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Abstract

Limit Datalog is a fragment of Datalog
Z
—the extension of

Datalog with arithmetic functions over the integers—which
has been proposed as a declarative language suitable for cap-
turing data analysis tasks. In limit Datalog programs, all in-
tensional predicates with a numeric argument are limit predi-
cates that keep maximal (or minimal) bounds on numeric val-
ues. Furthermore, to ensure decidability of reasoning, limit
Datalog imposes a linearity condition restricting the use of
multiplication in rules. In this paper, we study the complex-
ity and expressive power of limit Datalog programs extended
with disjunction in the heads of rules and non-monotonic
negation under the stable model semantics. We show that al-
lowing for unrestricted use of negation leads to undecidability
of reasoning. Decidability can be restored by stratifying the
use of negation over predicates carrying numeric values. We
show that the resulting language is Π

EXP
2 -complete in com-

bined complexity and that it captures ΠP
2 over ordered struc-

tures in the sense of descriptive complexity. We also provide a
study of several fragments of this language: we show that the
complexity and expressive power of the full language are al-
ready reached for disjunction-free programs; furthermore, we
show that semi-positive disjunctive programs are coNEXP-
complete and that they capture coNP.

1 Introduction

Declarative languages underpinning existing rule-based rea-
soning engines for data analysis, such as BOOM (Al-
varo et al. 2010), DeALS (Yang, Shkapsky, and Zaniolo
2017), Myria (Wang, Balazinska, and Halperin 2015), So-
ciaLite (Seo, Guo, and Lam 2015), Overlog (Loo et al.
2009), Dyna (Eisner and Filardo 2011), and Yedalog (Chin
et al. 2015), can be seen as extensions of Datalog where
rules are equipped with arithmetic functions and aggregation
to capture quantitative aspects of the data. These languages
are, however, trivially undecidable due to the interaction be-
tween recursion and numeric computations in rules.

Kaminski et al. [2017; 2018] have recently proposed the
language of limit Datalog programs—a decidable variant
of Datalog equipped with stratified negation and arithmetic
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functions over the integers that is expressive enough to cap-
ture the core features of existing declarative languages for
data analysis. In limit Datalog programs, all intensional
predicates with a numeric argument are limit predicates that
keep maximal (or minimal) bounds on numeric values. For
example, if we encode a directed graph with weighted edges
using a ternary predicate edge , then rules (1) and (2), with
dist a min limit predicate, compute the cost of a shortest
path from a source node as to each other node in the graph.

→ dist(as , 0) (1)

dist(x,m) ∧ edge(x, y, n) → dist(y,m+ n) (2)

Intuitively, rule (2) says that, if x is reachable from as with
cost at most m and (x, y) is an edge of cost n, then y is
reachable from as with cost at most m+ n. If the rules and
a dataset entail a fact dist(a, ℓ), then the length of a shortest
path from as to a is at most ℓ; so, dist(a, k) holds for each
k ≥ ℓ since the cost of a shortest path is also at most k.

To ensure decidability, limit Datalog imposes a linearity
condition restricting the use of multiplication. Under this re-
striction, fact entailment for semi-positive limit programs is
coNEXP-complete in combined and coNP-complete in data
complexity (Kaminski et al. 2017), whereas for programs
with stratified negation fact entailment is ∆EXP

2 -complete
and ∆P

2-complete, respectively (Kaminski et al. 2018).

In this paper, we study limit Datalog programs equipped
with disjunction in the head of rules and non-monotonic
negation in the body. We first observe that allowing for unre-
stricted use of negation as failure leads to undecidability of
reasoning, which holds even for disjunction-free programs
satisfying the linearity condition. Thus, to obtain decidabil-
ity we restrict the use of negation: while still allowing unre-
stricted application of negation to atoms without a numeric
argument, we require that negation over atoms with nu-
meric arguments is stratified. We call the resulting programs
numerically stratified. The resulting language extends both
stratified limit-linear Datalog (Kaminski et al. 2018) and dis-
junctive Datalog with negation under the stable model cer-
tain semantics (Eiter, Gottlob, and Mannila 1997).

We show that fact entailment for numerically stratified
programs is ΠEXP

2 -complete in combined and ΠP
2-complete

in data complexity, where the lower bounds hold already
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for disjunctive Datalog without arithmetic (Eiter, Gottlob,
and Mannila 1997); furthermore, numerically stratified pro-
grams capture ΠP

2 in the sense of descriptive complexity.
Thus, although addition and linear multiplication provide a
great deal of flexibility for modelling, they do not lead to an
increase in expressive power or in the complexity of reason-
ing. Moreover, the complexity and expressive power of nu-
merically stratified programs do not depend on the presence
of disjunction in rule heads, which is in contrast to Datalog
without arithmetic (Eiter, Gottlob, and Mannila 1997).

We also study the natural fragments of numerically strat-
ified disjunctive limit-linear Datalog. We show that rea-
soning in the semi-positive fragment is coNEXP-complete
in combined and coNP-complete in data complexity, and
that it captures coNP; so, reasoning in this fragment is no
harder than reasoning over semi-positive limit-linear pro-
grams without disjunction (Kaminski et al. 2017) or semi-
positive disjunctive programs without arithmetic (Eiter, Got-
tlob, and Mannila 1997). Extending semi-positive negation
to stratified negation, however, makes reasoning ΠEXP

2 - and
ΠP

2-complete, respectively. This is in contrast to disjunction-
free stratified programs, for which reasoning is ∆EXP

2 - and
∆P

2-complete (Kaminski et al. 2018).

