
In: Proceedings 12th Annual IEEE Conference on Computational Complexity (CCC ’97), Ulm, Germany, June 24–27, pp.
82–101, 1997.

Complexity and Expressive Power of Logic Programming

Evgeny Dantsin
�

Thomas Eiter
�

Georg Gottlob
�

Andrei Voronkov
�

Abstract

This paper surveys various complexity results on differ-
ent forms of logic programming. The main focus is on de-
cidable forms of logic programming, in particular, proposi-
tional logic programming and datalog, but we also mention
general logic programming with function symbols. Next to
classical results on plain logic programming (pure Horn
clause programs), more recent results on various import-
ant extensions of logic programming are surveyed. These
include logic programming with different forms of nega-
tion, disjunctive logic programming, logic programming
with equality, and constraint logic programming. The com-
plexity of the unification problem is also addressed.

1. Introduction

Logic programming (LP) is a well-known declarat-
ive method of knowledge representation and programming
based on the idea that the language of first order logic is
well-suited for both representing data and describing de-
sired outputs [87]. LP was developed in the early 1970’s
based on work in automated theorem proving [68, 88], in
particular, on Robinson’s resolution principle [113]. A pure
logic program consists of a set of rules, also called defin-
ite Horn clauses. Each such rule has the form head � body,
where head is a logical atom and body is a conjunction of lo-
gical atoms. The logical semantics of such a rule is given by
the implication body � head (for a more precise account,
see Section 2). Note that the semantics of a pure logic pro-
gram is completely independent of the order in which its
clauses are given, and of the order of the single atoms in
each rule body.

�
Steklov Institute of Mathematics at St. Petersburg, Fontanka 27, St.

Petersburg 191011, Russia. Currently at Uppsala University. Email
dantsin@pdmi.ras.ru. Supported by grants from INTAS, RFBR and the
Swedish Institute.�

AG Informatik, University of Gießen, Arndtstraße 2, D-35392 Gießen,
Germany. Email eiter@informatik.uni-giessen.de.�

Information Systems Department, TU Vienna, Paniglgasse 16, A-
1040 Vienna. Email gottlob@dbai.tuwien.ac.at.	

Computing Science Department, Uppsala University, P.O. Box 311,
S-751 05, Uppsala, Sweden. Email voronkov@csd.uu.se. Supported by a
TFR grant.

With the advent of the programming language Pro-
log [32], the paradigm of logic programming became soon
ready for practical use. Many applications in different areas
were and are successfully implemented in Prolog. Note that
Prolog is – in a sense – only an approximation to fully de-
clarative LP. In fact, the clause matching and backtracking
algorithms at the core of Prolog are sensitive to the ordering
of the clauses in a program and of the atoms in a rule body.

While Prolog has become a popular programming lan-
guage taught in many computer science curricula, research
focuses more on pure LP and on extensions thereof. Even
in some application areas such as knowledge representation
(a subfield of artificial intelligence) and databases there is
a predominant need for full declarativeness, and hence for
pure LP. In knowledge representation, declarative exten-
sions of pure logic programming, such as negation in rule
bodies and disjunction in rule heads, are used to formalize
common sense reasoning. In the database context, the query
language datalog was designed and intensively studied (see
[26, 122]). This query language — based on function-free
pure LP — allows a user to formulate recursive queries that
cannot be expressed with standard query languages such as
SQL-2.

There are many interesting complexity results on LP.
These results are not limited to “classical” complexity the-
ory but also comprise expressiveness results in the sense of
descriptive complexity theory. For example, it was shown
that (a slight extension of) datalog cannot just express
some, but actually all polynomially computable queries on
ordered databases and only those. Thus datalog precisely
expresses or captures the complexity class
 on ordered
databases. Similar results were obtained for many variants
and extensions of datalog. It turned out that all major vari-
ants of datalog can be characterized by suitable complexity
classes. As a consequence, complexity theory has become a
very important tool for comparing logic programming form-
alisms.

This paper surveys various complexity and expressive-
ness results on different forms of (purely declarative) LP.
The aim of the paper is twofold. First, a broad survey and
many pointers to the literature are given. Second, a few fun-
damental topics are explained in greater detail, in particular,
the basic results on plain LP (Section 3) and some funda-

1

mental issues related to descriptive complexity (Section 6).
These two sections are written in a more tutorial style and
contain several proofs, while the other sections are written
in a rather succinct survey style.

Note that the present paper does not consist of an encyc-
lopedic listing of all published complexity results on logic
programming, but rather of a more or less subjective choice
of results. There are many interesting results which we can-
not mention for space reasons; such results may be found in
other surveys, such as, e.g., [24, 118]. For example, results
on abductive logic programming [52, 53], on intuitionistic
logic programming [22], and on Prolog [41].

The paper is organized as follows. In Section 2 a short
introduction to LP is given. We introduce datalog and dis-
tinguish between the notions of data complexity, program
complexity, and combined complexity of classes of datalog
programs. Section 3 presents the main complexity results
on plain LP and datalog. Section 4 discusses the complex-
ity of LP with negated atoms in rule bodies. Section 5 deals
with disjunctive logic programming. Section 6 discusses
the expressive power of datalog and of various datalog ex-
tensions. Section 7 reports on the complexity of the unifica-
tion problem. Section 8 deals with LP extended by equality.
Finally, Section 9 deals with the complexity of constraint
logic programming and with the expressive power of logic
programming with complex values.

2. Preliminaries

In this section, we introduce some basic concepts of lo-
gic programming. Due to space reasons, the presentation
is necessarily succinct; for a more detailed treatment, see
[94, 6, 9, 15].

We use letters ������������� for predicate symbols,	 ��
���
�������� for variables, ����������������� for function symbols,
and ����������������� for constants; a bold face version of a letter
denotes a list of symbols of the respective type.

2.1. Syntax of logic programs

Logic programs are formulated in a language � of pre-
dicates and functions of nonnegative arity; 0-ary functions
are constants. A language � is function-free if it contains
no function symbols of arity greater than 0.

A term is inductively defined as follows: each variable
	

and each constant � is a term, and if � is an � -ary function
symbols and �������������� are terms, then �"!#�����$�������%�� '& is a
term. A term is ground, if no variable occurs in it.

The Herbrand universe of � , denoted (*) , is the set of
all ground terms which can be formed by the functions and
constants in � .

An atom is a formula �+!#� � ���������%� & , where � is a
�-,�.�/102�3�4��. symbol of arity � and each �%5 is a term. An atom

is ground, if all �%5 are ground. The Herbrand base of a lan-
guage � is the set of all ground atoms that can be formed
by using predicates from � and terms from (*) .

A Horn clause is a rule of the form

687
�

6 �9�������3� 68: !<;>=@?4& (1)

where each
6 5 is an atom. The parts on the left and on the

right of “ � ” are the head and the body of the rule, respect-
ively. A rule , of the form

6 7
� , i.e., whose body is empty,

is called a fact, and if
6 7

is a ground atom, then , is called
a ground fact.

A logic program is a finite set of Horn clauses. A clause
or logic program is ground, if all terms in it are ground.

With each logic program A , we associate the language
�B!CAD& that consists of the predicates, functions and constants
occurring in A . If no constant occurs in A , we add some
constant to �B!CAD& for technical reasons. Unless stated other-
wise, �B!CAD& is the underlying language, and we use simpli-
fied notation (FE and GHE for ()�IJELK and G)�IMELK , respectively.

A Herbrand interpretation of a logic program A is any
subset NPOQGHE of its Herbrand base. Intuitively, the atoms
in N are true, while all others are false. A Herbrand model
of A is a Herbrand interpretation of A such that for each
rule

6 7
�

6 � �������3� 6 : in A , this interpretation satisfies
the logical formula R�SF!%! 6 ��TVU�U�U�T 6 : & �

6 7 & , where S
is a list of the variables in the rule.

Propositional logic programs are logic programs in
which all predicates have arity 0, i.e., all atoms are propos-
itional ones.

Example 1 Here is an example of a propositional logic pro-
gram:

W�X�Y[Z \1]9^$_ �]9`�a�b�X'a�c�Z
W�X�Y[Z \1]9^$_ �ed a�cgf

d a�c�f � `�c d `�a h d]�W�a�\ ��i b�a3W�WjY[b�a d]�W�W`�c d `�a h d]�W3a�\ � Wjkml1_�c d n
i b�ajW�WjY[b�a d]�W�W � Wjkml1_�c d o]�`�a�b�X'a�c�Z � Wjkml1_�c d pW�kml1_�c d n �W�kml1_�c d o �

Note that if A is a propositional logic program then G E
is a set of propositional atoms. Any interpretation of A is a
subset of the propositional atoms.

2.2. Semantics of logic programs

The notions of a Herbrand interpretation and model can
be generalized for infinite sets of clauses in a natural way.
Let A be a set (finite or infinite) of ground clauses. Such
a set A defines an operator q Esr�t9uLvxwyet1uLv , where t1uLv

2

denotes the set of all Herbrand interpretations of A , by

q�E !#N�& � � 6�7�� GBE��gA contains a rule6�7
�

6 ����������� 6B:
such that

� 6 � ��������� 6 :�� O@N �

This operator is called the immediate consequence oper-
ator; intuitively, it yields all atoms that can be derived by
a single application of some rule in A given the atoms in N .

Since q E is monotone, by the Knaster-Tarski Theorem it
has a least fixpoint, denoted by q
	E , which is the limit of
the sequence q

7
E ��� , q 5�
 �E � q�E !<q 5E & , 0F= ? .

A ground atom
6

is a consequence of a set A of clauses if6�� q 	E (we write A��� 6
). Also, by definition, a negated

ground atom � 6 is a consequence of A , denoted A��� � 6 ,
if
6��� q 	E . The semantics of a set A of ground clauses is

defined as the following set � !#AD& consisting of atoms and
negated atoms:

� !#AD& � � 6 ��A��� 6 ��� � � 6 ��A��� � 6 �� q 	E � � � 6 � 6�� G E�� q 	E � �
Example 1 (ctd) For program A above, we have

q
7
E ���
q �E � � Wjkml1_�c d n�� Wjkml9_�c d o �
q��E � q �E � � `�c d `�a h d]�W3a�\ �2i b�ajW�WjY[b�a d]�W�W �
q��E � q��E � � d a�c�f �
q! E � q 	E � q��E � � W�X�Y[Z \1]9^$_ �

Thus, the least fixpoint is reached in four steps; e.g., A���W%X[Y[Z \1]9^$_ and A��� �]9`�a�b�X'a�c9Z .
It appears that for each set A of clauses, q
	E coincides

with the unique least Herbrand model of A , where a model"
is smaller than a model # , if

"
is a proper subset of #

[123].
The semantics of arbitrary logic programs is now defined

as follows. Let the grounding of a clause , in a language
� , denoted l1b�]9Y[_�\ !#,��%� & , be the set of all clauses obtained
from , by all possible substitutions of elements of (*) for
the variables in , . For any logic program A , we define

l9b�]9Y[_�\ !CA �%� & �%$
&(' E

l9b�]�Y[_�\ !#,��%� &

and we write l1b�]�Y[_�\ !#AD& for l9b�]9Y[_�\ !CA �%�H!#AD&%& . The
operator q E r t1u v wy t9u v associated with A is
defined by q E � q*),+.-0/(132 IMELK . Accordingly, � !#AD& �
� ! l1b�]�Y[_�\ !#AD&%& .
Example 2 Let A be the program

�+!C�[& �
� !C�"!54�&%& �>�+!64�&

Then, (E � � �����"!C�[&j���"! �"!#�[&%&3������� � and l9b�]9Y[_�\ !CAD& con-
tains the clauses �+!C�[& � , � !C�"!C��&�& � � !#�[& , � !C�"! �"!#�[&%&�& �
�+! �"!#�[&%& , The least fixpoint of qLE is

q 	E � q)7+8-0/(132 IMELK � � �+! � !#�[&%&!��� =x? � �
Hence, e.g. A��� �+! �"!C�"!#�[&�&%& .

In practice, generating l1b�]9Y[_�\ !#AD& is often cumbersome,
since, even in case of function-free languages, it is in gen-
eral exponential in the size of A . Moreover, it is not al-
ways necessary to compute � !#AD& in order to determine
whether A��� 6

for some particular atom
6

. For these reas-
ons, completely different strategies of deriving atoms from
a logic program have been developed. These strategies are
based on variants of Robinson’s famous Resolution Prin-
ciple [113]. The major variant is SLD-resolution [88, 10].

Roughly, SLD-resolution can be described as follows. A
goal is a conjunction of atoms. A substitution is a function9

that maps variables : � ���������0: to terms � � ����������� . The
result of simultaneous replacement of variables : 5 by terms
��5 in an expression ; is denoted by ; 9 . For a given goal<

and a program A , SLD-resolution tries to find a substi-
tution

9
such that

<
9
logically follows from A . The initial

goal is repeatedly transformed until the empty goal is ob-
tained. Each transformation step is based on the application
of the resolution rule to a selected atom G 5 from the goal
G ������������G : and a clause

687
�

6 �9��������� 6 from A . SLD-
resolution tries to unify G 5 with the head

687
, i.e. to find a

substitution
9

such that
6 7 9 � GB5 9 . Such a substitution

9
is called a unifier of

6 7
and GH5 . If such a unifier

9
is found,

the goal is transformed into

!#G � ����������GH55= � � 6 � ��������� 6 ��GH5>
 � ����������G : & 9 �
For a more precise account, see [6, 94]; for resolution on
general clauses, see e.g. [89]. The complexity of unification
will be dealt with in Section 7.

