
Complexity and Approximation in

Reoptimization

Giorgio Ausiello1, Vincenzo Bonifaci1,3,⋆, and Bruno Escoffier2

1 Sapienza University of Rome,
Department of Computer and Systems Science,

Via Ariosto, 25 - 00185 Rome, Italy
{ausiello,bonifaci}@dis.uniroma1.it

2 LAMSADE,
Université Paris Dauphine and CNRS,

Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex 16, France.
escoffier@lamsade.dauphine.fr

3 University of L’Aquila,
Department of Electrical and Information Engineering,

Poggio di Roio, 67040 L’Aquila, Italy.

Abstract. In this survey the following model is considered. We assume
that an instance I of a computationally hard optimization problem has
been solved and that we know the optimum solution of such instance.
Then a new instance I ′ is proposed, obtained by means of a slight pertur-
bation of instance I . How can we exploit the knowledge we have on the
solution of instance I to compute a (approximate) solution of instance I ′

in an efficient way? This computation model is called reoptimization and
is of practical interest in various circumstances. In this article we first
discuss what kind of performance we can expect for specific classes of
problems and then we present some classical optimization problems (i.e.
Max Knapsack, Min Steiner Tree, Scheduling) in which this approach has
been fruitfully applied. Subsequently, we address vehicle routing prob-
lems and we show how the reoptimization approach can be used to obtain
good approximate solution in an efficient way for some of these problems.

1 Introduction

In this article we illustrate the role that a new computational paradigm called
reoptimization plays in the solution of NP-hard problems in various practical
circumstances. As it is well-known a great variety of relevant optimization prob-
lems are intrinsically difficult and no solution algorithms running in polynomial
time are known for such problems. Although the existence of efficient algorithms
cannot be ruled out at the present state of knowledge, it is widely believed that
this is indeed the case. The most renowned approach to the solution of NP-hard
problems consists in resorting to approximation algorithms which in polynomial

⋆ This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

time provide a suboptimal solution whose quality (measured as the ratio between
the values of the optimum and approximate solution) is somehow guaranteed.
In the last twenty years the definition of better and better approximation algo-
rithms and the classification of problems based on the quality of approximation
that can be achieved in polynomial time have been among the most important
research directions in theoretical computer science and have produced a huge
flow of literature [4, 35].

More recently a new computational approach to the solution of NP-hard
problems has been proposed [1]. This approach can be meaningfully adopted
when the following situation arises: given a problem Π , the instances of Π that
we need to solve are indeed all obtained by means of a slight perturbation of a
given reference instance I. In such case we can devote enough time to the exact
solution of the reference instance I and then, any time that a the solution for
a new instance I ′ is required, we can apply a simple heuristic that efficiently
provides a good approximate solution to I ′. Let us imagine, for example, that
we know that a traveling salesman has to visit a large set S of, say, one thou-
sand cities plus a few more cities that may change from time to time. In such
case it is quite reasonable to devote a conspicuous amount of time to the exact
solution of the traveling salesman problem on the set S and then to reoptimize
the solution whenever the modified instance is known, with a (hopefully) very
small computational effort.

To make the concept more precise let us consider the following simple example
(Max Weighted Sat). Let φ be a Boolean formula in conjunctive normal form,
consisting of m clauses over n variables, and let us suppose we know a truth
assignment τ such that the weight of the clauses satisfied by τ is maximum; let
this weight be W . Suppose that now a new clause c with weight w over the same
set of variables is provided and that we have to find a “good” although possibly
not optimum truth assignment τ ′ for the new formula φ′ = φ∧ c. A very simple
heuristic can always guarantee a 1/2 approximate truth assignment in constant
time. The heuristic is the following: if W ≤ w then put τ ′ = τ , otherwise take
as τ ′ any truth assignment that satisfies c. It is easy to see that, in any case, the
weight provided by this heuristic will be at least 1/2 of the optimum.

Actually the reoptimization concept is not new. A similar approach has been
applied since the early 1980s to some polynomial time solvable optimization
problems such as minimum spanning tree [16] and shortest path [14, 31] with
the aim to maintain the optimum solution of the given problem under input
modification (say elimination or insertion of an edge or update of an edge weight).
A big research effort devoted to the study of efficient algorithms for the dynamic
maintenance of the optimum solution of polynomial time solvable optimization
problems followed the first results. A typical example of this successful line of
research has been the design of algorithms for the partially or fully dynamic
maintenance of a minimum spanning tree in a graph under edge insertion and/or
edge elimination [12, 22] where at any update, the computation of the new
optimum solution requires at most O(n1/3 log n) amortized time per operation,
much less than recomputing the optimum solution from scratch.

A completely different picture arises when we apply the concept of reop-
timization to NP-hard optimization problems. In fact reoptimization provides
very different results when applied to polynomial time optimization problems
with respect to what happens in the case of NP-hard problems. In the case of
NP-hard optimization problems, unless P=NP polynomial time reoptimization
algorithms can only help us to obtain approximate solutions since if we knew
how to maintain an optimum solution under input updates, we could solve the
problem optimally in polynomial time (see Section 3.1).

The application of the reoptimization computation paradigm to NP-hard op-
timization problems is hence aimed at two possible directions: either at achieving
an approximate solution of better quality than we would have obtained without
knowing the optimum solution of the base instance, or to achieve an approximate
solution of the same quality but at a lower computational cost (as it is the case
in our previous example).

In the first place the reoptimization model has been applied to classical NP-
hard optimization problems such as scheduling (see Bartusch et al. [6], Schäffter
[33], or Bartusch et al. [7] for practical applications). More recently it has been
applied to various other NP-hard problems such as Steiner Tree [9, 13] or the
Traveling Salesman Problem [1, 5, 8]. In this article we will discuss some general
issues concerning reoptimization of NP-hard optimization problems and we will
review some of the most interesting applications.

The article is organized as follows. First in Section 2 we provide basic def-
initions concerning complexity and approximability of optimization problems
and we show simple preliminary results. Then in Section 3 the computational
power of reoptimization is discussed and results concerning the reoptimization of
various NP-hard optimization problems are shown. Finally Section 4 is devoted
to the application of the reoptimization concept to a variety of vehicle routing
problems. While most of the results contained in Section 3 and Section 4 derive
from the literature, it is worth noting that a few of the presented results appear
in this paper for the first time.

2 Basic definitions and results

In order to characterize the performance of reoptimization algorithms and an-
alyze their application to specific problems we have to provide first a basic in-
troduction to the class of NP optimization problems (NPO problems) and to
the notion of approximation algorithms and approximation classes. For a more
extensive presentation of the theory of approximation the reader can refer to [4].

Definition 1. An NP optimization (NPO) problem Π is defined as a four-tuple
(I, Sol, m, opt) such that:

– I is the set of instances of Π and it can be recognized in polynomial time;
– given I ∈ I, Sol(I) denotes the set of feasible solutions of I; for every

S ∈ Sol(I), |S| (the size of S) is polynomial in |I| (the size of I); given
any I and any S polynomial in |I|, one can decide in polynomial time if
S ∈ Sol(I);

– given I ∈ I and S ∈ Sol(I), m(I, S) denotes the value of S; m is polynomially
computable and is commonly called objective function;

– opt ∈ {min, max} indicates the type of optimization problem.