2 Preliminaries

We start with disjunctive Datalog
Z

, which extends dis-
junctive Datalog (Eiter, Gottlob, and Mannila 1997) with
arithmetic over integers Z. We slightly extend the syntax
of Kaminski et al. [2017; 2018] by allowing the special nu-
meric term ∞, where, intuitively, an atom C(a,∞) holds
if C(a, k) holds for all k ∈ Z. This syntactic extension
does not affect any of the results in (Kaminski et al. 2017;
2018) but allows the language to detect and react to diver-
gence of numeric values, a feature that is available in closely
related languages (Ross and Sagiv 1997).

Disjunctive Datalog
Z

Syntax. We assume countably infi-
nite, mutually disjoint sets of objects, object variables, nu-
meric variables, and predicates. Each predicate has a non-
negative integer arity, and each position i ∈ [1, v] of a v-
ary predicate is of object or numeric sort. We distinguish
binary comparison predicates ≤ and <, with both positions
numeric, and all other standard predicates. An object term is
an object or an object variable. A numeric term is an integer
in Z, a numeric variable, the special symbol ∞, or an expres-
sion of the form s1 + s2, s1 − s2 or s1 × s2, where s1 and
s2 are numeric terms not mentioning ∞, and +, − and × are
the usual arithmetic functions. A constant is an object or an
integer (but not ∞). A standard atom is an expression of the
form A(t1, . . . , tv), where A is a v-ary standard predicate
and each ti is a term matching the sort of position i of A. A
comparison atom is an expression if the form (s1 ≤ s2) or
(s1 < s2), where s1 and s2 are numeric terms different from
∞. We also use usual abbreviations such as (s1 ≥ s2) for
(s2 ≤ s1) and (s1

.
= s2) for (s1 ≤ s2) ∧ (s2 ≤ s1).

A rule ρ is an expression of the form ϕ → ψ, where the
body ϕ of ρ is a conjunction of literals—that is, standard
atoms, negations notα of standard atoms α, and comparison
atoms,—while the head ψ of ρ is a non-empty disjunction of

standard atoms; all the variables in ρ are implicitly univer-
sally quantified. Without loss of generality, we will consider
only safe rules—that is, rules where all variables occur in
positive body literals. A pseudofact is a disjunction-free rule
with empty body where all terms are constants or ∞; a fact
is pseudofact without ∞. A standard predicate is intensional
(IDB) in a program P if it occurs in P in the head of a rule
that is not a pseudofact; otherwise, it is extensional (EDB).
A (disjunctive Datalog

Z
) program is a finite set rules, and a

dataset is a program consisting of facts.

A stratification of a program P is a function Λ from the
standard predicates of P to positive natural numbers such
that, for every rule in P , we have Λ(A1) = Λ(A2) for each
two predicates A1, A2 in the head, and, for each head pred-
icate A and each standard body literal λ over predicate B,
Λ(B) < Λ(A) if λ a negative and Λ(B) ≤ Λ(A) otherwise.

A program is positive if it does not use negation, semi-
positive if it allows negation only in front of EDB predi-
cates, and stratified if it admits a stratification. A program is
disjunction-free if it does not use disjunction (i.e., every rule
has only one atom in the head).

Disjunctive Datalog
Z

Semantics. An expression (e.g.,
term, atom, or rule) E′ is an instance of E if E′ = Eσ for a
sort-compatible substitution σ. Substitution σ is a grounding
of E if E′ is ground—that is, mentions no variables.

A (Herbrand) interpretation I is a set of facts. It satisfies
a ground literal λ, written I |= λ, if one of the following
holds (under the usual semantics of integer arithmetic):

– λ is a standard atom and I contains each fact obtained
from λ by replacing every occurrence of ∞ by an integer
and evaluating all the numeric terms;

– λ is a negative literal notα and I �|= α; and
– λ is a comparison atom that evaluates to true.

The notion of satisfaction extends to conjunctions of ground
literals, rules, and sets of rules as in first-order logic. An
interpretation I is a model of a set Q of rules if I |= Q. A
model I of Q is minimal if Q has no model I ′ with I ′ ⊂ I.

A Gelfond-Lifschitz reduct of a program P over an inter-
pretation I is the set PI of positive rules obtained from the
set of all ground instances of rules in P by

– removing all rules with notα in the body for α ∈ I;
– removing all negative literals from the rest of the rules.

An interpretation I is a stable model of a program P if I is
a minimal model of PI . Every stable model of a program P
is also a minimal model of P; if P is positive, then the op-
posite also holds (Przymusinski 1991). Every stratified and
disjunction-free program has a unique stable model (Przy-
musinski 1991), sometimes called materialisation, which
can be constructed by computing (possibly transfinite) fix-
points stratum by stratum (Apt, Blair, and Walker 1988;
Dantsin et al. 2001; Kaminski et al. 2018).

A program P (certainly) entails a fact γ, written P |= γ,
if γ ∈ I for every stable model I of P .

