, B ∈ Qn×n matrix of rank n, a full-dimensional Delone cell D and a
facet F of D.
Output: Vertex set V ′ of a full-dimensional Delone cell D′ with D ∩ D′ = F .
φ ← affine function on Rn with F = {x ∈ D : φ(x) = 0} and φ(x) > 0

on D − F .
VF ← vertices of D belonging to F .
v ← a point of BZn with φ(v) < 0.
do

S(c, r) ← sphere around VF ∪ {v}.
V ′ ← closest vectors in BZn to c.
if ‖v′ − c‖ = r for a v′ ∈ V ′ then

return V ′.
end if
v ← one element of V ′.

end do
One way to speed up the convergence of this algorithm in practice is to heuris-

tically choose an initial vector v with a sphere S(c, r) of small radius.

3.5. Checking equivalence. We have to test equivalence and compute stabilizers
under the group Iso(L) of Delone cells of different dimensions. Below we propose
three different methods for this.

We can encode a Delone cell D by the center c(D) of the empty sphere around it
or by the vertex barycenter g(D) = 1

| vert D|
∑

v∈vert D v of its vertex set vert D. Both
c(D) and g(D) are invariant under the stabilizer of D. Any two full-dimensional
Delone cells D, D′ are equal if and only if c(D) = c(D′). However, it is possible if
n ≥ 3 that c(D) lies outside or on the boundary of D. If c(D) lies on the boundary
of D, then a facet containing c(D), which is itself a Delone cell, has the same
center as D. Hence, the sphere centers can be used to distinguish full-dimensional
Delone cells, but they do not distinguish Delone cells. Therefore, we use the vertex
barycenter.

In the first method we consider the classes of the vertex barycenters g(D) and
g(D′) in the quotient Rn/L and check their equivalence under the finite group
Iso(L)/L � O(L). The generic methods underlying isomorphism and stabilizer
computations generate the full orbit of g(D) under Iso(L)/L. This is typically
memory intensive. In some cases we can use a method from computational group
theory, which we now explain in an example. Suppose g(D) is expressed in a
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basis (b1, . . . , bn) of L as ( α1
2·3 , . . . , αn

2·3 ) with 0 ≤ αi ≤ 5 and we want to compute
its stabilizer under the group Iso(L)/L. The vector 2g(D) reduced modulo L is
expressed as ( α̃1

3 , . . . , α̃n

3 ) with 0 ≤ α̃i ≤ 2. We first compute the stabilizer H

of the vector 2g(D) under the action of Iso(L)/L. The stabilizer of g(D) under
Iso(L)/L is equal to the stabilizer of g(D) under H. This method generalizes to
more than two prime factors and it is more memory efficient because the generated
orbits are smaller.

The second method uses finite metric spaces of the vertex set of full-dimensional
Delone cells obtained from the metric ‖v − v′‖2 [DL97, Chapter 14]. A finite met-
ric space defines an edge-weighted graph. Testing if two edge weighted graphs are
isomorphic can be reduced to testing if two vertex-weighted graphs are isomorphic
(see [McK06, p. 25]). In practice, the program nauty [McK06] can solve the isomor-
phism problem if the number of vertices of D and D′ is not too large. If the metric
spaces are not isomorphic, then D and D′ are not equivalent under Iso(L). If they
are isomorphic, then every graph isomorphism corresponds to a linear isometry be-
tween D and D′ [BDS07, DSV07]. For each of those isomorphisms, we check if it
belongs to Iso(L). This method is useful when the isometry group of D is small.

For the third method, we use laminations over the n-dimensional lattice L. Let
D be a Delone cell of L with vertex barycenter g. One defines an (n+1)-dimensional
lattice L(g) by embedding L ⊆ Rn into Rn+1 and adding layers to it

L(g) = {αv + h : h ∈ L, α ∈ Z} ⊆ Rn+1,

where v ∈ Rn+1 is chosen so that v+g is orthogonal to the space spanned by L and
normalized so that ‖v + g‖ = 1. A variant of this construction is used, for example,
to build the laminated lattices; see [CS99, Chapter 6]. If φ is an element of O(L(g))
preserving every layer of the lamination, then it maps the vector v to some vector
w = v + h with h ∈ L. The function x �→ φ(x) + h preserves the Delone cell and
every element preserving the layers is obtained in this way. In practice, we can use
the program AUTO (see [PP97]) of the package CARAT (see [OPS98]) for computing
this automorphism group. The isomorphism problem is treated similarly using the
program ISOM.

3.6. Working with Gram matrices and periodic structures. In many cases,
it is more convenient to work with the Gram matrix BT B instead of the lattice
basis B (see [CS99, Chapter 2.2]). For instance, when B is irrational but BT B is
rational. Note that our algorithms can be reformulated in terms of Gram matrices.
Note also that all of our algorithms can be modified to deal with periodic point
sets, that is for finite unions of lattice translates. Our implementation is available
from [Dut08].

