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The iterated finite  automaton (IFA) was invented by Stephen Wolfram
for studying the conventional finite state automaton (FSA) by means of
A  New  Kind  of  Science  methodology.  An  IFA  is  a  composition  of  an
FSA and  a  tape  with  limited  cells.  The complexity  of  behaviors  gener-
ated by various  FSAs operating on different tapes can be visualized by
two-dimensional  patterns.  Through  enumerating  all  possible  two-state
and  three-color  IFAs,  this  paper  shows  that  there  are  a  variety  of
complex  behaviors  in  these  simple  computational  systems.  These
patterns can be divided into eight classes such as regular patterns, noisy
structures,  complex  behaviors,  and  so  forth.  Also  they  show  the
similarity  between  IFAs  and  elementary  cellular  automata.  Further-
more,  any  cellular  automaton  can  be  emulated  by  an  IFA  and  vice
versa. That means IFAs support universal computation. 

1. Introduction

The  finite  state  automaton  (FSA)  or  finite  state  machine  is  a  very
important  model  that  has  been  widely  used  in  computer  science  and
industry  [1,  2].  The  automaton  can  perform very  complex  computa-
tional  tasks  with only finite  internal  states  and fixed transition rules.
Usually,  there  are  two  kinds  of  FSAs.  Finite  state  acceptors
(recognizers)  only  accept  information  and  jump  between  different
states  but  do  not  generate  any  output  information.  These  machines
are  widely  used  as  language  recognizers  [3].  Another  class  is  called
finite state transducers, which are able to generate output information
as well as accept input information. They can be designed as control-
lers [2]. 

Complexity science arose sometime in the 1980s [4, 5] and stresses
a  different  philosophy  and  methodology  in  the  approach to  complex
system  problems  [4].  Stephen  Wolfram’s  A  New  Kind  of  Science
(NKS) is a representative of complex systems studies [6]. NKS mainly
focuses on the complexity generated by different, very simple computa- 
tional  systems.  Therefore,  building  the  simplest  systems,  implement-
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ing their computations, observing their behaviors, and drawing conclu-
sions are main steps in the NKS approach. All kinds of computational
systems,  including  Turing  machines,  substitution  systems,  and so  on,
were studied by this method in [6]. 

What kind of complex behaviors can the FSA perform? Can we use
the  methodology  of  NKS  to  study  this  specific  system?  Wolfram
invented the iterated finite automaton (IFA) [7] to answer these ques-
tions. By adding a tape with finite size and some other constraints to
the FSA, we can study the behavior just like one-dimensional cellular
automata  (CAs).  Wolfram  has  enumerated  all  possible  patterns  of
two-state  two-color  and  three-state  two-color  IFAs.  This  paper
mainly  studies  the  complex  behaviors  of  two-state  three-color  IFAs.
We divide the patterns into eight groups roughly including regular pat-
terns, noisy structures, complex behaviors, and so forth. Furthermore,
two-state three-color IFAs show the similarity between IFAs and one-
dimensional CAs. This similarity encouraged the author to study emu-
lation  relationships  between  IFAs  and  one-dimensional  CAs.  The
result makes us conclude that IFAs as a whole family support univer-
sal computation. 

Section  2  introduces  the  working  mechanism of  IFA  systems.  Sec-
tion 3 investigates the complexity and classification of IFAs according
to  their  generated  patterns.  Section  4  discusses  the  emulation
approach of an IFA to a CA and a CA to an IFA. Then,  the conclu-
sions are drawn in Section 5.

2. Iterated Finite Automata

To illustrate what IFAs are and how they work, we first give some for-
mal definitions. 

Definition 1. A finite state transducer is a tuple, YI, S, O, f , s0], where I

is a finite set of input symbols, S  is a finite set of states, O  is a finite
set  of  output  symbols,  and  f : Sµ I Ø SµO  is  a  function.  f  can  be

represented  by  a  set  of  transition  rules.  Each  rule  has  the  form
r : Hs, iL Ø Hs£, oL,  where  s, s£ œ S,  i œ I,  and  o œ O.  The  initial  state  is
s0 œ S [1]. 

Another  representation  of  a  finite  state  transducer  is  a  graph  in
which  vertices  are  states  in  S  and  directed  edges  are  transitions
between states, that is, are rules in f .  There are two symbols on each

edge denoting input and output information. 