Computational and Descriptive Complexity. We assume
standard definitions of basic complexity classes such as P,
NP, coNP, and EXP, as well as polynomial hierarchy classes
∆P

i , ΣP
i , and ΠP

i , for i ≥ 0, and their counterparts in the weak
exponential hierarchy ∆EXP

i , ΣEXP
i , and ΠEXP

i (Papadimitriou
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1994; Ladner and Lynch 1976; Hemachandra 1989).

We study decidability and complexity of fact entail-
ment—that is, the problem of checking whether P |= γ for a
program P and fact γ—for disjunctive Datalog

Z
and its frag-

ments. Combined complexity assumes that the input is both
P and γ, while data complexity assumes that P = P ′ ∪ D
for P ′ a program and D a dataset, and that only D and γ
form the input while P ′ is fixed. Our results do not depend
on whether integers are coded in unary or in binary.

It is known that, without numbers and arithmetic, fact en-
tailment for disjunctive Datalog

Z
is ΠEXP

2 -complete in com-
bined and ΠP

2-complete in data complexity, where the lower
bounds already hold for stratified programs (Eiter, Gottlob,
and Mannila 1997); also, for disjunction-free programs the
problem is coNEXP- and coNP-complete, respectively (Ko-
laitis and Papadimitriou 1991; Schlipf 1995), and the same
holds if disjunction is allowed, but only positive or semi-
positive programs are considered (Chandra and Harel 1985;
Eiter, Gottlob, and Mannila 1997); finally, if no disjunction
and only stratified negation or no negation is allowed, then it
is EXP- and P-complete, respectively (Dantsin et al. 2001).
However, it is undecidable for positive programs with arith-
metic allowing only for function + and standard predicates
with at most one numeric position (Kaminski et al. 2017).

Descriptive complexity studies the relationship between
the expressive power of logical languages and computa-
tional complexity (Immerman 1999; Grädel 2007). In this
setting, a logical language is a set of sentences each of
which evaluates on a dataset to either true or false. As
is customary, we concentrate on the family D of datasets
over predicates without numeric positions that are ordered—
that is, mention at least two objects and contain facts
first(a1), next(a1, a2), . . . ,next(ac−1, ac), last(ac) over
special standard predicates first , next , and last for an enu-
meration a1, . . . , ac of all objects in the dataset; also, these
facts are the only facts over these predicates in the dataset.
A logical language L captures a complexity class C (over
ordered datasets) if the following holds for each signature
(i.e., set of predicates) Σ containing the special predicates:

– the problem of evaluating a sentence ϕ ∈ L on a dataset
D ∈ D over Σ is in C if ϕ is considered fixed;

– for each problem P in C, there is a sentence ϕP ∈ L such
that, for every D ∈ D over Σ, ϕP is true on D if and only
if (the appropriate binary encoding of) D is in P .

When applying these definitions to disjunctive Datalog
Z

,
we define a program P to be true on a dataset D ∈ D over
EDB predicates in P if P ∪ D |= goal , where goal is a dis-
tinguished nullary predicate (note that P can use IDB pred-
icates with numeric positions, which are not in the signature
in the above sense). If a fragment L of disjunctive Datalog

Z

captures a class C, then fact entailment for L is C-hard in
data complexity (Eiter, Gottlob, and Mannila 1997).

It is known that, without arithmetic, full and stratified dis-
junctive Datalog

Z
capture ΠP

2 (Eiter, Gottlob, and Mannila
1997), the disjunction-free and semi-positive fragments cap-
ture coNP (Kolaitis and Papadimitriou 1991; Schlipf 1995),
while programs that are disjunction-free and either semi-
positive or stratified capture P (Dantsin et al. 2001).

3 Limit-Linear Disjunctive Datalog
Z

As outlined in the previous section, allowing even a very
restrictive form of arithmetic in disjunction-free positive
Datalog

Z
makes fact entailment undecidable. To recover

decidability, Kaminski et al. [2017] suggested the limit-
linear fragment of disjunction-free positive Datalog

Z
, for

which the problem is coNEXP-complete in combined and
coNP-complete in data complexity. Moreover, the complex-
ity stays the same for the semi-positive fragment, and grows
to ∆EXP

2 and ∆P
2, respectively, if stratified negation is al-

lowed (Kaminski et al. 2018).1 It also follows from the
results of Kaminski et al. that semi-positive and stratified
disjunction-free Datalog

Z
capture coNP and ∆P

2, respec-
tively. In this section, we introduce an extension of the limit-
linear language with disjunction and stable models negation.

The key feature of limit programs is that IDB predicates
are partitioned into object and limit predicates: the former
have only object positions, while each of the latter has a
distinguished numeric position that keeps a limit (i.e., a
maximal or minimal bound) on integers. As the language
of Kaminski et al. [2017], limit and limit-linear disjunctive
Datalog

Z
can be seen as either semantic or syntactic restric-

tions of disjunctive Datalog
Z

. We start with the more intu-
itive semantics-based definitions.

Definition 1. A limit program is a pair (P, τ) such that

– P is a disjunctive Datalog
Z

program where each standard
predicate is either object with all positions object, or nu-
meric with the last position numeric and all others object;

– τ is a partial function from numeric predicates in P to
{max,min} that is total on the numeric IDB predicates
and the numeric predicates of atoms mentioning ∞ in P .