2.3. Datalog

Logic programming is a suitable formalism for querying
relational databases. In this context, the LP-based query
language datalog and various extensions thereof have been
defined. Over traditional query languages such as relational
algebra or SQL-2, datalog has the advantage of being able
to express recursive queries.

In the context of LP, relational databases are identified
with sets of ground facts � !#�g�������������3 '& . Intuitively, all
ground facts with the same predicate symbol � represent
a data relation. The set of all predicate symbols occurring
in the database together with a possibly infinite domain for
the argument constants is the schema of the database. With
each database ? we associate a finite universe (A@ of con-
stants which encompasses at least all constants appearing in

3

? , but possibly more. In the classical database context, (�@
is often identified with the set of all constants appearing in
? . But in the datalog context, a larger universe (@ may be
suitable in case one wants to derive assertions about items
that do not explicitly occur in the database.

To understand how datalog works, let us state a clarify-
ing example.

Example 3 Consider a database ? containing the ground
facts � c�Z<X'a�b !��]gX�_ ��� c�b�� & �� c�Z<X'a�b !��]ga � f9Y[bjZ & ��]�Z<X'a�b !�� c�b�� ���]ga & ��]�Z<X'a�b ! Z k _�c � f9Y[bjZ & �
The schema of this database is the set of rela-
tion symbols

� � c9Z X-a3b �	�]9Z X-a3b � together with the do-
main STRING of all alphanumeric strings. With
this database we associate the finite universe (�@ �� �]�X[_ �	� c9b�� �
�]�a � Z k _�c � f9Y[bjZ � W�Y�W�c9_ � . Note that susan does
not appear in the database but is included in the universe
(@ .

The following datalog program (or query) A computes
all ancestor relationships relative to this database:

i c�b�a3_ Z ! 	 ��
 & �
� c9Z X-a3b ! 	 ��
 &

i c�b�a3_ Z ! 	 ��
 & ���]�Z<X'a�b ! 	 ��
 &c�_�h�a3WjZ]9b ! 	 ��
 & � i c�b�a�_-Z ! 	 ��
 &c�_�h�a3WjZ]9b ! 	 ��
 & � i c�b�a�_-Z ! 	 �j
8&3� c�_�h�ajWjZ2]�b !
���
 &
i a�b�W3]9_ ! 	 & �

In the program A ,

� c�Z<X'a�b and �]�Z<X'a�b are the input pre-
dicates, also called database predicates. Their interpreta-
tion is fixed by the given input database ? . The predicatesc�_�h�a3WjZ]9b and i a�b�W3]9_ are output predicates, and the predic-
ate parent is an auxiliary predicate. Intuitively, the output
predicates are those which are computed as the visible result
of the query, while the auxiliary predicates are introduced
for representing some intermediate results, which are not to
be considered part of the final result.

The datalog program A on input database ? computes
a result database � with the schema

� c�_�h�ajWjZ2]�b �2i a3b�W�]9_ �
containing among others the following ground facts:c�_�h�a3WjZ]9b !
� c9b�� �
�]�a & , c9_�h�a3W�Z2]�b !��]�X�_ �
�]�a & , i a3b�W�]9_ !��]�X[_ & ,
i a�b�W�]�_ ! WjY�W�c�_ & . The last fact is in � because WjY�W�c�_
is included as a constant in (@ . However, the fact
i a�b�W�]�_ ! X'c9bjb�� & is not in � , because X'c9bjb�� is not a constant
in the finite universe (@ of the database ? .

Formally, a database schema � consists of a finite set� a d W !�� & of relation names with associated arities and a
(possibly infinite) domain �] � !�� & . For each database
schema � , we denote by ��� !�� & the Herbrand base cor-
responding to the function-free language whose predic-
ate symbols are

� a d W !�� & and whose constant symbols are�] � !�� & .

A database (also, database instance) ? over a schema� is given by a finite subset of the Herbrand base ? O��� !�� & together with an associated finite universe (@ such
that � O (@ O��] � !�� & , where � denotes the set
of all constants actually appearing in ? . By abuse of
notation, we also write ? instead of �5? �j(@�� . We de-
note by ? � � the extension of the relation � � � a d W !�� &
in ? . Moreover, ��� �"!B!�� & denotes the set of all data-
bases over � . A datalog query or a datalog program is a
function-free logic program A with three associated data-
base schemas: the input schema �$# 1 , the output schema� -0/&% and the complete schema � , such that the following
is satisfied: �] � !��'# 1 & � �] �P!�� -0/&% & � �] � !�� & and� a d W !��'# 1 & O � a d W !�� & and

� a d W !�� -0/&% & O � a d W !�� & and� a d W !��'# 1 &)(� a d W !�� -0/*% & � � . Moreover, each predicate
symbol appearing in A is contained in

� a d W !�� & and no pre-
dicate symbol from � # 1 appears in a rule head of A (the
latter means that the input database is never modified by a
datalog program).

The formal semantics of a datalog program A over
the input schema �$# 1 , output schema � -0/&% , and complete
schema � is given by a partial mapping from instances of�'# 1 to instances of � -0/*% over the same universe. A result
instance of � -0/&% is regarded as the result of the query. More
formally, � E@r ��� �"!H!��'# 1 & wy �
�+�"!H!�� -0/*% & is defined for
all instances ?,# 1 � �
�+�"!H!��'# 1 & such that all constants oc-
curring in A appear in ("-/. 0 , and maps every such ?,# 1 to
the database ? -0/*% � � E !5?1# 1 & such that (@)243�5 � (@". 0
and, for every relation � � � a d W !�� -0/&% & ,
? -0/&% � � � �&6 ��� ! 6 & � � ! l9b�]9Y[_�\ !CA � ?1# 1 �%�H!#A �,?1# 1 &�&%& � �
where � and l1b�]�Y[_�\ are defined as in Section 2.2 and
�B!CA �,? # 1 & is the language of A � ? # 1 extended by all con-
stants in the universe (@". 0 . For all ground atoms

6 �
��� !5? -0/&% & , we write A � ?1# 1 � � 6

if
6 � � E !5?1# 1 &

and write A � ?1# 1 � � � 6 if
6 �� � E !5?1# 1 & .

The semantics of datalog is thus inherited from the se-
mantics of LP. In a similar way, the semantics of various
extensions of datalog is inherited from the corresponding
extensions of logic programming.

There are three interesting complexity issues connected
to plain datalog and its various extensions.

7 The data complexity is the complexity of checking
whether ? # 1 � A � � 6

for a fixed datalog program A
and variable input databases ? # 1 and ground atoms

6
.

7 The program complexity is the complexity of check-
ing whether ? # 1 � A%�� 6

for variable datalog pro-
grams A and ground atoms

6
over a fixed input data-

base ?1# 1 . We recall that if ?,# 1 is fixed, then the set of
constants that may appear in A and

6
is fixed too.

4

7 The combined complexity is the complexity of check-
ing whether ?1# 1 � A%�� 6

for variable datalog pro-
grams A , ground atoms

6
, and input database ? # 1 .

Note that for plain datalog, as well as for all other ver-
sions of datalog considered in this paper, the combined
complexity is equivalent to the program complexity w.r.t.
polynomial-time reductions. This is due to the fact that
w.r.t. the derivation of ground atoms, each pair �5? # 1 ��A �
can be easily reduced to the pair � ? � ��A�� � , where ? � is
the empty database instance associated with a universe of
two constants �g� and � � , and A�� is obtained from A � ? # 1
by straightforward encoding of the universe (@ . 0 using � -
tuples over

� �g�g��� �
�
, where � ��� � (@ . 0 � � . For this reason,

we mostly disregard the combined complexity in the mater-
ial concerning datalog. We remark, however, that due to a
fixed universe, program complexity may allow for slightly
sharper upper bounds than the combined complexity (e.g.,
DETIME vs DEXPTIME).

As for LP in general, a generalization of the combined
complexity may be regarded as the main complexity meas-
ure. Below, when we speak about the complexity of a frag-
ment of LP, we mean the following kind of complexity:

7 The complexity (for LP) is the complexity of checking
whether A � � 6

for variable both programs A and
ground atoms

6
.

3. Complexity of plain logic programming

In this section we survey some basic results on the com-
plexity of plain LP. This section is written in a slightly more
tutorial style than the following sections in order to help
both readers not familiar with LP and readers not too famil-
iar with complexity theory to grasp some key issues relating
complexity theory and logic programming.

3.1. Simulation of Deterministic Turing machines
by logic programs

Formally, a deterministic Turing machine (DTM) is a
quintuple q � �	�B��
$�
����� 7 ��

 � , where � is a finite al-
phabet of tape symbols, containing also the special blank
symbol � ,
 is a finite set of states, � r !�
���� &�� y
��� � ���1��?'��� � ��
 is the transition function, � 7 �
 is
the initial state, and

 O�
 is the set of accepting states;
without loss of generality we assume that every accepting
state is a terminal state, i.e., whenever q enters an accept-
ing state, it remains in this state and stops running.

A DTM has a semi-infinite worktape whose cells
� 7 ��������� � ����� are on input N initialized as follows. Cells
� 7 ������������� ��� = � contain the symbols of string N , where � N � is
the length of N , and all other cells contain � .

The transition function � is represented by a table
whose rows are quintuples �	�1�� *�� "! ��/ ���#! � , whose meaning
is stated as follows as an if-then-rule:

if at some instant $ of time q is in state � , the workhead
is positioned at cell �&% , and cell �&% holds symbol
then at instant $�'(� , q is in state � ! , the cell �)% holds
symbol *! , and the workhead is positioned at ��%+' / .

Here, it is assumed without loss of generality that /(,�
��� whenever - � ? , i.e., the workhead never moves left of
� 7 .

It is possible to describe the complete evolution of a
DTM q on input string N from its initial configuration at
time instant ? to the configuration at instant # by a propos-
itional logic program .�A !<q���N-�7# & . For achieving this, we
define various classes of propositional atoms:

�+�0/21 $'�3-54 for ?768$�6�# , ?96:-;6 # , and � � .
Intuitive meaning: At instant $ of the computation, cell
- contains symbol .

< A=1 $-�3-54 for ?76>$?6�# , and ?(6:-@6�# . Intuitive
meaning: At instant $ the workhead is positioned at
cell number - .

"qBA�1 $C4 for ?D6E$F6 # , and � �
 . Intuitive meaning: At
instant $ the machine is in state � .

G�H0HBIKJ ! : the machine has reached an accepting state.

Let us denote by N�5 the 0 -th symbol of string N �
N 7 U�U�U NL� �#� = � . The initial configuration of q on input N is re-
flected by the following initialization facts in .�A !<q���N-�7# & :

�+�M/N1 ?'�3-54 � for ?O6�-FP�� N � , where N&% � �+�0QR1 ?'�3-54 � for � N �S6T-U6 #< A=1 ?-��?�4 �

"qBAWV�1 ?X4 �

Each entry ��� �
 ��
 *! ��/-����! � of the transition table � is
translated into the following propositional Horn clauses,
which we call the transition rules. The clauses are asserted
for each value of $ and - such that ?Y6�$DP # , ?O6T-UP�# ,
and ?Y6T-Z' /[6 # .

�+� /]\ 1 $�'(�1�3-54 �^
"q A 1 $C4 � �+� / 1 $'�
-54 � < A=1 $-�3-54< A=1 $�'(�1�3-Z' /�4 �^
"q A 1 $C4 � �+� / 1 $'�
-54 � < A=1 $-�3-54

$q_A \ 1 $`'(�)4 �^
"qBA�1 $C4 � �+�0/*1 $'�
-54 � < A=1 $-�3-54

These clauses almost perfectly describe what is happen-
ing during a state transition from instant $ to instant $�'(� .
However, it should not be forgotten that those tape cells
which are not changed during the transition keep there old
values at instant $a'b� . This must be reflected by what
we term inertia rules. These rules are asserted for each
time instant $ and tape cells �&%����)!% , where ?(6>$�P # ,
?O6T-UPT-B!26 # , and have the following form:

5

�+�0/21 $�' � �3-54 � �+�0/N1 $-�3-54 � < A=1 $'�3-B! 4�+�0/N1 $�'(�1�3-B! 4 � �+�0/N1 $-�3-B! 4 � < A=1 $'�
-54
Finally, a group of clauses termed accept rules derives

the propositional atom
G�H0H2I J ! , whenever an accepting

configuration is reached.

G�H0H2I J ! �
"qBA�1 $C4 for ?Y6�$ 6�# , � �

By construction, the least fixpoint q 	� E of the logic pro-
gram .*A � .�A !<q���N-�7# & is reached at q �
 �� E , and the
ground atoms added to q �� E , � 6@$(6�#:'?� , i.e., those
in q �� E � q � = �� E , describe the configuration of q on input N
at time instant $��U� . The fixpoint q 	� E contains

G�HMH2I J !
if and only if an accepting configuration has been reached
by q in 6 N computation steps. We thus have:

Lemma 3.1 .*A !#q���N �,# & � � G�H0H2I J ! if and only if ma-
chine q accepts the input string N within # steps.