Example 1.  Consider  a  specific  finite  state  transducer,
G  YI, S, O, f , s0],  where  I  O  80, 1<,  S  81, 2, 3<,  and  s0  1.

The function f  is  a set of transition rules. This finite state transducer

can also be represented by a graph as shown in Figure 1.
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Figure 1. A finite state transducer.

In  Figure  1,  the  edge  from 1 to  2  represents  the  transition  rule:  if
the  machine  is  in  state  1  and  accepts  an  input  0,  then  its  state  will
turn into 2 and generate an output 1. 

Definition 2.  An IFA is  a pair: W  XG, a\.  G  is  a finite state transducer
with  the  same  input  and  output  set,  that  is,  G  YI, S, I, f , s0].  Usu-

ally,  we  set  I  80, 1, …, c - 1<  (the  number  of  input  and  output
symbols  [colors]  is  c),  and  the  finite  set  S  81, 2, …, s<  (the  number
of  states  is  s).  This  specific  finite  state  transducer  is  also  called  a
machine  or a machine head.  a  In  is  a tape with n  cells,  each mem-
ber in a is Xa1, a2, …, an\ indicating cells with different colors; that is,

the ith  cell’s color is ai œ I.  So any member of a  is  a configuration of

the tape. 

Now  we  will  discuss  how  a  finite  state  transducer  G  operates  on

the  tape  a.  Assume  that  the  initial  configuration  of  a  is

Ya
1

0, a
2

0, …, an
0].  The  machine  G  with  the  initial  state  s0  starts  to  read

information from the tape. The color of the first cell on the tape is a
1

0.

According to the input a
1

0  and state  s0,  the  machine  will  look up the

rules table and give out a pair of symbols representing the output and
the next state Xs£, y\, respectively. So, the color of the first cell will be

updated as a
1

1  y, and the machine G will move to the second cell. 

Definition 3. The process of the finite state transducer G operating on a
cell of the tape including reading the input information from the cell,
updating the cell’s  color,  and moving to the next  cell  is  called a step
of the IFA. 

The machine G will repeat this process step by step until it reaches
the last cell of the tape. Then the IFA has finished a turn. 

Definition 4.  For IFA W  XG, a\,  n  (the number of cells  in a)  updating
steps of G on the tape a from the first cell to the last cell one by one is
called a turn of this IFA. 
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After  one  turn,  the  configuration  of  the  tape  becomes

Ya
1

1, a
2

1, …, an
1].  Then  the  finite  state  transducer  will  return  to  its  ini-

tial state s0, move to the first cell again, and repeat the whole process

to  start  the  second  turn.  At  last,  we  obtain  a  sequence  of  configura-
tions  of  the  tape  with  different  turns;  this  sequence  can  build  up  a
two-dimensional pattern of the IFA. 

Definition 5.  A pattern  of  an  IFA is  a  sequence  of  tape  configurations:
XC1, C2, …, CT\, where Ci œ In. 

For  example,  consider  the  finite  state  transducer  in  Example  1  is
working on a tape with five cells, then three turns are as shown in Fig-
ure 2. 

In  Figure  2,  a  two-dimensional  pattern  can  be  obtained  once  we
integrate the pictures in the last step row by row together to show the
behavior of this IFA. 

step=0 step=1 step=2 step=3 step=4 step=5

T=1

step=0 step=1 step=2 step=3 step=4 step=5

T=2

step=0 step=1 step=2 step=3 step=4 step=5

T=3

Figure  2.  Three  turns  of  the  example  IFA.  The  red  arrow  represents  the
machine head. Different head directions stand for different states.

Obviously, the pattern of an IFA is determined by the machine and
the  tape.  In  this  paper,  we  only  investigate  the  initial  configuration

with  all  blank  cells,  that  is,  a
1

0
 a

2

0
   an

0
 0.  Another  conven-

tion is to treat all machines with the same number of states s and the
same  number  of  input/output  symbols  c  as  a  class  of  IFAs  which  is
denoted as  a pair  Hs, cL.  There are Hsµ cLsµc  possible  rules  in the class
Hs, cL  IFAs. Different rules in the same class determine the patterns of
the  IFA.  Thus,  we  can  assign  a  coding  number  for  each  IFA  in  the
class Hs, cL.  The concrete method for coding IFAs is shown in Appen-
dix A. 