As it is well-known, several relevant optimization problems, known as NP-
hard problems, are intrinsically difficult and no solution algorithms running in
polynomial time are known for such problems. For the solution of NP-hard prob-
lems we have to resort to approximation algorithms which in polynomial time
provide a suboptimal solution of guaranteed quality.

Let us briefly recall the basic definitions regarding approximation algorithms
and the most important approximation classes of NPO problems.

Given an NPO problem Π = (I, Sol, m, opt), an optimum solution of an
instance I of Π is usually denoted S∗(I) and its measure m(I, S∗(I)) is denoted
opt(I).

Definition 2. Given an NPO problem Π = (I, Sol, m, opt) an approximation
algorithm A is an algorithm that given an instance I of Π returns a feasible
solution S ∈ Sol(I).

If A runs in polynomial time with respect to |I|, A is called a polynomial
time approximation algorithm for Π .

The quality of an approximation algorithm is usually measured as the ra-
tio ρA(I), approximation ratio, between the value of the approximate solution,
m(I, A(I)), and the value of the optimum solution opt(I). For minimization
problems, therefore, the approximation ratio is in [1,∞), while for maximiza-
tion problems it is in [0, 1]. According to the quality of approximation algorithms
that can be designed for their solution, NPO problems can be classified as follows.

Definition 3. An NPO problem Π belongs to the class APX if there exists a poly-
nomial time approximation algorithm A and a rational value r such that, given
any instance I of Π, ρA(I) 6 r (resp. ρA(I) > r) if Π is a minimization prob-
lem (resp. a maximization problem). In such case A is called an r-approximation
algorithm.

Examples of combinatorial optimization problems belonging to the class APX

are Max Weighted Sat, Min Vertex Cover, and Min Metric TSP.
For particular problems in APX a stronger form of approximability can indeed

be shown. For such problems, given any rational r > 1 (or r ∈ (0, 1) for a
maximization problem), there exists an algorithm Ar and a suitable polynomial
p such that Ar is an r-approximation algorithm whose running time is bounded
by p as a function of |I|. The family of algorithms Ar parameterized by r is
called a polynomial time approximation scheme (PTAS for short).

Definition 4. An NPO problem Π belongs to the class PTAS if there exists a
polynomial time approximation scheme Ar such that, given any rational r > 1
(resp. r ∈ (0, 1)) and any instance I of Π, ρAr

(I) 6 r (resp. ρAr
(I) > r) if Π

is a minimization problem (resp. a maximization problem).

Examples of combinatorial optimization problems belonging to the class
PTAS are Min Partitioning, Max Independent Set on Planar Graphs, and Min
Euclidean TSP.

Notice that in the definition of PTAS, the runnning time of Ar is polynomial
in the size of the input, but it may be exponential (or worse) in the inverse of
r− 1. A better situation arises when the running time is polynomial in both the
input size and the inverse of r − 1 (or in the inverse of 1− r for a maximization
problem). In the favorable case when this happens, the algorithm is called a fully
polynomial time approximation scheme (FPTAS).

Definition 5. An NPO problem Π belongs to the class FPTAS if it admits a
fully polynomial time approximation scheme.

It is important to observe that, under the (reasonable) hypothesis that P 6=
NP it is possible to prove that FPTAS (PTAS (APX (NPO.

3 Reoptimization of NP-hard Optimization Problem

As explained in the introduction, the reoptimization setting leads to interesting
optimization problems for which the complexity properties and the existence of
good approximation algorithms have to be investigated. This section deals with
this question, and is divided into two parts: in Subsection 3.1, we give some
general considerations on these reoptimization problems, both on the positive
side (obtaining good approximate solutions) and on the negative side (hardness
of reoptimization). In Subsection 3.2, we survey some results achieved on reopti-
mizing three well-known problems (the Min Steiner Tree problem, a scheduling
problem, and the Max Knapsack problem).

3.1 General properties

As mentioned previously, if one wishes to get an approximate solution on the
perturbed instance, she/he can compute it by applying directly, from scratch,
a known approximation algorithm for the problem dealt (on the modified in-
stance). In other words, reoptimizing is at least as easy as approximating. The
goal of reoptimization is to determine if it is possible to fruitfully use our knowl-
edge on the initial instance in order to:

– either achieve better approximation ratios,
– or devise much faster algorithms,
– or both!

In this section, we present some general results dealing with reoptimization
properties of some NPO problems. We first focus on a class of hereditary prob-
lems, then we discuss the differences between weighted and unweighted versions
of classical problems, and finally present some ways to achieve hardness results
in reoptimization.

Of course, many types of problems can be considered, and for each of them
many ways to modify the instances might be investigated. We mainly focus here
on graph problems where a modification consists of adding a new vertex on the
instance, but show with various examples that the approaches we present are
also valid in many other cases.

Hereditary problems. We say that a property on graphs is hereditary if the
following holds: if G = (V, E) satisfies this property, then for any V ′ ⊆ V , the
subgraph G[V ′] induced by V ′ verifies the property. Following this definition, for
instance, being independent 4, being bipartite or being planar are three heredi-
tary properties. Now, let us define problems based on hereditary properties.

Definition 6. Let G = (V, E, w) be a vertex-weighted graph. We call Hered

the class of problems consisting, given a graph G = (V, E), of finding a subset
of vertices S (i) such that G[S] satisfies a given hereditary property (ii) that
maximizes w(S) =

∑
v∈S w(v).

For instance, Max Weighted Independent Set, Max Weighted Bipartite Sub-
graph, Max Weighted Planar Subgraph are three famous problems in Hered that
correspond to the three hereditary properties given above.

For all these problems, we have a simple reoptimization strategy that achieves
a ratio 1/2, based on the same idea used in the introduction. Note that this is
a huge improvement for some problems respect to their approximability prop-
erties; for instance, it is well-known that Max Weighted Independent Set is not
approximable within any constant ratio, if P 6= NP5.

Theorem 1. Let Π be a problem in Hered. Under a vertex insertion, reoptimiz-
ing Π is approximable within ratio 1/2 (in constant time).

Proof. Let I = (G, w) be the initial instance of Π , I ′ = (G′, w) be the final
instance (a new vertex v has been inserted), S∗ be an optimum solution on I,
and S∗

I′ be an optimum solution on I ′.
Getting a 1/2-approximate solution is very easy: just consider the best so-

lution among S∗ and S1 := {v} (both solutions are feasible by heritability).
By heritability, S∗

I′ \ {v} is a feasible solution on the initial instance. Then,
w(S∗

I′) ≤ w(S∗) + w(v) = w(S∗) + w(S1) ≤ 2 max(w(S∗), w(S1)). ⊓⊔

Now, let us try to outperform this trivial ratio 1/2. A first idea that comes
to mind is to improve the solution S1 of the previous proof since it only contains
one vertex. In particular, one can think of applying an approximation algorithm
on the “remaining instance after taking v”. Consider for instance Max Weighted
Independent Set, and revisit the proof of the previous property. If S∗

I′ does not
take the new vertex v, then our initial solution S∗ is optimum. If S∗

I′ takes v, then
consider the remaining instance Iv after having removed v and its neighbors.

