Complexity Classes Without
Machines: On Complete LLanguages
for UP*

Juris Hartmanis
Lane Hemachandra

TR 86-746
April 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

* This research was supported by NSF Research Grant DCR 8301766, The second author was
supported by a Hertz Foundation Fellowship. Part of this rescareh was done during the
“"Complexity Year” at the Mathematical Sciences Research Institute in Berkeley. This paper
will be presented at the 1986 Structure in Complexity Theory Conference.

Complexity Classes Without Machines:
On Complete Languages for UP

Juris Hartmanis
Lane Hemachandra

Department of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

This paper develops techniques for studying complexity classes that are
not covered by known recursive enumerations of machines. Often, counting
classes, probabilistic classes, and intersection classes lack such enumerations.
Concentrating on the counting class UP, we show that there are relativizations
for which UP4 has no complete languages and other relativizations for which
PB = UPB = NP? and UP® has complete languages. Among other results we
show that P # UP if and only if there exists a set S in P of Boolean formulas
with at most one satisfying assignment such that SMNSAT is not in P.
P # UP(NcoUP if and only if there exists a set S in P of uniquely satisfiable
Boolean formulas such that no polynomial-time machine can compute the solu-
tions for the formulas in S. If UP has complete languages then there exists a
set R in P of Boolean formulas with at most one satisfying assignment so that
SAT MR is complete for UP. Finally, we indicate the wide applicability of our
techniques to counting and probabilistic classes by using them to examine the
probabilistic class BPP. There is a relativized world where BPP# has no com-
plete languages. If BPP has complete languages then it has a complete
language of the form B (MAJORITY, where B € P and MAJORITY ={f|f is
true for at least half of all assignments} is the canonical PP-complete set.

1. Introduction

Mundane complexity classes such as P, NP, Af, and PSPACE, have recur-
sive enumerations of machines covering their languages. These enumerations
give generic complete sets. In turn, the generic complete sets form a base from

which other problems can be shown hard for the class.

This research was supported by NSF Research Grant DCR-8301766. The second
author was supported by a Hertz Foundation Fellowship. Part of this research was
done during the “Complexity Year” at the Mathematical Sciences Research Institute
in Berkeley. This paper will be presented at the 1986 Structure in Complexity
Theory Conference.

-9

Recently, interest has turned to classes without obvious recursive
enumerations of machines from the class. Do these classes have complete
languages? If so, what form do these complete languages take? This paper
develops techniques answering such questions.

The class UP consists of all NP languages that can be accepted by non-
deterministic polynomial-time machines with unique accepting paths [Val].
Such languages play an important role in many applications and are of direct
interest in public-key cryptography. In particular, it has been shown [GS] that
there exist one-way functions (i.e., one-to-one deterministic polynomial-time
functions whose inverses are not polynomial-time computable) if and only if
P # UP. Similarly, there exist one-way functions whose range is in P if and
only if P # UP (M coUP.

Currently, it is not known whether UP has complete languages. The
existence of complete languages for UP would yield a method of classifying UP
problems; a proof of completeness for a problem would guarantee that the prob-
lem is as hard as any other UP problem. This classification program has been
successful for such classes as NP and PSPACE.

However, it cannot succeed for UP. We exhibit two oracles A and B such
that P2 = UPB = NP3 and UP® has complete languages, and UP4 has no com-
plete languages. Clearly, a proof that UP has no complete languages shows
that P # UP = NP. Our oracle constructions are novel and considerably
simpler and more transparent than oracle constructions tend to be. (For
related work displaying oracles for which R, NP\ coNP, and the Boolean clo-
sure of NP have no complete sets see, respectively [Si], [HI], and [CH]) We
introduce a powerful renormalization technique that first uses PSPACE to col-
lapse complexity classes, and then raises diagonalizations from the ashes.

