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ABSTRACT: Previous work has explored the connections between three concepts — operator
size, complexity, and the bulk radial momentum of an infalling object — in the context
of JT gravity and the SYK model. In this paper we investigate the higher dimensional
generalizations of these connections. We use a toy model to study the growth of an operator
when perturbing the vacuum of a CFT. From circuit analysis we relate the operator growth
to the rate of increase of complexity and check it by complexity-volume duality. We further
give an empirical formula relating complexity and the bulk radial momentum that works
from the time that the perturbation just comes in from the cutoff boundary, to after the
scrambling time.
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1 Introduction

In [1] it was conjectured that as an object falls toward a gravitating mass, the increase
of bulk radial momentum is related to the growth of boundary operators. The relation
was best understood in the case of AdSy gravity and SYK [2, 3]. It was also pointed
out that even in the absence of an explicit gravitating mass, vacuuum AdSs itself has a
gravitational field (due to the vacuum energy) that attracts objects to the center, and that
falling through empty AdS, is also accompanied by operator growth [4].

On the other hand, from the study of the SL(2) symmetry generators in JT gravity [5],
the momentum generator can be directly related to complexity by 27 P = ‘é—g. The known
relation between complexity and operator size then ties the three concepts together —
momentum, size, and complexity [4]. In this paper we will generalize this connection
between operator growth, complexity, and radial momentum to higher dimensions.

In the presence of a black hole, operator growth in the scrambling regime was well
studied [6-10]. It can be analyzed by an epidemic toy model [9]. In this paper, we look at
a different regime — the vacuum AdS regime — and consider the growth of operators size
when perturbing empty CFT.

To define size, the first question one needs to answer is, what are the size-one objects?
In SYK, the size-one objects are fermions.! In the scrambling regime, the size-one objects

!The size needs to be renormalized at finite temperature. See [3].



are thermal scale quanta [6]. In the vacuum regime, we will see that the size-one objects are
energy scale dependent. As the perturbation flows from UV to IR, the basic excitations
carry lower and lower energy and the number of excitations increases. Size counts the
number of these basic excitations. From the bulk point of view, the particle falls into a
deeper and deeper radial location and gets a higher and higher momentum. We study this
process by a toy model of gluon-spitting and see that the operator size grows linearly in
time in this regime, and this parallels the linear growth of momentum.

It is well known that operator growth is also related to the increase of complexity [9, 10]:
size = % where 7 is the circuit time. In the scrambling regime the conversion factor
between the circuit time and the boundary time is %’r In the vacuum regime the conversion
factor between the circuit time and the boundary time is again energy scale dependent.
Taking account of this factor one can show that complexity also grows linearly in time.
From another direction, the change of complexity is related to the change of bulk volume
after the perturbation [8]. We compute the volume change right after perturbing the
vacuum by a spherically symmetric perturbation and see that it indeed implies that the
complexity grows linearly in time.

The relation between operator size and momentum near the Rindler region was pointed
out in [1]. The relation between operator size/complexity and momentum in AdSs throat

was studied in [2-5]. We propose a formula relating the radial momentum to the rate of

A dC

5-9r = 2mP where X is the dimensionless boundary wavelength of

increase of complexity:

the excitation,
A

~ 2ntlpqs’

(1.1)

This formula works in AdSs as well as higher dimensions, from the time that the
perturbation comes in from the cutoff boundary, until after the scrambling time. It is an
empirical formula that is justified by the results. It would be interesting to give a first
principles derivation.

The rest of the paper is organized as follows. In section 2 we review the connections
between operator growth, complexity increase, and particle momentum in AdSs gravity
and SYK. In section 3 we study the operator growth in spacetime dimension D > 3
and introduce a gluon-splitting toy model describing the growth of the operator when we
perturb the vacuum of a CFT. In section 4 we relate the operator growth to complexity
increase and compare our toy model analysis with a CV calculation. In section 5 we make
a connection between the rate of increase of complexity and the bulk radial momentum.
We check it in various examples. We conclude the paper in section 6 and point out some
unanswered questions.