4 I.e. having no edge.
5 And not even within ratio n1−ε for any ε > 0, under the same hypothesis [36].

Suppose that we have a ρ-approximate solution S2 on this instance Iv. Then
S2 ∪ {v} is a feasible solution of weight:

w(S2 ∪ {v}) ≥ ρ(w(S∗
I′) − w(v)) + w(v) = ρw(S∗

I′) + (1 − ρ)w(v) (1)

On the other hand, of course :

w(S∗) ≥ w(S∗
I′) − w(v) (2)

If we output the best solution S among S∗ and S2∪{v}, then, by adding equations
(1) and (2) with coefficients 1 and (1 − ρ), we get:

w(S) ≥
1

2 − ρ
w(S∗

I′)

Note that this ratio is always better than ρ.
This technique is actually quite general and applies to many problems (not

only graph problems and maximization problems). We illustrate this on two
well-known problems: Max Weighted Sat (Theorem 2) and Min Vertex Cover
(Theorem 3). We will also use it for Max Knapsack in Section 3.2.

Theorem 2. Under the insertion of a clause, reoptimizing Max Weighted Sat is
approximable within ratio 0.81.

Proof. Let φ be a conjunction of clauses over a set of binary variables, each
clause being given with a weight, and let τ∗(φ) be an initial optimum solution.
Let φ′ := φ ∧ c be the final formula, where the new clause c = l1 ∨ l2 ∨ . . . ∨ lk
(where li is either a variable or its negation) has weight w(c).

We consider k solutions τi, i = 1, . . . , k. Each τi is built as follows:

– We set li to true;
– We replace in φ each occurrence of li and li with its value;
– We apply a ρ-approximation algorithm on the remaining instance (note that

the clause c is already satisfied); together with li, this is a particular solution
τi.

Then, our reoptimization algorithm outputs the best solution τ among τ∗(φ)
and the τi’s.

As previously, if the optimum solution τ∗(φ′) on the final instance does not
satisfy c, then τ∗(φ) is optimum. Otherwise, at least one literal in c, say li, is
true in τ∗(φ′). Then, it is easy to see that

w(τi) ≥ ρ(w(τ∗(φ′)) − w(c)) + w(c) = ρw(τ∗(φ′)) + (1 − ρ)w(c)

On the other hand, w(τ∗(φ)) ≥ w(τ∗(φ′)) − w(c), and the following result
follows:

w(τ) ≥
1

2 − ρ
w(τ∗(φ′))

The fact that Max Weighted Sat is approximable within ratio ρ = 0.77 [3]
concludes the proof. ⊓⊔

It is worth noticing that the same ratio (1/(2 − ρ)) is achievable for other
satisfiability or constraint satisfaction problems. For instance, using the result
of Johnson [24], reoptimizing Max Weighted E3SAT6 when a new clause is in-
serted is approximable within ratio 8/9.

Let us now focus on a minimization problem, namely Min Vertex Cover.
Given a vertex-weighted graph G = (V, E, w), the goal in this problem is to find
a subset V ′ ⊆ V such that (i) every edge e ∈ E is incident to at least one vertex
in V ′, and (ii) the global weight of V ′

∑
v∈V ′ w(v) is minimized.

Theorem 3. Under a vertex insertion, reoptimizing Min Vertex Cover is ap-
proximable within ratio 3/2.

Proof. Let v denote the new vertex and S∗ the initial given solution. Then,
S∗ ∪ {v} is a vertex cover on the final instance. If S∗

I′ takes v, then S∗ ∪ {v} is
optimum.

From now on, suppose that S∗
I′ does not take v. Then, it has to take all

its neighbors N(v). S∗ ∪ N(v) is a feasible solution on the final instance. Since
w(S∗) ≤ w(S∗

I′), we get:

w(S∗ ∪ N(v)) ≤ w(S∗
I′) + w(N(v)) (3)

Then, as for Max Weighted Independent Set, consider the following feasible
solution S1:

– Take all the neighbors N(v) of v in S1;
– Remove v and its neighbors from the graph;
– Apply a ρ-approximation algorithm on the remaining graph, and add these

vertices to S1.

Since we are in the case where S∗
I′ does not take v, it has to take all its neighbors,

and finally:

w(S1) ≤ ρ(w(S∗
I′) − w(N(v))) + w(N(v)) = ρw(S∗

I′) − (ρ − 1)w(N(v)) (4)

Of course, we take the best solution S among S∗∪N(v) and S1. Then, a convex
combination of equations (3) and (4) leads to:

w(S) ≤
2ρ − 1

ρ
w(S∗

I′)

The results follows since Min Vertex Cover is well-known to be approximable
within ratio 2. ⊓⊔

To conclude this section, we point out that these results can be generalized
when several vertices are inserted. Indeed, if a constant number k > 1 of vertices
are added, one can reach the same ratio with similar arguments by considering
all the 2k possible subsets of new vertices in order to find the ones that will
belong to the new optimum solution. This brute force algorithm is still very fast
for small constant k, which is the case in the reoptimization setting with slight
modifications of the instance.
6 Restriction of Max Weighted Sat when all clauses contain exactly three literals.

Unweighted problems. In the previous subsection, we considered the general
cases where vertices (or clauses) have a weight. It is well-known that all the
problems we focused on are already NP-hard in the unweighted case, i.e. when
all vertices/clauses receive weight 1. In this (very common) case, the previous
approximation results on reoptimization can be easily improved. Indeed, since
only one vertex is inserted, the initial optimum solution has an absolute error of
at most one on the final instance, i.e.:

|S∗| ≥ |S∗
I′ | − 1

Then, in some sense we don’t really need to reoptimize since S∗ is already
a very good solution on the final instance (note also that since the reoptimiza-
tion problem is NP-hard, we cannot get rid of the constant −1). Dealing with
approximation ratio, we derive from this remark, with a standard technique, the
following result.

Theorem 4. Under a vertex insertion, reoptimizing any unweighted problem in
Hered admits a PTAS.

Proof. Let ε > 0, and set k = ⌈1/ε⌉. We consider the following algorithm:

1. Test all the subsets of V of size at most k, and set S1 be the largest one such
that G[S1] satisfies the hereditary property,

2. Output the largest solution S between S1 and S∗.

Then, if S∗
I′ has size at most 1/ε, we found it in step 1. Otherwise, |S∗

I′ | ≥ 1/ε
and:

|S∗|

|S∗
I′ |

≥
|S∗

I′ | − 1

|S∗
I′ |

≥ 1 − ε

Of course, the algorithm is polynomial as long as ε is a constant. ⊓⊔

In other words, the PTAS is derived from two properties: the absolute error
of 1, and the fact that problems considered are simple. Following [29], a problem
is called simple if, given any fixed constant k, it is polynomial to determine
whether the optimum solution has value at most k (maximization) or not.

This result easily extends to other simple problems, such as Min Vertex
Cover for instance. It also generalizes when several (a constant number of) ver-
tices are inserted, instead of only 1.

However, it is interesting to notice that, for some of other (unweighted) prob-
lems, while the absolute error 1 still holds, we cannot derive a PTAS as in The-
orem 4 because they are not simple. One of the most famous such problems
is the Min Coloring problem. In this problem, given a graph G = (V, E), one
wishes to partition V into a minimum number of independent sets (called col-
ors) V1, . . . , Vk. When a new vertex is inserted, an absolute error 1 can be easily
achieved while reoptimizing. Indeed, consider the initial coloring, and add a new
color which contains only the newly inserted vertex. Then this coloring has an

absolute error of one since a coloring on the final graph cannot use less colors
than an optimum coloring on the initial instance.