One of our results shows that if UP has no complete languages, then for
any sound axiomatizable formal system F there exists a language T in UP
such that for no machine N; accepting T is there a proof in F that N, accepts
with unique accepting paths. We also show that if UP has complete languages
then there exists a set R in P of Boolean formulas with at most one satisfying
assignment such that

RNSAT
is complete for UP. This result shows that if complete languages exist in UP

.3-

then they can be obtained by picking a sound axiomatizable proof system and
considering the set R of Boolean formulas for which there are polynomial-time
proofs that the formulas have at most one solution. If UP has complete
languages, then for sufficiently strong formal systems, R (N SAT will be a com-
plete language. Unfortunately, we do not know what formal system is power-
ful enough to yield a sufficiently rich set R and, even more fundamentally,

whether any formal system can yield a sufficiently rich R.

Stated intuitively, the existence of complete languages for UP demands
that the fact that F has at most one solution must be “easily provable in a
large number of cases,” so that we obtain a set R so rich that RN SAT is UP-
complete. We conjecture that this is not the case and that UP does not have
complete languages.

Section 4 applies these techniques to the probabilistic complexity class
BPP. For example, we show that with appropriate relativization BPP has no
complete languages. Intriguingly, if BPP has complete languages then it has a
complete language of the form B (MAJORITY, with B in P. Since MAJORITY
is a complete language for PP, we see that PP serves as the parent class of BPP
in the same way that NP serves as the parent class for UP in the above results.

2. UP Languages

Let M{,M,, --- and N;,N,, - - be, respectively, standard enumerations
of deterministic and nondeterministic polynomial-time machines with uni-
formly attached polynomial-time clocks. Let 7,7, --- be a standard

enumeration of Turing machines.

We say that a machine N, is categorical if for all inputs N, accepts on at
most one computation path. Thus for each input a categorical machine either
rejects (by having no accepting paths) or accepts with exactly one accepting
path.

UP ={L(N,)| N, is categorical}.

For x in 2" let |x| denote the number of symbols in x. We will denote
Boolean formulas by F;, and the number of satisfying assignments by [F|.
Thus, SAT = {F,| |F = 1}.

. 4.

We will make considerable use of sets in P that are subsets of the set of
Boolean formulas with at most one satisfying assignment. We call this class
PBF1.

PBF1={S| S€P and S C{F,| IF] = 1}}.
Theorem 1: P = UP if and only if there exists a set S in PBF1 such that
S(SAT ¢P.

Proof- (=) Let N be categorical and L(N)€ UP—P. Then by Cook’s theorem
[Co] we know that for every x and N there corresponds an easily obtainable
Boolean formula, Fy ., such that x € L(N) if and only if Fy, is satisfiable. A
careful inspection of Cook’s proof [HUI[GJ] shows that the translation is parsi-
monious, i.e., the number of different accepting paths of N on x is the same as
the number of different satisfying assignments of Fy,. Further, Cook’s proof
also shows that given a Boolean formula F, it is decidable in polynomial time
whether there exists an x so F equals Fy,. In essence, x and the machine
description of N are clearly encoded in the formula Fy,. Therefore
{Fn.|x€ 3’} is in P and because N is categorical, |[Fy =<1 for x € 2". On the
other hand, {Fy,| x € Z'}SAT is not in P, since otherwise L(N) would be in P.

(¢) If S is in PBF1 and S(SAT is not in P, then the machine N, that deter-

ministically determines if F is in S and then tries to guess a satisfying assign-
ment is categorical and accepts S(SAT. Thus SNSAT is in UP-P. »

Theorem 1 shows that P = UP if and only if there is an easily recognizable
set of formulas, each having 0 or 1 satisfying assignment, for which satisfiabil-
ity testing is not in P. Now we show that P # UP NcoUP if and only if there is
an easily recognizable set of formulas, each having exactly one satisfying
assignment, for which no P machine can find the satisfying assignment. The
“only if” direction of this result is a UP analogue of the work of Borodin and
Demers [BD] on NP(NcoNP. Interestingly, no converse (analogous to our “if”

direction) is known for the NP M coNP case.