2 Review of operator growth in SYK and infalling particle in AdS,

The growth of a simple operator under time evolution in SYK was studied in [3, 11].
Starting from one fermion 1)1, the average number of fermions making up the operator
Y1 (t) increases as time increases. In [1, 2] it was pointed out the growth of the operator
corresponds to the increase of the particle momentum as it falls in. More precisely, in AdS»



geometry and SYK we have

sp(4(t) = PB. (2.1)

In the above equation, sg(1(t)) represents the average number of fermions in the operator
¥ (t) in a state with temperature % [3]. The operator 1 (t) produces an infalling particle in
the dual bulk geometry. On the right hand side of equation (2.1), P is the radial momentum
of the particle. T = 1 is the local energy scale depending on the radial location of the

sy

particle [2].
From another point of view, one can look for the SL(2) symmetry generators of AdSs
in JT gravity [4, 5]. The momentum generator was found to be

dL
P~NJ— 2.2
I (2.2)

where L is the length of the wormhole and 7 is the energy scale in SYK .
In fact, (2.1) and (2.2) are related. From CV duality [8], one can rewrite (2.2) as
dc
2nP = —. 2.3
TP = (2.3)
From quantum circuit consideration, one can relate the operator size to the complexity of
the perturbed state [9, 10]. Then from (2.3) we can recover (2.1).

dc _dcdr  2n

i T ]

where 7 is the circuit time. § gives the transformation between circuit time and bound-
ary time.

In what follows, we will generalize the above discussions to bulk dimensions D > 3.

3 Operator growth in higher dimensions

In this section we consider toy models of operator growth in higher dimension. In the
presence of a black hole the scrambling regime can be modeled by an epidemic picture [9, 10]
in which the system is modeled by S qubits, and we perturb the system by throwing in 65
extra qubits. The number of qubits affected by these §.5 extra qubits grows exponentially in
time until saturation. In this section, we will study a different regime (perturbed vacuum)
and fit the two regimes together.

3.1 A toy model: gluon splitting picture

The gluon-splitting model we will use is an extrapolation of weakly coupled gauge theory
into the strongly coupled region. For weak coupling, g, < 1, the model could be derived
from perturbation theory. Our assumption, which is not new, is that the concept of a gluon
and its splitting into a cascade of lower energy gluons has a strongly coupled limit.

In order to be concrete we introduce a cutoff into the CFT corresponding to a maximum
value of the radial coordinate r.. We then consider a local gauge invariant operator — for



example a single trace operator — in the cutoff theory and smear it over space (but not
time) so that the tranverse momentum that it injects into the bulk is small. Such an
operator will inject an finite energy E into the bulk corresponding to a pair of oppositely
moving gluons in the boundary theory. The wavelengths of the gluons is equal to the cutoff.
We say that each high energy gluon has size one.

Such an UV perturbation will low to the IR. At step one, it splits into four gluons,
each with energy % At step two we have eight gluons, each with energy %. At step n, we
will have 2 x 2™ gluons, each with energy 271% Fach step takes longer time as we flow to
IR. If step one takes time dt, step two will take time 2dt, and step n takes time 2"§t.

In perturbation theory the rate of gluon splitting is proportional to gzm. One would find

2
f (gyM)‘St ~ M

Te
where f(gym) is an expansion in powers of the coupling. Our model assumes that f(gym)
tends to a constant ~ 1 at large coupling, but that otherwise perturbative reasoning
makes sense.

If the process starts at time t = 0, step n happens at time 2"dt. Notice that this

discrete time step is essentially RG step [12, 13]. We see that the size grows exponentially
in RG steps and linearly in time.

s(n) = 502" (3.1)
t
s(t) = S0, (3.2)

where s is the initial size.