3.2. Complexity of propositional LP

The simulation of a DTM by a propositional logic pro-
gram, as described in Section 3.1 is almost all we need in or-
der to determine the complexity of propositional LP, i.e., the
complexity of deciding whether A � � 6

holds for a given
logic program A and ground atom

6
.

Theorem 3.2 (implicit in [80, 127, 76]) Propositional LP
is
 -complete under logspace reductions.

Proof. a) Membership. It obvious that the least fixpoint
q 	E of the operator q E , given program A , can be computed
in polynomial time: the number of iterations (i.e. applic-
ations of q E) is bounded by the number of rules plus one.
Each iteration step is clearly feasible in polynomial time.

b) Hardness. Let
6

be a language in
 . Thus
6

is de-
cidable in �[!<��& steps by a DTM q for some polynomial � .
Transform each instance N of

6
to the corresponding logic

program .*A !#q���N ���[!7� N � &%& as described in Section 3.1. By
Lemma 3.1, .*A !<q8��N ���[!,� N � &�& � � G�HMH2I J ! if and only if
q has reached an accepting state within �[!<��& steps. The
translation from N to .*A !#q���N ���[!7� N � &%& is very simple and
is clearly feasible in logarithmic space, since all rules of
.*A !<q8��N ���[!,� N � &�& can be generated independently of each
other and each has size logarithmic in the input; note that
the numbers $ and - have

� !����
	 � N � & bits, while all other
syntactic constituents of a rule have constant size. We have
thus shown that every language

6
in
 is logspace reducible

to propositional LP. Hence, logic programming is
 -hard
under logspace reductions.

Obviously, this theorem can be proved by simpler re-
ductions from other P-complete problems, e.g. from the
monotone circuit value problem; however, our proof from

first principles unveils the computational nature of LP and
provides a basic framework form which further results will
be derived by slight adaptations in the sequel.

Notice that in a standard programming environment, pro-
positional LP is feasible in linear time by using appropriate
data structures, as follows from results about deciding Horn
satisfiability [43]. This does not mean that all problems in

are solvable in linear time; first, the model of computation
used in [43] is the RAM machine, and second polynomial-
time reductions may in general polynomially increase the
input.

Theorem 3.2 holds under stronger reductions. In fact,
it holds under the requirement that the logspace reduction
is also a polylogtime reduction (PLT). Briefly, a map � r� wy � ! from problem

�
to problem

� ! is a PLT-reduction,
if there are polylogtime deterministic direct access Turing
machines (DDATMs) # ,

"
such that for all � , # !��B& �

� �"!
�B&(� and for all � and � ,
" !
�D�%��& � GD0 �3!#�$���"!��H&%& , i.e.,

the � -th bit of �"!��B& (see e.g. [129] for details). (Recall
that a DDATM has a separate input tape whose cells can be
indirectly accessed by use of an index register tape.) Since
the above encoding of a DTM into LP is highly regular, it is
easily seen that it is a PLT reduction.

Syntactical restrictions on programs lead to complete-
ness for classes inside
 . Let .�A !��'& denote logic restricted
to programs where each clause has at most � atoms in the
body. Then, by results in [127, 77], one easily obtains

Theorem 3.3 .*A ! ��& is ��� -complete under logspace re-
ductions.

Notice that the above DTM encoding can be easily mod-
ified to programs in .*A ! t & . Hence, .*A ! t & is
 -complete.

Further restrictions yield problems complete for � (of
course, under reductions stronger than logspace reductions),
which we omit here.

3.3. Complexity of datalog

Let us now turn to datalog, and let us first consider data
complexity. Grounding A on an input database ? yields
polynomially many clauses in the size of ? ; hence, the
complexity of propositional LP is an upper bound for the
data complexity. This is analogous for the variants of data-
log we shall consider subsequently. The complexity of pro-
positional LP is also a lower bound. Thus,

Theorem 3.4 (implicit in [127, 76]) Datalog is data com-
plete in P.

In fact, this result follows from the proof of Theorem 6.2.
An alternative proof of P-hardness can be given by writing
a simple datalog meta-interpreter for propositional .*A !��-& ,
where � is a constant.

6

Represent rules
6 7

�
6 � ��������� 6 5 , ?=6x0 6 � , by tuples� 6 7 ��������� 6 5 � in an 0�'D� -ary relation � 5 on the propositional

atoms. Then, a program A in .*A ! �'& stored this way in a
database ?P!CAD& can be evaluated by a fixed datalog program
A � � !��'& which contains for each relation � 5 , ? 6 0 6 � , a
rule

q !54 7 & � q !54 � &3����������q !64�5C&3���H5�!54 7 �������3�04�5 &3�
Here q !54�& intuitively means that atom 4 is true. Then, A���6

precisely if A � � � A ! ? & � � q ! 6 & .
 -hardness of the
data complexity of datalog is immediate from Theorem 3.2.

The program complexity is exponentially higher.

Theorem 3.5 (implicit in [127, 76]) Datalog is program
complete in DEXPTIME.

Proof. (Sketch) a) Membership. Grounding A on ?
leads to a propositional program A`! whose size is exponen-
tial in the size of the fixed input database ? . Hence, by
Theorem 3.2, the program complexity is in DEXPTIME.

b) Hardness. In order to prove DEXPTIME-hardness,
we show that if a DTM q halts in less than # � t �� steps
on a given input N where � N � � � then q can be simulated
by a datalog program over a fixed input database ? . In
fact, we use ? � , i.e. the empty database with the universe
(� � ?-�&� � .

We employ the scheme of the DTM encoding into LP
from above, but use the predicates �+� /+!64����'& , < A !64����'& ,

"qBA�!54�& instead of the propositional letters �+� /21 $'�3-54 ,< A=1 $'�
-54 ,
"q A 1 $C4 , respectively. The time points $ and tape
positions - from ? to t

:
� � , ; � � � , are represented by

; -ary tuples over (, on which the functions $"' � and -0' /
are realized by means of the successor � Y-h�h

:
from a linear

order 6
:

on (
:

.
For an inductive definition, suppose � Y-h�h 5 !#S$���+& ,	 k b�WjZ 5 !<S�& , and
 c�WjZ 5 !<S�& tell the successor, the first, and the

last element from a linear order 6 5 on (5 , where S and �
have arity 0 . Then, use rules

� Y-h�h 5�
 � !�� �%S$�
�-���+& � � Y-h�h 5 !#S$���+&� Y-h�h 5>
 � !��-��S$��� !<���+& � � Y-h�h � !��-�
�]!J&j��
 c�WjZ 5 !<S�&3� 	 k b�WjZ 5 !��+&	 k b�WjZ 5>
 � !�� �%S�& � 	 k b�WjZ � !��4&3� 	 k b�WjZ 5 !#S�&

 c�WjZ 5>
 � !�� �%S�& ��
 c�WjZ � !���&j��
 c�WjZ 5 !<S�&

Here � Y-h�h � !54����[& , 	 k b�WjZ � !54�& , and
 c�WjZ � !64�& on (� � (
must be provided. For our reduction, we use the usual or-
dering ? 6 � � and provide those relations by the ground
facts � Y-h�h � !#?-�&��& , 	 k b�WjZ � !C? & , and
 c�W�Z � !3�g& .

The initialization facts �+� / 1 ?'�3-54 are readily translated
into the datalog rules �+� / !#S$����& � 	 k b�WjZ : !<S�& , where �
represents the position - , and similarly the facts

< A=1 ?'��?�4
and
"qBAWVL1 ?�4 . The remaining initialization facts �+� Q+1 ?'�
-54 ,
� N �C6�- 6 # , are translated to the rule

�+� Q !<S$��� & �
	 k b�WjZ : !#S�&j��6

:
!��1���+&

where � represents the number � N � ; 6
:

is easily defined
from � Y-h�h

:
by two clauses.

The transition and inertia rules are easily translated into
datalog rules. For realizing $['�� resp. - ' / , use in the
body atoms � Y-h�h

:
!#S$�%SB! & . For example, the clause

�+� / \
1 $�'(�1�
-54 �
"q A 1 $C4 � �+� / 1 $'�3-54 � < A=1 $'�
-54
is translated into

����� \����������! #"%$'&�()���' �� ��� � ���*�+�, ���-/.0���#�1�, ���2�3�4�4657���#�+�8�9 .
The translation of the accept rules is straightforward.

For the resulting datalog program A�! , it holds that A`! �
? � � � G�HMH2I J ! if and only if q accepts input N in 6
steps. It is easy to see that A`! can be constructed in
logarithmic workspace from q and N . Hence, datalog has
DEXPTIME-hard program complexity.

Note that straightforward simplifications in the construc-
tion are possible, which we omit here, as part of it will be
reused below.

Instead of using a generic reduction, the hardness part of
this theorem can also be obtained by applying complexity
upgrading techniques [108, 14]. We briefly outline this in
the rest of this section.

This technique utilizes a conversion lemma [14] of the
form “If

� 	
-reduces to

� ! , then �4! � &
 -reduces to
�4! � ! & ;” here �4! � & is the succinct variant of

�
, where the

instances N of
�

are given by a Boolean circuit � � which
computes the bits of N (see [14] for details). The strongest
form of the conversion lemma appears in [129], where

	
is PLT and
 is monotone projection reducibility [77].
The conversion lemma gives rise to an upgrading theorem
[14, 54, 66, 129], stated here in the strongest form of [129]:

Theorem 3.6 Let :<; and :>= be complexity classes s.t.
d]�_�l !1: ; & O?: = . If

�
is hard for : = under PLT-reductions,

then �4! � & is hard for : ; under projection reductions.

Here d]9_4l !+: ; & � � d]�_4l ! 6 & � 6 � : ; � , where
d]�_�l ! G & �A@ ' ��B � ?-�&� � .

From the observations in Section 3.2, we then obtain
that �4! .*A ! t &�& is DEXPTIME-hard under projection re-
ductions, where each program A is stored in the database
?P!#AD& , which is represented by a binary string in the stand-
ard way.
� !�.*A ! t &%& can be reduced to evaluating a datalog pro-

gram A�� over a fixed database as follows. From a succinct
instance of .*A ! t & , i.e., a Boolean circuit � � for N � ?P!CAD& ,
Boolean circuits � 5 for computing � 5 , ?�6 0Y6 t can be
constructed which use negation merely on input gates.

Each such circuit � 5�!<S�& can be simulated by straightfor-
ward datalog rules. E.g., an T -gate �45 with input from gates

7

��� and � � is described by a rule � 5%!<S�& � ��� !#S�&j�%� � !<S�& , and
an � -gate �15 is described by the rules � 5�!<S�& � ��� !<S�& and
� 5 !<S�& �>� � !<S�& .

The desired program A�� comprises the rules for the
Boolean circuits � 5 and the rules of the meta-interpreter
A � � !��'& , which are adapted for a binary encoding of the
domain (@ IMELK of the database ?P!#AD& by using binary tuples
of arity � ���
	 � (@ IMELK � � . This construction is feasible in log-
space, from which DEXPTIME-hard program complexity
of datalog follows. See [54, 55, 66] for details.

3.4. Complexity of LP with functions

Let us see what happens if we allow function symbols in
logic programs. In this case, entailment of an atom is no
longer decidable. To prove it, we can, for example, reduce
Hilbert’s Tenth Problem to the query answering in full LP.
Natural numbers can be represented using the constant ?
and the successor function � . Addition and multiplication
are expressed by the following simple logic program:

4Y' ? � 4 �
4O'��4!��[& � �4!���& � 4O' � � �

4a� ? � ? �
4a� �4!��'& � � � 4a� � ��� � � ' 4 � �

Now, undecidability of full LP follows from undecidab-
ility for diophantine equations [103]. Moreover, this reduc-
tion shows r.e.-completeness of LP.

Theorem 3.7 ([5, 121]) Full LP is r.e.-complete.

Of course, this theorem may as well be proved by a simple
encoding of Turing machines similar as in the proof of The-
orem 3.5 (use terms � !#��& , � = ? , for representing cell
positions and time instants). Theorem 3.7 was generalized
in [130] for more expressive S-semantics and C-semantics
[59].

A natural decidable fragment of LP with functions are
non-recursive programs, in which intuitively no predicate
depends syntactically on itself (see Section 4.1 for a defin-
ition). Their complexity is characterized by the following
theorem.

Theorem 3.8 ([37]) Non-recursive LP is NEXPTIME-
complete.

The membership is established by applying SLD-
resolution with constraints. The size of the derivation turns
out to be exponential. NEXPTIME-hardness is proved by
reduction from the tiling problem for the square t � t .

Some other fragments of LP with function symbols are
known to be decidable. For example, the following result
was established in [120], by using a simulation of alternat-
ing Turing machines by logic programs and vice versa.

Theorem 3.9 ([120]) LP with function symbols is
PSPACE-complete, if each rule is restricted as follows: The
body contains only one atom, the size of the head is greater
than or equal to that of the body, and the number of occur-
rences of any variable in the body is less than or equal to
the number of its occurrences in the head.