Theorems 1 and 2 both show that if the (co)unique acceptance model yields
power beyond P, then sets with bizarre properties exist. However, we need not
consider these results evidence that P # UP(M\coUP. Rather, we should view
these results as reflections of the amazing power of logical formulas to describe

computations— a power that spawned the theory of effective computability.

-5-

Theorem 2: P # UP(NcoUP if and only if there is a set S so
1) S€P and SCSAT
2) f€S = f has exactly one solution

3) No P machine can find solutions for all formulas in S. That is,

0 fes
g(f) = { the unique satisfying g

assignment of [

is not a polynomial-time computable function.
Proof. (=) Let Ly€(UPNcoUP)—P. Let N, and N; be categorical machines
accei)ting, respectively, L, and L.

Construct a machine N that on input x nondeterministically simulates
Ng(x) and Ni(x). Now L(N) = L(Ng)\JLW;) = Ly|JLo=Z2". Since Ny and N,
are categorical, N has exactly one accepting path on each input. Thus, letting

Fy . be the Cook’s theorem formula for N’s computation on x, Fy, has exactly
one satisfying assignment (since Cook’s reduction is parsimonious).

Let S= U Fy,. From the structure of Cook’s reduction (as Fy, clearly
€z

displays N and x) S is in P. By the previous paragraph, f€S implies f has
exactly one solution. Thus conditions 1 and 2 of Theorem 2 are met by S.
From the satisfying assignment to Fy, we can quickly determine whether
x €L, or x € Ly, by checking which path of the initial branching led to accep-
tance. Thus if some polynomial-time machine on input f€S output the
(unique) satisfying assignment of f, then L, € P. This contradicts our assump-

tion that L, € P and proves condition 3.

(&) Let S’ ={<f,ay,ay, - -,a,>|f €S and each q, assigns some variable in f
and f(a,,aq, - *,a;) is uniquely satisfiable}. f(a,,..,a,) specifies the formula
resulting from making the assignments a,, ---,a, in f. For example, if

f=1x1x9x3 and a; = “x is true,” then f(a;) =x;x3. a; here would mean “x, is
false” and f(a;) = False.

If S’ were in P, then we could use tree search to find the satisfying assign-
ment for any formula in S, contradicting condition 3. So S’'¢P. It is obvious
that S’ € UP.

-6 -

To see that S'€coUP, simply note that S’ ={<f,a,aqg, - ,a,>|f€S or
[feS and " =fla)Vfley,a))V - - V flay,ag, - ,a;) is uniquely satisfiable]}.
f* has at most one solution; it just picks up all assignments contradicting
“ay, - ,a.” Thus S"€UP, s0 S' € coUP. So S' € (UP(McoUP)—P. »

Of course, if P = UP(NcoUP then Theorem 2 is of little interest. However,
it is easy to diagonalize so that P4 = UPAMcoUPA.

Fact 3: There is a recursive A so P4 = UP4 (" coUPA.

It is interesting to note that the proof technique of the previous results can
be extended to characterize UP-complete languages if they exist.

Theorem 4: UP has complete languages if and only if there exists a set S in
PBF1 such that S\ SAT is UP-complete.

Proof: (=) If L(N), N categorical, is complete for UP then, as in the previous
proof, S ={Fy,|x€Z"} is in P. Furthermore, S(\SAT is UP-complete since
L(N) is reducible to SN\ SAT by mapping x—Fy ,.
(&) Obvious. »

These results can be extended to yield necessary and sufficient conditions
for the existence of UP-complete sets in terms of sets in P. For S and R in
PBF1, S is many-one s-reducible to R if and only if there exists a polynomial-

time function g such that
x € SNSAT & g(x) € R SAT.

Corollary 5: There is a complete language in UP if and only if there exists an
R, in PBF1 such that any other S in PBF1 is s-reducible to R,.

Next we summarize some standard undecidability results about categorical
machines to show the logical complexity of these problems. After that we
observe that UP has complete languages if and only if there is a recursively

enumerable list of categorical machines whose languages cover UP. (See also
[Be, HI].) This result will play a major role in our diagonalization results.