However, deciding whether a graph can be colored with 3 colors is an
NP-hard problem. In other words, Min Coloring is not simple. We will discuss
the consequence of this fact in the section on hardness of reoptimization.

To conclude this section, we stress the fact that there exist obviously many
problems that do not involve weights and for which the initial optimum solution
cannot be directly transformed into a solution on the final instance with absolute
error 1. Finding the longest cycle in a graph is such a problem: adding a new
vertex may change considerably the size of an optimum solution.

Hardness of reoptimization. As mentioned earlier, the fact that we are inter-
ested in slight modifications of an instance on which we have an optimum solution
makes the problem somehow simpler, but unfortunately does not generally allow
a jump in complexity. In other words, reoptimizing is generally NP-hard when
the underlying problem is NP-hard.

In some cases, the proof of NP-hardness is immediate. For instance, consider
a graph problem where modifications consists of inserting a new vertex. Suppose
that we had an optimum reoptimization algorithm for this problem. Then, start-
ing from the empty graph, and adding the vertices one by one, we could find an
optimum solution on any graph on n vertices by using iteratively n times the
reoptimization algorithm. Hence, the underlying problem would be polynomial.
In conclusion, the reoptimization version is also NP-hard when the underlying
problem is NP-hard. This argument is also valid for other problems under other
kinds of modifications. Actually, it is valid as soon as for any instance I, there
is a trivially solvable instance I ′ (the empty graph in our example) such that a
polynomial number of modifications transform I ′ into I.

In other cases, the hardness does not directly follow from this argument, and
a usual polynomial time reduction has to be provided. This situation occurs for
instance in graph problems where the modification consists of deleting a vertex.
As we will see later, such hardness proofs have been given for instance for some
vehicle routing problems.

Let us now focus on the hardness of approximation in the reoptimization
setting. As we have seen in particular in Theorem 4, the knowledge of the initial
optimum solution may considerably help in finding an approximate solution on
the final instance. In other words, it seems quite hard to prove a lower bound
on reoptimization. And in fact, few results have been obtained so far.

One method is to transform the reduction used in the proof of NP-hardness to
get an inapproximability bound. Though more difficult than in the usual setting,
such proofs have been provided for reoptimization problems, in particular for
VRP problems, mainly by introducing very large distances (see Section 4).

Let us now go back to Min Coloring. As we have said, it is NP-hard to
determine whether a graph is colorable with 3 colors or not. In the usual setting,

this leads to an inapproximability bound of 4/3 − ε for any ε > 0. Indeed, an
approximation algorithm within ratio ρ = 4/3 − ε would allow to distinguish
between 3-colorable graphs and graphs for which we need at least 4 colors. Now,
we show that this result remains true for the reoptimization of the problem.

Theorem 5. Under a vertex insertion, reoptimizing Min Coloring cannot be
approximated within a ratio 4/3 − ε, for any ε > 0.

Proof. The proof is actually quite straightforward. Assume you have such a
reoptimization algorithm A within a ratio ρ = 4/3 − ε. Let G = (V, E) be
a graph with V = {v1, · · · , vn}. We consider the subgraphs Gi of G induced
by Vi = {v1, v2, · · · , vi} (in particular Gn = G). Suppose that you have a 3-
coloring of Gi, and insert vi+1. If Gi+1 is 3-colorable, then A outputs a 3-coloring.
Moreover, if Gi is not 3-colorable, then neither is Gi+1. Hence, starting from the
empty graph, and iteratively applying A, we get a 3-coloring of Gi if and only if
Gi is 3-colorable. Eventually, we are able to determine whether G is 3-colorable
or not. ⊓⊔

This proof is based on the fact that Min Coloring is not simple (according to
the definition previously given). A similar argument, leading to inapproximabil-
ity results in reoptimization, can be applied to other non simple problems (under
other modifications). It has been in particular applied to a scheduling problem
(see Section 3.2).

For other optimization problems however, such as MinTSP in the metric
case, finding a lower bound in approximability (if any!) seems a challenging task.

Let us finally mention another kind of negative results. In the reoptimiza-
tion setting, we look somehow for a possible stability when slight modifications
occur on the instance. We try to measure how much the knowledge of a so-
lution on the initial instance helps to solve the final one. Hence, it is natural
to wonder whether one can find a good solution in the “neighborhood” of the
initial optimum solution, or if one has to change almost everything. Do neighbor-
ing instances have neighboring optimum/good solutions? As an answer to these
questions, several results show that, for several problems, approximation algo-
rithms that only “slightly” modify the initial optimum solution cannot lead to
good approximation ratios. For instance, for reoptimizing MinTSP in the metric
case, if you want a ratio better than 3/2 (guaranteed by a simple heuristic), then
you have to change (on some instances) a significant part of your initial solu-
tion [5]. This kind of results, weaker than an inapproximability bound, provides
information on the stability under modifications and lower bounds on classes of
algorithms.

3.2 Results on some particular problems

In the previous section, we gave some general considerations on the reoptimiza-
tion of NP-hard optimization problems. The results that have been presented

follow, using simple methods, from the structural properties of the problem
dealt with and/or from known approximation results. We now focus on par-
ticular problems for which specific methods have been devised, and briefly men-
tion, without proofs, the main results obtained so far. We concentrate on the
Min Steiner Tree problem, on a scheduling problem, and on the Max Knap-
sack problem. Vehicle routing problems, which concentrated a large attention in
reoptimization, deserve in our opinion a full section (Section 4), in which we also
provide some of the most interesting proofs in the literature together with a few
new results.

Min Steiner Tree. The Min Steiner Tree problem is a generalization of the Min
Spanning Tree problem where only a subset of vertices (called terminal vertices)
have to be spanned. Formally, we are given a graph G = (V, E), a nonnegative
distance d(e) for any e ∈ E, and a subset R ⊆ V of terminal vertices. The goal
is to connect the terminal vertices with a minimum global distance, i.e. to find
a tree T ⊆ E that spans all vertices in R and minimizes d(T) =

∑
e∈T d(e). It

is generally assumed that the graph is complete, and the distance function is
metric (i.e. d(x, y)+d(y, z) ≥ d(x, z) for any vertices x, y, z): indeed, the general
problem reduces to this case by initially computing shortest paths between pairs
of vertices.

Min Steiner Tree is one of the most famous network design optimization
problems. It is NP-hard, and has been studied intensively from an approximation
viewpoint (see [18] for a survey on these results). The best known ratio obtained
so far is 1 + ln(3)/2 ≃ 1.55 [30].

Reoptimization versions of this problem have been studied with modifications
on the vertex set [9, 13]. In Escoffier et al. [13], the modification consists of the
insertion of a new vertex. The authors study the cases where the new vertex is
terminal or non terminal.

Theorem 6 ([13]). When a new vertex is inserted (either terminal or not),
then reoptimizing the Min Steiner Tree problem can be approximated within ratio
3/2.

Moreover, the result has been generalized to the case in which several
vertices are inserted. Interestingly, when p non terminal vertices are inserted,
then reoptimizing the problem is still 3/2-approximable (but the running time
grows very fast with p). On the other hand, when q terminal vertices are added,
the obtained ratio decreases (but the running time remains very low)7. The
strategies consist, roughly speaking, of merging the initial optimum solution
with Steiner trees computed on the set of new vertices and/or terminal vertices.
The authors tackle also the case where a vertex is removed from the vertex set,
and provide a lower bound for a particular class of algorithms.