3.7. Comparison. In [VB96] Viterbo and Biglier describe another algorithm for
computing the Voronoi cell of a lattice, called the diamond cutting algorithm. As
in our approach they start with a parallelepiped P defined by the basis vectors.
Then they determine all lattice vectors which lie in a sphere containing 2P . This
set contains all facet defining lattice vectors of V(L). Successively they add cutting
planes obtained from these vectors and update the complete face lattice of the
tentative Voronoi cell. They terminate when its volume coincides with detL. Their
implementation uses floating point arithmetic.
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In comparison, our approach has the following advantages: We use the presence
of symmetry in an efficient way. We do not need to compute a huge initial list of
potential facet defining lattice vectors. Our algorithm does not need to compute
the face lattice, not even for computing the quantizer constant as explained below.
Our implementation uses rational arithmetic only.

4. Computing quantizer constants

Recall from the introduction that the quantizer constant of a lattice L is the
integral

G(L) = (detL)−(1+2/n)

∫
V(L)

‖x‖2dx.

A standard method for computing the integral G(L) is to decompose V(L) into
simplices. Suppose that S is a simplex with vertices v1, . . . , vn+1 in Rn. Then (see
[CS99, Chapter 21, Theorem 2]) the following holds:

∫
S

‖x‖2dx =
volS

(n + 1)(n + 2)

⎛
⎝

∥∥∥∥∥
n+1∑
i=1

vi

∥∥∥∥∥
2

+
n+1∑
i=1

‖vi‖2

⎞
⎠ .

Thus G(L) can be obtained by summing the integrals of all simplices in a decompo-
sition of V(L). Several practical methods for decomposing a polytope into simplices
are discussed in [BEF98]. In our implementation, we use the triangulation obtained
by the program lrs. However, this method as well as the other methods explained
in [BEF98] are sometimes impractical and they do not use symmetries.

In order to get a group invariant decomposition, we can use the barycentric
subdivision of P . That is, given any flag F0 ⊂ F1 ⊂ · · · ⊂ Fn = P of faces of P , we
associate the simplex with vertex set g0, g1, . . . , gn where gi is the vertex barycenter
of Fi. Note that, in general, there is a difference between the barycenter 1

vol P

∫
P

xdx

of a polytope P and its vertex barycenter 1
| vert P |

∑
v∈vert P v. The group acts on

the barycentric subdivision and the stabilizer of each simplex is trivial. In practice,
the number of orbits of flags can be too large.

We propose a hybrid approach, which combines the benefits of both methods.
Let F be the facet set of an n-dimensional polytope P . We can assume, without
loss of generality, that P has the origin as its vertex barycenter. We then have

(4)
∫

P

‖x‖2dx =
∑
F∈F

∫
conv(F,0)

‖x‖2dx.

To compute this sum, it is sufficient to compute the integrals only for orbit rep-
resentatives of facets. Let F be a facet of P and pF a point in the affine space
spanned by F . Then we can transform the integral over the cone conv(F, 0) in the
following way: ∫

conv(F,0)

‖x‖2dx =
1

n + 2

(∫
F

‖y − pF ‖2dy

+2
∫

F

(y − pF ) · pF dy + vol F‖pF ‖2

)
.

If pF is the orthogonal projection of the origin 0 onto F , then the second summand
vanishes. This point may not be invariant under the automorphism group of the
facet F , but the vertex barycenter is. If we use the vertex barycenter, we also
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have to compute the barycenter of the polytope F as well as the volume and the
square integral. In order to use symmetries coming from nonorthogonal linear
transformations of P , we use the matrix-valued integral

I0,1,2(P ) =
∫

P

(
1
x

)
(1, xt) dx.

This integral splits according to

I0,1,2(P ) =
(

I0(P ) I1(P )t

I1(P ) I2(P )

)
,

where

I0(P ) =
∫

P

dx = vol P, I1(P ) =
∫

P

x dx, I2(P ) =
∫

P

xxt dx.

Let G be a group of automorphisms of P . If g ∈ G acts on Rn as x �→ Ax + v,
then we define H(g) = ( 1 0

v A ) as the corresponding (n + 1) × (n + 1) matrix acting
on homogeneous coordinates. Let O1, . . . , Or be the G-orbits of facets of P , with
representatives F1, . . . , Fr. Then the integral I0,1,2(P ) simplifies to

I0,1,2(P ) =
r∑

i=1

|Oi|

⎛
⎝ 1
|G|

∑
g∈G

H(g)I0,1,2(conv(Fi, 0))H(g)t

⎞
⎠ .

