
Complexity and Universality of Iterated

Finite Automata

Jiang Zhang

Complex Systems Research Center
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
No. 55 Zhong Guan Cun Dong Lu
Beijing, 100080, China
Zhangjiang@amss.ac.cn

The iterated finite automaton (IFA) was invented by Stephen Wolfram
for studying the conventional finite state automaton (FSA) by means of
A New Kind of Science methodology. An IFA is a composition of an
FSA and a tape with limited cells. The complexity of behaviors gener-
ated by various FSAs operating on different tapes can be visualized by
two-dimensional patterns. Through enumerating all possible two-state
and three-color IFAs, this paper shows that there are a variety of
complex behaviors in these simple computational systems. These
patterns can be divided into eight classes such as regular patterns, noisy
structures, complex behaviors, and so forth. Also they show the
similarity between IFAs and elementary cellular automata. Further-
more, any cellular automaton can be emulated by an IFA and vice
versa. That means IFAs support universal computation.

1. Introduction

The finite state automaton (FSA) or finite state machine is a very
important model that has been widely used in computer science and
industry [1, 2]. The automaton can perform very complex computa-
tional tasks with only finite internal states and fixed transition rules.
Usually, there are two kinds of FSAs. Finite state acceptors
(recognizers) only accept information and jump between different
states but do not generate any output information. These machines
are widely used as language recognizers [3]. Another class is called
finite state transducers, which are able to generate output information
as well as accept input information. They can be designed as control-
lers [2].

Complexity science arose sometime in the 1980s [4, 5] and stresses
a different philosophy and methodology in the approach to complex
system problems [4]. Stephen Wolfram’s A New Kind of Science
(NKS) is a representative of complex systems studies [6]. NKS mainly
focuses on the complexity generated by different, very simple computa-
tional systems. Therefore, building the simplest systems, implement-

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

ing their computations, observing their behaviors, and drawing conclu-
sions are main steps in the NKS approach. All kinds of computational
systems, including Turing machines, substitution systems, and so on,
were studied by this method in [6].

What kind of complex behaviors can the FSA perform? Can we use
the methodology of NKS to study this specific system? Wolfram
invented the iterated finite automaton (IFA) [7] to answer these ques-
tions. By adding a tape with finite size and some other constraints to
the FSA, we can study the behavior just like one-dimensional cellular
automata (CAs). Wolfram has enumerated all possible patterns of
two-state two-color and three-state two-color IFAs. This paper
mainly studies the complex behaviors of two-state three-color IFAs.
We divide the patterns into eight groups roughly including regular pat-
terns, noisy structures, complex behaviors, and so forth. Furthermore,
two-state three-color IFAs show the similarity between IFAs and one-
dimensional CAs. This similarity encouraged the author to study emu-
lation relationships between IFAs and one-dimensional CAs. The
result makes us conclude that IFAs as a whole family support univer-
sal computation.

Section 2 introduces the working mechanism of IFA systems. Sec-
tion 3 investigates the complexity and classification of IFAs according
to their generated patterns. Section 4 discusses the emulation
approach of an IFA to a CA and a CA to an IFA. Then, the conclu-
sions are drawn in Section 5.

2. Iterated Finite Automata

To illustrate what IFAs are and how they work, we first give some for-
mal definitions.

Definition 1. A finite state transducer is a tuple, YI, S, O, f , s0], where I

is a finite set of input symbols, S is a finite set of states, O is a finite
set of output symbols, and f : Sµ I Ø SµO is a function. f can be

represented by a set of transition rules. Each rule has the form
r : Hs, iL Ø Hs£, oL, where s, s£ œ S, i œ I, and o œ O. The initial state is
s0 œ S [1].

Another representation of a finite state transducer is a graph in
which vertices are states in S and directed edges are transitions
between states, that is, are rules in f . There are two symbols on each

edge denoting input and output information.

Example 1. Consider a specific finite state transducer,
G YI, S, O, f , s0], where I O 80, 1<, S 81, 2, 3<, and s0 1.

The function f is a set of transition rules. This finite state transducer

can also be represented by a graph as shown in Figure 1.