For further investigations of decidability of subclasses
of logic programs, see [40]. See also [20, 60] for further
material on recursion-theoretic issues related to LP.

4. Complexity of LP with negation

4.1. Stratified negation

A literal . is either an atom
6

(called positive) or a
negated atom � 6 (called negative). Literals

6
and � 6

are complementary; for any literal . , we denote by � � .
its complementary literal, and for any set .*0 � of literals,
� � .*0 � � � � � . �X. � .*0 � � .

A normal clause is a rule of the form

6
� . � ���������
. : !#; =x?4& (2)

where
6

is an atom and each . 5 is a literal. A normal logic
program is a finite set of normal clauses.

The semantics of normal logic programs is not straight-
forward, and numerous proposals exist (cf. [9]). However,
there is general consensus for stratified normal logic pro-
grams.

A normal logic program A is stratified [8], if there is an
assignment ���2,[! U & of integers 0,1,. . . to the predicates � in
A , such that for each clause , in A the following holds: If �
is the predicate in the head of , and � the predicate in an . 5
from the body, then ���2,[! ��& = ���2,�!C�9& if .�5 is positive, and
���2,�!m��&�� ���2,[!#�9& if .*5 is negative.

The reduct of a normal logic program A by a Herbrand
interpretation N [64], denoted A � , is obtained froml9b�]�Y[_�\ !CAD& as follows: first remove every clause , with a
negative literal . in the body such that � � . � N , and then
remove all negative literals from the remaining rules. No-
tice that A � is a set of ground Horn clauses.

The semantics of a stratified normal program A is then
defined as follows. Take an arbitrary stratification ���2, . De-
note by A�� � the set of rules , such that ���2,[! ��& � � , where
� is the head predicate of , . Define a sequence of Herbrand
interpretations:

" 7 � � , and
" �
 � is the least Herbrand

model of A � �� � � " � for � =x? . Finally, let

�:A
	 & !CAD& � @ 5 " 5 � � � 6 � 6��� @ 5 " 5 � �
The semantics � A
	 & does not depend on the stratification
���2, [8]. Note that in the propositional case �8A
	 & !#AD& is
polynomially computable.

8

Theorem 4.1 (implicit in [8]) Stratified propositional LP
is P-complete. Stratified datalog is data complete in P and
program complete in DEXPTIME.

For full LP, stratified negation yields the arithmetical
hierarchy.

Theorem 4.2 ([7]) Full LP with � levels of stratified nega-
tion is �

7

 � -complete.

See [21, 107] for further complexity results on stratifica-
tion.

A particular case of stratified negation are non-recursive
logic programs. A stratified program is non-recursive, if it
has a stratification such that each predicate � occurs in its
defining stratum A � A
	 & I���K only in the heads of rules. E.g.,
the logic program produced by the DTM encoding from
above is non-recursive.

Theorem 4.3 (implicit [77, 127]) Non-recursive proposi-
tional LP is
 -complete. Non-recursive datalog has logtime
uniform

6 � 7 data complexity [77] and is program complete
in PSPACE.

4.2. Well-founded negation

Roughly, the well-founded semantics [125] (WFS) as-
signs value “unknown” to atom

6
, if it is defined by unstrat-

ified negation. Briefly, WFS can be defined as follows [16].
Let

� E�!#N�& be the operator
� E !CN4& � q 	E�� . Since

� E�!#N�&
is anti-monotone,

� �E !CN4& is monotone, and thus has a least
and a greatest fixpoint, denoted by

� �E�� 	 and
� �E�� 	 , re-

spectively. Then, the meaning of a program A under WFS,
�	��
 A !CAD& , is

�	��
 A !#AD& � � �E � 	 � � � 6 � 6��� � �E � 	 � �
Notice that on stratified programs, WFS and stratified se-
mantics coincide.

Theorem 4.4 (implicit in [124, 125]) LP under WFS is P-
complete. Datalog under WFS is data complete in P and
program complete in DEXPTIME.

Whether deciding A��� ��
 A 6 can be done in linear-time
is open [19]. For full LP, the following is known.

Theorem 4.5 ([119]) Full LP under WFS is � �� -complete.

4.3. LP under the stable model semantics

An interpretation N of a normal logic program A is a
stable model of A [64], if N � q 	E � , i.e., N is the least
Herbrand model of A � .

In general, a normal logic program A may have zero,
one, or multiple stable models.

Example 4 Let A be the following program:

�
�C.g.�� � � ����, �
����, � � � �
�#.�.��

Then
" � � � ���C.�.�� � and

"
� �

�
����, � � are the stable

models of A .

Denote by ��� !#AD& the set of stable models of A . The
meaning of A under the stable model semantics (SMS) is

� A 	 !CAD& � �
� '���� IMELK !

" � � � !#GHE � " &�&j�

Note that every stratified A has a unique stable model, and
its stratified and stable semantics coincide. Unstratified
rules increase complexity.

Theorem 4.6 ([99]) Given a propositional logic program
A , deciding whether ��� !CAD&R,� � is NP-complete.

Proof. a) Membership. Clearly, A � is polynomial time
computable from A and N . Hence, a stable model

"
of A

can be guessed and checked in polynomial time.
b) Hardness. Modify the DTM encoding in Section 3

for a nondeterministic Turing machine (NTM) q as fol-
lows. For each state � and symbol , introduce atoms
G A�� /�� ��1 $C4 ,. . . , G A�� /�� � 1 $C4 for all �D6 $�P�# and transitions��� �
 ��
 *! 5 ��/ 5 ��� 5 � , ��6Q0M6 � . Add G A�� /�� 5 1 $C4 in the bodies of
the transition rules for ��� �� *�� *! 5 ��/45%���g5 � and the rule

GRA�� /�� 531 $C4 � �"GRA�� /�� � 1 $C4 ��������� �"GRA�� /�� 55= � 1 $C4 �
�"GRA�� /�� 5>
 � 1 $C4 ��������� �"GRA�� /�� � 1 $C4 .

Intuitively, these rules nondeterministically select precisely
one of the possible transitions for � �
 at time instant $,
whose transition rules are enabled via G A�� /�� 5 1 $C4 . Finally,
add a rule G�HMH2I J ! � � G�H0HBIKJ !H�
It ensures

G�HMH2I J ! is true in every stable model. The
stable models

"
of the resulting program correspond to the

accepting runs of q .

As an easy consequence,

Theorem 4.7 ([99, 119]; cf. also [85]) LP under SMS is
co-NP-complete. Datalog under SMS is data complete in
co-NP and program complete in co-NEXPTIME.

For full LP, SMS has the same complexity as WFS.

Theorem 4.8 ([119, 98]) Full LP under SMS is � �� -
complete.

Further results on stable models of recursive (rather than
only finite) logic programs can be found in [97].

9

4.4. Inflationary and noninflationary semantics

The inflationary semantics (INFS) [3, 2] is inspired by
inflationary fixpoint logic [71]. In place of q 	E , it uses the
limit �q 	E of the sequence �q

7
E ��� , �q 5>
 �E � �q E !��q 5E & , 0�= ? ,

where �q E is the inflationary operator �qD!#N�& � N � q E � !#N�& .
Clearly, �q 	E is computable in polynomial time for a propos-
itional program A . Moreover, �q 	E coincides with q 	E for
Horn clause programs A . Therefore, by the above results

Theorem 4.9 ([3]; implicit in [71]) LP under INFS is P-
complete. Datalog under INFS is data complete in P and
program complete in DEXPTIME.

The noninflationary semantics (NINFS) [3], in the ver-
sion of [4, page 373], uses in place of q
	E the limit

�q 	E
of the sequence

�q
7
E � � , �q 5�
 �E � �q E ! �q 5E & , 0 = ? , where�q E !CN4& � q E�� !CN4& , if it exists; otherwise,

�q 	E is undefined.
Similar equivalent algebraic query languages have been de-
scribed earlier in [28, 127]. In particular, datalog under NI-
FNS is equivalent to partial fixpoint logic [3, 2].

As easily seen, q 	E is for a propositional program A
computable in polynomial space; this bound is tight.

Theorem 4.10 ([3, 2]) LP under NINFS is PSPACE-
complete. Datalog under NINFS is data complete in
PSPACE and program complete in EXPSPACE.

4.5. Further semantics of negation

A number of interesting further semantics, e.g. partial
(maximal) stable models, regular models, perfect models, 2-
and 3-valued completion semantics, fixpoint models, must
remain undiscussed here; see e.g. [119, 115, 85] for more
details and complexity results.

5. Disjunctive logic programming

Informally, disjunctive logic programming (DLP) ex-
tends LP by adding disjunction in the rule heads, in order
to allow more suitable knowledge representation and to in-
crease expressiveness. E.g.,

; � �#.�! 	 & � ��.g; � �C.4! 	 & � � .g,��
���F! 	 &
naturally represents that any person is either male or female.

A disjunctive (general) logic program is a set of clauses
6 � � U�U�U � 6 � � . ������������. : !�� =9� �%; = ? &3� (3)

For a background, see [95] and the more recent [105].
The semantics of � -free disjunctive logic programs is based
on minimal Herbrand models, as the least (unique minimal)
model does not exist in general.

Example 5 A � � � � � �
�

has the two minimal models" � � � � � and
"
� �

� � � .
Denote by � � !#AD& the set of minimal Herbrand mod-

els of A . The Generalized Closed World Assumption
[104] (GCWA) for negation-free A amounts to the mean-
ing � ����� B !#AD& � � . � � � !#AD& � � . � .
Example 6 Consider the following program A�! , describing
the behavior of a reviewer while reviewing a paper:

l]g]�\ � � c1\ � i c i a3bX-c i1i � � l4]�]g\
c�_4l1b�� �

� c1\
W �]�f a � X-c i1i �W �]�f a � c9_4l1b��
i c i a�b �

The following models of A`! are minimal:
" � � � i c i a�b � l]g]g\ � X-c i i � ����; � �[. � and"
� �

� i c i a�b � � c1\ � c�_4l1b�� � W �]gf1a � �
Under GCWA, we have A � � �	�
� B W �]�f a , while
Ab,� � ����� B l4]g]�\ and Ab,� � ����� B � l]g]�\ .

Theorem 5.1 ([48]) !#02& Deciding A � � ����� B 6
is co-NP-

complete, and !<0 0�& deciding A � � �	��� B � 6 is � �
� -

complete.

Proof. It is easy to see that for an atom
6

, it holds
A � � �	��� B 6

if and only if A � � E � 6
, where � � E � is

classical logical consequence. Hence, by the well-known
NP-completeness of SAT, part !#02& is obvious.

Let us thus consider part !<0 0�& .
a) Membership. It holds A ,� � �	�
� B � 6 , if and only

if there exists an
" � � � !#AD& such that

" ,� � � 6 , i.e.,6%� "
. Clearly, a guess for

"
can be verified with an

oracle for �
 in polynomial time; from this, membership
of the problem in � �

� follows.
b) Hardness. (Sketch) We show � �

� -hardness by an en-
coding of alternating Turing machines (ATM) [30]. Recall
that an ATM q has its set of states partitioned into exist-
ential (�) and universal (R) states. If the machine reaches
an � -state (resp. R -state) � in a run, then the input is accep-
ted if the computation continued in some (resp. all) of the
possible successor configurations is accepting.

The polynomial-time bounded ATMs which start in a R -
state � 7 and have one alternation, i.e., precisely one trans-
ition from a R -state to an � -state in each run (and no reverse
transition), solve precisely the problems in � �

� [30].
By adapting the construction in the proof of The-

orem 4.6, we show how any such machine q on input N
can be simulated by a disjunctive logic program A un-
der GCWA. W.l.o.g., we assume that each run of q is
polynomial-time bounded [13].

10

We start from the clauses constructed for the NTM q on
input N in the proof of Theorem 4.6, from which we drop the
clause

G�H0HBIKJ ! � � G�H0HBIKJ ! and replace the clauses

G+A�� /�� 531 $C4 � �"G+A�� /�� � 1 $C4 ���������7�"G+A�� /�� 56= � 1 $C4 �
�"G+A�� /�� 5�
 � 1 $C4 �������g�7�"G+A�� /�� � 1 $C4 .

by the logically equivalent disjunctive clauses

G A�� /�� �X1 $C4 � U�U�U � G A�� /�� � 1 $C4 � �
Intuitively, in a minimal model precisely one of the atoms
GRA�� /�� 531 $C4 will be present, which means that one of the pos-
sible branchings is followed in a run. The current clauses
constitute a propositional program which derives ACCEPT
under GCWA iff q would accept N if all its states were uni-
versal. We need to respect the � -states, however. For each
� -state � and time point $ �>? , we set up the following
clauses, where ��! is any � -state, $ 67$!*6�# , ? 6 - 6�# ,
and ��6@0K6 � :

"qBA \ 1 $! 4 � � G�H0HBIKJ !H��
$q_A�1 $C4 ,�+�0/21 $! �3-54 � � G�H0HBIKJ !H��
$q_A�1 $C4 ,< A=1 $!C�3-54 � � G�H0HBIKJ !H��
$q_A�1 $C4 ,
GRA�� /�� 5�1 $! 4 � � G�H0HBIKJ !H��
$q_A�1 $C4 .

