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Abstract In a recent paper, Herrera (Phys Rev D 97:
044010, 2018) have proposed a new definition of complex-
ity for static self-gravitating fluid in general relativity. In the
present article, we implement this definition of complexity
for static self-gravitating fluid to case of f (R) gravity. Here,
we found that in the frame of f (R) gravity the definition of
complexity proposed by Herrera, entirely based on the quan-
tity known as complexity factor which appears in the orthog-
onal splitting of the curvature tensor. It has been observed
that fluid spheres possessing homogenous energy density
profile and isotropic pressure are capable to diminish their
the complexity factor. We are interested to see the effects of
f (R) term on complexity factor of the self-gravitating object.
The gravitating source with inhomogeneous energy density
and anisotropic pressure have maximum value of complexity.
Further, such fluids may have zero complexity factor if the
effects of inhomogeneity in energy density and anisotropic
pressure cancel the effects of each other in the presence of
f (R) dark source term. Also, we have found some inte-
rior exact solutions of modified f (R) field equations sat-
isfying complexity criterium and some applications of this
newly concept to the study of structure of compact objects
are discussed in detail. It is interesting to note that previous
results about the complexity for static self-gravitating fluid
in general relativity can be recovered from our analysis if
f (R) = R, which general relativistic limit of f (R) gravity.

1 Introduction

In current scenario general relativity (GR) have discussed
numerous critical issues, such as physical behavior of gravi-
tating source, astrophysical bodies, gravitating physics, inter-
stellar objects, rushing cosmology, neutron stars and clusters
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of galaxies. These provide us the key perception to the accel-
erating evolution of the cosmos. But at this time, there is need
to explain more recent work for the vanishing of complexity
factor in the significance of self-gravitating fluid distribution
for relativistic structures. A lot of discussion about the com-
plexity has been assessed in various fields of science. Now in
this attention several researchers have given systematic work
that is shown in [1–10].

Among the various definitions of complexity that have
been planed up until now, a large portion of them depend
on ideas, for example information and entropy, and depend
on the natural thought that complexity should, somehow,
amount a fundamental property showing the models, existing
in the interior framework. Usually, the concept of complex-
ity in material science paradigms by taking the ideal struc-
ture (episodic behavior) and the disengaged perfect gas, as
cases of most straight forward structures and consequently
as arrangements with null complexity. An ideal structure is
totally arranged and the atoms are organized after particular
principles of symmetry. The probability distribution for the
conditions open to the ideal structure is based on a common
condition of ideal symmetry, in other words it has minimum
data fulfilment. On the other hand, the inaccessible perfect
gas is totally scattered. The structure can be produced in any
of its open condition by the similar prospect.

Lopez-Ruiz et al. [11] has investigated the concept
of instability, which formulate the “distance” from the
equiprobable scattering of the nearby situations of the struc-
ture. A lot of renowned astronomers [12–15] have devel-
oped the work in complexity for the self-gravitating objects.
The notion of self-gravitating structure is naturally related to
the interior fluid distribution, is not associated to instability,
somewhat it comes from the essential presumption that the
simplest configuration is shown with the homogeneous mat-
ter through ideal pressure. Having accepted this reality as an
intuitive meaning of a terminating complexity structure, the
real meaning of obscurity nature will rise in the advancement
of the essential hypothesis of self-gravitating source dense
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paradigms, in regards of general relativity. Now the present
work suggest to modify theory of gravity for self gravitating
fluid distribution in static inhomogeneous region of complex-
ity. The elementary incentive for this effort exits in complete
detail for the state of complexity of the gravitating structure
comprised in [1,7,16–18].