The numeric predicates of (P, τ) in the domain of τ are limit
and all other numeric predicates are exact. A limit predicate
C is max or min if τ(C) is max or min, respectively.

All notions on predicates in Definition 1 propagate to
atoms, literals, etc. All syntactic notions defined on regu-
lar programs (e.g., EDB and semi-positive) extend to a limit
program (P, τ) by applying them to P . For C a limit pred-
icate, we write �τ

C , ≺τ
C and maxτC for ≤, < and max, re-

spectively, if τ(C) = max, and for ≥, > and min, otherwise.

We move on to the semantics of limit programs.

Definition 2. An interpretation I is limit-closed for a limit
program (P, τ) if for every limit fact C(a, k) ∈ I we also
have C(a, k′) ∈ I for each integer k′ �τ

C k. An interpreta-
tion is a model of (P, τ) if it is limit-closed and is a model of
P . (Certain) entailment of a fact by a limit program (P, τ)
is then defined in the same way as for ordinary disjunctive
Datalog

Z
programs.2

Having the direct semantics at hand, we next argue that
limit programs can be easily rewritten to regular Datalog

Z

programs. Indeed, the semantics of limit predicates in a limit

1The ∆
EXP
2 bounds are not explicitly claimed in (Kaminski et

al. 2018), but follow by adapting their data complexity proofs.
2This definition applied to stratified limit Datalog

Z
is different

from the definition of Kaminski et al. [2018]; however, the two
definitions can be shown equivalent.
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program (P, τ) can be equivalently axiomatised using the
regular program P ∪ A(τ), for A(τ) the set of rules

C(x,m) ∧ (n �τ
C m) → C(x, n),

for each predicate C in the domain of τ and a tuple x of
distinct object variables of appropriate size. In particular, an
interpretation is a stable model of P ∪ A(τ) if and only if it
is a stable model of (P, τ).

Limit programs have an intuitive semantics and allow
to declaratively encode many tasks involving arithmetic,
such as shortest path and company control (Kaminski et al.
2017). However, due to the presence of multiplication, even
disjunction-free positive Datalog

Z
already has undecidable

fact entailment. Kaminski et al. [2017] recover decidabil-
ity by imposing an additional linearity restriction, which we
next generalise to programs with disjunction and negation.3

If C is a limit predicate, t is a tuple of object terms, and
s is a numeric term different from ∞, then a least upper
bound (LUB) expression ⌈C(t, s)⌉ is an abbreviation for the
conjunction C(t, s) ∧ notC(t, s + k), where k = 1 if C is
max and k = −1 otherwise.

Definition 3. A numeric variable m is guarded in a rule
of a limit program if it occurs in the rule body either in a
function-free positive exact literal or in an LUB expression
of the form ⌈C(t,m)⌉. Such a rule is limit-linear (LL-rule) if
at most one argument of each multiplication in the rule uses
unguarded variables. A limit program is limit-linear (LL-
program) if so is each of its rules.

LL-programs are our main object of study in this paper. In
what follows, we investigate their computational properties
and expressive power. To avoid notational clutter, we write a
limit program (P, τ) as just P , assuming that τ is given im-
plicitly. We also omit τ in notations such as �τ

C and, when
considering a union of limit programs, assume that their re-
spective τ coincide on the shared predicates.

Next, we demonstrate the power of limit-linear disjunc-
tive Datalog

Z
by encoding (the complement of) the Knap-

sack problem. Note that this encoding does not require a
constant for the value of every possible solution, unlike
the encoding of the problem in disjunctive Datalog without
arithmetic by Eiter, Gottlob, and Mannila [1997].

Example 4. An instance K=〈c, {(w1, v1), . . . , (wn, vn)}〉
of the 0-1 knapsack problem consists of a capacity c and a set
of items with weights wi and values vi, where c, wi, and vi
are positive integers. A solution S to K with value

∑
i∈S vi

and weight w =
∑

i∈S wi is a subset of {1, . . . , n} with
w ≤ c. Such an instance K is naturally represented as an or-
dered dataset DK using an exact unary fact capacity(c), and
exact binary facts weight(ai, wi) and value(ai, vi) where
constants ai represent the items. For B a binary exact pred-
icate and op ∈ {max,min}, let the positive LL-program PB

op

be defined as follows, where in and out are unary object

3Our generalisation is equivalent to the one in (Kaminski et al.
2018) on stratified disjunction-free programs.

predicates, and sB and sumB are limit predicates of type op.

first(x) ∧ out(x) → sB(x, 0)

first(x) ∧ in(x) ∧ B(x, n) → sB(x, n)

next(y, x) ∧ sB(y,m) ∧ out(x) → sB(x,m)

next(y, x) ∧ sB(y,m) ∧ in(x) ∧ B(x, n) → sB(x,m+ n)

last(x) ∧ sB(x,m) → sumB(m)

Assuming that predicates in and out partition the objects of
a dataset D and that predicate B is uniquely defined on all
such objects, program PB

op ∪ D defines predicate sumB to

have the limit value
∑

{k | ∃a : {in(a), B(a, k)} ⊆ D}.
Let the positive LL-program Pks be then defined as the

extension of Pweight
max ∪ Pvalue

min with the following rules,
where no-sol is a unary min predicate.

first(x) → in(x) ∨ out(x)

next(y, x) → in(x) ∨ out(x)

sumweight(m)∧capacity(n)∧(n < m) → no-sol(0)

sumvalue(m) → no-sol(m+ 1)

Program Pks encodes the 0-1 knapsack problem in the sense
that Pks ∪DK |= no-sol(k) if and only if all solutions of an
instance K have values less than k. �

Note that the program in Example 4 is positive. To demon-
strate the use of negation and the symbol ∞, let us extend the
example in Section 1 to a program classifying graph nodes
according to whether or not they are reachable from a dis-
tinguished source node via a path with a negative cost cycle.