To summarize, our basic hypothesis is that the gluons are the objects of size one, and
that the size of the growing operator is simply the number of gluons in the cascade. As
time advances the number of gluons grows while the energy of each gluon decreases. The
wavelength of the gluons grows accordingly. And of course from UV-IR connection [14],
lower energy in the boundary theory corresponds to deeper radial location in the bulk.

Next we compare the above toy model to AdS bulk geometry. We consider AdSp in
the following coordinates:

ds® = — (72 + 1) dt* + dr® + 72d03 (3.3)
2 2 D-2 :
: = t1

The radial location r corresponds to boundary excitations with dimensionless wave-
length X(r) = 27“1.2 In other words, when the bulk particle is at radial location r, we count
the number of gluons with energy % The size is given by

s(r) = EIX(r).

. . . . . D-2 D-2
2Consider a sphere of radius . The number of degrees of freedom inside such a sphere is ;D—_Q ~ N? -
P

The number of unit cells is given by ?'j—:;“. So each cell has wavelength ~ % The factor of 27 is chosen
here to simplify later expressions.



Say, we create some excitation with energy E at cutoff surface with radius r.. The

initial size is given by sg = % When the particle reaches radius r, its size becomes
12 Te
s(r)=2rE— = s9—. 3.4
(r) = 27 B = s (3.4

Alternatively, at large r, the radial proper distance p from the surface with radius r
to the cutoff surface satisfies 7¢ = e?. We can identify the radial proper distance p with
RG step:

nlog?2 ~ 7

Then (3.4) is the same as (3.1):

14
]

s(p) = soe

We look at the time dependence. Consider a particle falling into AdS. Assume 7 > 1,
the radial geodesic satisfies

22t

2 = % 2 (3.5)

From the relation between radial location and boundary wavelength, (3.5) can also be

(32) - (%2) +5 @0

= % The wave length of size-one object increases linearly

written as

With 7. — oo, we have XQ(;)

in time. Then (3.4) can be written as

s(t) =2nEt. (3.7)

. . . . . o 12
Eq. (3.7) is the same with (3.2) if we identify 6t = 2% = -

3.1.1 The radius of gyration

We look at these size-one objects from another perspective. In [15] Coleman and Smarr
defined the following quantity. Consider non-singular solution of classical gauge field theory.
Let R? = Y23 atat.

R(t)? = / BrR2TO(1) /B

where E = [d@32xT%. R(t) is called the radius of gyration. Assume T is conserved and
traceless, one has

R(t)*=R2+1°. (3.8)

The authors discussed classical field theory. The properties they used are: 1. The stress-
energy tensor falls off fast enough at infinity. 2. The stress energy tensor is conserved:



AdS

Figure 1. A black hole in AdS.

0,T" = 0. 3. Scale invariance: T} = 0. As these properties can be generalized to
quantum theory for the vacuum of CFT, their conclusion holds in the quantum theory if
we consider expectation value of operators. Note that these are also the assumptions we
used in the gluon-splitting toy model.

From its definition, R(t) is the typical wavelength of the excitation. We also see
that (3.8) is exactly the same with (3.5)(3.6) when we identify % = X = L.

If we start from a local excitation from the boundary, Ry ~ 0 and R(t) ~ t. The wave-
length of size-one object increases linearly in time as discussed in the gluon-splitting model.

3.2 Perturbing finite temperature state

So far our discussion was in the vacuum state of a CFT. In this section we look at a finite
temperature state. The dual geometry contains a black hole (figure 1).
dr?

ds® = —f(r)dt* + o) +r2dQ%

where f(r) = %2 — r%"_% + 1.
2_,2
We take D = 3 and look at BTZ black hole where f(r) = - =2 A timelike geodesic

released at time zero from some cutoff radius r = r. satisfies

l2 l2 l2 l2 Th l2 Th
oS -5 ) tanh? (2t ) & St h2<t> 3.9
r2  r2 + (r}% r2> an <l2 ) r? an 2 (3.9)