Herrera and Santos [19] studied the effects of anisotropy
on the evolution of static gravitating source. Herrera et al.
[8] modeled the spherically symmetric gravitating source
accompanied with Ricci invariant arrived from orthogonal
spliting of Riemann tensor. Also, Herrera et al. [20] examined
the impacts of spherically symmetric dust on the structures
of LTB metrics. Furthermore, Herrera et al. [21] discussed
the constancy of shear free state which depends on the pro-
gression equation of the shear tensor and originate that the
key factor is performed by Trace-Free tensor Y . Currently,
Herrera and his coworkers [1,22] conferred through results
of self-gravitating paradigms under scalar functions. Sharif
and Zaeem [4] have investigated the imperfect charged dis-
sipative fluid distribution for cylindrically symmetric self-
gravitating source with scalar structure defined by Riemann
tensor. Sharif and Yousaf [23] evaluated the consequences of
stable structures in spherically symmetric non-static space-
time under evolution of imperfect fluid. Herrera et al. [24]
introduced perturbation system in disequilibrium dynamics
of gigantic objects and one can determine the disequilibrium
conditions of self-regulating of adiabatic index with consid-
ering heat flow transmission inside the interstellar bodies.
Chan et al. [25] studied the spherically symmetric models
accompanied by expansion-free perfect fluid source for the
degree of gravitational collapse and also analyzed the results
of newtonian effects approaching from degeneracy that rises
in the disequilibrium area.

Nojiri and Odintsov [26] took the first initiate to present
the notional and thoughtful idea in f (R) theory of gravity
for the behavior of rushing universe. A motivational debate
[27,28] of dark matter regions on the configuration system,
many feasible astral objects discussed in Einstein cosmol-
ogy and modified theory of gravity f (R). Cembranos et al.
[29] analyzed the impacts of huge-gauge body construction
in rushing growth of universe in context of f (R) metric
theory and also studied the gravitating contents in gravita-
tional collapse with non-static inhomogeneous fluid. Santos
et al. [30] established the feasibility conditions originating
on general Ricci scalar function f (R). Their technique can
be presumed to compel several probable modified gravity
f (R) paradigms under appropriate corporal context. Dur-
rer and Maartens [31] investigated the noteworthy solutions
for celestial structure configuration in background of f (R)

paradigms. Cognola et al. [32] concluded that insights of four
major classifications taken from observationally unswerv-
ing dark energy (DE) f (R) metric gravity structures. Kainu-
lainen et al. [33] explored the Tolman–Oppenheimer–Volkoff

equation in framework of both metric f (R) and Palatini con-
text with the formation of interior and exterior objects. Fay
et al. [34] conferred the cosmological dynamics of Palatini
type f (R) gravity with unlike modified metric f (R) models.
Different researchers [35] presented local and cosmological
parameters in distinct f (R) paradigms.

The symmetry of paper trails: in next section, we have
established the geometry of the gravitating anisotropic fluid
source, variables related to the spherically symmetric static
interior region, the modified Einstein field equations in f (R)

background and useful settlements used thoroughly in this
paper. The debate on the orthogonal splitting of the curvature
tensor and other scalar functions have been presented in detail
in Sect. 3. Later section, express the exact results of Ein-
stein field equation through disappearing of complexity fac-
tor. Finally, the last section includes the summary of the work.

2 Anisotropic self-gravitating fluid distribution and its
interrelated variables

In this connection to present the physical significance of the
gravitating source inside the celestial object formed by per-
fect fluid distribution and described with related variables
under f (R) formalism. For this persistence to express the
usual Einstein–Hilbert (EH) action in form of general rela-
tivity (GR),

SEH = 1

2κ

∫
d4x

√−gR. (1)

As for in f (R) context Einstein Hilbert (EH) action can be
defined as

Smodi f = 1

2κ

∫
d4x

√−g( f (R) + L(matter)). (2)

Here SM , κ , L(matter) and g denotes the modified action
source of the generic function of Ricci scalar R, the coupling
constant, determine the role of matter contents and the deter-
minant of the metric tensor, respectively. The following field
equations in background of metric f (R) notion are achieved
by the variation of Eq. (2) w.r.t. gαβ ,

F(R)Rαβ − 1

2
f (R)gαβ − ∇α∇βF(R) + gαβ∇α∇αF(R)

= κTαβ. (3)

where Tαβ stands for stress matter energy–momentum tensor,

F(R) = d f (R)
dR , ∇α and ∇α∇α are the covariant derivative

operator and D’Alembertian, respectively. Above Eq. (3) can
be re-manipulated as given under,

Gαβ = κ

F
(Tm

αβ + T D
αβ), (4)
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where

T D
αβ = 1

κ

[
f (R) − RF(R)

2
gαβ + ∇α∇βF(R)

−gαβ∇α∇αF(R)

]
,

(5)

is the effective energy–momentum tensor of the
self-gravitating source, bounded by interior region config-
uration inside the interstellar model with f (R) modified the-
ory of gravity. We take an anisotropic matter bounded by
spherically symmetric static spacetime. The interior metric
representing the source of self-gravitating fluid is given by