Intuitively, these rules state that if a nonaccepting run enters
an � -state, i.e., � G�H0H2I J ! is true, then all relevant facts
involving a time point $!L=�$ are true. This way, nonaccept-
ing runs are tilted. Finally, we set up for each nonaccepting
terminal � -state � the clauses

� G�H0HBIKJ ! �
"q A 1 $C4 , ?YPT$ 6 # .

Intuitively, these clauses state that � G�HMH2I J ! is true if the
run ends in a nonaccepting state.

Let the resulting program be A
 . The minimal models"
of A
 which do not contain � G�HMH2I J ! correspond to

the accepting runs of q .
It can be seen that the minimal models of A
 which con-

tain � G�H0H2I J ! correspond to the partial runs of q from
the initial state � 7 to an � -state � from which no completion
of the run ending in an accepting state is possible. This
implies that A
 has some minimal model

"
containing� G�H0H2I J ! precisely if q , by definition, does not accept

input N . Consequently, A
 � � ����� B �"� G�H0H2I J ! , i.e.,� G�H0H2I J ! is in no minimal model of A
 , if and only if
q accepts input N .

It is clear that the program A
 can be constructed
using logarithmic workspace. Consequently, deciding
A � � �	�
� B � 6 is � �

� -hard under logspace reductions.

Notice that many problems in the field of nonmonotonic
reasoning are � �

� -complete, e.g. [65, 47, 50].

Stable negation naturally extends to disjunctive logic
programs, by adopting that N is a stable model of a dis-
junctive logic program A iff N � � � !#A � & [111]; it sub-
sumes disjunctive stratified semantics. For well-founded se-
mantics, no such natural extension is known. Clearly, A � is
easily computed, and A � � A if A is negation-free. Thus,

Theorem 5.2 ([49, 54, 55]) DLP under SMS is � �
� com-

plete. Disjunctive datalog under SMS is data complete in
� �
� and program complete in co-NEXPTIME �

�
.

The latter result was derived by utilizing complexity up-
grading techniques as described above in Section 3.3.

In the case with functions, we have:

Theorem 5.3 ([31]) Full DLP under GCWA is �
7
� -com-

plete.

Theorem 5.4 ([49]) Full DLP under SMS is � �� -complete.

Thus, disjunction adds complexity under GCWA and un-
der SMS in finite Herbrand universes (unless co- �
 �
� �
�), but not in infinite ones. This is intuitively explained by

the fact that DLP under SMS corresponds to a weak frag-
ment of � �

� which can be recursively translated to � �� .
Many other semantics for DLP have been analyzed,

some having lower complexity than SMS, e.g., the possible
model semantics [27, 116] and the causal model semantics
[42], and others higher, e.g. the regular model semantics
[57]. However, typically they are � �

� -complete in the pro-
positional case. (cf. [49, 100]).

6. Expressive power of logic programming

The expressive power of query languages such as datalog
is a topic common to database theory [2] and finite model
theory [46] that has attracted much attention by both com-
munities.

By the expressive power of a query language, we un-
derstand the set of all queries expressible in that language.
Note that we will not only mention query languages used in
database systems, but also formalisms used in formal logic
and finite model theory such as first and second-order logic
over finite structures or fixpoint logic (for precise definitions
consult [46]).

In general, a query � defines a mapping ��� that to each
suitable input database ?,# 1 (over a fixed input schema) as-
signs a result database ? -0/&% � � � ! ? # 1 & (over a fixed
output schema); more logically speaking, a query defines
global relations [70]. For reasons of representation inde-
pendence, a query should, in addition, be generic, i.e., in-
variant under automorphisms. This means that if $ is an
automorphism of the input database, permuting elements of
the universe, i.e., names of constants, then � ! $L!5? # 1 &�& �

11

$L!5? -0/&% & . Thus, when we speak about queries, we always
mean generic queries.

Formally, the expressive power of a query language
�

is the set of mappings � � for all queries � expressible in
language

�
.

There are two important research tasks in this context.
The first is comparing two query languages

� � and
�
� in

their expressive power. One may prove, for instance, that� ��� � � , which means the set of all queries expressible in� � is a proper subset of the queries expressible in
�
� , and

hence,
�
� is strictly more expressive than

� � . Or one may
show that two query languages

� � and
�
� have the same

expressive power, denoted by
� � � � � , and so on.

The second research task, more related to complexity
theory, is determining the absolute expressive power of a
query language. This is mostly achieved by proving that a
given query language

�
is able to express exactly all quer-

ies whose evaluation complexity is in a complexity class : .
In this case, we say that

�
captures : and write simply� � : . The evaluation complexity of a query is the com-

plexity of checking whether a given atom belongs to the
query result, or, in the case of Boolean queries, whether the
query evaluates to true [127, 70].

Note that there is a substantial difference between show-
ing that the query evaluation problem for a certain query
language

�
is : -complete and showing that

�
captures : .

If the evaluation problem for
�

is : -complete, then at least
one : -hard query is expressible in

�
. If

�
captures : ,

then
�

expresses all queries evaluable in : (including of
course all : -hard queries). Thus, usually proving that

�

captures : is much more involved than proving that evalu-
ating

�
-queries is : -hard. Note also that it is possible that a

query language
�

captures a complexity class : for which
no complete problems exist or are known. As an example,
second-order logic over finite structures captures the Poly-
nomial Hierarchy
�� , although the existence of a complete
problem of
�� would imply its collapse.

The subdiscipline of database theory and finite model
theory dealing with the description of the expressive power
of query languages and related logical formalisms via
complexity classes is called descriptive complexity theory
[77, 90, 78]. An early foundational result in this field was
Fagin’s Theorem [58] stating that existential second-order
logic captures �
 . In the eighties and nineties, descriptive
complexity theory has become a flourishing discipline with
many deep and useful results.

To prove that a query language
�

captures a machine-
based complexity class : , one usually shows that each : -
machine with (encodings of) finite structures as inputs that
computes a generic query can be represented by an expres-
sion in language

�
. There is, however, a slight mismatch

between ordinary machines and logical queries. A Turing
machine works on a string encoding of the input database

? . Such an encoding provides an implicit linear order on
? , in particular, on all elements of the universe (A@ . The
Turing machine can take profit of this order and use this or-
der in its computations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the uni-
verse (@ is a pure set and thus unordered. For “power-
ful” query languages of inherent nondeterministic nature at
the level of �
 this is not a problem, since an ordering
on (@ can be nondeterministically guessed. However, for
many query languages, in particular, for those correspond-
ing to complexity classes below �
 , generating a linear
order is not possible. Therefore, one often assumes that a
linear ordering of the universe elements is predefined, i.e.,
given explicitly in the input database. More specifically,
by ordered databases or ordered finite structures, we mean
databases whose schemas contain special relation symbols� Y-h�h , 	 k b�WjZ , and
 c�WjZ , that are always interpreted such that� Y-h�h !54����[& is a successor relation of some linear order and	 k b�W�Z !64�& determines the first element and
 c�WjZ !64�& the last
element in this order. The importance of predefined linear
orderings becomes evident in the next two theorems.

Before coming to the theorems, we must highlight an-
other small mismatch between the Turing machine and the
datalog setting. A Turing machine can consider each input
bit independently of its value. On the other hand, a plain
datalog program is not able to detect that some atom is not
a part of the input database. This is due to the represent-
ational peculiarity that only positive information is present
in a database, and that the negative information is under-
stood via the closed world assumption. To compensate this
deficiency, we will slightly augment the syntax of datalog.
Throughout this section, we will assume that input predic-
ates may appear negated in datalog rule bodies; the result-
ing language is datalog
 . This extremely limited form of
negation is much weaker than stratified negation, and could
be easily circumvented by adopting a different representa-
tion for databases.

Theorem 6.1 (a fortiori from [28]) Datalog
 �
 .

Proof. (Hint.) Show that there exists no datalog
 pro-
gram A that can tell whether the universe (of the input
database has an even number of elements.

Theorem 6.2 ([109, 67]; implicit in [127, 76]) On order-
ed databases, datalog
 captures
 .

Proof. (Sketch) By Theorem 4.1, query answering for a
fixed datalog
 program is in
 . It thus remains to show
that each polynomial-time DTM q on finite input databases
? � �
� � !H!��'# 1 & can be simulated by a datalog
 program.
To show this, we first make some simplifying assumptions.

1. The universe (@ is an initial segment 1 ?-�%�D�T�&4 of the
integers, and � Y-h�h , 	 k b�WjZ , and
 c�WjZ are from the nat-
ural linear ordering over this segment.

12

2. The input database schema �$# 1 consists of a single
binary relation

<
, plus the predefined predicates� Y-h�h � 	 k b�W�Z ��
 c�WjZ . In other words, ? is always a graph� (� < � .

3. q computes a Boolean (0-ary) predicate.

4. q operates in P@� � steps, where � � � (� �7� .
The simulation is akin to the simulation used in the

proofs of Theorems 3.2 and 3.5.
Recall the framework of Section 3.1. In the spirit of

this framework, it suffices to encode � � time-points $ and
tape-cell numbers - within a fixed datalog program. This
is achieved by considering � -tuples S � �64������������04 � � of
variables 4 5 ranging over (. Each such � -tuple encodes the
integer 0 ���3!<S�& ��� �5 � � 4 5 � � � =�5 .

The simulation starts at time point ? , where the worktape
of q contains an encoding of the input graph. Recall that in
Section 3.1, this was reflected by the initialization facts

�+� / 1 ?-�3-54 � ?Y6T-UP � N � � where N % � ��
Before translating this rules into appropriate datalog rules,
we shall spend a word about how input graphs are usually
represented as binary strings. A graph � (� < � is encoded as
binary string .g�L�9! (� < & of length � (� � . If

< !#0�����& is true for
0���� � (� 1 ?'�%�+� �)4 , then bit number 0���� '�� of .g�L�9! (� < &
is � , otherwise this bit is ? .

The bit positions of .g�L�9! (� < & are exactly the integers
from ? to � ����� . These integers are represented by all
� -tuples �#? � = �1�04+��� � such that 4���� � (. Moreover, the bit-
position 0 ���3!��#? � = �1�04+��� � & of .g�L�9! (� < & is � iff

< !64+���'& is
true in the input database and ? otherwise.

The above initialization rules can therefore be translated
into the datalog rules

�+� �1!#? � ��? � = �1�04����'& �
< !64+���'&�+� 7 !#? � ��? � = �1�04����'& � � < !64+���'&

Intuitively, the first rule says that if
< !64+���'& is true, then

at time point ? � 0 ���3!#? � & , bit number 0 ���3!
�C? � = � �04+��� � & of
the worktape is 1 if

< !54����'& is true. The second rule states
that the same bit is false if

< !64+���'& is false. Note that the
second rule applies negation to an input predicate. This is
the only rule in the entire datalog
 program using negation.
Clearly, these two rules simulate that at time point ? , the
cells � 7 ,. . . , � �� = � contain precisely the string .g�L�9! (� < & .

The other initialization rules described in Section 3.1 are
also easily translated into appropriate datalog rules. Let us
now see how the other rules are translated into datalog.

From the linear order given by � Y-h�h !64����'& , 	 k b�WjZ !64�& , and

 c�W�Z !54�& , it is easy to define by datalog clauses a linear order
6 � on � -tuples � Y-h�h � !#S$���+& , 	 k b�WjZ � !<S�& ,
 c�WjZ � !<S�& (see the
proof of Theorem 3.5), by using � Y-h�h � � � Y-h�h , 	 k b�WjZ � �	 k b�WjZ and
 c�WjZ � �
 c�WjZ .

By using � Y-h�h � , transition rules, inertia rules and the
accept rules are easily translated into datalog as in the proof
of Theorem 3.5.

The output schema of the resulting datalog program A

is defined to be � -0/&% � � G�H0H2I J ! � . It is clear that this
program evaluates to true on input ? � � (� < � , i.e., A
 �
? � � G�H0H2I J ! true, iff q accepts .g�L�9! (� < & .

The generalization to a setting where the simplifying as-
sumptions 1–4 are not made is rather straightforward and is
omitted.

Let us now state somewhat more succinctly interesting
results on datalog. A prominent query language is fix-
point logic (

� A�.), which is the extension of first-order lo-
gic by a least fixpoint operator �C�4�+!#S$�
	 ��
*& , where
 is a
� SA� -ary predicate occurring positively in 	 � 	 !<S���
F& and
4 � �������3�,4 � are free variables in 	 ; intuitively, it returns the
least fixpoint of the operator
 defined by
�!�
F& � ��� �
? � � 	 ! � ��
F& � . See [28, 2, 46] for details.

As shown in [28],
� A�. expresses a proper subset of the

queries in
 . Datalog
 relates to
� A�. as follows.

Theorem 6.3 ([29]) Datalog
 =
� A�.
 ! �'& , i.e., coincides

with the fragment of
� A�. having negation restricted to

database relations and only existential quantifiers.

Theorem 6.4 ([84]; implicit in [36]) Stratified datalog �� A�. .

The previous theorem is not obvious. In fact, for some
time coincidence of the two languages was assumed, based
on [29]. The non-recursive fragment of datalog coincides
with well-known database query languages.