Assume that I0,1,2(conv(Fi, 0)) is already computed. To compute the sum in the
parenthesis, we first incrementally compute a basis of the affine hull of the orbit
{H(g)I0,1,2(conv(Fi, 0))H(g)t : g ∈ G}. The only G-invariant element of the affine
hull is the sum we want to compute.

We now want to compute I0,1,2(conv(F, 0)) in terms of lower dimensional inte-
grals. The integral depends on the chosen basis. If f is an affine transformation of
Rn, then the change of variables formula for integrals gives

H(f)I0,1,2(fP )H(f)t| detH(f)| = I0,1,2(P ),

for any n-dimensional polytope P in Rn. This allows us to compute I0,1,2(P ) for
another basis. So, we can choose a coordinate system such that

F =
{(

1
x

)
: x ∈ F ′

}
⊂ Rn,

where F ′ ⊂ Rn−1 is an (n − 1)-dimensional polytope. We then have the following
formulas:

I0(conv(F, 0)) = 1
nI0(F ′), I1(conv(F, 0)) = 1

n+1

(
I0(F ′)
I1(F ′)

)
,

I2(conv(F, 0)) = 1
n+2I0,1,2(F ′).

For computing I0,1,2(F ′), we have two options: Either we use the first method
of this section, which involves computing a triangulation or we apply the above
method recursively. The decision is made heuristically, depending on the size of the
automorphism group of F and its number of vertices. In order to reduce the size
of the computation, one can store intermediate results.

Those methods are general and apply to any polytope and any polynomial func-
tion, which we want to integrate over P . Note that a similar method of using the
standard formula (4) has been used for computing the volume in [BEF98] under
the name of Lasserre’s method ([Las98]), albeit in a nongroup setting.
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5. Results

In this section, we collect results from our implementation of the algorithms ex-
plained in Sections 3 and 4. We obtain previously unknown exact covering densities
and quantizing constants of several prominent lattices and their duals. Recall that
the dual L∗ of a lattice L ⊂ Rn is defined by

L∗ = {x ∈ Rn : y · x ∈ Z for all y ∈ L} .

The covering density of an n-dimensional lattice L is
µ(L)n

det L
vol Bn,

where Bn is the unit ball in Rn. Other computations of Voronoi cells of lattices can
be found in [CS91], [EMS03, Chapter 5] and [MP95]. All computations are done in
exact rational arithmetic. In the tables the covering densities are given in floating
point; the exact expressions would be too large.

5.1. Coxeter lattices. The root lattice An is defined by

An =

{
x ∈ Zn+1 :

n+1∑
i=1

xi = 0

}
.

If r divides n + 1, the Coxeter lattice Ar
n (see [Cox51]) is defined by translates of

An:
Ar

n = An ∪ (vr
n + An) ∪ . . . ∪ ((r − 1)vr

n + An),

where vr
n = 1

n+1

∑n+1
i=2 (ei − e1). The dual lattice of Ar

n is A
n+1/r
n .

The Delone decomposition of the lattice Ar
n has been studied in [Anz02, Anz06,

Bar94] up to dimension n = 15, hoping to obtain lattices with low covering density.
One pleasant fact is that the symmetry group of Ar

n contains the group Sym(n +
1) × Z2. The latter can be represented as a permutation group acting on n + 3
points, which drastically simplifies isomorphism computations.

In Table 1 we list the obtained results. Note that the lattices A6
17, A10

19, A7
20

and A11
21 turn out to give new record sphere coverings. Up to dimension 8 all of

those lattices are well known and their Voronoi cells can be obtained by standard
computer algebra software. Our list is complete up to dimension 21. For the missing
cases we could not finish the computation.

5.2. Laminated lattices. The laminated lattices, which are defined in [CS99,
Chapter 6], give the best known lattice sphere packings in many dimensions. The
Delone subdivision is known up to dimension 8 and in dimension 24 for all laminated
lattices and their duals [CS99, Chapters 21, 23, 25]. In dimension 16, the covering
density of Λ16 is known [CS99, Chapter 6].

In Table 2 we list the obtained results, which are complete up to dimension 17.

5.3. Shorter Leech lattice. The 4600 shortest vectors of Λ∗
23 define a sublattice

of index 2, called the shorter Leech lattice O23 ([CS99, pp. 179, 420, 441]). The
Delone decomposition (see Table 3) is remarkable in many respects: There are only
5 orbits and the first one has the full symmetry group of the lattice. It turns out
that Λ∗

23 = O23 ∪ (v + O23) where v is the center of a centrally symmetric Delone
cell lying in the first orbit. The covering density of O23 is 15218.062669.

5.4. Cut lattices. The cut polytope CUTn is a famous polytope appearing in
combinatorial optimization (see [DL97]). It has 2n−1 vertices and is of dimension
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n(n−1)
2 . The lattice generated by its vertices is called cut lattice and is denoted by

L(CUTn) (see [DG95]). The polytope CUTn is one of its full-dimensional Delone
cells. We list our results in Table 4.