C

rp, is the horizon radius. If we compare (3.9) with (3.5), we see that unlike the vacuum case,

i i CX Ll B
the energy scale stops decreasing once reaching temperature scale: 5- = - ~ = ol

At energy scales larger than the temperature, the particle sees vacuum and earlier
discussion applies. The size in vacuum is given by

12

s(r) = EIX(r) =2rE—

r

2 h 12
s(t) =2rE—tanh | =t | = 27Et, t< —.
Th 12 Th



As r decreases, X(r) increases and the particle size increases linearly in time. This process

continues until the energy scale equals the temperature, i.e., ><2(77;) = % = 2%1, at which

point the size becomes
=FEf=46S. (3.10)

At this point, the exciation is made of 5 quanta with thermal scale energy. Note that
from (3.10) 45 is nothing but the increase of black hole entropy due to this perturbation.
After this, we enter the scrambling regime and the operator size increases exponentially in
time until saturation [9, 10].

a2y ]2 B
_2 5 (=) 2
5Seﬁ(t Th) 0Se h rh<t< 10g55
s(t) = s T D) ; (3.11)
1+ e’ Th
S t>—log55

In scrambling regime the energy scale no longer changes.

4 Operator growth and complexity increase

4.1 Quantum circuit consideration

In [9, 10] it was argued that the operator size growth is related to complexity increase.
Roughly speaking, in each circuit time step, the increase of complexity equals to the size
of the operator at that instant: % = s(7) where 7 is circuit time.

Note that the circuit time 7 is not the same as boundary time ¢. In vacuum regime

when a particle falls into empty AdS, the circuit time is the RG step. It corresponds to the

radial proper distance p. If we want to know what is %, we need to relate the circuit time
to boundary time: (ciTI = %” where T = % is the local energy scale. In vacuum AdS regime,
~ 12
B =IXr)=2r—
r
d¢  dCdr 27
= - = El)i— =27nE.
@ aa 7 X"
The complexity in the vacuum regime is given by
12
C(t) =Cy + 2mEt, < —. (4.1)
Th

In near-Rindler regime, % = 26” and the complexity is given in [9, 10].

P 12
C(t) = Cy + 65 + Slog <1 + feﬂ“w)>

2m (- ﬁ) 12 B S
B T _ I
6Se h - <t < log 59

_ﬁ 5) ﬁ S
S(t log 53 t> lg(;S

In section 5 we will compare the rate of increase of complex1ty in (4.1) (4.2) with the

(4.2)
~Co+ 905+

bulk radial momentum of an infalling object.



4.2 Complexity from holography

Following complexity-volume duality [8], we can also estimate the change of complexity
from the change of volume after a perturbation comes in [16]. The match of volume increase
of the wormhole and complexity increase in epidemic model during and after scrambling
regime was well checked [8-10, 17-19]. In this paper, we look at the increase of volume in
the vacuum regime. We will use the relation
Vol

4G Nl
where D is bulk spacetime dimension. The dimensional dependent factor D — 2 is chosen

C=(D-2)

(4.3)

such that at late time, the complexity of a large black hole increases as C ~ 2w Mt where
M is the mass of the black hole.

4.2.1 Spherically symmetric perturbation

We consider the following geometry. Before the particle comes in, we have vacuum AdS
with metric
ds® = —f(r)dt* + ar + r2dQ3
f(r) b
where f(r) = ’i—j + 1. After the particle comes, the metric has the same form with

~ r2 2m

f(r):l*ngl—m

where
87TGNE
(D —2)Vol(2p_s)

The two geometries are pasted along the red line in figure 2. We consider the slice at

m =

constant t (blue line in figure 2). We put a cutoff at r = r. large. The volume of this slice

at vacuum is given by

T _dr  poo
Volvacuum = VOI(QD_Q)/ r
o Vf(r)
Shortly after the perturbation falls in, we consider the volume of the same slice:

p(t) dr R dr D—2

VOlperturbed (t) = VO](QD_Q)

rP=2 L Vol(Qp_o) /

0 V f(?") p () fN(T)
where 7, (t) is the location of the object.
For D > 3, we have
FD—2 FD—2
Bl
rD=2 2m

D-3
1l 3m §§+1<\/;“§+1—737"}3+\/§§+1>’"
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Figure 2. AdS black hole formed by a collapsing shell.