Lemma 6:

a) {N;| N; is not categorical} is r.e. complete.

b) If UP # NP then
{N;| LNV,) € UP}
is 2,-complete in the Kleene hierarchy and
{N;| LIN,) € NP-UP}
is ITy-complete in the Kleene hierarchy.
Proof: a) Standard.
b) {N;| LWN) € NP—UP} is equivalent to {N;| L(N,) is infinite} which is II,-
complete. »
Lemma 7: There exists a complete language for UP if and only if there exists a
recursively enumerable list of categorical machines N; ,N;,, - - -, such that
{Lw;)| j =1} =UP.

Proof(=») Let N; be a categorical machine accepting a complete language in
UP. Let {g;} be a standard enumeration of deterministic polynomial-time
machines computing functions. Then, since L(N;) is UP-complete, and N; °g;
is a categorical machine, {N; °g;| i =1} is a recursive enumeration of a set of
categorical machines covering UP.

(&) Let {N',,N';, ---} be a recursively enumerable set of categorical
machines covering UP. Then, by padding these machines with new states that

are never entered, we can obtain a set of equivalent machines {N, ,N,, ---}in
P. Without loss of generality we can assume that N, runs in time nif+ij.

Then the language

IN, |Cl=} 7 +i)
Ly ={N; #x#1 ~ lNi, accepts x}

is accepted by a categorical machine that runs in polynomial time. Further-

more, it is easily seen that any other language in UP can be reduced to L. »
Thus if there are no complete languages for UP, then for any sound

axiomatizable formal system F, there always will exist sets in UP for which no

machine accepting them can be proven categorical in F.

3. Relativization Results

Theorem 8: There exists an oracle A such that UP4 has no complete
languages.

Proof: From the previous lemma we know that UP has complete languages if
and only if a polynomial-time machine accepts a set of categorical machines
covering UP. Thus our goal will be to construct an oracle A such that for any
M; either M; accepts some N, which is not categorical or the categorical

machines N; in L(M;) do not accept the language D, in UP [Lil.

For each i =1, let D; = {1"| 3k = 1)[n = p*] and (3x,y)[|x] =n and x =1y
and x € Al}, where p; is the i-th prime. The oracle A = U, (A, is constructed in
stages, with the help of a list I of canceled indexes.

Instage 0: I =0, Ay = 9.
In stage i, i>0:
Consider the uncanceled machine Ny, k,j =i, (k,j) €1, for which &+; is

smallest. If no such machine exists let I, =1,_, and go to stage i +1. Note that
N, is accepted by M,. Consider a sufficiently long input 1%, n = p§, so that no

oracle string of length n or longer has been queried in any previous stage.
Case 1: N, can be made noncategorical on input 1" by entering strings of
length n in the oracle. Now M, does not accept only categorical machines and
we do not have to consider any further M, accepted machines. Add all the M,-
accepted machines to the list 7, i.e,,
Ii=1;_,U Uzzo{(k,l)},

freeze all oracle strings up to the longest queried string and go to stage i +1.
Case 2: If Case 1 does not hold, then N, is categorical on input 1" for all possi-
ble choices of strings of length n in the oracle. Thus for some sufficiently large
n there exists a string x, |x| = n, such that for A, = A, _, {x}:

L(Ny) = {1"] n =p}, ¢t =1 and (3x,y)

[|x] =n and x =1y and x € A;]} = D,.
(The proof of this follows easily from that of Lemma 9.) Let A; =A,_;(J{x},
cancel N, (that is, add (x,)) to D), and go to stage i +1.

Proof of Correctness:

The above construction yields an A such that any polynomial-time
machine M, either enumerates a list of NP machines that are not all categori-
cal or else none of the enumerated machines accepts the language D,. Note
that, in the latter case, D, is in UP since A has exactly one string of length
n =pk, i =1, and thus is accepted by a categorical machine that simply queries
A until it finds the string of length » and then accepts iff the string starts with
a “one.” On the other hand, no machine accepted by M, can do this. Note that
if some machine in this list would have tried to do this, it would have been
made noncategorical by the entry of several strings of length n in A. In this
case, D, would not necessarily be in UP; this is no loss since M, is not capable
of producing a list of categorical machines to construct a complete language for
UP.