Example 5. Let a directed graph G with possibly negatively
weighted edges be encoded as in Section 1. Let program Pnc

consist of rules (1) and (2) from Section 1 as well as the
following rules, where dist is a min predicate.

dist(x,∞) → neg-cycle(x) (3)

not dist(x,∞) → no-neg-cycle(x) (4)

For a dataset DG encoding G, Pnc ∪ DG |= neg-cycle(a)
holds if and only if a is reachable from the distinguished
source node as in G via a cycle whose edges sum to a nega-
tive value, while Pnc ∪DG |= no-neg-cycle(a) holds if and
only if a is not reachable from as via such a path. �

As stratified negation can be used to compute shortest
paths in the absence of negative cycles (Kaminski et al.
2018), it is possible to further extend Example 5 to a pro-
gram computing shortest paths in arbitrary graphs.

4 Numeric Stratification

We next observe that fact entailment for LL-programs is un-
decidable, and, furthermore, undecidability holds even for
disjunction-free programs. Since fact entailment for strat-
ified disjunction-free LL-programs is decidable (Kaminski
et al. 2018), this implies that undecidability of our full lan-
guage is caused by unrestricted use of negation as failure. By
contrast, the addition of unrestricted negation under the sta-
ble model semantics to (disjunctive) Datalog without arith-
metic does not affect decidability but only complexity of rea-
soning (Eiter, Gottlob, and Mannila 1997).
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Theorem 6. The fact entailment problem for disjunction-
free LL-programs is undecidable.

The theorem is shown by a reduction of (the complement
of) Hilbert’s tenth problem, which exploits the fact that pro-
grams with unrestricted negation may have stable models
with arbitrarily big numeric values for limit predicates.

Thus, to achieve decidability, we need to restrict the use of
negation. We do so by adopting a new form of stratification,
called numeric stratification, that relaxes the usual notion of
stratification as familiar from arithmetic-free programs and
studied by Kaminski et al. [2018].

Definition 7. A numeric stratification Λ of a program
P is defined the same as usual stratification except that
Λ(B) < Λ(A) is required for a head predicate A and the
predicate B of a negative body literal λ only if B is numeric
(and Λ(B) ≤ Λ(A) if B is object). A program P is numer-
ically stratified if it admits a numeric stratification Λ. The
i-th stratum Pi

Λ of P with respect to Λ is a subset of P con-
sisting of all rules with Λ(A) = i for all head predicates A.

Note that numeric stratification only disallows cyclic de-
pendencies between numeric predicates; in particular, limit
programs admitting such a stratification strictly extend dis-
junctive Datalog programs without arithmetic but with un-
restricted use of negation as studied by Eiter, Gottlob, and
Mannila [1997]. We next demonstrate the power of numeri-
cally stratified programs by encoding ∀∃SAT, a prototypical
decision problem complete for ΠP

2.

Example 8. Let the program P∀∃ be defined as follows,
where ass , F ′ and T ′ are max predicates and all other nu-
meric predicates are exact.

uvar(x) ∧ notT (x) → F (x) (5)

uvar(x) ∧ notF (x) → T (x) (6)

→ ass(0) (7)

root(x) ∧ F ′(x, n) → ass(n+ 1) (8)

ass(n) ∧ shift(x, k) ∧

(0 ≤ m1) ∧ (0 ≤ m2 < k) ∧

(n
.
= 2× k ×m1 + k +m2) → T ′(x, n) (9)

ass(n) ∧ shift(x, k) ∧

(0 ≤ m1) ∧ (0 ≤ m2 < k) ∧

(n
.
= 2× k ×m1 +m2) → F ′(x, n) (10)

ass(n) ∧ T (x) → T ′(x, n) (11)

ass(n) ∧ F (x) → F ′(x, n) (12)

not(x, y) ∧ F ′(y, n) → T ′(x, n) (13)

not(x, y) ∧ T ′(y, n) → F ′(x, n) (14)

or(x, y, z) ∧ F ′(y, n) ∧ F ′(z, n) → F ′(x, n) (15)

or(x, y, z) ∧ T ′(y, n) → T ′(x, n) (16)

or(x, y, z) ∧ T ′(z, n) → T ′(x, n) (17)

maxAss(n) ∧ not ass(n+ 1) → sat (18)

For ψ = ∀x1 . . . xv ∃y1 . . . yu ϕ with ϕ a propositional
formula over variables x1, . . . , xv, y1, . . . , yu using disjunc-
tion and negation, let a dataset Dψ consist of the following

facts, where aχ is a fresh object for each subformula χ of ϕ:

uvar(axj
), for each j ∈ [1, v],

maxAss(2u − 1),

shift(ayi
, 2i−1), for each i ∈ [1, u],

root(aϕ),

or(aχ, aχ1
, aχ2

), for each subformula χ = χ1 ∨χ2 of ϕ,

not(aχ, aχ1), for each subformula χ = ¬χ1 of ϕ.