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (6)

where ν and λ are dependable functions of r and coordinates
are labeled with (x0, x1, x2, x3) = (t, r, θ, φ). Here the com-
ponents of tensor Tm

αβ play an important role for the physical
mechanism of the object and to evolve, some techniques are
in [1,36]. In this interpretation, following the Bondi approach
[36], we presumed gently Minkowski coordinates (τ, x, y, z)

dτ = e
ν
2 dt; dx = e

λ
2 dr; dy = rdθ; dz = rsinθdφ,

Then, under given bar sign shows the energy momentum
tensor of the Monkowskian components

T̄ 0
0 = T 0

0 ; T̄ 1
1 = T 1

1 ; T̄ 2
2 = T 2

2 ; T̄ 3
3 = T 3

3 .

Now we consider that when seen with proper distance
through fluid observer, the μ is energy density of fluid source
related with space, the Pr is radial pressure and P⊥ is tangen-
tial pressure. Consequently, in the Minkowski coordinates the
matter tensor components are given as

⎛
⎜⎜⎝

μ 0 0 0
0 Pr 0 0
0 0 P⊥ 0
0 0 0 P⊥

⎞
⎟⎟⎠ .

Hence

T 0
0 = T̄ 0

0 = μ, (7)

T 1
1 = T̄ 1

1 = −Pr , (8)

T 2
2 = T 3

3 = T̄ 2
2 = T̄ 3

3 = −P⊥. (9)

2.1 The modified field equations in context of f (R) metric
theory

The relevant field equations with f (R) theory of gravity
taken from equation (3) reads that

−
[
− 1

r2 + e−λ

(
1

r2 − λ′

r

)]

= 8π

F

[
μ + 1

κ

{
f (R) − RF(R)

2
+ F ′′

eλ
+ 2F ′

reλ
− λF ′

2eλ

}]
,

(10)

−
[

1

r2 − e−λ

(
1

r2 + ν′

r

)]

= 8π

F

[
Pr − 1

κ

{
f (R) − RF(R)

2
+ ν′F ′

2eλ
+ 2F ′

reλ

}]
,

(11)

e−λ

4

[
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

]

= 8π

F

[
P⊥ − 1

κ

{
f (R) − RF(R)

2
+ F ′′

eλ
+ ν′F ′

2eλ

−λ′F ′

2eλ
+ 2F ′

reλ

}]

(12)

Here ′ = ∂
∂r . The conservation of modified energy–

momentum tensor gives the following equations for the
hydrostatic equilibrium

P ′
r = −ν′(μ + Pr )

2
+ 2

r
(P⊥ − Pr ) − D1. (13)

where D1 is the component of dark source term due to f (R)

gravity, which is given by

D1 = 1

κ

[ {
1

eλ

(
− f (R) − RF(R)

2
− ν′F ′

2eλ

− 2F ′

reλ

)}
,1

+ ν′

2e2λ

{
F ′′ − λ′F ′

2
− ν′F ′

2

}

+ λ′

eλ

{
− f (R) − RF(R)

2
− ν′F ′

2eλ
− 2F ′

reλ

}

× 2

re2λ

{
F ′′ − λ′F ′

2

}]
, (14)

This is the generalized Tolman–Oppenheimer–Volkoff
equation [33], for anisotropic fluid in f (R) gravity.

Alternatively, using (11), we get

ν′ = 2

(
m + 4π Prr3

F

)

r(r − 2m)
− r3

r(r − 2m)F

×
{
f (R) − RF(R)

2
+ ν′F ′

2eλ
+ 2F ′

reλ

}
. (15)
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Equation (13) may be written in the following form

P ′
r = − (m + 4π Prr3

F )

r(r − 2m)
(μ + Pr )

+ r2(μ + Pr )

2(r − 2m)F

{
f (R) − RF(R)

2
+ ν′F ′

2eλ
+ 2F ′

reλ

}

+2

r
(P⊥ − Pr ) − D1. (16)

The general mass function m is as given below

R3
232 = 2m

r
= 1 − e−λ. (17)

or,

m = 4π

∫ r

0

r̃2μ

F
dr̃ . (18)