3. Complexity of Iterated Finite Automata

3.1 The Complexity of (2,2) and (3,2) Iterated Finite Automata

Wolfram  had  studied  the  complexity  of  (2,2)  and  (3,2)  IFAs  in  [7].
Most  (2,2)  IFAs  exhibit  trivial  structures  such  as  blank  tapes  and
cyclic  patterns,  except for some nested structures.  But for (3,2) IFAs,
more nested structures were found, and some random structures were
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more nested structures were found, and some random structures were
discovered.  Some  selected  (2,2)  and  (3,2)  IFA  patterns  are  shown  in
Figure 3.

Figure  3.  Typical  patterns  in  (2,2)  and  (3,2)  IFAs.  The  number  below  the
pattern is its rule number.

3.2 The Complexity of (2,3) Iterated Finite Automata

The author investigated the complex behaviors of (2,3) IFAs by system-

atic searching. There is a total of 66  46 656 possible (2,3) IFA rules.
After  filtering  out  a  large  number  of  trivial  patterns  that  are  cyclic
structures and homogenous colors, there are still 1580 IFAs. Then the
author  divided  them  into  eight  classes,  roughly  according  to  their
behaviors (see Figure 4).

1. Regular patterns (Reg).  The patterns in this class exhibit some regular-
ity such as big triangles and stripes. Although most of them are trivial,
there  are  a  few  exceptional  regular  patterns  which  have  some  nested
structures, such as 3651 and 31741 in Figure 2.

2. Noisy structures (Noisy). The patterns in this class are very random and
full of noise from the first appearance. But some regular and symmetric
local structures can also be found. 

3. Nested  triangles  (Nested  Tri).  Nested  triangles  are  very  common  in
worlds  of  simple  programs,  thus  it  is  not  astonishing  that  nested
triangles are very easily found in IFAs. 

4. Random  triangles  (Ran  Tri).  This  kind  of  structure  also  contains
numerous  triangles,  but  the  global  patterns  composed  by  these  local
triangles  are  not  obviously  nested  and  exhibit  randomness  in  some
sense. 

5. Nested structures (Nested S). There are many nested structures that are
not triangles that are put in this class. Some basic structures as building
blocks are contained by themselves. 

6. Thin  guys  (Thin  G).  Some  structures  have  random  and  complex
interesting  behaviors  only  in  a  very  thin  area  on  the  left  part  of  the
pattern. 
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Figure 4. Complex behaviors in (2,3) IFAs with different classes.

7. Irregular  patterns  (Irreg).  A  large  number  of  IFAs  are  very  difficult  to
be  classified  as  one  of  the  groups  listed.  There  may  be  some  regular
local  patterns,  but  the  global  structures  are  irregular.  Whereas,  com-
pared  to  the  noisy  structures  they  are  not  so  random.  So  we  classify
these IFAs as an alternative group.

8. Complex  structures.  Although  it  is  very  difficult  to  distinguish  the
complex  structures  that  fall  into  this  group  from  irregular  patterns,
some  IFAs  are  selected  as  a  new  class  because  their  behaviors  are  so
complex  that  the  sophisticated  computation  may  be  supported  by  the
communication  between  different  local  areas.  As  examples,  two  of
them are selected and shown in Figure 5. 
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Figure 5. Complex patterns may support sophisticated computations.

The  complexity  of  patterns  in  class  8  leads  us  to  guess  that  IFAs
may  support  universal  computation.  This  hypothesis  will  be  further
confirmed by the facts mentioned in the next subsection. 

3.3 Similarity between Iterated Finite Automata and Cellular 
Automata 

From  the  patterns  investigated  earlier,  it  is  not  difficult  to  see  that
there is much similarity between IFAs and CAs. 

For  example,  the pattern of  IFA 3507 is  similar  to the elementary
CA  (one-dimensional  CA  with  two  colors  and  two  neighbors,  ECA)
30.  The  similarity  can  only  be  shown  by  flipping  the  pattern  of
ECA 30 left to right and shearing the white cells in the left of the big
triangle  (see  Figure  6).  Another  example  is  IFA  26337.  The  nested
structure  shows  similarities  compared  to  ECA  225.  The  pattern  of
ECA 225 should also be flipped and sheared (see Figure 6). 