We have
D—2 ’m
AC(t) = ——Vol(Qp_
Ct) = Jgyr Vol 2>rp(t)
B 21 El?
rp(t)
From (3.5), é ~ %, we have
AC(t) =2nEt.

This is the same as (4.1) from circuit consideration.

5 Complexity increase and the growth of momentum

In AdS,, the radial momentum of a particle is related to the rate of increase of the com-
plexity [4, 5]: 2nP = %. We will generalize this relation to higher dimensions. We propose
the following relation:

X dC

2 _oxP 5.1

2 dt i (5:.1)
where X is the dimensionless boundary wavelength of the excitation. Note that % = %

at near Rindler region in D > 3.
The left side of (5.1) is boundary quantity while the right side is bulk quantity. One
can define X as the radius of gyration in [15]:
27R
=
The growth of X reflects that the perturbation is lowing from UV towards IR. From UV-IR

connection, X is reflected in the radial location of the particle in the bulk.
In AdSy throat, % ~ 1 and (5.1) reduces to (2.3). Let’s look at other examples.

X



Figure 3. Maximal volume slices after scrambling time.

5.1 Vacuum AdS

Consider vacuum AdS in coordinates (3.3). We consider the regime where r > [ so we can
ignore 1 in ’;—22 + 1. For a massless particle with energy FE falling in such a geometry, its
radial momentum is given by

Py B _ Bl

flrp(t))  Te(0)

On the other hand, earlier we've seen that the complexity grow as C(t) = Cy + 2nEt,

% =1 and ﬁ = !. Combining these one can check that (5.1) holds.

5.2 Large black hole in AdS

The above discussion of size increase in vacuum AdS can be fit together with scrambling
regime at finite temperature. Consider a BTZ black hole. From section 3.2,

l l TR
— = — = —tanh (Ft> . (5.2)

27 T Th

The momentum of an infalling massless particle is given by

27}(E) = 27T£l sinh (Z;t) t < QE log %
r T
9P = " " . (5.3)
S g

The saturation of momentum after scrambling time was discussed in [5]. Roughly speaking,
after scrambling time the backreaction becomes significant. Further time evolution will
make the wormhole longer and does nothing to the particle deep in the interior. In figure 3,
we draw the maximal volume slice at two different times after scrambling time. We see
that, as time increases, we simply add a piece to the outer edge of the wormhole. The
intersection of the maximal volume slice with the infalling particle no longer changes.

~10 -



If we plug (5.2), (5.3) into (5.1), we get

2
2TEL o (@t) t<t,
AC(t)={ Th l

St t > 1,
l2

2rEt  t< —
Th

2
- He U B roe 2 5.4

dSel rh<t<27r10g55 (5.4)
B S

St t> 5 log 35

Eq. (5.4) is exactly what one expected about complexity from earlier discussions
in (4.1), (4.2).

6 Conclusions

In this paper we studied the connections between operator size growth, complexity increase,
and bulk radial momentum in spacetime dimension D > 3. We used a gluon-splitting model
to study the operator growth and complexity increase in vacuum regime, and matched our
result with CV calculation. We found a formula relating complexity increase to radial
momentum that works in any spacetime dimension, from the time that the perturbation
just comes in from the cutoff boundary, to after the scrambling time.

In the case of JT gravity and SYK, one can derive the relation between complexity
and momentum from considerations of symmetry generators [5], or one can consider the
Schwarzian boundary as a non-relativistic system and apply Newton’s law [4]. On the other
hand, so far our formula relating the complexity to radial momentum (5.1) is empirical.
It would be nice give a first principle derivation of it or have something analogous to the
non-relativistic system in the case of JT/SYK.
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