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Abstract In this paper, we study the complexity factor for a
charged anisotropic self-gravitating object. We formulate the
Einstein–Maxwell field equations, Tolman–Opphenheimer–
Volkoff equation, and the mass function. We form the struc-
ture scalars by the orthogonal splitting of the Riemann tensor
and then find the complexity factor with the help of these
scalars. Finally, we investigate some astrophysical objects
for the vanishing of complexity condition. It is found that the
presence of the electromagnetic field decreases the complex-
ity of the system.

1 Introduction

The word complexity refers to a factor that includes all the
terms inducing complications in a system. Many attempts
have been dedicated towards a precise definition of complex-
ity in various sectors of science [1–11]. However, an exact
definition of complexity has not been obtained till now which
defines it in every field accumulatively. It may be noted that
the definition of complexity depends on the work established
by Lopez-Ruiz et al. [7–9]. In view of different proposed def-
initions of complexity, it is related to the idea of information
and entropy that describe the structure of the system.

In physics [7], the term complexity begins by examin-
ing the perfect crystal which has a periodic behavior and the
isolated ideal gas with a random behavior. A perfect crystal
is a completely ordered system of atoms that are arranged
in a symmetric manner. A small segment of information is
sufficient to define the perfect crystal which gives minimum
information in the crystal. On the other hand, the isolated gas
is totally disordered and all the segments have equal partic-
ipation to give information related to the ideal gas such that
it has a maximum information. These systems are examples
of elementary models with zero complexity.
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The definition of complexity should also include some
other factors beyond information or order. Lopez-Ruiz et al.
[7] proposed the abstract idea of disequilibrium which deter-
mines distance of the probable distribution in the system of
accessible state. Thus disequilibrium should be maximum
in case of perfect crystal and it should be zero for the ideal
gas. Consequently, disequilibrium and information are intro-
duced to describe the complexity by a quantity that is a result
of these two notions.

The definition of disequilibrium and information which
include probability distribution is redefined in [12–17] by
the term energy density in the fluid distribution. However,
the term energy density is not enough to describe the phe-
nomenon of complexity because the pressure is absent which
appears in the energy-momentum tensor and plays a vital role
in the structure formation of the fluid distribution.

In literature [12–17], the idea of complexity has also been
applied to the self-gravitating systems like neutron stars and
white dwarfs. Recently, Herrera [18] introduced a quite dif-
ferent definition of complexity for a self-gravitating system.
This definition is related to the notion of structure of the
spherical system but is not related to disequilibrium or infor-
mation. He used the notion of Tolman mass which may be
considered the active gravitational mass for the fluid dis-
tribution. This mass depends on the inhomogeneity of the
energy density along with anisotropy of the pressure. These
two terms represent a single scalar function which is a com-
plexity factor. This vanishes when the pressure is isotropic
and energy density is homogenous and may also vanish when
the two notions namely, inhomogeneous energy density and
anisotropic pressure cancel each other. The variable which is
responsible for a complexity factor appears in the structure
scalars obtained from the orthogonal splitting of the Riemann
tensor.

In literature, the study of charge in spherically symmet-
ric self-gravitating system started with the pioneer work of
Rosseland and Eddington [19]. Bonnor [20] examined the
impact of charge on spherical collapse of dust cloud and
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concluded that the process of collapse slows down due to
electric repulsion. Ray et al. [21] investigated the role of
charge on compact stars and found that 1020 Coulomb charge
is present in the astrophysical objects producing an electric
field of 1021 V/m. Sharif and Bhatti [22] studied the effect
of charge on the instability of isotropic cylinder and deduced
that the charge with other matter variables control the sta-
ble as well as unstable configuration. The same authors [23]
investigated instability of charged spherical system with the
viscous dissipative matter distribution and found the insta-
bility range from adiabatic index. Sharif and Sadiq [24] ana-
lyzed the effect of electromagnetic field on the stability of
stellar object and concluded that it is stable for specific choice
of polytropic index. The same authors [25] obtained exact
solutions for anisotropic spherical system in the presence
of electromagnetic field and found that stability increases
with the effect of charge. Takisa and Maharaj [26] studied
the charged anisotropic stellar solutions obeying polytropic
equation of state and found that the behavior of energy den-
sity and pressure are consistent with the literature.