146 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

0ê11ê0

0ê0

1ê1

0ê0

1ê0

1

23

Figure 1. A finite state transducer.

In Figure 1, the edge from 1 to 2 represents the transition rule: if
the machine is in state 1 and accepts an input 0, then its state will
turn into 2 and generate an output 1.

Definition 2. An IFA is a pair: W XG, a\. G is a finite state transducer
with the same input and output set, that is, G YI, S, I, f , s0]. Usu-

ally, we set I 80, 1, …, c - 1< (the number of input and output
symbols [colors] is c), and the finite set S 81, 2, …, s< (the number
of states is s). This specific finite state transducer is also called a
machine or a machine head. a In is a tape with n cells, each mem-
ber in a is Xa1, a2, …, an\ indicating cells with different colors; that is,

the ith cell’s color is ai œ I. So any member of a is a configuration of

the tape.

Now we will discuss how a finite state transducer G operates on

the tape a. Assume that the initial configuration of a is

Ya
1

0, a
2

0, …, an
0]. The machine G with the initial state s0 starts to read

information from the tape. The color of the first cell on the tape is a
1

0.

According to the input a
1

0 and state s0, the machine will look up the

rules table and give out a pair of symbols representing the output and
the next state Xs£, y\, respectively. So, the color of the first cell will be

updated as a
1

1 y, and the machine G will move to the second cell.

Definition 3. The process of the finite state transducer G operating on a
cell of the tape including reading the input information from the cell,
updating the cell’s color, and moving to the next cell is called a step
of the IFA.

The machine G will repeat this process step by step until it reaches
the last cell of the tape. Then the IFA has finished a turn.

Definition 4. For IFA W XG, a\, n (the number of cells in a) updating
steps of G on the tape a from the first cell to the last cell one by one is
called a turn of this IFA.

Complexity and Universality of Iterated Finite Automata 147

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

After one turn, the configuration of the tape becomes

Ya
1

1, a
2

1, …, an
1]. Then the finite state transducer will return to its ini-

tial state s0, move to the first cell again, and repeat the whole process

to start the second turn. At last, we obtain a sequence of configura-
tions of the tape with different turns; this sequence can build up a
two-dimensional pattern of the IFA.

Definition 5. A pattern of an IFA is a sequence of tape configurations:
XC1, C2, …, CT\, where Ci œ In.

For example, consider the finite state transducer in Example 1 is
working on a tape with five cells, then three turns are as shown in Fig-
ure 2.

In Figure 2, a two-dimensional pattern can be obtained once we
integrate the pictures in the last step row by row together to show the
behavior of this IFA.

step=0 step=1 step=2 step=3 step=4 step=5

T=1

step=0 step=1 step=2 step=3 step=4 step=5

T=2

step=0 step=1 step=2 step=3 step=4 step=5

T=3

Figure 2. Three turns of the example IFA. The red arrow represents the
machine head. Different head directions stand for different states.

Obviously, the pattern of an IFA is determined by the machine and
the tape. In this paper, we only investigate the initial configuration

with all blank cells, that is, a
1

0
 a

2

0
 an

0
 0. Another conven-

tion is to treat all machines with the same number of states s and the
same number of input/output symbols c as a class of IFAs which is
denoted as a pair Hs, cL. There are Hsµ cLsµc possible rules in the class
Hs, cL IFAs. Different rules in the same class determine the patterns of
the IFA. Thus, we can assign a coding number for each IFA in the
class Hs, cL. The concrete method for coding IFAs is shown in Appen-
dix A.

3. Complexity of Iterated Finite Automata

3.1 The Complexity of (2,2) and (3,2) Iterated Finite Automata

Wolfram had studied the complexity of (2,2) and (3,2) IFAs in [7].
Most (2,2) IFAs exhibit trivial structures such as blank tapes and
cyclic patterns, except for some nested structures. But for (3,2) IFAs,
more nested structures were found, and some random structures were

148 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

more nested structures were found, and some random structures were
discovered. Some selected (2,2) and (3,2) IFA patterns are shown in
Figure 3.

Figure 3. Typical patterns in (2,2) and (3,2) IFAs. The number below the
pattern is its rule number.