One can show that P∀∃∪Dψ |= sat if and only if ψ holds.
Intuitively, rules (5) and (6) perform a ‘universal guess’ of
truth values for x1, . . . , xv using non-stratified negation over
object predicates, after which the remaining rules search for
an assignment of y1, . . . , yu that, together with the guessed
values for x1, . . . , xv , will make ϕ true. Each truth assign-
ment of y1, . . . , yu can be seen as an integer of length u
in binary representation and stored in this form in predicate
ass . So, rules (7) and (8) iterate through all integers ℓ repre-
senting assignments of y1, . . . , yu until ϕ evaluates to true;
the latter is checked by rules (9)–(17) computing the value
of ϕ for a given ℓ as a fact T ′(aϕ, ℓ) or F ′(aϕ, ℓ). Finally,
rule (18) uses (stratified) negation to detect whether a satis-
fying assignment has been found. �

Note that formula ψ in Example 8 is encoded as a dataset
and that the program does not use disjunction. Thus, the ex-
ample implies that fact entailment for disjunction-free nu-
merically stratified LL-programs is ΠP

2-hard in data com-
plexity. This is in contrast to Datalog without arithmetic,
where the problem is coNP-complete (Eiter, Gottlob, and
Mannila 1997).

5 Complexity Upper Bounds

In this section, we establish the upper bounds on the com-
plexity of fact entailment for semi-positive and numeri-
cally stratified limit-linear disjunctive Datalog

Z
. We begin

by showing that for semi-positive LL-programs, the problem
is in coNEXP in combined and in coNP in data complexity.
Building on this result, we then show that for numerically
stratified LL-programs, the problem is in ΠEXP

2 in combined
and in ΠP

2 in data complexity. In the next section, we will
see that both bounds are tight and consider implications on
other fragments of limit-linear disjunctive Datalog

Z
.

To establish the complexity bounds, we build on the ma-
chinery developed for disjunction-free Datalog

Z
by Kamin-

ski et al. [2017; 2018]. We start with a definition of OG-
grounding, extending a similar notion by Kaminski et al.4

Definition 9. An LL-program is object-and-guarded-ground
(OG-ground) if none of its rules have object or guarded nu-
meric variables. The canonical OG-grounding G(P) of an
LL-program P is the OG-ground program that consists of
all OG-ground instances ρσ of rules ρ in P with σ a substi-
tution mapping all object and guarded numeric variables of
ρ to constants mentioned in P .

The size of the OG-grounding is exponentially bounded
in the size of the original program; however, the bound is

4See ‘semi-ground(ing)’ in (Kaminski et al. 2018).
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polynomial in the size of the data component of the program.
The OG-grounding is equivalent to the original program in
the following sense.

Lemma 10. A limit-closed interpretation is a stable model
of an LL-program P if and only if it is a stable model of the
OG-grounding G(P).

Next, we define OG-reducts, which lift Gelfond-Lifschitz
reducts to OG-ground programs with arithmetic. For this, we
first introduce a natural finite representation of limit-closed
interpretations over a finite number of objects.

Definition 11. A pseudointerpretation is a set J of pseudo-
facts such that ℓ1 = ℓ2 for all limit pseudofacts C(a, ℓ1) and
C(a, ℓ2) in J . A limit-closed interpretation I and a pseu-
dointerpretation J correspond to each other if the following
holds for each predicate A and each tuple of objects a of
appropriate size:

– for A object, we have A(a) ∈ I if and only if A(a) ∈ J ;
– for A exact and k ∈ Z, we have A(a, k) ∈ I if and only

if A(a, k) ∈ J ;
– for A limit and ℓ ∈ Z, we have A(a, k) ∈ I for all

k �A ℓ and A(a, k) /∈ I for all k ≻A ℓ if and only if
A(a, ℓ) ∈ J ;

– for A limit, we have A(a, k) ∈ I for all k ∈ Z if and only
if A(a,∞) ∈ J .

As shown in (Kaminski et al. 2017), the correspondence
relation in Definition 11 is a bijection, so we may use
pseudointerpretations and limit-closed interpretations inter-
changeably. A pseudointerpretation is a pseudomodel of an
LL-program P if its corresponding interpretation is a model
of P; a pseudomodel is minimal or stable if so is the corre-
sponding model.

Definition 12. The OG-reduct PJ
OG of an LL-program P

over a pseudointerpretation J is the OG-ground positive
program obtained from G(P) by modifying it as follows, for
each negative literal notα in each rule ρ in G(P):

– for α an object atom,
- if α ∈ J , then delete ρ;
- otherwise, delete notα from ρ;

– for α = B(a, s) exact, consider all k1 < · · · < kh with
B(a, ki) ∈ J for each i ∈ [1, h] and

- if h > 0, replace ρ with h + 1 rules obtained from ρ
by replacing notα with comparison atoms (s < k1),
(ki−1 < s < ki) for i ∈ [2, h], and (kh < s);

- otherwise, delete notα from ρ; and
– for α = C(a, s) limit,

- if C(a,∞) ∈ J , then delete ρ;
- otherwise, if s �= ∞ and there is some k ∈ Z with
C(a, k) ∈ J , then replace notα in ρ with the compar-
ison atom (k ≺C s);

- otherwise, delete notα from ρ.