This paper studies the effects of charge on the definition
of complexity proposed by Herrera [18]. The paper has the
following format. In the next section, we formulate basic
equations defining the structure of a stellar configuration.
Section 3 gives brief review of the orthogonal splitting of the
Riemann tensor as well as structure scalars. In Sect. 4, we
introduce the complexity factor and obtain solutions of the
Einstein–Maxwell field equations for vanishing complexity
factor. Finally, we summarize our results in the last section.

2 Basic equations

Here we discuss physical variables as well as the equations
necessary to define static charged stellar structure consisting
of anisotropic fluid. We consider static spherically symmetric
geometry in the interior of stellar structure defined by the line
element

ds2 = eα(r)dt2 − eγ (r)dr2 − r2(dθ2 + sin2 θdφ2), (1)

bounded by the hypersurface �. We consider the energy-
momentum tensor for anisotropic fluid distribution as

T β
α = μuβuα − Phβ

α + �β
α + Eβ

α , (2)

where μ is the energy density and

�β
α = �

(
sβsα + 1

3
hβ

α

)
, P = 1

3
(Pr + 2P⊥),

� = −(P⊥ − Pr ), hβ
α = δβ

α − uβuα. (3)

The four velocity and four-vector are defined by

uβ =
(

1

e
α
2
, 0, 0, 0

)
, sβ =

(
0,

1

e
γ
2
, 0, 0

)
, (4)

with the properties

uβuβ = 1, sβsβ = −1, sβuβ = 0. (5)

The electromagnetic field tensor is given by

Eβ
α = 1

4π

(
−Fμ

α Fβ
μ + 1

4
FμνFμνδ

β
α

)
, (6)

where Fβα is the Maxwell field tensor described by Fβα =
φα,β −φβ,α and φα is the four potential determined by φβ =
φδ0

β .
The Maxwell field equations in four-vector formalism are

given by

Fβα

;α = μ0 J
β, F[βα;γ ] = 0,

where μ0 is the magnetic permeability and Jβ is the four
current defined by Jβ = ξuβ , where ξ is the charge density.
For the metric (1), the Maxwell field equations yield

φ
′′ +

(
2

r
− α

′

2
− γ

′

2

)
φ

′ = 4πξe
α
2 +γ .

Integration of the above equation gives

φ
′ = e

α+γ
2 q(r)

r2 ,

where

q(r) = 4π

∫ r

0
ξe

γ
2 r̂2dr̂ ,

represents the total charge within the sphere. The Einstein–
Maxwell field equations are

Gα
β = 8π(T α

β + Eα
β ), (7)

leading to

μ = − 1

8π

[
e−γ

(
1

r2 − γ ′

r

)
− 1

r2 + q2

r4

]
, (8)

Pr = − 1

8π

[
1

r2 − e−γ

(
1

r2 + α
′

r

)
− q2

r4

]
, (9)

P⊥ = e−γ

32π

(
2α

′′ + α
′2 + 2

α
′ − γ

′

r
− γ

′
α

′
)

− q2

8πr4 ,

(10)
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where prime represents derivative with respect to r . The con-
servation law gives the hydrostatic equilibrium equation

P ′
r = −α′

2
(μ + Pr ) + 2

r

[
(P⊥ − Pr ) + qq ′

8πr3

]
. (11)

This is also called the generalized Tolman–Opphenheimer–
Volkoff (TOV) equation for anisotropic charged fluid distri-
bution. We consider the Reissner–Nordström metric for the
exterior geometry defined by

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 − dr2(

1 − 2M
r + Q2

r2

)

− r2(dθ2 + sin2 θdφ2), (12)

where M and Q denote the total mass and total charge in
the exterior region, respectively. The smooth matching of
exterior and interior spacetimes yields

eα �= 1−2M

r
+ Q2

r2 , e−γ �= 1−2M

r
+ Q2

r2 , Pr
�= 0. (13)

These equations are the necessary and sufficient conditions
for matching of the two metrics (1) and (12) on hypersurface
�.