7 The exact ratio is 2 − 1/(q + 2) when p non terminal and q terminal vertices are
added.

Böckenhauer et al. [9] consider a different instance modification. Rather than
inserting/deleting a vertex, the authors consider the case where the status of a
vertex changes: either a terminal vertex becomes non terminal, or vice versa.
The obtained ratio is also 3/2.

Theorem 7 ([9]). When the status (terminal / non terminal) of a vertex
changes, then reoptimizing the Min Steiner Tree problem can be approximated
within ratio 3/2.

Moreover, they exhibit a case where this ratio can be improved. When all
the distances between vertices are in {1, 2, · · · , r}, for a fixed constant r, then
reoptimizing Min Steiner Tree (when changing the status of one vertex) is still
NP-hard but admits a PTAS.

Note that in both cases (changing the status of a vertex or adding a new ver-
tex), no inapproximability results have been achieved, and this is an interesting
open question.

Scheduling. Due to practical motivations, it is not surprising that scheduling
problems received attention dealing with the reconstruction of a solution (often
called rescheduling) after an instance modification, such as a machine breakdown,
an increase of a job processing time, etc. Several works have been proposed to
provide a sensitivity analysis of these problems under such modifications. A
typical question is to determine under which modifications and/or conditions
the initial schedule remains optimal. We refer the reader to the comprehensive
article [20] where the main results achieved in this field are presented.

Dealing with the reoptimization setting we develop in this article, Schäffter
[33] proposes interesting results on a problem of scheduling with forbidden sets.
In this problem, we have a set of jobs V = {v1, · · · , vn}, each job having a
processing time. The jobs can be scheduled in parallel (the number of machines
is unbounded), but there is a set of constraints on these parallel schedules: a
constraint is a set F ⊆ V of jobs that cannot be scheduled in parallel (all of
them at the same time). Then, given a set F = {F1, · · · , Fk} of constraints, the
goal is to find a schedule that respects each constraint and that minimizes the
latest completion time (makespan). Many situations can be modeled this way,
such as the m-Machine Problem (for fixed m), hence the problem is NP-complete
(and even hard to approximate).

Schäffter considers reoptimization when either a new constraint F is added
to F , or a constraint Fi ∈ F disappears. Using reductions from the Set Splitting
problem and from the Min Coloring problem, he achieves the following inap-
proximability results.

Theorem 8 ([33]). If P 6= NP, for any ε > 0, reoptimizing the Scheduling with
forbidden sets problem is inapproximable within ratio 3/2− ε under a constraint
insertion, and inapproximable within ratio 4/3 − ε under a constraint deletion.

Under a constraint insertion Schäffter also provides a reoptimization strat-
egy that achieves approximation ratio 3/2, thus matching the lower bound of
Theorem 8. It consists of a simple local modification of the initial scheduling,
by shifting one task (at the end of the schedule) in order to ensure that the new
constraint is satisfied.

Max Knapsack. In the Max Knapsack problem, we are given a set of n objects
O = {o1, . . . , on}, and a capacity B. Each objects has a weight wi and a value
vi. The goal is to choose a subset O′ of objects that maximizes the global value∑

oi∈O′ vi but that respects the capacity constraint
∑

oi∈O′ wi ≤ B.

This problem is (weakly) NP-hard, but admits an FPTAS [23]. Obviously,
the reoptimization version admits an FPTAS too. Thus, Archetti et al. [2] are
interested in using classical approximation algorithms for Max Knapsack to de-
rive reoptimization algorithms with better approximation ratios but with the
same running time. The modifications considered consists of the insertion of a
new object in the instance.

Though not being a graph problem, it is easy to see that the Max Knap-
sack problem satisfies the required properties of heritability given in Section 3.1
(paragraph on hereditary problems). Hence, the reoptimization version is 1/2-
approximable in constant time; moreover, if we have a ρ-approximation algo-
rithm, then the reoptimization strategy presented in section 3.1 has ratio 1

2−ρ

[2]. Besides, Archetti et al. [2] show that this bound is tight for several classical
approximation algorithms for Max Knapsack.

Finally, studying the issue of sensitivity presented earlier, they show that any
reoptimization algorithm that does not consider objects discarded by the initial
optimum solution cannot have ratio better than 1/2.

4 Reoptimization of Vehicle Routing Problems

In this section we survey several results concerning the reoptimization of vehicle
routing problems under different kinds of perturbations. In particular, we focus
on several variants of the Traveling Salesman Problem (TSP), which we define
below.

The TSP is a well-known combinatorial optimization problem that has been
the subject of extensive studies – here we only refer the interested reader to
the monographs by Lawler et al. [26] and Gutin and Punnen [19]. The TSP
has been used since the inception of combinatorial optimization as a testbed for
experimenting a whole array of algorithmic paradigms and techniques, so it is
just natural to also consider it from the point of view of reoptimization.

Definition 7. An instance In of the Traveling Salesman Problem is given by
the distance between every pair of n nodes in the form of an n × n matrix d,
where d(i, j) ∈ Z+ for all 1 ≤ i, j ≤ n. A feasible solution for In is a tour, that
is, one directed cycle spanning the node set N := {1, 2, . . . , n}.

Notice that we did not define an objective function yet; so far we only spec-
ified the structure of instances and feasible solutions. There are several pos-
sibilities for the objective function and each of them gives rise to a different
optimization problem. We need a few definitions. The weight of a tour T is the
quantity w(T) :=

∑
(i,j)∈T d(i, j). The latency of a node i ∈ N with respect to a

given tour T is the total distance along the cycle T from node 1 to node i. The
latency of T , denoted by ℓ(T), is the sum of the latencies of the nodes of T .

The matrix d obeys the triangle inequality if for all i, j, k ∈ N we have
d(i, j) ≤ d(i, k) + d(k, j). The matrix d is said to be a metric if it obeys the
triangle inequality and d(i, j) = d(j, i) for all i, j ∈ N .

In the rest of the section we will consider the following problems:

1. Minimum Traveling Salesman Problem (Min TSP): find a tour of minimum
weight;

2. Minimum Metric TSP (Min MTSP): restriction of Min TSP to the case when
d is a metric;

3. Minimum Asymmetric TSP (Min ATSP): restriction of Min TSP to the case
when d obeys the triangle inequality;

4. Maximum TSP (Max TSP): find a tour of maximum weight;

5. Maximum Metric TSP (Max MTSP): restriction of Max TSP to the case
when d is a metric;

6. Minimum Latency Problem (MLP): find a tour of minimum latency; d is
assumed to be a metric.

TSP-like problems other than those above have also been considered in the
literature from the point of view of reoptimization; in particular, see Böckenhauer
et al. [8] for a hardness result on the TSP with deadlines.

Given a vehicle routing problem Π from the above list, we will consider
the following reoptimization variants, each corresponding to a different type of
perturbation of the instance: insertion of a node (Π+), deletion of a node (Π−),
and variation of a single entry of the matrix d (Π±).

Definition 8. An instance of Π+ is given by a pair (In+1, T
∗
n), where In+1 is

an instance of Π of size n + 1, and T ∗
n is an optimum solution of Π on In, the

subinstance of In+1 induced by the nodes {1, . . . , n}. A solution for this instance
of Π+ is a solution to In+1. The objective function is the same as in Π.