Theorem 6.5 (cf. [2]) Non-recursive datalog = relational
algebra = SQL = relational calculus.

Unstratified negation yields higher expressive power.

Theorem 6.6 ([124];[3], using [71]) Datalog under WFS
=
� A�. ;

� A�. = datalog under INFS.

As recently shown, the previous result holds also for total
WFS (i.e., the well-founded model is always total) [61].

On ordered databases, Theorem 6.2 and the theorems in
Section 4 imply

Theorem 6.7 On ordered databases, stratified datalog,
datalog under INFS, and datalog under WFS capture P.

Syntactical restrictions allow to capture classes within

 . Let datalog
 !3�g& be the fragment of datalog
 where each
rule has most one nondatabase predicate in the body, and let
datalog
 ! �1��/4& be the fragment of datalog
 !3�g& where each
predicate occurs in at most one rule head.

13

Theorem 6.8 ([67, 128]) On ordered databases, data-
log
 ! �g& captures ��� and datalog
 ! � ��/�& captures � .

Due to inherent nondeterminism, stable semantics is
much more expressive.

Theorem 6.9 ([119]) Datalog under SMS captures co-NP.

Note that for this result an order on the input database is
not needed. Informally, in each stable model such an order-
ing can be guessed and checked by the program. By Fagin’s
Theorem [58], this implies that datalog under SMS is equi-
valent to the existential fragment of second-order logic over
finite structures.

Theorem 6.10 ([3]) On ordered databases, datalog under
NINFS captures PSPACE.

Here ordering is needed. An interesting result in this
context, formulated in terms of datalog, is the following [3]:
datalog under INFS = datalog on NINFS on arbitrary finite
databases if and only if P=PSPACE. While the “only if”
direction is obvious, the proof of the “if” direction is in-
volved. It is one of the rare examples that translates open
relationships between deterministic complexity classes into
corresponding relationships between query languages.

Finally, we briefly address the expressive power of dis-
junctive logic programs and full logic programs. In the
latter case, the input databases are arbitrary (not necessary
recursive) relations on the genuine (infinite) Herbrand uni-
verse of the program.

Theorem 6.11 ([54, 55]) Disjunctive datalog under SMS
captures � �

� .
Theorem 6.12 ([119, 51]) Full LP under WFS, full LP un-
der SMS, and full DLP under SMS all express � �� .

For further expressiveness results, see e.g. [119, 114,
115, 57]. In particular, further classes of the polynomial
hierarchy can be captured by variants of stable models
[115, 114, 57, 23] as well as through modular logic pro-
gramming [56].

7. Unification and its complexity

What is the complexity of query answering for very
simple logic programs consisting of one fact? This prob-
lem leads us to the problem of solving equations over terms,
known as the unification problem. Unification lies in the
very heart of implementations of LP and automated reason-
ing systems.

Atoms or terms � and � are called unifiable if there exists
a substitution

9
that makes them equal, i.e. the terms � 9

and � 9 coincide; such a substitution
9

is called a unifier of

� and � . The unification problem is the decision problem:
given terms � and � , are they unifiable?

Robinson described in [113] an algorithm that solves this
problem and, if the answer is positive, computes a most gen-
eral unifier of given two terms. His algorithm had exponen-
tial time and space complexity mainly because of the repres-
entation of terms by strings of symbols. Using better repres-
entations (for example, by directed acyclic graphs), Robin-
son’s algorithm was improved to linear time algorithms (e.g.
[101, 110]).

Theorem 7.1 ([44, 131, 45]) The unification problem is
 -
complete under logspace reductions.

 -hardness of the unification problem was proved by re-
ductions from some versions of the circuit value problem in
[44, 131, 45]. (Article [91] stated that unifiability is com-
plete in co-NL, however, [44] gives a counterexample to the
proof in [91].)

Also, many quadratic time and almost linear time uni-
fication algorithms have been proposed because these al-
gorithms are often more suitable for applications and gen-
eralizations (see a survey of main unification algorithms
in [12]). Here we mention only Martelli and Montanari’s
algorithm [102] based on ideas going back to famous
Herbrand’s work [73]. Modifications of this algorithm are
widely used for unification in equational theories and re-
writing systems. The time complexity of Martelli and
Montanari’s algorithm is

� !#� 6 = � !<��&�& where
6 = � is a

function inverse to Ackermann’s function (thus,
6 = � !<��&

grows very slowly).

8. Logic programming with equality

The relational model of data deals with simple values,
namely tuples consisting of atomic components. Vari-
ous generalizations and formalisms have been proposed to
handle more complex values like nested tuples, tuples of
sets, etc. [1]. Most of these formalisms can be expressed in
terms of LP with equality [62, 63, 74, 72, 39] and constraint
logic programming considered in Section 9.

8.1. Equational theories

Let � be a language containing the equality predicate� . By an equation over � we mean an atom � � � where
� and � are terms in � . An equational theory ; over �
is a set of equations closed under the logical consequence
relation, i.e. a set satisfying the following conditions: (i) ;
contains the equation 4 � 4 ; (ii) if ; contains � � � then
; contains � � � ; (iii) if ; contains , � � and � � � then
; contains , � � ; (iv) if ; contains � � � � � �������3��� � �

14

then ; contains �"!�� � ����������� & � �"!<� � ����������� & for each � -
ary function symbol � � � ; and (v) if ; contains � � � then
; contains � 9 � � 9 for all substitutions

9
.

The syntax of logic programs over an equational theory
; coincides with that of ordinary LP. Their semantics is
defined as a generalization of the semantics of LP so that
terms are identified if they are equal in ; .

Example 7 We demonstrate logic programs with equality
by a logic program processing finite sets. Finite sets are
a typical example of complex values handled in databases.
We represent finite sets by ground terms as follows: (i) the
constant

� �
denotes the empty set, (ii) if � represents a set

and � is a ground term then
� � �L� � represents the set

� � � � �
(where

� � � and � need not be disjoint). However the equal-
ity on sets is defined not as identity of terms but as equality
in the equational theory in which terms are considered to be
equal if and only if they represent equal sets (we omit the
axiomatization of this theory).

Consider a very simple program that checks whether two
given sets have a non-empty intersection. This program
consists of one fact

�]� a �8i Z � k _ Z a�b�W�a�h3Z k#]�_ ! � 	 ��
 � � � � 	 ��
 �
� & � �

For example, to check that the sets
� �1���-��� � and��� ���1��� � have a common member, we ask the query_�]�_ a ��i Z
� k _-Z2a3b�W�a�h3Z k#]�_ ! � �1���'��� � � �	� �&� ��� � & . The answer

will be positive. Indeed, the following system of equations
� 	 ��
 � � � � �1���'��� � � � 	 ��
 �

� � ��� �&�1��� �
has solutions in the equational theory of sets, for example	 � � ,
 � � � �'��� � ,
 � �

�
��� � ��� � .

Note that if we represent sets by lists in plain LP without
equality, any encoding of _�]9_ a �8i Z � k _ Z a�b�W�a�h�Z k#]�_ will re-
quire recursion.

The complexity of logic programs over ; depends on
the complexity of solving systems of term equations in ; .
The problem of whether a system of term equations is solv-
able in an equational theory ; is known as the problem of
simultaneous ; -unification.

A substitution
9

is called an ; -unifier of terms � and � if
the equation � 9 � � 9 is a logical consequence of the theory
; . By the ; -unification problem we mean the problem of
whether there exists an ; -unifier of two given terms. Or-
dinary unification can be viewed as ; -unification where ;
contains only trivial equations � � � . It is natural to think of
an ; -unifier of � and � as a solution to the equation � � � in
the theory ; .

8.2. Complexity of ; -unification

It is practically impossible to overview all results on the
complexity of ; -unification because any result on solv-

ing equation systems can be viewed as a result on ; -
unification (solving equations is a traditional subject of all
mathematics). Therefore, we restrict this survey to only few
cases closely connected with LP. The general theory of ; -
unification may be found e.g. in [12].

Let ; be an equational theory over � and U be a binary
function symbol in � (written in the infix form). We call U an
associative symbol if ; contains the equation 4 U !�� U ��& � !64 U
�'& U � , where 4+��� and � are variables. Similarly, U is called an
AC-symbol (an abbreviation for an associative-commutative
symbol) if U is associative and, in addition, ; contains 4 U � �
� U 4 . If U is an AC-symbol and ; contains 4 U 4 � 4 , we call U
an ACI-symbol (N stands for idempotence). Also, U is called
an AC1-symbol (or an ACI1-symbol) if U is an AC-symbol
(an ACI-symbol respectively) and ; contains the equation
4 U � � 4 where 1 is a constant belonging to � .

Theorem 8.1 ([96, 11, 17, 86]) Let ; be an equational
theory defining a function symbol U in � as an associative
symbol (; contains all logical consequences of 4 U !�� U �4& �
!64 U �[& U � and no other equations). The following upper
and lower bounds on the complexity of the ; -unification
problem hold: (i) this problem is in 3-NEXPTIME, (ii) this
problem is NP-hard.

Basically, all algorithms for unification under associativ-
ity are based on Makanin’s algorithm for word equations
[96]. The 3-NEXPTIME upper bound is obtained in [86].

The following theorem characterizes other popular kinds
of equational theories.

Theorem 8.2 ([82, 83]) Let ; be an equational theory de-
fining some symbols as AC-symbols or ACI-symbols or
AC1-symbol or ACI1-symbols (there can be one or more of
these kinds of symbols). The theory ; is assumed to con-
tain no other equations. Then the ; -unification problem is
NP-complete.

8.3. Complexity of non-recursive logic program-
ming with equality

In the case of ordinary unification, there is a simple way
to reduce solvability of finite systems of equations to solv-
ability of single equations. However, these two kinds of
solvability are not equivalent for some theories: there exists
an equational theory ; such that the solvability problem for
one equation is decidable, while solvability for systems is
undecidable [106].

Simultaneous ; -unification determines decidability of
non-recursive LP over ; .

Theorem 8.3 ([38]) Let ; be an equational theory. Non-
recursive LP over ; is decidable if and only if the problem
of simultaneous ; -unification is decidable.

15

An equational theory ; is called NP-solvable if the prob-
lem of solvability of equation systems in ; is in NP. For ex-
ample, the equational theory of finite sets mentioned above,
the equational theory of bags (i.e. finite multisets) and the
equational theory of trees (containing only equations � � �)
are NP-solvable [38].

Theorem 8.4 ([37, 38]) Non-recursive LP over an NP-
solvable equational theory ; is in NEXPTIME. Moreover,
if ; is a theory of trees, or bags, or finite sets, or any
combination of them, then non-recursive LP over ; is also
NEXPTIME-complete.

9. Constraint logic programming

Informally, constraint logic programming (CLP) extends
LP by involving additional conditions on terms. These con-
ditions are expressed by constraints, i.e. equations, disequa-
tions, inequations etc. over terms. The semantics of such
constraints is predefined and does not depend on logic pro-
grams.

Example 8 We illustrate CLP by the standard example.
Suppose that we would like to solve the following puzzle:

'
 ; # ?" � � ;" � # ;

All these letters are variables ranging over decimal digits
?'�&� �������j��� . As usual, different letters denote different di-
gits and
"� " ,� ? . This puzzle can be solved by a con-
straint logic program over the domain of integers !
 � � ��,�
�&6 ��' �]� ��?-�&�1������� & . Informally, this program can be written
as follows.

� _�\ !�
"�7; �,# �7? � " � � � � �7; � " � � �7# �,; ��
 & �
�R6
T6��-� �������"?�6
 6��-�

(,� ; � �����3�/�@,�
*�
��?1? ? U
 ' �g?1? U ;7'(��? U #b' ? '
��?1? ? U " '(��? ? U � ' �g? U ��' ; �
��?1? ?1? U " ' �g?1?1? U � '7��? ? U #b' �g? U ;7'

The query
� _�\ !	
"�,; �,# �7? � " � � ��� �,; � " � � �7# �,; ��
 &

will be answered by the only solution

' � � � �
� ? � �

� ? � � t
A structure is defined by an interpretation N of a lan-

guage � in a nonempty set ? . For example, we shall
consider the structure defined by the standard interpreta-
tion of the language consisting of the constant 0, the suc-
cessor function symbol � and the equality predicate � in

the set # of natural numbers. This structure is denoted by
!5# � � ��� ��?4& . Other examples of structures are obtained by
replacing # by the sets
 (the integers),

�
(the rational

numbers), � (the reals) or � (the complex numbers). Be-
low we denote structures in a similar way, keeping in mind
the standard interpretation of arithmetic function symbols in
number sets. The symbols � and

�
stand for multiplication

and division respectively. We use � U 4 to denote unary func-
tions of multiplication by particular numbers (of the corres-
ponding domain); 4 is used similarly. All structures under
consideration are assumed to contain the equality symbol.

Let
 be a structure. An atom �9!<� � ���������%� � & where
� � ���������%� � are terms in the language of
 is called a con-
straint. By a constraint logic program over
 we mean a
finite set of rules

� !<S�& � � � ����������� : ��� � !<S � &j����������� !<S &
where ��������������� : are constraints, �������������������� are pre-
dicate symbols not occurring in the language of
 , and
S$�%S+�9�������3��SL are lists of variables. Semantics of CLP is
defined as a natural generalization of semantics of LP (e.g.
[79]). If
 contains function symbols interpreted as tree
constructors (i.e. equality of corresponding terms is inter-
preted as ordinary unification) then CLP over
 is an exten-
sion of LP. Otherwise, CLP over
 can be regarded as an
extension of Datalog by constraints.