Now, we evaluate the mass function using two definition
namely, Misner-Sharp mass and Tolman mass. The Misner-
Sharp formula of mass function [27] yields

m(r) = r

2
(1 − e−γ ) + q2

2r
. (14)

Differentiation and then integration of Eq. (14) and using Eq.
(8), it follows that

m(r) = 4π

∫ r

0
r̂2μdr̂ +

∫ r

0

qq ′

r̂
dr̂ . (15)

Using the field equations and Eq. (14), we obtain

m = 4π

3
r3(μ − Pr + P⊥)

− r3

3

[
1

4
e−γ

(
α

′′ + α
′2

2
+ γ

′

r
+ 2

r2 − γ
′
α

′

2

− α
′

r
− 2eγ

r2

)]
+ 8πq2

3r
. (16)

We simplify this expression using the Weyl tensor. The Weyl
tensor consists of two parts one is the magnetic part which
vanishes for spherical system while the other is the electric
part defined as

Eαβ = Cαγβδu
γ uδ, (17)

where

Cνμκγ = (gνμαβgκγρδ − ηνμαβηκγρδ)u
μuρEνδ, (18)

with gβαμν = gβμgαν − gβνgαμ and ηβαμν represents the
Levi-Civita tensor. Eαβ is defined as

Eαβ = E
(

1

3
hαβ + sαsβ

)
, (19)

with

E = −1

4
e−γ

[
α

′′ + α
′2

2
+ γ

′

r
+ 2

r2 − γ
′
α

′

2
− α

′

r
− 2eγ

r2

]
.

(20)

Using Eq. (20) in (16), we have

m = 4π

3
r3(μ − Pr + P⊥) + 1

3
r3E + 8πq2

3r
. (21)

Comparing Eqs. (15) and (21), it follows that

E = 4π(Pr−P⊥)− 4π

r3

∫ r

0
r̂3μ

′
dr̂−8π

q2

r4 + 3

r3

∫ r

0

qq
′

r̂
dr̂ .

(22)

Substituting the above equation in (21), we obtain

m = 4πr3

3
μ − 4π

3

∫ r

0
r̂3μ

′
dr̂ +

∫ r

0

qq
′

r̂
dr̂ . (23)

Equation (22) expresses E in terms of physical quantities
namely, inhomogeneous density, anisotropic pressure as well
as total charge and Eq. (23) represents the corresponding
expression of mass function. Using Eq. (14) in (9), it follows
that

α′ = 2
4πr4Pr + rm − q2

r(r2 + q2 − 2rm)
. (24)

Inserting Eq. (24) in (11), we obtain the following form of
TOV equation

P ′
r = −4πr4Pr + rm − q2

r(r2 + q2 − 2rm)
(μ+Pr )+2

r

[
(P⊥−Pr )+ qq ′

8πr3

]
.

(25)
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Tolman [28] proposed another definition of energy for
static spherical system defined by

mT = 4π

∫ r�

0
r2e

α+γ
2 (μ + Pr + 2P⊥)dr. (26)

The total energy of the fluid within the sphere of radius r is

mT = 4π

∫ r

0
r̂2e

α+γ
2 (μ + Pr + 2P⊥)dr̂ . (27)

Using Eqs. (8)–(10) in (27), it follows that [29,30]

mT = r2

2
e

α−γ
2 α

′ −
∫ r

0
e

α+γ
2

q2

r̂2 dr̂ . (28)

Putting the value of α′ from Eq. (24) into (28), the Tolman
mass becomes

mT = e
α+γ

2 (4πr4Pr + rm − q2)

r
−

∫ r

0
e

α+γ
2

q2

r̂2 dr̂ . (29)

Equation (28) can also be interpreted as active gravitational
mass of the system. Another expression for mT [29,30] is

mT =
(

r

r�

)3

[mT ]� − r3
∫ r�

r

e
α+γ

2

r̂
[4π(P⊥ − Pr ) − E]dr̂

+ r3
∫ r�

r
e

α+γ
2

3q2

r̂5
dr̂ − r3

∫ r�

r
e

α+γ
2

8πq2

r̂5
dr̂ . (30)

Using Eq. (22), this equation turns out to be

mT =
(

r

r�

)3

[mT ]� − r3
∫ r�

r
e

α+γ
2

[
8π

r̂
(P⊥ − Pr )

+ 1

r̂4

∫ r̂

0
4π r̂3μ

′
dr̂ + (8π − 3

2
)
q2

r̂4

]
dr̂

+ r3
∫ r�

r
e

α+γ
2

3q2

r̂5
dr̂ − r3

∫ r�

r
e

α+γ
2

8πq2

r̂5
dr̂ . (31)

This represents the contribution of density inhomogeneity,
charge and anisotropy of pressure in the Tolman mass.