Similarly to OG-groundings, the size of the OG-reduct is
exponentially bounded in the size of the original program,
and polynomially in the size of the pseudointerpretation and
the dataset component of the program. Moreover, the OG-
reduct is also essentially equivalent to the original program.

ALGORITHM 1: Fact Non-Entailment

Input: numerically stratified LL-program P and fact γ
Output: true if and only if P �|= γ
1 compute a numeric stratification Λ of Pwith minimal

number of strata
2 guess a pseudomodel J of Psatisfying the bounds of

Lemma 17

3 return true if J �|= γ, J |= PJ
OG and J ′ �|= PJ

OG for
each J ′

⊏ J , and false otherwise

Lemma 13. A pseudointerpretation J is a stable pseudo-
model of an LL-program P if and only if J is a minimal
pseudomodel of the OG-reduct PJ

OG.

We are now ready to show the upper bounds for semi-
positive LL-programs. To this end, note that for each sta-
ble pseudomodel J of an LL-program P and each EDB
fact γ, we have γ ∈ J if and only if γ ∈ P . Thus, if P
is a semi-positive program, J is a stable pseudomodel of

P , and D is the set of all facts in P , then PJ
OG = PD

OG

as all negative literals in P must be EDB. Consequently,
to show that γ is not entailed by a semi-positive P , by
Lemma 13, it suffices to find a minimal pseudomodel of
PD

OG that does not satisfy γ. For this, in turn, it suffices to

find a pseudomodel J of PD
OG not satisfying γ (since PD

OG

is positive, it then follows that at least one minimal pseu-
domodel does not satisfy γ). As shown in (Kaminski et al.
2017), for semi-positive disjunction-free P , such a pseudo-
model is essentially a solution to an encoding of PD

OG and
the negation of γ in Presburger arithmetic; moreover, us-
ing techniques from (von zur Gathen and Sieveking 1978;
Chistikov and Haase 2016), the reduction provides a bound
on the size of the pseudomodel that is exponential in the size
of P and polynomial in the size of D, and hence the pseu-
domodel can be guessed and checked in coNEXP in general
and in coNP in data complexity. It turns out that this ap-
proach can be extended to LL-programs with disjunction,
yielding the following result.

Theorem 14. The fact entailment problem for semi-positive
LL-programs is in coNEXP in combined and in coNP in data
complexity.

Furthermore, from the bounds on the size of countermod-
els to fact entailment we can derive a bound on the size of
all minimal models of a program, which can be stated for
positive OG-ground programs as follows.

Lemma 15. There are polynomials p1, p2, and p3 such that
each minimal pseudomodel J of each positive OG-ground
program P satisfies |J | ≤ |P| and the magnitudes of inte-
gers in J are bounded by the following number, where b is
the maximal magnitude of an integer in P , and u is the max-
imal size of a rule in P assuming that integers take unit size:

p1(b)
p2(|P|)·2p3(u)

.

Lemma 15 allows us to bound the magnitude of numbers
in stable pseudomodels of an LL-program P provided we

can bound the numbers occurring in PJ
OG for each stable
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disjunction-free disjunctive

positive coNEXP/ coNP (Kaminski et al. 2017) coNEXP/ coNP [Theorem 19]

semi-positive coNEXP/ coNP (Kaminski et al. 2018) coNEXP/ coNP [Theorem 19]

stratified ∆EXP
2 / ∆P

2 (Kaminski et al. 2018) ΠEXP
2 / ΠP

2 [Theorem 19]

numerically stratified ΠEXP
2 / ΠP

2 [Corollary 21] ΠEXP
2 / ΠP

2 [Theorem 19]

unrestricted undecidable [Theorem 6] undecidable [Theorem 6]

Table 1: Complexity of fact entailment for fragments of limit-linear Datalog
Z

in the format ‘combined complexity / data com-
plexity’ (all bounds are tight)

pseudomodel J of P . By an argument similar to the one
leading to Theorem 14, we can do so if all negated numeric
literals in P are EDB, as is the case for each individual stra-
tum of a numerically stratified LL-program; indeed, in this

case, for each stable pseudomodel J of P , the reduct PJ
OG

contains only numbers from P .

The following lemma then allows us to compute stable
pseudomodels of a numerically stratified LL-program by
combining the stable pseudomodels of its strata.

Lemma 16. For each numerically stratified LL-program P
with a numeric stratification Λ and each h ≥ 1, a pseudoin-

terpretation J is a stable pseudomodel of
⋃h

i=1 P
i
Λ if and

only if J is a stable pseudomodel of Ph
Λ ∪ J ′, for J ′ a

stable pseudomodel of
⋃h−1

i=1 Pi
Λ.

Combining the implications of Lemma 15 on the strata
of numerically stratified programs with Lemma 16, we ob-
tain the following bounds on the size and the magnitude of
numbers occurring in stable pseudomodels.

Lemma 17. There are polynomials p1, p2, and p3 such that
each stable pseudomodel J of each numerically stratified
LL-program P satisfies |J | ≤ |PJ

OG|, and the magnitudes of
integers in J are bounded by the following number, where b
is the maximal magnitude of an integer in P , h is the minimal
number of non-empty strata over all numeric stratifications
of P , and u is the maximal size of a rule in P assuming that
all integers take unit size:

p1(b)
h·p2(|P

J

OG|)·2
p3(u)

.