These  similarities  encourage  us  to  propose  that  IFAs  may  emulate
ECAs. 
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IFA 3507

CA 30 Transformed CA 30

IFA 26337 CA 225 Transformed CA 225

Figure 6. Similarity between IFAs and ECAs.

4. Universality of Iterated Finite Automata

4.1 Iterated Finite Automata that Emulate Elementary Cellular 
Automata

The complexity of IFA behaviors and the similarity between IFAs and
ECAs make us propose that any behavior of an ECA can be emulated
by an IFA. This subsection presents a method for constructing a con-
crete IFA that emulates the given ECA using a well-known procedure. 

It is very natural to point out that the tape of cells in an IFA can be
regarded as the cells in the one-dimensional CA. But the major differ-
ence between IFAs and CAs from their working mechanism is the for-
mer  updates  the  cells  on  the  tape  step  by  step;  however  the  latter
updates  all  of  the  cells  simultaneously.  This  difference  recurs  as  the
construction method of a specific  Turing machine to emulate a given
ECA in [6]. Actually, the parallel systems can be emulated by a serial
system once  enough states  are  provided.  Hence,  we can construct  an
IFA to emulate the given ECA. 

For  any  ECA  (two-color,  two-neighbor),  we  can  construct  a  spe-
cific four-state two-color IFA to emulate that ECA. At the beginning,
the  IFA  tape  is  configured  to  duplicate  the  configurations  of  cells  in
the ECA. The finite state machine will  scan the cells  on the tape one
by  one.  There  are  four  possible  combinations  of  two  adjacent  cells.
Therefore, four states can memorize these combinations. It is not diffi-
cult to construct a rule table for the FSA that performs the same com-
putation as the ECA. Then the IFA produces the same outcome on the
third cell as the second cell of the ECA. 

To  articulate  the  process  just  mentioned,  we  construct  a  concrete
IFA that emulates ECA 110 (see Figure 7). 
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Figure 7. IFA 6542901 in (4,2) class that can emulate ECA 110. For compari-
son, the rule icon of ECA 110 is shown.

Suppose that the initial tape is 0100…, then ECA 110 will give the
output: #10…. (The first cell  is  undetermined in this case.) The four-
state two-color IFA 6542901 can emulate this ECA. At the beginning,
the  internal  state  of  this  finite  state  machine  is  1.  It  will  accept  the
input 0 from the tape and keep that state according to its rule. Then it
moves  to  the  second  cell  where  a  black  cell  is  encountered.  Then  it
will  transit  to  the  state  2  and  give  an  output  which  should  be
neglected.  Actually,  the  input  information  01  has  been  stored  by  the
state 2. Next, another 0 is fed on the IFA. It will transit to 3 and give
an output  1.  At  this  time,  the IFA output  on the third cell  is  exactly
the same as the ECA. After that, when given the input 0, the IFA will
transit to 1 again and generate an output 0. This output is the same as
the output on the third cell of ECA 110. Thereafter, they can perform
exactly the same as the preceding cells. 

Another issue is the boundary condition. Because ECAs have cyclic
boundary conditions, nevertheless, IFAs can only move on the tape in
one direction. This can be solved by enlarging the size of the IFA. The
number  of  cells  in  an  IFA  is  determined  by  the  number  of  steps  we
want  to  emulate  times  two,  plus  the  number  of  cells  in  the  ECA for
cases when the number of steps is divided by the number of cells. (For
more  complicated  cases,  please  refer  to  Appendix  C.)  For  example,
the  specific  IFA  that  was  just  constructed  can  emulate  ECA  110  for
100 steps by duplicating the initial (100) cells of ECA 110 three times
(300  2µ100 + 100) (see Figure 8). 

Mathematica  code for constructing IFA rules and initial conditions
to emulate the ECA are listed in Appendices B and C. 

Because ECAs are known to be universal, the IFA as a class, which
can emulate any ECA, support universal computation. 
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Figure  8.  Comparison  of  patterns  between  ECA  110  and  IFA  6542901  for
100 steps.  The middle area without  the gray mask shows the same behavior
as  ECA  110.  Notice  that  to  solve  the  issue  of  boundary  conditions,  the
number of cells in the IFA is three times the number of cells in the ECA.