Here the components of the four-velocity vector are

vα = (e− ν
2 , 0, 0, 0). (19)

The four-acceleration aα = vα;βvβ , the only non-zero com-
ponent is

a1 = −ν′

2
. (20)

From Eqs. (7)–(9), energy-momentum tensor for the gravi-
tating fluid is

T β
α = μvβvα − Phβ

α + �β
α. (21)

with

�β
α = �(ψβψα + 1

3
hβ

α); P = P̃r + 2P⊥
3

;
� = Pr − P⊥; hβ

α = δβ
α − vβvα, (22)

where non-zero component of ψβ is

ψβ = (0, e− λ
2 , 0, 0), (23)

and its properties are ψβvβ = 0, ψβψβ = −1.

2.2 The Riemann curvature and Weyl curvature tensor

It is convenient to express the Riemann curvature tensor in
terms of conformal curvature tensor Cρ

αβμ, the Ricci tensor
Rαβ and the Ricci scalar R, as

Rρ
αβμ = Cρ

αβμ + 1

2
Rρ

βgαμ − 1

2
Rαβδρ

μ + 1

2
Rαμδ

ρ
β

−1

2
Rρ

μgαβ − 1

6
R(δ

ρ
βgαμ − gαβδρ

μ). (24)

In case of spherically symmetric structure, the magnetic part
of the conformal curvature tensor becomes identically zero
and only it can be defined in form of electric part (Eαβ =
Cαγβδv

γ vδ) as

Cμνκλ = (gμναβgκλγ δ − ημναβηκλγ δ)v
αvγ Eβδ. (25)

where gμναβ = gμαgνβ − gμβgνα , and ημναβ is the Levi-
Civita tensor. The formula of Eαβ is rewritten as

Eαβ = E

(
ψαψβ + 1

3
hαβ

)
, (26)

with

E = −e−λ

4

[
ν′′ + ν

′2 − λ′ν′

2
− ν

′ − λ′

r
+ 2(1 − eλ)

r2

]
,

(27)

and fulfill the following conditions:

Eα
α = 0, Eαγ = E(αγ ), Eαγ vγ = 0. (28)

2.3 The formulation of Tolman mass and the mass function

This section, we introduce two definitions of mass for inte-
rior of object and their relationship with conformal curvature
tensor. Later, will be used for justification of the complexity
factor.

With the help of field equations (10)–(12) and the given
mass function (17), we get

m = 4πr3

3F
(μ + P⊥ − Pr ) + Er3

3
+ r3

6F

×
{
f (R) − RF(R)

2
+ 2F ′

reλ

}
, (29)

It may be written as

E = −4π

r3

∫ r

0

r̃3

F
(μ′ − μF ′

F
)dr̃ + 4π

F
(Pr − P⊥)

− 1

2F

{
f (R) − RF(R)

2
+ 2F ′

reλ

}
, (30)

lastly, using (30) in (29), one gets

m(r) = 4πr3μ

3F
− 4π

3

∫ r

0

r̃3

F
(μ′ − μF ′

F
)dr̃ . (31)

The physical significance of the self-gravitating fluid dis-
persal of (30) is basically known by two quantities of den-
sity inhomogeneity and local anisotropy of pressure in f (R)

getting through conformal curvature tensor, however in the
instance of a homogeneous mass density distribution, desir-
able variation tempted through inhomogeneity to describe
the mass function given in Eq. (31).
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Another important conformation was presented by Tol-
man few decades ago in the explanation of energy source of
the matter surface. For a static distribution of the spherically
symmetric object the Tolman mass [1,37] is given by

mT = 4π

∫ r�

0
r2e

(ν+λ)
2

1

F
(T 0

0 − T 1
1 − 2T 2

2 )dr. (32)

The purpose of Tolman’s formula to produce the estimation of
the whole mass energy of the structure, through no assurance
to its localization. Now we describe the mass function under
f (R) context taken totaly interior of the spherically surface
with radius r .

mT = 4π

∫ r

0
r̃2e

(ν+λ)
2

1

F
(T 0

0 − T 1
1 − 2T 2

2 )dr̃ . (33)

The noticeable behavior of the “effective inertial mass” as
named by mT played with an extension on the universal the-
ory of energy for the local surface , the detail is given in
[8,18,19]

mT = e
(ν+λ)