9.1. Complexity of constraint logic programming

There are two sources of complexity in CLP: complex-
ity of solving systems of constraints and complexity com-
ing from the LP scheme. However, interaction of these
two components can lead to complexity much higher than
merely the sum of their complexities. For example, Data-
log (which is DEXPTIME-complete) with linear arithmetic
constraints (whose satisfiability problem is in NP for in-
tegers and in P for rational numbers and reals) is undecid-
able.

Theorem 9.1 ([35]) CLP over ! # � � ���1��? & is r.e.-complete.
The same holds for any of
 � � ��� and � instead of # .

The proof uses the fact that CLP over !5# � � ��
"��?'�&��& al-
lows one to define addition and multiplication in terms of
successor. Thus, diophantine equations can be expressed in
this fragment of CLP.

On the other hand, simpler constraints, namely con-
straints over ordered infinite domains (of some particular
kind), do not increase the complexity of Datalog.

Theorem 9.2 ([34]) CLP over !
�� � �&P ��?'�����1��� t ������� & is
DEXPTIME-complete. The same holds for any of

�
or �

instead of
 .

16

Decidable fragments of CLP over more complex struc-
tures are obtained by restrictions imposed on constraint lo-
gic programs. For example, we consider a conservative
CLP in which rules satisfy the restriction: all variables oc-
curring in the body occur in the head.

Theorem 9.3 ([35]) Conservative CLP is DEXPTIME-
complete over any of the following structures:

! � � � �&6 ��P ��' �&� ��� U 4���?'���1������� & , i.e. linear inequa-
tions over the rational numbers;

!�� � � ��6 �&P � ' �&� �%� U 4���?-�&� ������� & , i.e. linear inequa-
tions over the reals;

!�� � � ��6 �&P � ' �&� �L� � � �,4 ��?'�&� ������� & , i.e. polynomial
inequations over the reals;

!
�H� � ��' �&� �]� � � �04 ��?-�&� ������� & , i.e. polynomial equa-
tions over the complex numbers.

The proof is based on the known results on the com-
plexity of algorithms for the corresponding algebraic struc-
tures [25, 112, 69, 75]. If we allow non-ground quer-
ies, DEXPTIME-completeness should be replaced by
NEXPTIME-completeness.

10. Expressive power of logic programming-
with complex values

The expressive power of datalog queries is defined in
terms of input and output databases, i.e. finite sets of tuples.
To extend the notion of expressive power to logic program-
ming with complex values, we have to define what we mean
by an input. For example, in the case of plain logic pro-
gramming, an input may be a finite set of ground terms, i.e.
a finite set of trees. In the case of logic programming with
sets, an input may be a set whose elements may be sets too
and so on.

Various models and languages for dealing with complex
values in databases have been proposed. The comparat-
ive expressive power of such formalisms is studied, for ex-
ample, in [1]. This paper introduces a model for restricted
combinations of tuples and sets and several corresponding
query languages, including the algebraic and logic program-
ming ones. It is proved that all these languages define the
same class of queries.

The absolute expressive power of such languages (in
terms of complexity classes) is studied for example in
[117, 92, 93] which, in particular, show how the express-
ive power depends on the way of representing complex
values. For a natural representation of hereditarily finite
sets by graphs, there is a logical query language (called
Bounded Set Theory) that captures P. Some other versions
of Bounded Set Theory are shown to capture L and NL.

Other interesting results on the expressive power of dif-
ferent forms of LP with constraints can be found e.g. in
[33, 81, 18, 126].

Unlike research on the expressive power of datalog, there
is no mainstream in research on the expressive power of
LP with complex values. The latter research yielded so
far a number of ad hoc results and approaches. This can
be explained by several reasons. One reason is that differ-
ent kinds of complex values require different computational
models. Another reason is that the same kind of complex
values admits many different definitions of the input and
output.

Extension of declarative query languages by complex
values is one of the main problems of database theory and
practice. More research is required to develop unifying
paradigms for understanding their expressive power.

References

[1] S. Abiteboul and C. Beeri. The power of languages for
the manipulation of complex values. VLDB J., 4:727–794,
1995.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Data-
bases. Addison-Wesley, 1995.

[3] S. Abiteboul and V. Vianu. Datalog Extensions for Data-
base Updates and Queries. J. Computer and System Sci-
ences, 43:62–124, 1991.

[4] S. Abiteboul and V. Vianu. Computing with First-Order
Logic. J. Computer and System Sciences, 50:309–335,
1995. Preliminary version in STOC 1991.

[5] Andréka and Németi. A generalized completeness of Horn
clause logic seen as a programming language. Acta Cyber-
netica, 4:3–10, 1978.

[6] K. Apt. Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B,
chapter 10, pp. 493–574. Elsevier Science, 1990.

[7] K. Apt and H. Blair. Arithmetic Classification of Per-
fect Models of Stratified Programs. In R. Kowalski and
K. Bouwen, editors, Proc. Fifth JICSLP-88, pp. 766–779.
MIT Press, 1988.

[8] K. Apt, H. Blair, and A. Walker. Towards a Theory of
Declarative Knowledge. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming, pp. 89–
148. Morgan Kaufman, Washington DC, 1988.

[9] K. Apt and R. Bol. Logic Programming and Negation: A
Survey. J. Logic Programming, 19/20:9–71, 1994.

[10] K. Apt and M. van Emden. Contributions to the Theory of
Logic Programming. JACM, 29(3):841–862, 1982.

[11] F. Baader and K. Schulz. Unification in the union of dis-
joint equational theories: Combining decision procedures.
In D. Kapur, editor, 11th CADE, LNCS/LNAI 607, pp. 50–
65, 1992.

[12] F. Baader and J. Siekmann. Unification theory. In D. Gab-
bay, C. Hogger, and J. Robinson, editors, Handbook of Lo-
gic in Artificial Intelligence and Logic Programming. Ox-
ford University Press, 1994.

17

[13] J. Balcázar, J. Diaz, and J. Gabarró. Structural Complexity
I+II. Springer, 1988 + 1990.

[14] J. Balcázar, A. Lozano, and J. Torán. The Complexity of
Algorithmic Problems on Succinct Instances. In R. Baeta-
Yates and U. Manber, editors, Computer Science, pp. 351–
377. Plenum Press, New York, 1992.

[15] C. Baral and M. Gelfond. Logic Programming and Know-
ledge Representation. J. Logic Programming, 19/20:73–
148, 1994.

[16] C. Baral and V. Subrahmanian. Dualities Between Altern-
ative Semantics for Logic Programming and Nonmono-
tonic Reasoning. J. Automated Reasoning, 10:399–420,
1993.

[17] D. Benanav, D. Kapur, and P. Narendran. Complexity of
matching problems. J. Symbolic Computation, 3:203–216,
1987.

[18] M. Benedikt, G. Dong, L. Libkin, and L. Wong. Expressive
Power of Relational Constraint Query Languages. In Proc.
PODS-96, pp. 5–13, 1996.

[19] K. Berman, J. Schlipf, and J. Franco. Computing Well-
Founded Semantics Faster. In W. Marek, A. Nerode, and
M. Truszczyński, editors, Proc. LPNMR-95, LNCS/LNAI
982, pp. 113–126. Springer, 1995.

[20] H. Blair. The Recursion-Theoretic Complexity of the Se-
mantics of Predicate Logic as a Programming Language.
Information and Control, 54(1/2):25–47, July/August
1982.

[21] H. Blair and C. Cholak. The Complexity of Local Strati-
fication. Fundamenta Informaticae, 21:333–344, 1994.

[22] A. Bonner. Hypothetical Datalog: Complexity and Ex-
pressibility. Theoretical Computer Science, 76:3–51, 1990.

[23] F. Buccafurri, S. Greco, and D. Saccá. The Expressive
Power of Unique Total Stable Model Semantics. In Proc.
ICALP 97, 1997. To appear.

[24] M. Cadoli and M. Schaerf. A Survey of Complexity Res-
ults for Non-monotonic Logics. J. Logic Programming,
17:127–160, 1993.

[25] J. Canny. Some algebraic and geometric computations in
PSPACE. In Proc. 20th Annual ACM STOC, pp. 460–467,
Chicago, Illinois, 1988.

[26] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and
Databases. Springer, 1990.

[27] E. Chan. A Possible Worlds Semantics for Disjunctive
Databases. IEEE Transactions on Knowledge and Data
Engineering, 5(2):282–292, 1993.

[28] A. Chandra and D. Harel. Structure and Complexity of Re-
lational Queries. J. Computer and System Sciences, 25:99–
128, 1982.

[29] A. Chandra and D. Harel. Horn Clause Queries and Gen-
eralizations. J. Logic Programming, 2:1–15, 1985.

[30] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation.
JACM, 28:114–133, 1981.

[31] J. Chomicki and V. Subrahmanian. Generalized Closed
World Assumption is �

� � -Complete. Information Pro-
cessing Letters, 34:289–291, 1990.

[32] A. Colmerauer, H. Kanoui, P. Roussel, and R. Passero. Un
système de communication homme-machine en Francais.
Technical report, Groupe de Recherche en Intelligence Ar-
tificielle, Universitè d’Aix-Marseille, 1973.

[33] S. Cosmadakis and G. Kuper. Expressiveness of first-
order constraint languages. Technical Report ECRC-94-
13, European Computer Industry Research Center, 1994.

[34] J. Cox and K. McAloon. Decision procedures for
constraint-based extensions of datalog. In F. Benhamou
and A. Colmerauer, editors, Constraint Logic Program-
ming, Selected Research, pp. 17–32. The MIT Press, 1993.

[35] J. Cox, K. McAloon, and C. Tretkoff. Computational com-
plexity and constraint logic programming languages. ex-
tended abstract. In S. Debray and M. Hermenegildo, edit-
ors, Proc. NACLP’90, pp. 401–415. The MIT Press, 1990.

[36] E. Dahlhaus. Skolem Normal Forms Concerning the Least
Fixpoint. In E. Börger, editor, Computation Theory and
Logic, LNCS 270, pp. 101–106. Springer, 1987.

[37] E. Dantsin and A. Voronkov. Complexity of query answer-
ing in logic databases with complex data. In S. Adian and
A. Nerode, editors, LFCS’97, LNCS, 1997. To appear.

[38] E. Dantsin and A. Voronkov. Complexity of query answer-
ing in logic databases with complex data. UPMAIL tech-
nical report, Uppsala University, Computing Science De-
partment, 1997.

[39] A. Degtyarev and A. Voronkov. A note on semantics of
logics programs with equality based on complete sets of�

-unifiers. J. Logic Programming, 28(3):207–216, Sept.
1996.

[40] P. Devienne, P. Lebègue, J.-C. Routier, and J. Würtz.
Smallest Horn Clause Programs. J. Logic Programming,
27:227–267, 1996.

[41] A. Dikovsky. On Computational Complexity of Prolog
Programs. Theoretical Computer Science, 119:63–102,
1993.

[42] J. Dix, G. Gottlob, and W. Marek. Reducing Disjunctive
to Non-Disjunctive Semantics by Shift-Operations. Fun-
damenta Informaticae, 28:87–100, 1996.

[43] W. Dowling and J. H. Gallier. Linear-time Algorithms for
Testing the Satisfiability of Propositional Horn Theories. J.
Logic Programming, 3:267–284, 1984.

[44] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequen-
tial nature of unification. J. Logic Programming, 1:35–50,
1984.

[45] C. Dwork, P. Kanellakis, and L. Stockmeyer. Paral-
lel algorithms for term matching. SIAM J. Computing,
17(4):711–731, 1988.

[46] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Per-
spectives in Mathematical Logic. Springer, 1995.

[47] T. Eiter and G. Gottlob. On the Complexity of Proposi-
tional Knowledge Base Revision, Updates, and Counter-
factuals. Artificial Intelligence, 57(2–3):227–270, 1992.

[48] T. Eiter and G. Gottlob. Propositional Circumscription and
Extended Closed World Reasoning are �

�� -complete. The-
oretical Computer Science, 114(2):231–245, 1993. Ad-
dendum 118:315.

[49] T. Eiter and G. Gottlob. On the Computational Cost of Dis-
junctive Logic Programming: Propositional Case. Annals
of Mathematics and Artificial Intelligence, 15(3/4):289–
323, 1995.

[50] T. Eiter and G. Gottlob. The Complexity of Logic-Based
Abduction. JACM, 42(1):3–42, January 1995.

18

[51] T. Eiter and G. Gottlob. Expressiveness of Stable Model
Semantics for Disjunctive Logic Programs with Func-
tions. Technical Report CD-TR 96/103, Christian Doppler
Laboratory for Expert Systems, TU Vienna, Austria, July
1996. J. Logic Programming, to appear.

[52] T. Eiter, G. Gottlob, and N. Leone. Complexity Res-
ults for Abductive Logic Programming. In W. Marek,
A. Nerode, and M. Truszczyński, editors, Proc. LPNMR-
95, LNCS/LNAI 928, pp. 1–14. Springer, 1995.