Recall now that all exact atoms in a numerically stratified
LL-program P are EDB, and all EDB atoms in every sta-

ble pseudomodel J of P come from P . So, |PJ
OG| can be

bounded independently of J by (c+ 1)u · |G(P)|, for c the
number of distinct constants in P and u as in Lemma 17,
since each rule in G(P) yields at most (c+1)u rules in PJ

OG.

Hence, Lemma 17 yields Algorithm 1 for deciding non-
entailment of a fact γ by a numerically stratified LL-program
P , where J ′

⊏ J holds if I ⊂ I ′ for the interpretations I
and I ′ corresponding to J and J ′, respectively. Given P
and γ, the algorithm guesses a pseudomodel J of P wit-
nessing P �|= γ, and then checks that J is indeed a minimal

model of PJ
OG and does not satisfy γ. Note that the bounds

on the maximal magnitude of numbers given by Lemma 17
are doubly exponential in general and exponential in the size

of the dataset, which implies that J can be guessed in expo-
nential and polynomial time, respectively. Finally, the uni-
versal guess of J ′ in line 3 can be done using an NP-oracle.
Thus, analysis of Algorithm 1 yields the following result.

Theorem 18. The fact entailment problem for numerically
stratified LL-programs is in ΠEXP

2 in combined and in ΠP
2 in

data complexity.

6 Lower Bounds and Expressivity

We next complement the upper bounds established in Sec-
tion 5 by matching lower bounds for all the fragments of
disjunctive Datalog

Z
studied in this paper; furthermore, we

establish their expressive power. While several lower bounds
follow from existing results, the expressivity and complexity
of disjunction-free numerically stratified programs is estab-
lished via a novel and intricate Turing machine reduction.

Recall that the complexity of disjunction-free stratified
Datalog

Z
and its fragments follows from (Kaminski et al.

2017; 2018), while for the disjunctive fragments, the upper
bounds of Theorems 14 and 18 are the same as the bounds
of Eiter, Gottlob, and Mannila [1997] for the same fragments
without arithmetic. So, we can derive the following theorem.

Theorem 19. The fact entailment problem for numerically
stratified and stratified LL-programs is ΠEXP

2 -complete in
combined and ΠP

2-complete in data complexity. The prob-
lem for semi-positive and positive LL-programs is coNEXP-
complete and coNP-complete, respectively. The languages
of numerically stratified and stratified LL-programs capture
ΠP

2, while semi-positive LL-programs capture coNP.

Note, however, that the situation is different for numeri-
cally stratified LL-programs without disjunction, where fact
entailment is coNEXP- and coNP-complete, respectively,
in the case without arithmetic (Eiter, Gottlob, and Mannila
1997), and the language captures coNP, but the best upper
bounds that we have with arithmetic are ΠEXP

2 and ΠP
2 from

Theorem 18, with the latter bound being tight by Example 8.
We next show that for such programs, arithmetic adds not
only complexity but also expressivity.

Theorem 20. The language of disjunction-free numerically
stratified LL-programs captures ΠP

2.

The proof idea is similar to the one of Example 8, but
the technical details are much more elaborate. In particu-
lar, the universal guesses of the main coNP Turing machine
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are simulated by non-stratified negation over object predi-
cates; then, the guesses of the NP oracle are modelled using
arithmetic: each such guess is represented by an integer of
polynomial size, and checking these integers one by one is
equivalent to guessing an accepting computation.

It is important to note that, as the proof of this theorem
implies, the full expressive power of the language is avail-
able already when the programs do not mention ∞, × or −,
and when the only used integer is 1. As already noted, ΠP

2-
hardness of fact entailment in data complexity is shown in
Example 8 (and also implied by capturing); moreover, it is
possible to adapt the construction in the proof of Theorem 20
to ΠEXP

2 -hardness in combined complexity.

Corollary 21. The fact entailment problem for disjunction-
free numerically stratified LL-programs is ΠEXP

2 -complete in
combined and ΠP

2-complete in data complexity.

7 Conclusion and Future Work

We have studied disjunctive limit-linear Datalog
Z

, which ex-
tends both disjunctive Datalog (Eiter, Gottlob, and Mannila
1997) and stratified limit-linear Datalog

Z
(Kaminski et al.

2018). Our complexity results are summarised in Table 1.
Data complexity coincides with the expressive power for
all fragments with negation. For disjunctive fragments, the
addition of arithmetic does not increase complexity or ex-
pressive power; without disjunction, however, arithmetic in-
creases both. For future work, we first plan to study possibil-
ity semantics of stable models for Datalog

Z
with disjunction

and negation, as it is done by Eiter, Gottlob, and Mannila
[1997] in the setting without arithmetic. Note that Eiter, Got-
tlob, and Mannila showed that in most cases the complexity
of fact entailment under possibility semantics is ‘symmetric’
to the one under certainty semantics: for example, for the full
language it is ΣEXP

2 -complete in combined and ΣP
2-complete

in data complexity; however, for some fragments symmetry
is not preserved. Second, we plan to consider well-founded
semantics of negation (Gelder, Ross, and Schlipf 1991;
Przymusinski 1995) in the setting with arithmetic.
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