Thus no polynomial-time machine can accept a set of categorical machines

whose languages cover UP. »

Lemma 9: For every machine N, that is categorical for all oracles, there is an

oracle C such that
LINS) # {1"| n=1and COZ" = B} =L,.

Proof. Let T(s) = s*+k bound the running time of N, and let n be such that
(2)>2rn*+£). If NP(1") accepts then LN@) = L. If, for some x in 37,
LV rejects, then again LN/ # Ly, so set C ={x}. Thus N°(1") must accept
for every C = {x}, |x|] = n. We show that this is not possible for a categorical N;,.

Let p, denote the set of strings queried on the accepting path of N,%(17).
Choose a pair (a,b) of length n strings, a # b, so a €p, and b €p,. Note that
such a pair must exist as of the (%n) pairs of length n strings (c,d), at most
(n* +£)2" satisfy “c €p, Vv d € p,.” Now N, b(x) accepts on 2 paths, p, and p,,
contradicting our assumption that N; was always categorical. »
Theorem 10: There exists an oracle B such that

P8 = ypP8 = NPB

and UP? has complete languages.
Proof. For ease of understanding we will view the oracle B as consisting of
three disjoint parts (say written on different alphabets).

-10 -

B = PSPACE®E®S.

Each part of the oracle plays a definite role. PSPACE will be used to deter-
mine if a given machine N, is categorical for all possible oracle choices E and S
for a given input. This will be used to construct a list of machines N, which
will behave like N, as long as N; has no possibility of being noncategorical; if a
possibility is detected that N, can be noncategorical, N,; will reject the input
and all larger inputs. Thus all N,; will be categorical and will be shown to
cover all UP? languages, thus guaranteeing the existence of a complete
language in UP? by Lemma 7.

The set E contains no more than one element of each length n and will be
so constructed that the language
L,={1"|3x,y)|x|=n and x=1y and x € E]}
is not in PB. Since L, is accepted by a categorical machine, E guarantees that
pB = ypPB.

Part § will force all N; which have infinitely many possibilities of being
noncategorical to be noncategorical and, furthermore, guarantee that those
machines that are categorical do not accept the language

Ly ={0"] 3x)[|x] = n,x €S}
Since L, is in NP3, we have:
PB = UPB = NP3,

On the other hand, the list of machines N, categorical by construction,

is such that

LG | i =1} =UPP.
To see this, recall that if N, has the potential to be infinitely often noncategori-
cal then N? is noncategorical. Otherwise, only for a finite number of inputs
does N; have the potential of not being categorical and there exists an

NAPSPACE+E'+S’
J

equivalent machine N; so that for any E',S’, is categorical.

Thus N? is categorical and L(N3;)) = L(N?) = L(NP). But then by Lemma 7,
UPB has complete languages.
Construction of B = PSPACE®E®S

The construction proceeds in stages.

Stage 0: Set E) = and S, = 9.

211 -

Stage i, i = 1. Pick a large n such that during previous stages all queries have

been of length less than » and such that the running times on inputs of length

n of M; and N; are small compared to 2".

a)

b)

c)

The stage i consists of three parts.

Consider M,. Let B,_,=PSPACE® E,_;® S,_;. M?"l(l") accepts or
rejects by having received polynomially many negative answers about
strings of length n. Since 2" is larger than the running time of M; there
exist strings in 2" not queried by Mf sy, If M,B *“}(1") rejected, insert an
unqueried string starting with a one into E;_; to get E,. Freeze E; and go
to part b.