3.2 The Complexity of (2,3) Iterated Finite Automata

The author investigated the complex behaviors of (2,3) IFAs by system-

atic searching. There is a total of 66 46 656 possible (2,3) IFA rules.
After filtering out a large number of trivial patterns that are cyclic
structures and homogenous colors, there are still 1580 IFAs. Then the
author divided them into eight classes, roughly according to their
behaviors (see Figure 4).

1. Regular patterns (Reg). The patterns in this class exhibit some regular-
ity such as big triangles and stripes. Although most of them are trivial,
there are a few exceptional regular patterns which have some nested
structures, such as 3651 and 31741 in Figure 2.

2. Noisy structures (Noisy). The patterns in this class are very random and
full of noise from the first appearance. But some regular and symmetric
local structures can also be found.

3. Nested triangles (Nested Tri). Nested triangles are very common in
worlds of simple programs, thus it is not astonishing that nested
triangles are very easily found in IFAs.

4. Random triangles (Ran Tri). This kind of structure also contains
numerous triangles, but the global patterns composed by these local
triangles are not obviously nested and exhibit randomness in some
sense.

5. Nested structures (Nested S). There are many nested structures that are
not triangles that are put in this class. Some basic structures as building
blocks are contained by themselves.

6. Thin guys (Thin G). Some structures have random and complex
interesting behaviors only in a very thin area on the left part of the
pattern.

Complexity and Universality of Iterated Finite Automata 149

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

31716

HRegL

30126

HRegL

3651

HRegL

31741

HRegL

9012

HNoisyL

26886

HNoisyL

30655

HNested TriL

7312

HNested TriL

960

HNested TriL

34659

HNested TriL

34870

HRan TriL

12813

HRan TriL

26337

HNested SL

30213

HNested SL

35613

HNested SL

7410

HThin GL

19793

HThin GL

3630

HIrregL

9030

HIrregL

12291

HIrregL

Figure 4. Complex behaviors in (2,3) IFAs with different classes.

7. Irregular patterns (Irreg). A large number of IFAs are very difficult to
be classified as one of the groups listed. There may be some regular
local patterns, but the global structures are irregular. Whereas, com-
pared to the noisy structures they are not so random. So we classify
these IFAs as an alternative group.

8. Complex structures. Although it is very difficult to distinguish the
complex structures that fall into this group from irregular patterns,
some IFAs are selected as a new class because their behaviors are so
complex that the sophisticated computation may be supported by the
communication between different local areas. As examples, two of
them are selected and shown in Figure 5.

150 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

Figure 5. Complex patterns may support sophisticated computations.

The complexity of patterns in class 8 leads us to guess that IFAs
may support universal computation. This hypothesis will be further
confirmed by the facts mentioned in the next subsection.

3.3 Similarity between Iterated Finite Automata and Cellular
Automata

From the patterns investigated earlier, it is not difficult to see that
there is much similarity between IFAs and CAs.

For example, the pattern of IFA 3507 is similar to the elementary
CA (one-dimensional CA with two colors and two neighbors, ECA)
30. The similarity can only be shown by flipping the pattern of
ECA 30 left to right and shearing the white cells in the left of the big
triangle (see Figure 6). Another example is IFA 26337. The nested
structure shows similarities compared to ECA 225. The pattern of
ECA 225 should also be flipped and sheared (see Figure 6).

These similarities encourage us to propose that IFAs may emulate
ECAs.

Complexity and Universality of Iterated Finite Automata 151

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

IFA 3507

CA 30 Transformed CA 30

IFA 26337 CA 225 Transformed CA 225

Figure 6. Similarity between IFAs and ECAs.

4. Universality of Iterated Finite Automata

4.1 Iterated Finite Automata that Emulate Elementary Cellular
Automata

The complexity of IFA behaviors and the similarity between IFAs and
ECAs make us propose that any behavior of an ECA can be emulated
by an IFA. This subsection presents a method for constructing a con-
crete IFA that emulates the given ECA using a well-known procedure.