[53] T. Eiter, G. Gottlob, and N. Leone. Abduction From Logic
Programs: Semantics and Complexity. Theoretical Com-
puter Science, 1997. to appear.

[54] T. Eiter, G. Gottlob, and H. Mannila. Adding Disjunction
to Datalog. In Proc. 13th ACM Symposium on Principles
of Database Systems (PODS-94), pp. 267–278, May 1994.

[55] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Data-
log. ACM Trans. on Database Syst., September 1997. To
appear.

[56] T. Eiter, G. Gottlob, and H. Veith. Modular Logic Program-
ming and Generalized Quantifiers. In Proc. LPNMR-97,
1997. To appear. Extended paper CD-TR 97/111, Inform-
ation Systems Department, TU Vienna, 1997.

[57] T. Eiter, N. Leone, and D. Saccà. Expressive Power of Par-
tial Models for Disjunctive Deductive Databases. In Proc.
International Workshop on Logic in Databases (LID ’96),
LNCS 1154, pp. 245–264. Springer, 1996. TCS, to appear.

[58] R. Fagin. Generalized First-Order Spectra and Polynomial-
Time Recognizable Sets. In R. M. Karp, editor, Complexity
of Computation, pp. 43–74. AMS, 1974.

[59] M. Falashi, G. Levi, M. Martelli, and C. Palamidessi. De-
clarative modeling of the operational behavior of logic lan-
guages. Theoretical Computer Science, 69(3):289–318,
1989.

[60] M. Fitting. Computability Theory, Semantics, and Logic
Programming. Oxford University Press, 1987.

[61] J. Flum, M. Kubierschky, and B. Ludäscher. Total and
Partial Well-founded Datalog Coincide. In F. Afrati and
P. Kolaitis, editors, Proc. 6th Intl. Conference on Data-
base Theory (ICDT ’97), LNCS 1186, pp. 113–124, Janu-
ary 1997.

[62] J. Gallier and S. Raatz. Extending SLD-resolution methods
for Horn clauses with equality based on E-unification. In
Symposium on Logic Programming, pp. 168–179, 1986.

[63] J. Gallier and S. Raatz. Extending SLD-resolution to equa-
tional Horn clauses using E-unification. J. Logic Program-
ming, 6(3):3–44, 1989.

[64] M. Gelfond and V. Lifschitz. The Stable Model Semantics
for Logic Programming. In Logic Programming: Proc.
Fifth Intl Conference and Symposium, pp. 1070–1080,
Cambridge, Mass., 1988. MIT Press.

[65] G. Gottlob. Complexity Results for Nonmonotonic Logics.
J. Logic and Computation, 2(3):397–425, June 1992.

[66] G. Gottlob, N. Leone, and H. Veith. Second-Order Logic
and the Weak Exponential Hierarchies. In J. Wiedermann
and P. Hajek, editors, Proc. 20th MFCS, LNCS 969, pp.
66–81, Prague, 1995. Full paper available as CD-TR 95/80,
Information Systems Department, TU Wien.

[67] E. Grädel. Capturing Complexity Classes with Fragments
of Second Order Logic. Theoretical Computer Science,
101:35–57, 1992.

[68] C. Green. The Application of Theorem Proving to
Question-Answering Systems. PhD thesis, Computer Sci-
ence Department, Stanford University, June 1969.

[69] D. Grigoryev and N. J. Vorobjov. Solving systems of poly-
nomial inequalities in subexponential time. J. Symbolic
Computation, 5(1,2):37–64, 1988.

[70] Y. Gurevich. Logic and the Challenge of Computer Sci-
ence. In E. Börger, editor, Trends in Theoretical Computer
Science, chapter 1. Computer Science Press, 1988.

[71] Y. Gurevich and S. Shelah. Fixpoint Extensions of First-
Order Logic. Annals of Pure and Applied Logic, 32:265–
280, 1986.

[72] M. Hanus. The integration of functions into logic pro-
gramming: from theory to practice. J. Logic Programming,
19,20:583–628, 1994.

[73] J. Herbrand. Logical Writings. Harvard University Press,
1972.

[74] S. Hölldobler. Foundations of Equational Logic Program-
ming, LNCS/LNAI 353. Springer Verlag, 1989.

[75] D. Ierardi. Quantifier elimination in the theory of an
algebraically-closed field. In Proc. 21st Annual ACM
STOC, pp. 138–147, Seattle, Washington, May 1989.

[76] N. Immerman. Relational Queries Computable in Polyno-
mial Time. Information and Control, 68:86–104, 1986.

[77] N. Immerman. Languages that Capture Complexity
Classes. SIAM J. Comp., 16:760–778, 1987.

[78] N. Immerman. Descriptive Complexity. Springer, 1997. To
appear.

[79] J. Jaffar and M. Maher. Constraint logic programming: a
survey. J. Logic Programming, 19,20:503–581, 1994.

[80] N. Jones and W. Laaser. Complete Problems in Determ-
inistic Polynomial Time. Theoretical Computer Science,
3:105–117, 1977.

[81] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query
languages. J. Computer and System Sciences, 51:26–52,
1995.

[82] D. Kapur and P. Narendran. NP-completeness of the set
unification and matching problems. In J. Siekmann, editor,
Proc. 8th CADE, LNCS 230, pp. 489–495, 1986.

[83] D. Kapur and P. Narendran. Complexity of unification
problems with associative-commutative operators. J. Auto-
mated Reasoning, 9(2):261–288, 1992.

[84] P. Kolaitis. The Expressive Power of Stratified Logic Pro-
grams. Information and Computation, 90:50–66, 1991.

[85] P. Kolaitis and C. H. Papadimitriou. Why Not Negation By
Fixpoint ? J. Computer and System Sciences, 43:125–144,
1991.

[86] A. Kościelski and L. Pacholski. Complexity of Makanin’s
algorithm. JACM, 43(4):670–684, 1996.

[87] R. Kowalski. Predicate Logic as a Programming Lan-
guage. In Information Processing ’74, pp. 569–574. North-
Holland, Amsterdam, 1974.

[88] R. Kowalski and D. Kuehner. Linear resolution with selec-
tion function. Artificial Intelligence, 2:227–260, 1971.

[89] A. Leitsch. The Resolution Calculus. Springer, 1997.
[90] D. Leivant. Descriptive Characterizations of Computa-

tional Complexity. J. Computer and System Sciences,
39:51–83, 1989.

19

[91] H. Lewis and R. Statman. Unifiability is complete for co-
NLOGSPACE. Information Processing Letters, 15:220–
223, 1982.

[92] A. Lisitsa and V. Sazonov. Delta-languages for sets
and sub-PTIME graph transformers. In G. Gottlob and
M. Vardi, editors, Data Base Theory — ICDT’95, LNCS
893, pp. 125–138, Prague, 1995. Springer Verlag.

[93] A. Lisitsa and V. Sazonov. Delta-languages for sets and
LOGSPACE computable graph transformers. Theoretical
Computer Science, 175(1):183–222, 1997.

[94] J. Lloyd. Foundations of Logic Programming (2nd edition).
Springer Verlag, 1987.

[95] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Dis-
junctive Logic Programming. MIT Press, 1992.

[96] G. Makanin. The problem of solvability of equations in
free semigroups. Mat. Sbornik (in Russian), 103(2):147–
236, 1977. English Translation in American Mathematical
Soc. Translations (2), vol. 117, 1981.

[97] W. Marek, A. Nerode, and J. Remmel. How Complicated
is the Set of Stable Models of a Recursive Logic Program?
Annals of Pure and Applied Logic, 56:119–135, 1992.

[98] W. Marek, A. Nerode, and J. Remmel. The Stable Mod-
els of a Predicate Logic Program. J. Logic Programming,
21(3), 1994.

[99] W. Marek and M. Truszczyński. Autoepistemic Logic.
JACM, 38(3):588–619, 1991.

[100] W. Marek, M. Truszczyński, and A. Rajasekar. Complexity
of Extended Disjunctive Logic Programs. Annals of Math-
ematics and Artificial Intelligence, 15(3/4), 1995.

[101] A. Martelli and U. Montanari. Unification in linear time
and space: a structured presentation. Technical Report B
76-16, University of Pisa, 1976.

[102] A. Martelli and U. Montanari. An efficient unification al-
gorithm. ACM Transactions on Programming Languages
and Systems, 4(2):258–282, 1982.

[103] Y. Matiyasevič. The diophantiness of recursively enumer-
able sets (in Russian). Soviet Mathematical Doklady, pp.
279–282, 1970.

[104] J. Minker. On Indefinite Data Bases and the Closed World
Assumption. In D. Loveland, editor, Proc. 6th CADE,
LNCS 138, pp. 292–308, New York, 1982. Springer.

[105] J. Minker. Overview of Disjunctive Logic Programming.
Annals of Mathematics and Artificial Intelligence, 12:1–
24, 1994.

[106] P. Narendran and F. Otto. Some results on equational uni-
fication. In M. Stickel, editor, Proc. 10th CADE, volume
449 of LNAI, pp. 276–291, 1990.

[107] L. Palopoli. Testing Logic Programs for Local Stratifica-
tion. Theoretical Computer Science, 103:205–234, 1992.

[108] C. Papadimitriou and M. Yannakakis. A Note on Succinct
Representations of Graphs. Information and Computation,
71:181–185, 1985.

[109] C. H. Papadimitriou. A Note on the Expressive Power of
Datalog. Bulletin of the EATCS, 26:21–23, 1985.

[110] M. Paterson and M. Wegman. Linear unification. J. Com-
puter and System Sciences, 16:158–167, 1978.

[111] T. Przymusinski. Stable Semantics for Disjunctive Pro-
grams. New Generation Computing, 9:401–424, 1991.

[112] J. Renegar. A faster PSPACE algorithm for deciding the
existential theory of the reals. In Proc. 29th IEEE FOCS,
pp. 291–295, White Plains, New York, Oct. 1988. IEEE.

[113] J. Robinson. A Machine-Oriented Logic Based on the
Resolution-Principle. JACM, 12(1):23–41, 1965.

[114] D. Saccá. The Expressive Powers of Stable Models for
Bound and Unbound DATALOG Queries. J. Computer and
System Sciences. To appear.

[115] D. Saccá. Deterministic and Nondeterministic Stable
Model Semantics for Unbound DATALOG Queries. In
Proc. 5th Intl. Conference on Database Theory (ICDT-95),
LNCS 893, pp. 353–367, January 1995.

[116] C. Sakama and K. Inoue. An Alternative Approach to the
Semantics of Disjunctive Logic Programs and Deductive
Databases. J. Automated Reasoning, 13:145–172, 1994.

[117] V. Sazonov. Hereditarily-finite sets, data bases and
polynomial-time computability. Theoretical Computer Sci-
ence, 119:187–214, 1993.

[118] J. Schlipf. Complexity and Undecidability Results in Lo-
gic Programming. Annals of Mathematics and Artificial
Intelligence, 15(3/4):257–288, 1995.

[119] J. Schlipf. The Expressive Powers of Logic Programming
Semantics. J. Computer and System Sciences, 51(1):64–
86, 1995. Abstract in Proc. PODS 90, pp. 196–204.

[120] E. Shapiro. Alternation and the Computational Complexity
of Logic Programs. J. Logic Programming, 1:19–33, 1984.

[121] S.-A. Tärnlund. Horn clause computability. BIT, 17:215–
216, 1977.

[122] J. D. Ullman. Principles of Database and Knowledge Base
Systems. Computer Science Press, 1989.

[123] M. H. van Emden and R. Kowalski. The Semantics of Pre-
dicate Logic as a Programming Language. JACM, 23:733–
742, 1976.

[124] A. Van Gelder. The Alternating Fixpoint of Logic Pro-
grams With Negation. In Proc. PODS-89, pp. 1–10, 1989.

[125] A. van Gelder, K. Ross, and J. Schlipf. The Well-Founded
Semantics for General Logic Programs. JACM, 38(3):620–
650, 1991.

[126] L. Vandeurzen, M. Gyssens, and D. Van Gucht. Expressive
Power of Relational Constraint Query Languages. In Proc.
2nd Intl. Conference on Principles and Practice of Con-
straint Programming, LNCS 1118, pp. 468–481, 1996.

[127] M. Vardi. Complexity of relational query languages. In
Proc. 14th STOC, pp. 137–146, San Francisco, 1982.

[128] H. Veith. Logical Reducibilities in Finite Model Theory.
Master’s thesis, Information Systems Department, TU Vi-
enna, Austria, September 1994.

[129] H. Veith. Succinct Representation and Leaf Languages.
In 11th IEEE Conf. on Comput. Complexity, pp. 118–126,
Philadelphia, PA, May 1996. Full version in Electronic
Colloquium on Computational Complexity, Report TR95-
048, also CD-TR 95-81.

[130] A. Voronkov. On computability by logic programs. Annals
of Mathematics and Artificial Intelligence, 15(3,4):437–
456, 1995.

[131] H. Yasuura. On parallel computational complexity of uni-
fication. In Proc. Conference on Fifth Generation Com-
puter Systems, pp. 235–243. ICOT, 1984.

20