2

{
m(r) + 4π Prr3

F
− r3

2F

×
(

f (R) − RF(R)

2
+ ν′F ′

2eλ
+ 2F ′

reλ

)}

+
∫ r

0

r̃2

F
e

(ν+λ)
2

(
f (R) − RF(R)

2
+ F ′′

2eλ
− λ′F ′

4eλ

+3ν′F ′

4eλ
+ 2F ′

reλ

)
dr̃ . (34)

By the information of Eq. (15), one can also finds

mT = e
(ν−λ)

2 ν′ r2

2
+

∫ r

0

r̃2

F
e

(ν+λ)
2

(
f (R) − RF(R)

2

+ F ′′

2eλ
− λ′F ′

4eλ
+ 3ν′F ′

4eλ
+ 2F ′

reλ

)
dr̃ . (35)

The overhead expression gives the physical significance of
the self-gravitating source of mT is known as “effective iner-
tial mass”. Definitely, used by Eq. (20), is the gravitational
acceleration (a = ψαaα) of a test particle, in case of static
gravitational field the test particle instantly at rest followed
by [8]

a = e
−ν
2

r2

{
mT −

∫ r

0

r̃2

F
e

(ν+λ)
2

(
f (R) − RF(R)

2

+ F ′′

2eλ
− λ′F ′

4eλ
+ 3ν′F ′

4eλ
+ 2F ′

reλ

)
dr̃

}
. (36)

The more appealing debate will provide behavior of mT in
next section. Differentiate Eq. (35) with respect to r (for this
attention slightly calculative work see in more detail [8]),

using field equations and Eq. (34), we have

rm′
T − 3mT = e

(ν+λ)
2 r3

×
[

4π

F
(P⊥ − Pr ) − E − F ′′

2Feλ
+ λ′F ′

4Feλ

]

+r2

F
e

(ν+λ)
2

×
(

f (R) − RF(R)

2
+ F ′′

2eλ
− λ′F ′

4eλ
+ 3ν′F ′

4eλ
+ 2F ′

reλ

)
.

(37)

Here it is easy to formulate the integral form, so that

mT = (mT )�

(
r

r�

)3

−r3
∫ r�

r

[e (ν+λ)
2

r̃

{
4π

F
(P⊥ − Pr ) − E − (F ′′ − λ′F ′

2 )

2Feλ

}

+e
(ν+λ)

2

r̃2F

(
f (R) − RF(R)

2
+ F ′′

2eλ
− λ′F ′

4eλ

+3ν′F ′

4eλ
+ 2F ′

r̃ eλ

)]
dr̃ . (38)

Applying Eq. (30), which follows

mT = (mT )�

(
r

r�

)3

− r3
∫ r�

r

[
e

(ν+λ)
2

{8π

r̃ F
(P⊥ − Pr )

+4π

r̃4

∫ r̃

0

r̃3

F

(
μ′ − μF ′

F

)
dr̃

+ 1

2Fr̃

(
f (R) − RF(R)

2
+ 2F ′

r̃ eλ

)
− (F ′′ − λ′F ′

2 )

2r̃ Feλ

}

+e
(ν+λ)

2

r̃2F

(
f (R) − RF(R)

2
+ F ′′

2eλ
− λ′F ′

4eλ

+3ν′F ′

4eλ
+ 2F ′

r̃ eλ

)]
dr̃ . (39)

Equation (39) conferred the noteworthy issues arrived in
second integral defines the effects of density inhomogeneity
and local anisotropy of the pressure on the Tolman’s mass
in the background of f (R) gravity. We would like to men-
tion that all the results reduce to Herrera [1], when we take
f (R) = R.

3 The orthogonal splitting of the curvature tensor

Bel [38] considered the orthogonal splitting of the curvature
tensor. For that conjecture, we shall use slight changes in
notation which are closely related to [39].

Now let us familiarize the under mentioned tensors, used
by Bel:

Yαβ = Rαγβδv
γ vδ, (40)
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Zαβ =∗ Rαγβδv
γ vδ = 1

2
ηαγ εμR

εμ
βδ vγ vδ, (41)

Xαβ =∗ R∗
αγβδv

γ vδ = 1

2
ηεμ

αγ R
∗
εμβδv

γ vδ. (42)

Here the sign ∗ representing dual tensor, in other words,
R∗

αβγ δ = 1
2ηεμγ δR

εμ
αβ .