3 Structure scalars

In this section, we use orthogonal splitting of the Riemann
tensor introduced by Bel [31] and obtain scalar structures
which help us to find the complexity factor. For the orthogo-
nal splitting of the Riemann tensor, the following tensors are
introduced [31–33]

Yαβ = Rαγβδu
γ uδ, (32)

Xαβ = ∗R∗
αγβδu

γ uδ = 1

2
ηεν

αγ R
∗
ενβδu

γ uδ, (33)

where R∗
μνγ δ = 1

2ηεβγ δR
εβ
μν . These tensors can be expressed

in the trace-free and trace parts as

Yαβ = YT F

(
1

3
hαβ + sαsβ

)
+ 1

3
YT hαβ, (34)

Xαβ = XT F

(
1

3
hαβ + sαsβ

)
+ 1

3
XT hαβ. (35)

Using the Einstein–Maxwell filed equations, we obtain these
scalars as [33]

XT = 8πμ + q2

r4 , (36)

XT F = 4π� + q2

r4 − E . (37)

Also, using Eq. (22), we have

XT F = 4π

r3

∫ r

0
r̂3μ

′
dr̂ +

(
8π − 1

2

)
q2

r4 . (38)

The expressions for YT and YT F are

YT = 4π(μ − 2� + 3Pr ) + q2

r4 , (39)

YT F = 4π� + q2

r4 + E . (40)

Substitution of Eq. (22) in (40) yields

YT F =
(

5

2
− 8π

)
q2

r4 − 4π

r3

∫ r

0
r̂3μ

′
dr̂ + 8π�. (41)

The scalars XT F and YT F describe anisotropy of the pressure
in the presence of charge as

YT F + XT F = 2q2

r4 + 8π�. (42)

Replacing Eq. (40) in (30), we obtain

mT =
(

r

r�

)3

[mT ]� + r3
∫ r�

r

e
α+γ

2

r̂
YT Fdr̂

− r3
∫ r�

r
e

α+γ
2 8π

q2

r̂5
dr̂ + r3

∫ r�

r
e

α+γ
2

2q2

r̂5
dr̂ . (43)

Comparing Eq. (43) with (30), it follows that

r3
∫ r�

r

e
α+γ

2

r̂
YT Fdr̂ = −r3

∫ r�

r

e
α+γ

2

r̂
[4π(P⊥ − Pr ) − E]dr̂

+r3
∫ r�

r
e

α+γ
2

3q2

r̂5
dr̂ − r3

∫ r�

r
e

α+γ
2

2q2

r̂5
dr̂ .

This shows that YT F is associated with the effect of the
anisotropic pressure, inhomogeneity of the energy density
and total charge of the fluid distribution, i.e., YT F describes
the effect of these two quantities in the Tolman mass defined
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in Eq. (43). Also, the Tolman mass given in Eq. (26) can be
written in terms of structure scalar as

mT =
∫ r

0
r̂2e

α+γ
2

(
YT − q2

r̂4

)
dr̂ . (44)

4 The complexity factor

There are many factors producing complexity in a system for
example, density inhomogeneity, pressure anisotropy, elec-
tromagnetic field, heat dissipation and viscosity. In general,
any system having homogenous energy density as well as
isotropic pressure and in the absence of the above mentioned
factors is considered as the simplest system with negligible
complexity. For our fluid, the causes of complexity are inho-
mogeneous energy density, anisotropic pressure and elec-
tromagnetic field. The structure scalar YT F defined in Eq.
(41) contains these terms (inhomogeneous energy density,
anisotropic pressure and charge) which are responsible for
producing the complexity in the system. For this reason, the
term complexity factor can be associated with the structure
scalar YT F .