It is very natural to point out that the tape of cells in an IFA can be
regarded as the cells in the one-dimensional CA. But the major differ-
ence between IFAs and CAs from their working mechanism is the for-
mer updates the cells on the tape step by step; however the latter
updates all of the cells simultaneously. This difference recurs as the
construction method of a specific Turing machine to emulate a given
ECA in [6]. Actually, the parallel systems can be emulated by a serial
system once enough states are provided. Hence, we can construct an
IFA to emulate the given ECA.

For any ECA (two-color, two-neighbor), we can construct a spe-
cific four-state two-color IFA to emulate that ECA. At the beginning,
the IFA tape is configured to duplicate the configurations of cells in
the ECA. The finite state machine will scan the cells on the tape one
by one. There are four possible combinations of two adjacent cells.
Therefore, four states can memorize these combinations. It is not diffi-
cult to construct a rule table for the FSA that performs the same com-
putation as the ECA. Then the IFA produces the same outcome on the
third cell as the second cell of the ECA.

To articulate the process just mentioned, we construct a concrete
IFA that emulates ECA 110 (see Figure 7).

152 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

Figure 7. IFA 6542901 in (4,2) class that can emulate ECA 110. For compari-
son, the rule icon of ECA 110 is shown.

Suppose that the initial tape is 0100…, then ECA 110 will give the
output: #10…. (The first cell is undetermined in this case.) The four-
state two-color IFA 6542901 can emulate this ECA. At the beginning,
the internal state of this finite state machine is 1. It will accept the
input 0 from the tape and keep that state according to its rule. Then it
moves to the second cell where a black cell is encountered. Then it
will transit to the state 2 and give an output which should be
neglected. Actually, the input information 01 has been stored by the
state 2. Next, another 0 is fed on the IFA. It will transit to 3 and give
an output 1. At this time, the IFA output on the third cell is exactly
the same as the ECA. After that, when given the input 0, the IFA will
transit to 1 again and generate an output 0. This output is the same as
the output on the third cell of ECA 110. Thereafter, they can perform
exactly the same as the preceding cells.

Another issue is the boundary condition. Because ECAs have cyclic
boundary conditions, nevertheless, IFAs can only move on the tape in
one direction. This can be solved by enlarging the size of the IFA. The
number of cells in an IFA is determined by the number of steps we
want to emulate times two, plus the number of cells in the ECA for
cases when the number of steps is divided by the number of cells. (For
more complicated cases, please refer to Appendix C.) For example,
the specific IFA that was just constructed can emulate ECA 110 for
100 steps by duplicating the initial (100) cells of ECA 110 three times
(300 2µ100 + 100) (see Figure 8).

Mathematica code for constructing IFA rules and initial conditions
to emulate the ECA are listed in Appendices B and C.

Because ECAs are known to be universal, the IFA as a class, which
can emulate any ECA, support universal computation.

Complexity and Universality of Iterated Finite Automata 153

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

Figure 8. Comparison of patterns between ECA 110 and IFA 6542901 for
100 steps. The middle area without the gray mask shows the same behavior
as ECA 110. Notice that to solve the issue of boundary conditions, the
number of cells in the IFA is three times the number of cells in the ECA.

4.2 Cellular Automata that Emulate Iterated Finite Automata

CAs are known to be universal computational systems, therefore, they
can emulate any other computational system including IFAs. The
explicit approach for a CA that emulates an IFA is constructed here.
The basic idea is to use additional colors that correspond to the multi-
ple states of the IFA. The n (the number of cells) steps of the CA is
equivalent to a turn of an IFA. As an example, (2,3) IFA 3615 emu-
lated by a constructed CA is shown in Figure 9.

The code for transformations of rules and initial conditions are
shown in Appendices D and E.

2ê0

1ê2

0ê1

2ê1

0ê0

1ê2
12

IFA 3615 The specific CA that emulates CA 3615; black stands for any color.

IFA 3615 CA step:1~20 CA step:21~40 CA step:41~60 CA step:61~80 CA step:81~100

Figure 9. A CA emulating (2,3) IFA 3615. One step of the IFA is emulated by
10 steps of the IFA.

5. Conclusions

Any iterated finite automaton (IFA) is a composition of a conven-
tional finite state transducer and a tape. This extended definition of
the finite state automaton (FSA) not only facilitates our investigation
by means of Wolfram’s A New Kind of Science methodology but also
shows great complexity and universality.