Pick a new larger n so that no query in part a reached or exceeded length

n and such that running time of N, on «x, |x| = n, is small compared to 2".
(%) > 2" +k))

Consider N;. If there is some possibility of forcing Nf ““!on x, |x| =n, to be
noncategorical by proper choice of S;, then do so. (Note that this is a non-
constructive step, but this can easily be avoided and with a bit more work
the oracle can be made recursive.) Freeze S; and go to stage i+1. If not,

go to part c.

We now know N, is categorical on 0" for all possible additions of strings in
2" to S;_;. But then we know that by Lemma 9 we can add strings of

length n to S;_; to get S; such that

PSPACE+E +8.
L(N; 5y 2 L,

Freeze S; and go to stage i+1.

End of Construction of B.

The construction insures that P2 # UPB. To see that UP2 = NP® observe

that part b of stage i creates noncategorical machines. Only machines N;

reaching part ¢ may be categorical and none of these can accept the language
L, in NP. Thus UPB = NP3,

Finally, to see that UP? has a complete language, observe that the list of

machines N5, is categorical and that it covers UP® (see comments at the

beginning of this proof). Thus by Lemma 7 UP? has complete languages. »

.12 -

The proof of Lemma 7 implies that if UP has no complete languages then
there are languages in UP for which we can never prove that they are accepted
by a categorical machine. That is, we will never be able to prove construc-
tively that they are in UP. It can be seen that if UP has complete languages
then for every L in UP there is a categorical machine accepting L with a very
“simple” proof that it is categorical.

Corollary 11: If UP has no complete languages then for any sound axiomatiz-
able formal system F there exists R in UP such that for no N; with L(N;) =R,

can it be proven in F that N, is categorical.

Proof: If for every R in UP there is an N; with L(N;) =R for which we can
prove in F that N, is categorical, then we would have an r.e. list of categorical
machines covering UP. But this implies that UP has complete languages
because of Lemma 7. »

Therefore, if UP has no complete languages there must exist for every
sound axiomatizable formal system F some R in UP so no N, accepting R can

be proven in F to be categorical.

4. Applications to Probabilistic Computations

This section applies the methods of this paper to the probabilistic class
BPP [Gi]l- languages accepted by a polynomial time probabilistic Turing
machine, M, with bounded error probability. For such a machine, (3¢>0) (Vx)

[PrM(x) accepts)——;—l >¢l. We say L(M) = {x| Pr(M(x) accepts)= %+e}, and

say M “accepts” such x.

One must be careful in generalizing the UP noncompleteness result of
Theorem 8. US [BG], a close cousin to UP, has complete languages in every
relativized world. Nonetheless, our techniques yield interesting results for pro-

babilistic computation models.

In this section, we answer a question from [Gi] by displaying a world
where BPP has no complete languages. Related completeness (PP) and non-
completeness (R) results appear, respectively, in [Gi] and [Sil. We then
develop a probabilistic version of Theorem 4, which showed that if UP has a
complete set, then it has a complete set of the form B(MSAT, where B €P.
Theorem 15 shows that if BPP has a complete set, then it has a complete set of

-13 -

the form B(MAJORITY, B € P. MAJORITY ={f| f is true for at least half of

all variable assignments} is the standard PP-complete set [Gi, p. 688]. Thus PP
serves here as the parent class of BPP in the same way that NP serves in
Theorem 4 as the parent class of UP.

Theorem 13: There exists a recursive oracle A such that BPP2 has no com-
plete languages.

First we need the following lemma, analogous to Lemma 7. The proof is
similar, and is omitted. However, note that the machines are clearly clocked
and have a clearly known error bound.

Lemma 14: BPP4 has complete languages iff for every 0<£<% there is an r.e.

enumeration {M,} so that .UOL(M{j)= BPPA and (Vj,x) [IPr(M{}(x) accepts)
J=
- —;—| = el

Proof of Theorem 13:

By padding, the r.e. enumeration of Lemma 14 can be converted into a
polynomial-time set of machines converting the same class of languages. So, it
suffices to show: For every set S; in P, either

1) @y € S)ANI|Pr(MA(x) accepts) — %| < %1
%
OR

2) (3L; € BPPA)(Vj € S)IL(M}) = L;].