Definition 9. An instance of Π− is given by a pair (In+1, T
∗
n+1), where In+1 is

an instance of Π of size n + 1, and T ∗
n+1 is an optimum solution of Π on In+1.

A solution for this instance of Π− is a solution to In, the subinstance of In+1

induced by the nodes {1, . . . , n}. The objective function is the same as in Π.

Definition 10. An instance of Π± is given by a triple (In, I ′n, T ∗
n), where In, I ′n

are instances of Π of size n, T ∗
n is an optimum solution of Π on In, and I ′n differs

from In only in one entry of the distance matrix d. A solution for this instance
of Π± is a solution to I ′n. The objective function is the same as in Π.

In the following, we will sometimes refer to the initial problem Π as the
static problem. In Table 1 we summarize the approximability results known for
the static and reoptimization versions of the problems above under these types
of perturbations.

Problem Π AR(Π) Ref. AR(Π+) AR(Π−) AR(Π±) Ref.

Min TSP unbounded [32] unb. unb. unb. [5, 8]
Min MTSP 1.5 [11] 1.34 - 1.4 [1, 9]
Min ATSP O(log n) [15] 2 2 - this work
Max TSP 0.6 [25] 0.66 − O(n−1) - - this work

Max MTSP 0.875 [21] 1 − O(n−1/2) - - [5]
MLP 3.59 [10] 3 - - this work

Table 1. Best known results on the approximability of the standard and reoptimiza-
tion versions of vehicle routing problems (AR = approximation ratio, Π+ = vertex
insertion, Π− = vertex deletion, Π± = distance variation).

Some simple solution methods are common to several of the problems we
study in this section. We define here two such methods; they will be used in the
remainder of the section.

Algorithm 1 (Nearest Insertion). Given an instance In+1 and a tour T on
the set {1, . . . , n}, find a node i∗ ∈ argmin1≤i≤n d(i, n + 1). Obtain the solution
by inserting node n + 1 either immediately before or immediately after i∗ in the
tour (depending on which of these two solutions is best).

Algorithm 2 (Best Insertion). Given an instance In+1 and a tour T on the
set {1, . . . , n}, find a pair (i∗, j∗) ∈ argmin(i,j)∈T d(i, n+1)+d(n+1, j)−d(i, j).
Obtain the solution by inserting node n + 1 between i∗ and j∗ in the tour.

4.1 The Minimum Traveling Salesman Problem

The general case. We start by considering the Min TSP. It is well-known that
in the standard setting the problem is very hard to approximate in the sense that
it cannot be approximated within any factor that is polynomial in the number
of nodes [32]. It turns out that the same result also holds for the reoptimization
versions of the problem, which shows that in this particular case the extra infor-
mation available through the optimal solution to the original instance does not
help at all.

Theorem 9 ([5, 8]). Let p be a polynomial. Then each of Min TSP+,
Min TSP− and Min TSP± is not 2p(n)-approximable, unless P=NP.

Proof. We only give the proof for Min TSP−; the other proofs are similar in
spirit. We use the so-called gap technique from Sahni and Gonzalez [32]. Con-
sider the following problem, Restricted Hamiltonian Cycle (RHC): Given an

undirected graph G = (V, E) and a Hamiltonian path P between two nodes
a and b in G, determine whether there exists a Hamiltonian cycle in G. This
problem is known to be NP-complete [27]. We prove the claim of the theorem by
showing that any approximation algorithm for Min TSP− with ratio 2p(n) can
be used to solve RHC in polynomial time.

Consider an instance of RHC, that is, a graph G = (V, E) on n nodes, two
nodes a, b ∈ V and a Hamiltonian path P from a to b. Without loss of generality
we can assume that V = {1, . . . , n}. We can construct in polynomial time the
following TSP instance In+1 on node set {1, . . . , n, n + 1}:

- d(i, j) = 1 if (i, j) ∈ E;
- d(n + 1, a) = d(b, n + 1) = 1;
- all other entries of the matrix d have value 2p(n) · n + 1.

Since all entries are at least 1, the tour T ∗
n+1 := P ∪ {(b, n + 1), (n + 1, a)} is

an optimum solution of In+1, with weight w(T ∗
n+1) = n + 1. Thus, (In+1, T

∗
n+1)

is an instance of Min TSP−. Let T ∗
n be an optimum solution of instance In.

Then w(T ∗
n) = n if and only if G has a Hamiltonian cycle. Finally, a 2p(n)-

approximation algorithm for Min TSP− allows to decide whether w(T ∗
n) = n.

⊓⊔

Minimum Metric TSP. In the previous section we have seen that no constant-
factor approximation algorithm exists for reoptimizing the Minimum TSP in its
full generality. To obtain such a result, we are forced to restrict the problem
somehow. A very interesting case for many applications is when the matrix d
is a metric, that is, the Min MTSP. This problem admits a 3/2-approximation
algorithm, due to Christofides [11], and it is currently open whether this fac-
tor can be improved. Interestingly, it turns out that the reoptimization version
Min MTSP+ is (at least if one consider the currently best known algorithms)
easier than the static problem: it allows a 4/3-approximation – although, again,
we do not know whether even this factor may be improved via a more sophisti-
cated approach.

Theorem 10 ([5]). Min MTSP+ is approximable within ratio 4/3.

Proof. The algorithm used to prove the upper bound is a simple combination of
Nearest Insertion and of the well-known algorithm by Christofides [11]; namely,
both algorithms are executed and the solution returned is the one having the
lower weight.

Consider an optimum solution T ∗
n+1 of the final instance In+1, and the solu-

tion T ∗
n available for the initial instance In. Let i and j be the two neighbors of

vertex n + 1 in T ∗
n+1, and let T1 be the tour obtained from T ∗

n with the Nearest
Insertion rule. Furthermore, let v∗ be the vertex in {1, . . . , n} whose distance to
n + 1 is the smallest.

Using the triangle inequality, we easily get w(T1) ≤ w(T ∗
n+1) + 2d(v∗, n + 1)

where, by definition of v∗, d(v∗, n + 1) = min{d(k, n + 1) : k = 1, . . . , n}. Thus

w(T1) ≤ w(T ∗
n+1) + 2 max(d(i, n + 1), d(j, n + 1)) (5)

Now consider the algorithm of Christofides applied on In+1. This gives a
tour T2 of length at most (1/2)w(T ∗

n+1) + MST(In+1), where MST(In+1) is the
weight of a minimum spanning tree on In+1. Note that MST(In+1) ≤ w(T ∗

n+1)−
max(d(i, n + 1), d(j, n + 1)). Hence

w(T2) ≤
3

2
w(T ∗

n+1) − max(d(i, n + 1), d(j, n + 1)). (6)

The result now follows by combining equations (5) and (6), because
the weight of the solution given by the algorithm is min(w(T1), w(T2)) ≤
(1/3)w(T1) + (2/3)w(T2) ≤ (4/3)w(T ∗

n+1). ⊓⊔

The above result can be generalized to the case when more than a single ver-
tex is added in the perturbed instance. Let Min MTSP+k be the corresponding
problem when k vertices are added. Then it is possible to give the following re-
sult, which gives a tradeoff between the number of added vertices and the quality
of the approximation guarantee.