Furthermore, the structure scalar YT F appears in the Tol-
man mass implying that these terms affect Tolman mass.
Now, we discuss the vanishing complexity condition. The
set of field equations leads to a system of three ordinary dif-
ferential equations in which there are five unknown functions
α, γ, μ, Pr , P⊥. Using the condition YT F = 0, we are left
with four unknowns and need one more condition to have a
unique solution. For this purpose, we take Eq. (41) and use
YT F = 0. The vanishing complexity condition gives

� =
(

1 − 5

16π

)
q2

r4 + 1

2r3

∫ r

0
r̂3μ

′
dr̂ . (45)

In the following, we discuss some examples.

4.1 The Gokhroo and Mehra Ansatz

Gokhroo and Mehra [34] discussed the internal structure of
the spherical configuration with the variable energy density
for anisotropic spheres. Physically, these solutions have been
used to discuss the behavior of compact objects. Here, we use
the assumption proposed by Gokhroo and Mehra to discuss
the behavior of stellar structures for vanishing complexity
condition. The proposed energy density is

μ = μ0

(
1 − Kr2

r2
�

)
, (46)

where K = (0, 1). Using this value in Eq. (15), we have

m(r) =
∫ r

0

qq
′

r̂
dr̂ − 4πr3

3
μ0

(
3Kr2

5r2
�

− 1

)
. (47)

Inserting this value in Eq. (14), we obtain

e−γ = 1 + 3K α̂r4

5r2
�

+ q2

r2 − α̂r2 − 2

r

∫ r

0

qq
′

r̂
dr̂ , (48)

where α̂ = 8πμ0/3. From Eqs. (9) and (10), it follows that

8π(Pr − P⊥) = e−γ

[
α

′

2r
+ 1

r2 + γ
′
α

′

4
+ γ

′

2r
− α

′′

2

− α
′2

4

]
− 1

r2 + 2q2

r4 . (49)

Introducing the new variables [18]

eα(r) = e− ∫
( 2
r −2z(r))dr , 1/eγ = y(r). (50)

Using these variables, we obtain the following form of Eq.
(49)

y
′ −y

[
6

r
− 2z

′

z
− 2z − 4

r2z

]
+ 4q2

zr4 = −
(

1

r2 + 8π�

)
2

z
.

(51)

Its solution leads to the line element in terms of z and � [35]
as

ds2 = −e− ∫
( 2
r −2z(r))dr dt2 + r2dθ2 + r2 sin2 θdφ2

+ z2(r)e
∫
(2z(r)+ 1

r2 z(r)
)dr

r6(−2
∫ e

∫
(2z(r)+ 1

r2 z(r)
)dr

z(r)(1+8π�r2)

r8 dr − ∫ 4q2

zr4 dr + C)

dr2,

(52)

where C is an integration constant. Using the value of
q(r) and Eq. (46), the vanishing complexity condition (45)
becomes

� =
(

1 − 5

16π

) [4π
∫ r

0 ξ( 1
y )

1
2 r̂2dr̂ ]2

r4 − μ0K

r3

∫ r

0

r̂4

r̂2
�

dr̂ .

(53)

The physical variables in the presence of charge yield

Pr =
m
r − z(2m − r) − 1 + q2

2r2

4πr2 , (54)

μ = m
′

4πr2 − qq
′

4πr3 , (55)
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P⊥ = 1

8π

[
z

(
m

r2 − m
′

r

)

+
(
z

′ + z2 − z

r
+ 1

r2

) (
1 − 2m

r

)
− q2

r4

]
. (56)

Equations (54)–(56) indicate the presence of charge in radial
pressure, energy density and tangential pressure, respec-
tively.

4.2 Polytropic equations with vanishing complexity factor

For self-gravitating system, the polytropic equation plays
a vital role. Polytropes with anisotropic matter distribution
have widely been discussed in literature [36–38]. Here, we
discuss two different cases related to the polytropes. One of
them is

Pr = Kμσ = Kμ1+1/n, (57)

where K is called polytropic constant, σ is called polytropic
exponent and n is called polytropic index. We take TOV
Eq. (11) and convert it into the dimensionless form. For this
purpose, we use dimensionless variables

β = Prc
μc

, r = ζ

A
, A2 = 4πμc

β(n + 1)
, (58)

v(ζ ) = A3m(r)

4πμc
, �n = μ

μc
, (59)

where subscript c shows that the quantity is calculated at
the center. At the boundary r = r� (ζ = ζ�), we have
�(ζ�) = 0 [36]. Putting the values from Eqs. (24) and (57)–
(59) in (11), we obtain
⎡
⎣1 − 2vβ(n+1)