Let L; ={0"]| (3k = 1)[n = p# and at least half of the strings at length n are
in Al}, where p, is the i'® prime. We’ll construct A = UA; by stages.
Stage j =0: Set Ay = O
Stage j >0:

From pairs (I,m), [<j, m<j, satisfying 1) M;(m) accepts, and 2) M, has
not been “emasculated,” and 3) the pair (I,m) has not previously been chosen,

choose a pair so /+]|m| is as small as possible. (If no pairs satisfy the condi-
tions, set A;:= A;_, and go to the next stage.) For the chosen (I,m), we will

now insure that either 1) M2 is not a BPP4 machine with error bound %, or 2)

L(M4) = L;. By (*) above, this proves the theorem.

- 14 -

Let w be 1) a number larger than the length of any string previously refer-
enced in A, and 2) so large that p(w)< %-2‘”, where p(') is the polynomial time

bound of M,,, and 3) a power of /.

Case 1: For all subsets S of the length w strings, Pr(M?LJ“US(Ow) accepts)>%.

In this case, put nothing of length ; in the oracle and freeze all things of size
up to p(w). Set A;:= A;_;. Thus O ¢L; yet MA4(0*) does not reject so
L(M4) = L,.

Case 2: There are subsets S of length w strings for which Pr(M’,i"lUs(Ow)

accepts) < 1 Let S be a maximal such subset.

Z.

Case 2a: |S| = :?;—2’”. Set A;:= A;_;|US. Thus M, fails to accept L, as O¥ € L,

but 0% ¢ L(M4).

Case 2b: |S|< %2‘”. Thus |S| = %2“’. By our maximality assumption, for each
. 5 A, USUz nw 1 .

string z €S, Pr(M™”’ (O") accepts)> T However, if for one of these the

probability is still less than —i—, by condition 1 of (sk) we've totally eliminated

M, from consideration and can mark it “emasculated.”

Otherwise, we have the amazing situation that each of = %2‘” strings,

when added to A|JS, jumps the probability of acceptance from % to over %

We now show, by a counting argument, that this is impossible; probabilistic
machines cannot react so dramatically to that many different events.

When we run M229¢(0%), we may think of the machine as taking 27 bits

of input (the “flips-set”) to specify its coin flips. Each of the 27’ “flips-sets”

contributes —2?10—) of the output probability. If changing the oracle from

A;_1US to A;_; US|z moves the acceptance probability from at most % to at

least %, then z must be queried along the computation path of at least %2"‘“”

. . . = - 1 .
of our flip-sets. So, since size of |S| is = 22’”, this means we must reserve

= %-2"’%2"(‘”’ slots along our computation paths. However, each of the 2°®

- 15 -

paths is only p(w) long, so the total number of slots is at most p(w)2°?™). w was
chosen so p(w)< %2“’, so there just are not enough slots available. The “amaz-

ing situation” we claimed impossible indeed is impossible.
END OF CASES

Thus, for each M; either 1) M, accepts no machine accepting L;, and
L, € BPP# (this happens when all machines in L(M)) trigger cases 1 or 2a; L; is

in BPPA in this case) or 2) M; accepts some machine that is not BPP4 with

1
error bound T By (*), we are done. »

Now, we prove that if BPP has a complete set, then BPP has a complete
set - that is the intersection of a set from P with MAJORITY.
1
2
Theorem 15 is the probabilistic analogue of Theorem 4, and shows that PP

MAJORITY ={f| f is true for at least — its assignments} is PP-complete [Gil.

serves here as the parent class of BPP in the same way that NP serves as the

parent class of UP in Theorem 4.

Theorem 15: If BPP has a complete set, then it has a complete set of the form
B(NMAJORITY, where B €P.