Theorem 11 ([5]). For any k ≥ 1, Min MTSP+k is approximable within ratio
3/2 − 1/(4k + 2).

Reoptimization under variation of a single entry of the distance matrix (that
is, problem Min MTSP±) has been considered by Böckenhauer et al. [9].

Theorem 12 ([9]). Min MTSP± is approximable within ratio 7/5.

Minimum Asymmetric TSP. The Minimum Asymmetric Traveling Salesman
Problem is another variant of the TSP that is of interest for applications, as it
generalizes the Metric TSP. Unfortunately, in the static case there seems to be
a qualitative difference with respect to the approximability of Minimum Metric
TSP: while in the latter case a constant approximation is possible, for Min ATSP
the best known algorithms give an approximation ratio of Θ(log n). The first
such algorithm was described by Frieze et al. [17] and has an approximation
guarantee of log2 n. The currently best algorithm is due to Feige and Singh [15]
and gives approximation (2/3) log2 n. The existence of a constant approximation
for Min ATSP is an important open problem.

Turning now to reoptimization, there exists a non-negligible gap between the
approximability of the static version and of the reoptimization version. In fact,
reoptimization drastically simplifies the picture: Min ATSP+ is approximable
within ratio 2, as we proceed to show.

Theorem 13. Min ATSP+ is approximable within ratio 2.

Proof. The algorithm used to establish the upper bound is extremely simple: just
add the new vertex between an arbitrarily chosen pair of consecutive vertices in
the old optimal tour. Let T be the tour obtained by inserting node n+1 between
two consecutive nodes i and j in T ∗

n . We have:

w(T) = w(T ∗
n) + d(i, n + 1) + d(n + 1, j) − d(i, j).

By triangle inequality, d(n + 1, j) ≤ d(n + 1, i) + d(i, j). Hence

w(T) ≤ w(T ∗
n) + d(i, n + 1) + d(n + 1, i).

Again by triangle inequality, w(T ∗
n) ≤ w(T ∗

n+1), and d(i, n + 1) + d(n + 1, i) ≤
w(T ∗

n+1), which concludes the proof. ⊓⊔

We remark that the above upper bound of 2 on the approximation ratio is
tight, even if we use Best Insertion instead of inserting the new vertex between
an arbitrarily chosen pair of consecutive vertices.

Theorem 14. Min ATSP− is approximable within ratio 2.

Proof. The obvious idea is to skip the deleted node in the new tour, while visiting
the remaining nodes in the same order. Thus, if i and j are respectively the nodes
preceding and following n + 1 in the tour T ∗

n+1, we obtain a tour T such that

w(T) = w(T ∗
n+1) + d(i, j) − d(i, n + 1) − d(n + 1, j). (7)

Consider an optimum solution T ∗
n of the modified instance In, and the node l

that is consecutive to i in this solution. Since inserting n + 1 between i and l
would yield a feasible solution to In+1, we get, using triangle inequality:

w(T ∗
n+1) ≤ w(T ∗

n) + d(i, n + 1) + d(n + 1, l)− d(i, l)

≤ w(T ∗
n) + d(i, n + 1) + d(n + 1, i).

By substituting in (7) and using triangle inequality again,

w(T) ≤ w(T ∗
n) + d(i, j) + d(j, i).

Hence, w(T) ≤ 2w(T ∗
n). ⊓⊔

4.2 The Maximum Traveling Salesman Problem

Maximum TSP. While the typical applications of the Minimum TSP are in ve-
hicle routing and transportation problems, the Maximum TSP has applications
to DNA sequencing and data compression [25]. Like the Minimum TSP, the
Maximum TSP is also NP-hard, but differently from what happens for the Min-
imum TSP, it is approximable within a constant factor even when the distance
matrix can be completely arbitrary. In the static setting, the best known result
for Max TSP is a 0.6-approximation algorithm due to Kosaraju et al. [25]. Once
again, the knowledge of an optimum solution to the initial instance is useful,
as the reoptimization problem under insertion of a vertex can be approximated
within a ratio of 0.66 (for large enough n), as we show next.

Theorem 15. Max TSP+ is approximable within ratio (2/3) · (1 − 1/n).

Proof. Let i and j be such that (i, n + 1) and (n + 1, j) belong to T ∗
n+1. The

algorithm is the following:

1. Apply Best Insertion to T ∗
n to get a tour T1.

2. Find a maximum cycle cover C = (C0, . . . , Cl) on In+1 such that:
(a) (i, n + 1) and (n + 1, j) belong to C0;
(b) |C0| ≥ 4.

3. Remove the minimum-weight arc of each cycle of C and patch the paths
obtained to get a tour T2.

4. Select the best solution between T1 and T2.

Note that Step 2 can be implemented in polynomial time as follows. We
replace d(i, n + 1) and d(n + 1, j) by a large weight M , and d(j, i) by −M (we
do not know i and j, but we can try each possible pair of vertices and return
the best tour constructed by the algorithm). Hence, this cycle cover will contain
(i, n + 1) and (n + 1, j) but not (j, i), meaning that the cycle containing n + 1
will have at least 4 vertices.

Let a := d(i, n + 1) + d(n + 1, j). Clearly, w(T ∗
n+1) ≤ w(T ∗

n) + a. Now, by
inserting n + 1 in each possible position, we get

w(T1) ≥ (1 − 1/n)w(T ∗
n) ≥ (1 − 1/n)(w(T ∗

n+1) − a).

Since C0 has size at least 4, the minimum-weight arc of C0 has cost at most
(w(C0) − a)/2. Since each cycle has size at least 2, we get a tour T2 of value:

w(T2) ≥ w(C) −
w(C0) − a

2
−

w(C) − w(C0)

2

=
w(C) + a

2
≥

w(T ∗
n+1) + a

2

Combining the two bounds for T1 and T2, we get a solution which is (2/3) ·
(1 − 1/n)-approximate. ⊓⊔

The above upper bound can be improved to 0.8 when the distance matrix is
known to be symmetric [5].

Maximum Metric TSP. The usual Maximum TSP problem does not admit
a polynomial-time approximation scheme, that is, there exists a constant c such
that it is NP-hard to approximate the problem within a factor better than c.
This result extends also to the Maximum Metric TSP [28]. The best known
approximation for the Maximum Metric TSP is a randomized algorithm with an
approximation guarantee of 7/8 [21].

By contrast, in the reoptimization of Max MTSP under insertion of a ver-
tex, the Best Insertion algorithm turns out to be a very good strategy: it is
asymptotically optimum. In particular, the following holds.

Theorem 16 ([5]). Max MTSP+ is approximable within ratio 1 − O(n−1/2).

Using the above result one can easily prove that Max MTSP+ admits a
polynomial-time approximation scheme: if the desired approximation guarantee
is 1 − ǫ, for some ǫ > 0, just solve by enumeration the instances with O(1/ǫ2)
nodes, and use the result above for the other instances.

4.3 The Minimum Latency Problem

Although superficially similar to the Minimum Metric TSP, the Minimum La-
tency Problem appears to be more difficult to solve. For example, in the special
case when the metric is induced by a weighted tree, the MLP is NP-hard [34]
while the Metric TSP is trivial. One of the difficulties in the MLP is that lo-
cal changes in the input can influence the global shape of the optimum solution.
Thus, it is interesting to notice that despite this fact, reoptimization still helps. In
fact, the best known approximation so far for the static version of the MLP gives
a factor of 3.59 and is achieved via a sophisticated algorithm due to Chaudhuri
et al. [10], while it is possible to give a very simple 3-approximation for MLP+,
as we show in the next theorem.