4.2 Cellular Automata that Emulate Iterated Finite Automata

CAs are known to be universal computational systems, therefore, they
can  emulate  any  other  computational  system  including  IFAs.  The
explicit  approach for a CA that emulates an IFA is  constructed here.
The basic idea is to use additional colors that correspond to the multi-
ple  states  of  the  IFA.  The  n  (the  number  of  cells)  steps  of  the  CA is
equivalent  to a turn of an IFA. As an example,  (2,3)  IFA 3615 emu-
lated by a constructed CA is shown in Figure 9.

The  code  for  transformations  of  rules  and  initial  conditions  are
shown in Appendices D and E. 

2ê0

1ê2

0ê1

2ê1

0ê0

1ê2
12

IFA 3615 The specific CA that emulates CA 3615; black stands for any color.

IFA 3615 CA step:1~20 CA step:21~40 CA step:41~60 CA step:61~80 CA step:81~100

Figure 9. A CA emulating (2,3) IFA 3615. One step of the IFA is emulated by
10 steps of the IFA.

5. Conclusions

Any  iterated  finite  automaton  (IFA)  is  a  composition  of  a  conven-
tional  finite  state  transducer  and  a  tape.  This  extended  definition  of
the finite state  automaton (FSA) not only facilitates our investigation
by means of Wolfram’s A New Kind of Science methodology but also
shows great complexity and universality. 
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This  paper  mainly  discusses  the  complexity  of  a  specific  class  of
IFA which has only two states and three possible cell colors. After enu-
merating all possible (2,3) IFAs, we show the spectrum of complex pat- 
terns  generated  by  them.  These  patterns  can  be  divided  roughly  into
eight classes including regular patterns, noisy structures, nested trian-
gles, and so forth. Among those classes, an important class (complex)
is  selected  to  show  their  ability  of  propagating  information  between
local  areas  and  the  potential  capability  of  supporting  sophisticated
computations.  Furthermore,  the  similarity  between  simple  IFAs  and
elementary cellular automata (ECAs) is pointed out. 

Any  ECA  can  be  emulated  by  a  (4,2)  IFA.  That  means  IFAs  sup-
port universal computation. This conclusion not only adds a new mem-
ber  to  the  universal  computational  system  family  but  also  confirms
the  computational  equivalent  principle  again  which  states  that  any
nontrivial computational process may support universal computation. 

IFAs, as another instance of a computational universe, have lots of
unknown  properties  which  should  be  further  studied.  For  example,
can  we  construct  a  much  simpler  IFA  to  emulate  an  ECA?  Actually,
some  IFAs  in  the  (2,3)  class  have  shown  their  abilities  to  perform
sophisticated  and  similar  computation  as  ECAs.  Is  there  a  (2,3)  IFA
which emulates ECA 110? This plausible conclusion is worthy of fur-
ther study. 
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Appendix

This  Appendix contains Mathematica  code and examples for demon-
strating topics discussed in the text.

A. Constructing an IFA Rule Table from its Code Number

ToFARule will output the list of IFA rules using as input the code num-
ber of the rule and the number of states and colors.

In[1]:= ToFARule@n_Integer,8s_Integer,k_Integer<D:=

H*n:rule number,s:number of states,k:number of colors*L

Flatten@MapIndexed@81,-1<Ò2+80,k<Ø

Mod@Quotient@Ò1,8k,1<D,8s,k<D+81,0<&,

Partition@IntegerDigits@n,sk,s kD,kD,82<DD
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Example:

In[2]:= ToFARule@26853, 82, 3<D

Out[2]= 881, 2< Ø 82, 0<, 81, 1< Ø 81, 2<, 81, 0< Ø 82, 1<,

82, 2< Ø 81, 1<, 82, 1< Ø 82, 2<, 82, 0< Ø 82, 0<<

B. Transforming Rules from ECA to IFA

RuleTransform  will  output the rules of the IFA when given the ECA
rule code number.