Proof. Let S be a BPP set accepted by machine M. W..o.g. suppose (Vx)
[|Pr(M(x) accepts)——;—l = i]. Run a probabilistic version of Cook’s reduction on

M(x). This yields a formula F, that codes the run M(x). F, will have “flip vari-
ables,” describing the random choices, and other variables: F, = F(y;z), y the
flip variables. Loosely, F, looks like: (start in initial state)

A A\ (A)@ Gpa-).
step k

Write Pr(F) for the probability that F is true when each of its variables is
randomly set to True or False. Since for each choice y of flips the other book-
keeping variables z are completely determined,

(izlyl) s 1
Dz €8 = PrF) = —irps = g0
1 1
2) x ¢S = Pr(F,) < YevE
Let F’x =vaG. G = ulA (w1Vw2V C .. w|2|+1); Where g, wy, - ’w|Z|+1

*oF
are new variables. By cases, (). Pr(F',)= Pr(F,vG)= Pr(F,)+Pr(G)-

-16 -

Pr(F,)Pr(G). Clearly, Pr(G) = %(1—%), where A = lezl All we have to do is

note that Pr(F',| x ES)>—;— and Pr(F',| x ES)<%. Why do these hold? Since

kK
Pr(F,\/G) is monotonic in Pr(F,), by () above we have,

Pr(F’xlxES)ZPr(F'x|P(Fx)=%A)
1 A 3A%2_1
2_ —_— e, —
278t 16 72

Let B= U F',. B€P since we can look at a formula and tell if it came
x€ZX

from the machine M. By the arithmetic above, we know F', € MAJORITY if
and only if x € S. Since S is BPP-complete and F’, is easily computed from «x,
B (MAJORITY is also BPP-complete. (Given L’ in BPP, on input x reduce to a
query to S, reduce that to a formula F, and convert that to a formula F'€B.)
4

As a final note, the set S of Theorem 4 satisfied the (UP-like) property
that its formulas had at most one satisfying assignment. Each formula 7' in
our set B of Theorem 15 has the (BPP-like) property that the probability that

F' is satisfiable after a random assignment of the flip variables is bounded

1
away from 5

References

[BDIA. Borodin and A. Demers. Some Comments on Functional Self-
Reducibility and the NP Hierarchy. Department of Computer Science
Technical Report TR76-284, July 1976. Cornell University, Ithaca, New
York.

-17 -

[BG]A. Blass and Y. Gurevich. On the Unique Satisfiability Problem. Infor-
mation and Control 55 (1982), 80-82.

[Be] P. Berman. Relations Between Density and Deterministic Complexity of
NP-Complete Languages. Proceedings Symposium on Mathematical Foun-
dations of Computer Science, 1978, Springer-Verlag, 63-71.

[CHM. Cai and L. Hemachandra. The Boolean Hierarchy: Hardware over NP.

To appear in Proceedings of the Structure in Complexity Theory Conference,
Lecture Notes in Computer Science (1986), Springer-Verlag.

[Col S.A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings
ACM Symposium on Theory of Computation (1971), 151-158.

[Gi]l J. Gill. Computational Complexity of Probabilistic Turing Machines.
SIAM Journal on Computing 6 (1977), 675-695.

[GJIM.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Co., 1979,

[GS]d. Grollmann and A.L. Selman. Complexity Measures for Public-Key
Cryptosystems. Proceedings IEEE Symposium on Foundations of Com-
puter Science (1984), 495-503.

[HI]J. Hartmanis and N. Immerman. On Complete Problems for NP M CoNP.

Automata Languages and Programming, Lecture Notes in Computer Sci-
ence 194 (1985), Springer-Verlag, 250-259.

[HUMW.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, Massachusetts,
1979.

[Li] M. Li. Lower Bounds in Computational Complexity. Ph.D. Dissertation,
Cornell University, 1985.

[Si] M. Sipser. On Relativization and the Existence of Complete Sets. Aufo-
mata, Languages and Programming, Lecture Notes in Computer Science

140 (1982), Springer-Verlag, 523-531.

[ValL. Valiant. Relative Complexity of Checking and Evaluating. Information
Processing Letters 5 (1976), 20-23.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