The orthogonal splitting of the curvature tensor are to be
written in rewrite form of these tensors called curvature ten-
sor (see [39]). Though, in substitution for using the explicit
form of the splitting of curvature tensor (equation (4.6) in
[39]), we shall keep as follows in the general non-static case
detail given in [8].

Equation (24) takes the form, by using Einstein field equa-
tions

Rαγ
βδ = Cαγ

βδ + 28πT [αγ ]
[βδδ] + 8πT

(
1

3
δ
αγ

[βδδ] − δ
[αγ ]
[βδδ]

)
. (43)

Now split the curvature tensor, using (21) into (43), then we
get

Rαγ
βδ = Rαγ

(I )βδ + Rαγ

(I I )βδ + Rαγ

(I I I )βδ. (44)

Here

Rαγ

(I )βδ = 16πμv[αγ ]v[βδδ]

−28π Ph[αγ ]
[βδδ] + 8π(μ − 3P)

(
1

3
δ
αγ

[βδδ] − δ
[αγ ]
[βδδ]

)
,

(45)

Rαγ

(I I )βδ = 16π�
[αγ ]
[βδδ], (46)

Rαγ

(I I I )βδ = 4v[αγ ]v[βE δ] − εαγ
μ εβδνE

μν. (47)

with

εαγβ = vμημαγβ, εαγβvβ = 0, (48)

In interpretation of spherical symmetric the splitting of the
curvature tensor due to insertion of the magnetic part of the
conformal curvature tensor (Hαβ =∗ Cαγβδv

γ vδ).
From the above solutions, we can sort out three definite

tensors in the form of the physical variables like Yαβ, Zαβ

and Xαβ expressed below:

Yαβ = 4π

3
(μ + 3P)hαβ + 4π�αβ + Eαβ, (49)

Zαβ = 0, (50)

Xαβ = 8π

3
μhαβ + 4π�αβ − Eαβ. (51)

The overhead expressions denotes the tensors and can
describe it in form of structure scalars, the following study
takes an account of scalar functions (see detail in [8]).

Surely, we may state that four structure scalars can attain
through Xαβ and Yαβ tensors and may also described these
tensors with standard notations XT , XT F ,YT ,YT F and last
scalar related to the Zαβ tensor removed in the static case (as
shown in detail in [8])

so the structure scalar results are summarized as follows:

XT = 8πμ, (52)

XT F = 4π� − E, (53)

by using (30) and get,

XT F = 4π(Pr − P⊥) + 4π

r3

∫ r

0

r̃3

F
(μ′ − μF ′

F
)dr̃

−4π

F
(Pr − P⊥) + 1

2F

{
f (R) − RF(R)

2
+ 2F ′

reλ

}
,

(54)

YT = 4π(μ + 3Pr − 2�), (55)

YT F = 4π� + E, (56)

equivalently, with the help of (30)

YT F = 4π(Pr − P⊥) − 4π

r3

∫ r

0

r̃3

F
(μ′ − μF ′

F
)dr̃

+4π

F
(Pr − P⊥) − 1

2F

{
f (R) − RF(R)

2
+ 2F ′

reλ

}
.

(57)

The above solutions of XT F and YT F give the local
anisotropy pressure

XT F + YT F = 8π�, (58)

The solutions of YT and YT F arrange the physical meaning,
for this instance utilizing (56) into (38) and we obtain

mT = (mT )�

(
r

r�

)3

+r3
∫ r�

r

[e (ν+λ)
2

r̃

{
YT F

F
− E(1 − 1

F
) + (F ′′ − λ′F ′

2 )

2Feλ

}

−e
(ν+λ)

2

r̃2F

(
f (R) − RF(R)

2
+ F ′′

2eλ
− λ′F ′

4eλ
+ 3ν′F ′

4eλ

+2F ′

r̃ eλ

)]
dr̃ . (59)

Analyzing the Eq. (59) by Eq. (39), YT F explains the impacts
of self-gravitating source of the complexity factor in context
of f (R) theory of gravity for the local anisotropy of pressure
and density inhomogeneity on the Tolman mass. On the other
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hand, YT F explains how these two expressions alter the cal-
culation of the Tolman mass with respect to its calculation
of perfect fluid homogeneity. It is also worth evoking that
YT F organized with XT F , explores the local anisotropy of
the matter dispersion.