154 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

This paper mainly discusses the complexity of a specific class of
IFA which has only two states and three possible cell colors. After enu-
merating all possible (2,3) IFAs, we show the spectrum of complex pat-
terns generated by them. These patterns can be divided roughly into
eight classes including regular patterns, noisy structures, nested trian-
gles, and so forth. Among those classes, an important class (complex)
is selected to show their ability of propagating information between
local areas and the potential capability of supporting sophisticated
computations. Furthermore, the similarity between simple IFAs and
elementary cellular automata (ECAs) is pointed out.

Any ECA can be emulated by a (4,2) IFA. That means IFAs sup-
port universal computation. This conclusion not only adds a new mem-
ber to the universal computational system family but also confirms
the computational equivalent principle again which states that any
nontrivial computational process may support universal computation.

IFAs, as another instance of a computational universe, have lots of
unknown properties which should be further studied. For example,
can we construct a much simpler IFA to emulate an ECA? Actually,
some IFAs in the (2,3) class have shown their abilities to perform
sophisticated and similar computation as ECAs. Is there a (2,3) IFA
which emulates ECA 110? This plausible conclusion is worthy of fur-
ther study.

Acknowledgments

Thanks to Stephen Wolfram, Todd Rowland, Eric Rowland, and
Jason Cawley for discussions during the NKS 2007 summer school.
This paper is based on my research there. Thanks for the support of
Guozhi Xu Post Doctoral Research Foundation and National Natural
Science Foundation of China (No. 60574068).

Appendix

This Appendix contains Mathematica code and examples for demon-
strating topics discussed in the text.

A. Constructing an IFA Rule Table from its Code Number

ToFARule will output the list of IFA rules using as input the code num-
ber of the rule and the number of states and colors.

In[1]:= ToFARule@n_Integer,8s_Integer,k_Integer<D:=

H*n:rule number,s:number of states,k:number of colors*L

Flatten@MapIndexed@81,-1<Ò2+80,k<Ø

Mod@Quotient@Ò1,8k,1<D,8s,k<D+81,0<&,

Partition@IntegerDigits@n,sk,s kD,kD,82<DD

Complexity and Universality of Iterated Finite Automata 155

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

Example:

In[2]:= ToFARule@26853, 82, 3<D

Out[2]= 881, 2< Ø 82, 0<, 81, 1< Ø 81, 2<, 81, 0< Ø 82, 1<,

82, 2< Ø 81, 1<, 82, 1< Ø 82, 2<, 82, 0< Ø 82, 0<<

B. Transforming Rules from ECA to IFA

RuleTransform will output the rules of the IFA when given the ECA
rule code number.

In[3]:= RuleTransformer@ECARule_IntegerD:=Module@8rule,i,rTab<,

rule=Reverse@IntegerDigits@ECARule,2,8DD;

Table@rTab=IntegerDigits@i,2,3D;8FromDigits@Take@rTab,2D,2D

Last@rTabD<Ø8FromDigits@Take@rTab,-2D,2D+1,

rule@@i+1DD<,8i,7,0,-1<DD

In[4]:= RuleTransformer@110D H*Transform ECA 110 to IFA*L

Out[4]= 884, 1< Ø 84, 0<, 84, 0< Ø 83, 1<,

83, 1< Ø 82, 1<, 83, 0< Ø 81, 0<, 82, 1< Ø 84, 1<,

82, 0< Ø 83, 1<, 81, 1< Ø 82, 1<, 81, 0< Ø 81, 0<<

C. Transforming Initial Conditions from ECA to IFA

ICTransformer will give the correct IFA initial conditions when given
as input the initial condition list of an ECA and the number of steps
to be emulated.

In[5]:= ICTransformer@CAIC_List,steps_IntegerD:=

H*CAIC:cells configuration of the ECA,

steps:number of steps to be emulated*L

Module@8sz,tab,tab1,tab2<,

sz=Length@CAICD;

tab=If@IntegerPart@stepsêszD>0,

Nest@Join@Ò,CAICD&,CAIC,IntegerPart@stepsêszD-1D,8<

tab1=Join@Take@CAIC,-Mod@steps,szDD,tabD;

tab2=Join@tab,Take@CAIC,Mod@steps,szDDD;

Join@80<,tab1,CAIC,tab2DD

Example: The initial condition of an ECA is a random list with 10
80, 1<, and the step to be emulated is 10.