ζ
+ 4πq2μc

β(n+1)ζ 2

1 + β�

⎤
⎦

×
(

ζ 2 d�

dζ
+ 2�−n

β4(n + 1)2ζ 3� − 2πβ2μ2
cq

dq
dζ

β5μcζ 2(n + 1)3

)

+βζ 3�n+1 + v − 4πq2μc

ζβ2(n + 1)2 = 0. (60)

We also convert Eq. (15) in dimensionless variables as

dv

dζ
= ζ 2�n + dq

dζ

4πqμc

β2ζ(n + 1)2 . (61)

Equations (60) and (61) are two ordinary differential equa-
tions with three unknown functions �, v,�. We still need
one more condition to have a unique solution. For this pur-
pose, we use the vanishing complexity condition (45) in
dimensionless form given by

2ζ

nμc

d�

dζ
+ 6�

nμc
= �n−1ζ

d�

dζ
+

−
(

1 − 5

16π

) (
2qq ′A3

ζ 4

4q2A4

ζ 5

)
.

(62)

Now, we have three differential Eqs. (60)–(62) with three
unknown functions �, v,�. For any of value of n and β, this
system can be integrated analytically or we can have a numer-
ical solution using appropriate initial conditions. These equa-
tions physically describe the structure of stellar objects with
the vanishing complexity condition. Any solution of this sys-
tem gives the pressure, density, mass and radius of a specific
stellar object for the chosen values of free parameters. We
discuss another case of polytropes with the equation of state

Pr = Kμσ
d = Kμ

1+ 1
n

d , where μd represents the baryonic
mass density. Following the above procedure, we obtain⎡
⎣1 − 2vβ(n+1)

ζ
+ 4πq2μc

β(n+1)ζ 2

1 + β�d

⎤
⎦

(
ζ 2 d�d

dζ

+ 2�−n
d

β4(n + 1)2ζ 3� − 2πβ2μ2
cq

dq
dζ

β5μcζ 2(n + 1)3

)

+βζ 3�n+1
d + v − 4πq2μc

ζβ2(n + 1)2 = 0, (63)

2ζ

nμdc

d�

dζ
+ 6�

nμdc
= �n−1

d ζ
d�d

dζ
[K(n + 1)μ

1/n
dc �d + 1]

+
(

1 − 5

16π

)(
2qq ′A3

ζ 4 − 4q2A4

ζ 5

)
, (64)

with

�n
d = μd

μdc
.

However, Eq. (61) remains the same for this equation of state.
Again, we have a system of differential Eqs. [(61), (63), (64)]
defining the structure of stellar configuration with specific
equation of state and zero complexity factor.

5 Conclusions

In astrophysics, the study of stellar objects is an interesting
phenomenon due to their physical features which motivate
the researchers to explore these objects. Different aspects
including mass-radius ratio, luminosity, anisotropy and sta-
bility or instability of stellar configurations have widely been
studied in literature. However, the term complexity factor is
not studied in detail for stellar objects. In this paper, we have
studied the complexity factor for charged spherically sym-
metric stellar objects and the behavior of these objects in the
context of vanishing complexity condition. This provides the
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effects of electromagnetic field on Herrera’s work [18]. We
have formulated the Einstein–Maxwell field equations and
found the mass function using Misner-Sharp as well as Tol-
man formalism. We have discussed structure scalars in the
presence of electromagnetic field and obtained the complex-
ity factor. The complexity factor YT F (41) contains the terms
associated with energy density inhomogeneity, charge and
anisotropic pressure. This equation indicates that the inclu-
sion of charge decreases the complexity of the system.

Moreover, using the assumption YT F = 0 we have inves-
tigated the vanishing complexity condition [defined in Eq.
(45)] for two examples of self-gravitating systems studied in
the literature. Firstly, the stellar objects discussed by Gokhroo
and Mehra [34] are considered in which a specific form of
the energy density of the stellar system is assumed. We have
observed that in our case the effect of charge appears in
Eqs. (54)–(56) that describe the behavior of the system. Sec-
ondly, we have considered stellar systems obeying the poly-
tropic equation of state and obtained a system of differential
equations including the mass equation, TOV equation and
vanishing complexity condition in terms of dimensionless
variables. The solution of these equations for some physi-
cal conditions provide a better understanding of the charged
stellar system with zero complexity factor. It is worthwhile
to mention here that all our results reduce to uncharged case
(q = 0) [18].
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Funded by SCOAP3.