4 Matter distribution with disappearing complexity
factor

In order to discuss the system of three ordinary differential
equations (10)–(12), which are modified Einstein equations
for static self-gravitating anisotropic fluid contribution in five
unknown functions (ν, λ, μ, Pr , P⊥) under metric f (R) the-
ory of gravity. Hence, the off chance is that we implement the
condition YT F = 0 which might still require one condition
while keeping in mind the final goal to explain the structure.

Therefore from Eq. (57), the disappearing complexity fac-
tor condition is

� = 1

r3(1 + 1
F )

∫ r

0

r̃3

F
(μ′ − μF ′

F
)dr̃

+ 1

8π(F + 1
F2 )

{
f (R) − RF(R)

2
+ 2F ′

reλ

}
. (60)

After taking the expression (60), it can be seen that disap-
pearing complexity factor condition suggest some homoge-
neous density and pressure isotropy, otherwise inhomoge-
neous energy density and pressure anisotropy. Likewise, it
ought to be seen that (60) might be viewed as a non-local
equation of state in f (R) gravity, another few researchers
did work previously in [40] but this note is slightly different.
It is interesting to mention that for f (R) = R above equation
reduces to Eq.(58) of Herrera [1].

The preliminary idea to take the attention for those
paradigms is the consideration for the formulation of the met-
ric function λ which has the following [41] form

e−λ = 1 − αr2 + 3Kα

5r2
�

r4, (61)

here K is constant in the interval (0, 1) and and α = 8πμ0
3 .

Considering Eqs. (10) and (18), we get

μ

F
= μ0

(
1 − Kr2

r2
�

)

−

(
1 − αr2 + 3Kα

5r2
�

r4
)

κF

{
f (R) − RF(R)

2

(
1 − αr2 + 3Kα

5r2
�

r4

)

+F ′′ + 2F ′

r
−

F ′
(

2αr − 12Kαr3

5R2
�

)

2

(
1 − αr2 + 3Kα

5r2
�

r4

)
}
, (62)

m(r) = 4πμ0r3

3

(
1 − 3Kr2

5r2
�

)

−4π

∫ r

0
r̃2

(
1 − αr̃2 + 3Kα

5r̃2
�

r̃4
)

κF{
f (R) − RF(R)

2

(
1 − αr̃2 + 3Kα

5r̃2
�

r̃4

)

+F ′′ + 2F ′

r̃
−

F ′
(

αr̃ − 6Kαr̃3

5r̃2
�

)
(

1 − αr̃2 + 3Kα

5r̃2
�

r̃4

)
}
dr̃ , (63)

introducing, because (11) and (12) we can get

8π�(r)

F
+ 1

r2 = e−λ

[
−ν′′

2
−

(
ν′

2

)2

+ ν′

2r
+ 1

r2

+λ′

2

(
ν′

2
+ 1

r

)]
+ 1

F

(−F ′′

eλ
+ λ′F ′

2eλ

)
,

(64)

Letting the variables

eν(r) = e
∫
(2z(r)− 2

r )dr , (65)

and

e−λ = y(r). (66)

From Eq. (64), we get the following differential equation

(
1 + F ′

Fz

)
y′ + y

[
2z′

z
+ 2z − 6

r
+ 4

r2z
+ 2F ′′

Fz

]

= −2

z

(
8π�(r)

F
+ 1

r2

)
. (67)

In this illustration, the overhead solution is seeing to be a
Ricatti expression and made with the assistance of the line
element function λ held in form of variable y(r) given by (61)
and also alongwith the solution of � is obtained from (60)
and (62). The final firm of the solution is providing z which
can be taken through integration. Definitely, it becomes the
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solution of two functions z and � in context of gravity f (R),
the metric takes the formation [1,42].

ds2 = −e
∫ (

2z(r)− 2
r

)
dr dt2

+ z2(r)e

∫ (
2z(r)+ 4

r2 z(r)
+ 2F ′′

Fz(r)

)
dr

r6
(

− 2
∫ z(r)

(
F+8π�(r)r2

)
e

∫ (
2z(r)+ 4

r2 z(r)
+ 2F ′′

Fz(r)