In[3]:= RuleTransformer@ECARule_IntegerD:=Module@8rule,i,rTab<,

rule=Reverse@IntegerDigits@ECARule,2,8DD;

Table@rTab=IntegerDigits@i,2,3D;8FromDigits@Take@rTab,2D,2D

Last@rTabD<Ø8FromDigits@Take@rTab,-2D,2D+1,

rule@@i+1DD<,8i,7,0,-1<DD

In[4]:= RuleTransformer@110D H*Transform ECA 110 to IFA*L

Out[4]= 884, 1< Ø 84, 0<, 84, 0< Ø 83, 1<,

83, 1< Ø 82, 1<, 83, 0< Ø 81, 0<, 82, 1< Ø 84, 1<,

82, 0< Ø 83, 1<, 81, 1< Ø 82, 1<, 81, 0< Ø 81, 0<<

C. Transforming Initial Conditions from ECA to IFA

ICTransformer  will give the correct IFA initial conditions when given
as input the initial  condition list  of an ECA and the number of steps
to be emulated.

In[5]:= ICTransformer@CAIC_List,steps_IntegerD:=

H*CAIC:cells configuration of the ECA,

steps:number of steps to be emulated*L

Module@8sz,tab,tab1,tab2<,

sz=Length@CAICD;

tab=If@IntegerPart@stepsêszD>0,

Nest@Join@Ò,CAICD&,CAIC,IntegerPart@stepsêszD-1D,8<

tab1=Join@Take@CAIC,-Mod@steps,szDD,tabD;

tab2=Join@tab,Take@CAIC,Mod@steps,szDDD;

Join@80<,tab1,CAIC,tab2DD

Example: The initial condition of an ECA is a random list with 10
80, 1<, and the step to be emulated is 10.

In[6]:= ICTransformer@Table@RandomInteger@80, 1<D, 810<D, 10D

Out[6]= 80, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,

1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1<
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D. Transforming Rules from IFA to One-Dimensional CA

CARuleTransformer  will  output  the  correct  rules  for  a  one-dimen-
sional  CA  that  emulates  an  IFA  when  given  the  IFA’s  code  number
and the number of states and colors.

In[7]:= CARuleTransformer@n_Integer,s_Integer,k_IntegerD:=

Module@8IFARule,rule1,rule2,k1,rule3,rule4<,

IFARule=ToFARule@n,8s,k<Dê.RuleØList;

rule1=

Flatten@Table@88IFARule@@i,1,1DD k+IFARule@@i,1,2DD

x_ê;x<k,__<Ø

IFARule@@i,2,1DD k+x,8__,

IFARule@@i,1,1DD k+IFARule@@i,1,2DD,__<Ø

IFARule@@i,2,2DD<,8i,1,Length@IFARuleD<DD;

rule2=

Join@rule1,

FilterRules@8ÒØÒ@@2DD<&êüTuples@Range@0,Hs+1L k-1D

Except@rule1DDD;

k1=Hs+1L k;

rule3=

ReplacePart@Ò,80<Ø

RuleD&êüH8Append@Ò,k1D,Append@Ò,0Dê.rule2<&êü

Tuples@Range@0,Hs+1L k-1D,2DL;

rule4=

ReplacePart@Ò,80<Ø

RuleD&êüH8Prepend@Ò,k1D,Prepend@Ò,0Dê.rule2<&êü

Tuples@Range@0,Hs+1L k-1D,2DL;

Join@88x_ê;x<k,k1,__<Øk1,8x_ê;x¥k,k1,__<Ø

k1+1,8k1+1,x_,__<Øk+x,8__,k1+1,__<Ø

k1,8__,x_,k1+1<Øx<,rule2,rule3,rule4DD

Example: Transform the (2,3) IFA 3615 into CA rules.

In[8]:= CARuleTransformer@3615, 2, 3D êê Short

Out[8]//Short=

88x$_ ê; x$ < 3, 9, __< Ø 9, 8x$_ ê; x$ ¥ 3, 9, __< Ø 10,

810, x$_, __< Ø 3 + x$, 8__, 10, __< Ø 9, á784à,

89, 8, 5< Ø 8, 89, 8, 6< Ø 8, 89, 8, 7< Ø 8, 89, 8, 8< Ø 8<

E. Transforming Initial Conditions from IFA to CA

CAInitialTransformer  will generate the initial conditions of the one-
dimensional  CA that  can emulate  the given IFA when given as  input
the initial conditions and the number of states and colors of an IFA. 

In[9]:= CAInitialTransformer@ini_,s_,k_D:=Join@ini,8Hs+1L k+1<D

In[10]:= CAInitialTransformer@Table@0, 810<D, 2, 3D

Out[10]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10<
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