References

1. A.N. Kolmogorov, Prob. Inform. Theory J. 1, 3 (1965)

2. P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986)
3. S. Lloyd, H. Pagels, Ann. Phys. 188, 186 (1988)
4. J.P. Crutchfield, K. Young, Phys. Rev. Lett. 63, 105 (1989)
5. P.W. Anderson, Phys. Today 7, 54–61 (1991)
6. G. Parisi, Phys. World 6, 42 (1993)
7. R. Lopez-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321

(1995)
8. X. Calbet, R. Lopez-Ruiz, Phys. Rev. E 63, 066116 (2001)
9. R.G. Catalan, J. Garay, R. Lopez-Ruiz, Phys. Rev. E 66, 011102

(2002)
10. J. Sanudo, R. Lopez-Ruiz, Phys. Lett. A 372, 5283 (2008)
11. C.P. Panos, N.S. Nikolaidis, KCh. Chatzisavvasand, C.C. Tsouros,

Phys. Lett. A 373, 2343 (2009)
12. J. Sanudo, A.F. Pacheco, Phys. Lett. A 373, 807 (2009)
13. KCh. Chatzisavvas, V.P. Psonis, C.P. Panos, ChC Moustakidis,

Phys. Lett. A 373, 3901 (2009)
14. M.G.B. de Avellar, J.E. Horvath, Phys. Lett. A 376, 1085 (2012)
15. R.A. de Souza, M.G.B. de Avellar, J.E. Horvath, arXiv:1308.3519
16. M.G.B. de Avellar, J.E. Horvath, arXiv:1308.1033
17. M.G.B. de Avellar, R.A. de Souza, J.E. Horvath, D.M. Paret, Phys.

Lett. A 378, 3481 (2014)
18. L. Herrera, Phys. Rev. D 97, 044010 (2018)
19. S. Rosseland, A.S. Eddington, Mon. Not. R. Astron. Soc. 84, 720

(1924)
20. W.B. Bonnor, Mon. Not. R. Astron. Soc. 129, 443 (1994)
21. S. Ray, M. Malheiro, J.P.S. Lemos, V.T. Zanchin, Braz. J. Phys. 34,

310 (2004)
22. M. Sharif, M.Z. Bhatti, Phys. Lett. A 378, 469 (2014)
23. M. Sharif, M.Z. Bhatti, Int. J. Mod. Phys. D 23, 1450085 (2014)
24. M. Sharif, S. Sadiq, Eur. Phys. J. C 76, 568 (2016)
25. M. Sharif, S. Sadiq, Eur. Phys. J. C 78, 410 (2018)
26. P.M. Takisa, S.D. Maharaj, Gen. Relativ. Gravit. 45, 1951 (2013)
27. C.W. Misner, D.H. Sharp, Phys. Rev. 136, B571 (1964)
28. R. Tolman, Phys. Rev. 35, 875 (1930)
29. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)
30. L. Herrera, A. Di Prisco, J. Hernandez-Pastora, N.O. Santos, Phys.

Lett. A 237, 113 (1998)
31. L. Bel, Ann. Inst. H Poincare 17, 37 (1961)
32. L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor, O. Troconis,

Phys. Rev. D 79, 064025 (2009)
33. L. Herrera, A. Di Prisco, J. Ibanez, Phys. Rev. D 84, 107501 (2011)
34. M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)
35. L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)
36. L. Herrera, E. Fuemayor, P. Leon, Phys. Rev. D 93, 024047 (2016)
37. L. Herrera, W. Barreto, Phys. Rev. D 87, 087303 (2013)
38. L. Herrera, W. Barreto, Phys. Rev. D 88, 084022 (2013)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1308.3519
http://arxiv.org/abs/1308.1033

	Complexity factor for charged spherical system
	Abstract 
	1 Introduction
	2 Basic equations
	3 Structure scalars
	4 The complexity factor
	4.1 The Gokhroo and Mehra Ansatz
	4.2 Polytropic equations with vanishing complexity factor

	5 Conclusions
	References