)
dr

r8F
dr + C

)
dr2

+r2dθ2 + r2sin2θdφ2. (68)

where C is constant of integration.
Next, obtaining for physical variables

4π Pr
F

= z(r − 2m) + m
r − 1

r2

+ (1 − 2m
r )

F

(
f (R) − RF(R)

2(1 − 2m
r )

+ (z + 1

r
)F ′

)
,

(69)

4πμ

F
= m′

r2 − (1 − 2m
r )

2F(
f (R) − RF(R)

2(1 − 2m
r )

+ F ′′ + 2F ′

r
− F ′(m′

r − m
r2 )

(1 − 2m
r )

)
,

(70)

and

8π P⊥
F

=
(

1 − 2m

r

) (
z′ + z2 − z

r
+ 1

r2

)

+z

(
m

r2 − m′

r

)

+ 1

F

[
f (R) − RF(R)

2
+ F ′′(1 − 2m

r
)

+(1 − 2m

r
)(z + 1

r
)F ′ +

(
m

r2 − m′

r

)
F ′

]
. (71)

Afterwards, fulfills these conditions μ > 0 and μ > Pr , P⊥,
the progression is unvarying for prominent solutions to
remove the complexity in the gravitating system. Next, to
evade the nature of singularity for physical variables on the
boundary surface

∑
, the solution must satisfy the Darmois

junction conditions, by taking a vacumm solution solution in
the exterior region of the compact object.

5 Conclusions

The concept of complexity factor for the static anisotropic
gravitating has been present by Herrera [1]. This is very first
step towards the understanding of complexity of a gravitat-
ing source in general relativity using the Bondi approach. We
have found that in the frame of f (R) gravity, also the defini-
tion of complexity based on orthogonal splitting of the cur-

vature tensor. Current work explains the innovative thoughts
of the complexity of the system that frame with static spher-
ically symmetric anisotropic gravitating matter under f (R)

gravity. The purpose of f (R) gravity such a system is to see
wether dark energy components lessens the complexity of
the structure or enhance it.

We have investigated f (R) term agrees with an energy
density homogeneity and its isotropic pressure to diminish
the YT F scalar function. Our main objective is to estimate the
amount of complexity that appears in the YT F scalar function
with the effects of f (R). Present research discusses such
motives that play the vital behavior in sense of applications:

• The structure scalar YT F holds additions from the inho-
mogeneous energy density and the native anisotropy of
pressure, joined in a systematic order.

• The structure scalar YT F estimates the degree of the
“effective inertial mass” in the departure state for the
homogeneous and imperfect matter of the dark gravitat-
ing source, given by the inhomogeneity energy density
and the anisotropy of pressure under f (R) formalism.
The YT F includes the impacts of the electric charge in
case of charged matter contribution.

• The structure scalar also discuss the degeneracy of fluxes
alongwith the contributions of inhomogeneity energy
density and native anisotropic pressure in the presence
of usual non-static dissipative gravitating source. In this
case to remove the scalar function YT F is the essential
parameter for the constancy of the shear free case(see in
detail [21]).

• It ought to be seen that the complexity is much eminent
in prior frame, not just departure for the homogeneous
case, perfect fluid, but here two factors display the worth
role in Eq. (57) with f (R) notion and disappear indis-
tinguishably, get additionally for all arrangements where
the two factors in (57) cancel each other. The key role of
these factors to disappear the complexity of the system
configuration.

• It merits telling us that though commitment of anisotropy
of pressure to YT F is natural, the commitment of inho-
mogeneous energy density is not.

• Consequently, to present the some valuable results that
fulfilling the condition for disappearing of complexity.
As suggested previously, the aim was not to furnish
paradigms through particular celestial intrigue, but rather
simply show how such paradigms might be attain, with
examples.

• It is very stimulating to note that for f (R) = R Eqs. (14,
15, 28, 29, 30, 33, 35, 38, 37, 53, 56, 58, 62, 67, 68–70)
of the present paper reduce to Eqs. (10, 11, 28, 29, 30,
32, 34, 35, 36, 51, 54, 56, 61, 66, 67–69) Herrera Ref.
[1].
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The final form of the present work is designed for vanish-
ing of complexity factor, in assistance of exact solutions of
f (R) theory of gravity and also would like to confer in future
with other modified concepts, such as f (G) Gauss–Bonnet
gravity, f (T ), f (R, T ) and Rastall theory.
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