In[6]:= ICTransformer@Table@RandomInteger@80, 1<D, 810<D, 10D

Out[6]= 80, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,

1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1<

156 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

D. Transforming Rules from IFA to One-Dimensional CA

CARuleTransformer will output the correct rules for a one-dimen-
sional CA that emulates an IFA when given the IFA’s code number
and the number of states and colors.

In[7]:= CARuleTransformer@n_Integer,s_Integer,k_IntegerD:=

Module@8IFARule,rule1,rule2,k1,rule3,rule4<,

IFARule=ToFARule@n,8s,k<Dê.RuleØList;

rule1=

Flatten@Table@88IFARule@@i,1,1DD k+IFARule@@i,1,2DD

x_ê;x<k,__<Ø

IFARule@@i,2,1DD k+x,8__,

IFARule@@i,1,1DD k+IFARule@@i,1,2DD,__<Ø

IFARule@@i,2,2DD<,8i,1,Length@IFARuleD<DD;

rule2=

Join@rule1,

FilterRules@8ÒØÒ@@2DD<&êüTuples@Range@0,Hs+1L k-1D

Except@rule1DDD;

k1=Hs+1L k;

rule3=

ReplacePart@Ò,80<Ø

RuleD&êüH8Append@Ò,k1D,Append@Ò,0Dê.rule2<&êü

Tuples@Range@0,Hs+1L k-1D,2DL;

rule4=

ReplacePart@Ò,80<Ø

RuleD&êüH8Prepend@Ò,k1D,Prepend@Ò,0Dê.rule2<&êü

Tuples@Range@0,Hs+1L k-1D,2DL;

Join@88x_ê;x<k,k1,__<Øk1,8x_ê;x¥k,k1,__<Ø

k1+1,8k1+1,x_,__<Øk+x,8__,k1+1,__<Ø

k1,8__,x_,k1+1<Øx<,rule2,rule3,rule4DD

Example: Transform the (2,3) IFA 3615 into CA rules.

In[8]:= CARuleTransformer@3615, 2, 3D êê Short

Out[8]//Short=

88x$_ ê; x$ < 3, 9, __< Ø 9, 8x$_ ê; x$ ¥ 3, 9, __< Ø 10,

810, x$_, __< Ø 3 + x$, 8__, 10, __< Ø 9, á784à,

89, 8, 5< Ø 8, 89, 8, 6< Ø 8, 89, 8, 7< Ø 8, 89, 8, 8< Ø 8<

E. Transforming Initial Conditions from IFA to CA

CAInitialTransformer will generate the initial conditions of the one-
dimensional CA that can emulate the given IFA when given as input
the initial conditions and the number of states and colors of an IFA.

In[9]:= CAInitialTransformer@ini_,s_,k_D:=Join@ini,8Hs+1L k+1<D

In[10]:= CAInitialTransformer@Table@0, 810<D, 2, 3D

Out[10]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10<

Complexity and Universality of Iterated Finite Automata 157

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

References

[1] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of
Computation, 2nd ed., New York: Prentice-Hall, 1998.

[2] A. Gill, Introduction to the Theory of Finite-State Machines, New York:
McGraw-Hill, 1962.

[3] J. Carroll and D. Long, Theory of Finite Automata with an Introduction
to Formal Languages, New York: Prentice-Hall, 1989.

[4] M. Waldrop, Complexity: The Emerging Science at the Edge of Order
and Chaos, New York: Simon & Schuster, 1992.

[5] J. H. Holland, Hidden Order: How Adaptation Builds Complexity,
Menlo Park, CA: Addison-Wesley Publishing Company, 1995.

[6] S. Wolfram, A New Kind Of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[7] S. Wolfram. “Iterated Finite Automata.” (November 17, 2003)
www.stephenwolfram.com/publications/informalessays/iteratedfinite.

158 Jiang Zhang

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.145