Theorem 17. MLP+ is approximable within ratio 3.

Proof. We consider the Insert Last algorithm that inserts the new node n + 1
at the “end” of the tour, that is, just before node 1. Without loss of generality,
let T ∗

n = {(1, 2), (2, 3), . . . , (n− 1, n)} be the optimal tour for the initial instance
In (that is, the kth node to be visited is k). Let T ∗

n+1 be the optimal tour for
the modified instance In+1. Clearly ℓ(T ∗

n+1) ≥ ℓ(T ∗
n) since relaxing the condition

that node n + 1 must be visited cannot raise the overall latency.
The quantity ℓ(T ∗

n) can be expressed as
∑n

i=1 ti, where for i = 1, . . . , n,

ti =
∑i−1

j=1 d(j, j + 1) can be interpreted as the “time” at which node i is first
visited in the tour T ∗

n .
In the solution constructed by Insert Last, the time at which each node i 6=

n+1 is visited is the same as in the original tour (ti), while tn+1 = tn+d(n, n+1).

The latency of the solution is thus
∑n+1

i=1 ti =
∑n

i=1 ti + tn + d(n, n + 1) ≤
2ℓ(T ∗

n) + ℓ(T ∗
n+1) ≤ 3ℓ(T ∗

n+1), where we have used ℓ(T ∗
n+1) ≥ d(n, n + 1) (any

feasible tour must include a subpath from n to n + 1 or vice versa). ⊓⊔

Bibliography

[1] C. Archetti, L. Bertazzi, and M. G. Speranza. Reoptimizing the traveling
salesman problem. Networks, 42(3):154–159, 2003.

[2] C. Archetti, L. Bertazzi, and M. G. Speranza. Reoptimizing the 0-1 knap-
sack problem, 2008. Manuscript.

[3] T. Asano, K. Hori, T. Ono, and T. Hirata. A theoretical framework of
hybrid approaches to MAX SAT. In Proc. 8th Int. Symp. on Algorithms
and Computation, pages 153–162, 1997.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complexity and approximation – Combinatorial optimiza-
tion problems and their approximability properties. Springer, Berlin, 1999.

[5] G. Ausiello, B. Escoffier, J. Monnot, and V. T. Paschos. Reoptimization of
minimum and maximum traveling salesman’s tours. In Proc. 10th Scandi-
navian Workshop on Algorithm Theory, pages 196–207, 2006.

[6] M. Bartusch, R. Möhring, and F. J. Radermacher. Scheduling project net-
works with resource constraints and time windows. Annals of Operations
Research, 16:201–240, 1988.

[7] M. Bartusch, R. Möhring, and F. J. Radermacher. A conceptional outline
of a DSS for scheduling problems in the building industry. Decision Support
Systems, 5:321–344, 1989.

[8] H.-J. Böckenhauer, L. Forlizzi, J. Hromkovic, J. Kneis, J. Kupke, G. Proi-
etti, and P. Widmayer. Reusing optimal tsp solutions for locally modified
input instances. In Proc. 4th IFIP Int. Conf. on Theoretical Computer
Science, pages 251–270, 2006.

[9] H.-J. Böckenhauer, J. Hromkovic, T. Mömke, and P. Widmayer. On the
hardness of reoptimization. In Proc. 34th Conf. on Current Trends in The-
ory and Practice of Computer Science, pages 50–65, 2008.

[10] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and min-
imum latency tours. In Proc. 44th Symp. on Foundations of Computer
Science, pages 36–45, 2003.

[11] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification– a
technique for speeding up dynamic graph algorithms. Journal of the ACM,
44(5):669–696, 1997.

[13] B. Escoffier, M. Milanic, and V. T. Paschos. Simple and fast reoptimiza-
tions for the Steiner tree problem. Cahier du LAMSADE 245, LAMSADE,
Université Paris-Dauphine, 2007.

[14] S. Even and H. Gazit. Updating distances in dynamic graphs. Methods
Oper. Res., 49:371–387, 1985.

[15] U. Feige and M. Singh. Improved approximation ratios for traveling sales-
person tours and paths in directed graphs. In Proc. 10th Int. Workshop

on Approximation, Randomization and Combinatorial Optimization, pages
104–118, 2007.

[16] G. N. Frederickson. Data structures for on-line updating of minimum span-
ning trees, with applications. SIAM Journal on Computing, 14(4):781–798,
1985.

[17] A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem. Networks,
12(1):23–39, 1982.

[18] C. Gröpl, S. Hougardy, T. Nierhoff, and H. Prömel. Approximation algo-
rithms for the Steiner tree problem in graphs. In D.-Z. Du and X. Cheng,
editors, Steiner Trees in Industry, pages 235–279. Kluwer Academic Pub-
lishers, 2000.

[19] G. Gutin and A. P. Punnen, editors. The Traveling Salesman Problem and
its Variations. Kluwer, Dordrecht, The Nederlands, 2002.

[20] N. G. Hall and M. E. Posner. Sensitivity analysis for scheduling problems.
J. Scheduling, 7(1):49–83, 2004.

[21] R. Hassin and S. Rubinstein. A 7/8-approximation algorithm for metric
Max TSP. Information Processing Letters, 81(5):247–251, 2002.

[22] M. R. Henzinger and V. King. Maintaining minimum spanning forests in
dynamic graphs. SIAM Journal on Computing, 31(2):367–374, 2001.

[23] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

[24] D. S. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer and Systems Sciences, 9:256–278, 1974.

[25] S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings.
In Proc. 35th Symp. on Foundations of Computer Science, pages 166–177,
1994.

[26] E. L. Lawler, J. K. Lenstra, A. Rinnooy Kan, and D. B. Shmoys, editors.
The Traveling Salesman Problem: A Guided Tour of Combinatorial Opti-
mization. Wiley, Chichester, England, 1985.

[27] C. H. Papadimitriou and K. Steiglitz. On the complexity of local search for
the traveling salesman problem. SIAM Journal on Computing, 6(1):76–83,
1977. doi: 10.1137/0206005.

[28] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem
with distances one and two. Mathematics of Operations Research, 18(1):
1–11, 1993.

[29] A. Paz and S. Moran. Non deterministic polynomial optimization problems
and their approximations. Theoretical Computer Science, 15:251–277, 1981.

[30] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in
graphs. In Proc. 11th Symp. on Discrete Algorithms, pages 770–779, 2000.

[31] H. Rohnert. A dynamization of the all-pairs least cost problem. In Proc. 2nd
Symp. on Theoretical Aspects of Computer Science, pages 279–286, 1985.

[32] S. Sahni and T. F. Gonzalez. P-complete approximation problems. Journal
of the ACM, 23(3):555–565, 1976.

[33] M. W. Schäffter. Scheduling with forbidden sets. Discrete Applied Mathe-
matics, 72(1–2):155–166, 1997.

[34] R. Sitters. The minimum latency problem is NP-hard for weighted trees.
In Proc. 9th Integer Programming and Combinatorial Optimization Conf.,
pages 230–239, 2002.

[35] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.
[36] D. Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. In Proc. 38th Symp. on Theory of Computing,
pages 681–690, 2006.