5.5. Quantizer constants. In Table 5 we collect some new exact quantizer con-
stants.

According to [AE98], the lattice D+
10 is conjectured to be the optimal lattice

quantizer. Conway and Sloane approximated G(K12) ([CS99, Table 2.3]) using
Monte-Carlo integration; our exact computation fits into their bounds.

Table 1. Number of orbits of full-dimensional Delone cells and
covering density for some Coxeter lattices

lattice # orbits covering density lattice # orbits covering density

A2
9 6 18.543333 A5

9 5 4.340184

A2
11 6 94.090996 A3

11 11 27.089662
A4

11 16 5.598337 A6
11 4 7.618558

A2
13 10 134.623484 A7

13 10 7.864060

A3
14 17 32.313517 A5

14 31 9.006610

A2
15 10 722.452642 A4

15 19 25.363859
A8

15 10 11.601626

A2
17 15 1068.513081 A3

17 26 240.511580
A6

17 73 12.357468 A9
17 24 17.231927

A2
19 15 5921.056764 A4

19 58 40.445924
A5

19 80 25.609662 A10
19 80 21.229200

A3
20 40 307.209487 A7

20 187 20.366828

A2
21 21 8937.567486 A11

21 64 27.773140

A3
23 55 2405.032746 A4

23 85 205.561225
A6

23 187 79.575330 A8
23 495 31.858162

A12
23 100 43.231587

A5
24 144 115.011591

A13
25 210 54.472182

A3
26 75 3184.1387034 A9

26 1231 50.937168

A4
27 156 350.137031 A7

27 650 81.869181

A14
27 338 76.909712

A3
29 102 25664.644103 A5

29 347 202.040331
A6

29 711 154.329831 A10
29 3581 84.324725

A15
29 678 114.084219

A16
31 1225 33.934941

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1728 MATHIEU DUTOUR SIKIRIĆ, ACHILL SCHÜRMANN, AND FRANK VALLENTIN

Table 2. Number of orbits of full-dimensional Delone cells and
covering density for some laminated lattices and their duals

lattice # orbits covering density lattice # orbits covering density
Λ9 5 9.003527 Λ∗

9 9 9.003527
Λ10 7 12.408839 Λ∗

10 21 9.306629

Λmax
11 11 24.781167 Λmax∗

11 18 19.243468
Λmin

11 18 24.781167 Λmin∗
11 153 8.170432

Λmax
12 5 30.418954 Λmax∗

12 8 42.728408
Λmid

12 23 30.418954 Λmid∗
12 52 19.176309

Λmin
12 13 30.418954 Λmin∗

12 78 12.292973

Λmax
13 18 60.455139 Λmax∗

13 57 43.214494
Λmid

13 46 35.931846 Λmid∗
13 125 19.155991

Λmin
13 129 60.455139 Λmin∗

13 5683 13.724864

Λ14 65 98.875610 Λ∗
14 1392 34.721750

Λ15 27 202.910873 Λ∗
15 108 25.642067

Λ16 4 96.500266 Λ∗
16 4 96.500266

Λ17 28 197.719499 Λ∗
17 720 100.173101

Λ18 239 301.192334

Λ23 709 7609.03133

Table 3. Orbits of full-dimensional Delone cells of O23

number of vertices size of stabilizer group
94208 84610842624000

32 1344
24 10200960
24 1320
24 1320

Table 4. Dimensions, number of orbits of full-dimensional Delone
cells and covering density of some cut lattices

lattice dimension # orbits covering density
L(CUT3) 3 2 2.09439
L(CUT4) 6 4 5.16771
L(CUT5) 10 12 40.80262
L(CUT6) 15 112 255.4255
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Table 5. Quantizer constants of some lattices

lattice quantizer constant

Λ9
151301
2099520 ≈ 0.07206

Λ∗
9

1371514291
19110297600 ≈ 0.07176

A2
9

2120743
9√

5.2813271040
≈ 0.072166

A5
9

8651427563
9√

2.5826578125000
≈ 0.072079

D+
10

4568341
64512000 ≈ 0.07081

A2
11

452059
11√35702400

≈ 0.07174

A3
11

287544281699
11√

4.3101325839006800
≈ 0.070426

A4
11

6387657954959
11√

3.2946506442752000
≈ 0.070494

D+
12

29183629
412776000 ≈ 0.070700

K12
797361941√
36567561000

≈ 0.070095
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[BDS07] D. Bremner, M. Dutour Sikirić, A. Schürmann, Polyhedral representation conversion up
to symmetries, preprint, September 2007, arXiv:math/0702239v2 [math.MG].
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