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Abstract In this paper, we investigate the complexity
factor for static cylindrical configuration with anisotropic
fluid distribution. We establish field equations, Tolman–
Opphenheimer–Volkoff equation, and mass function. We
also evaluate structure scalars using orthogonal splitting of
the Riemann tensor which leads to the complexity factor.
Finally, we deduce some results about stellar objects for van-
ishing complexity condition.

1 Introduction

A system is defined as the structure in which all the con-
stituents of the system are organized in a specific way and
slight disturbance generates complications in it. The combi-
nation of different factors which produce complications in
any system is called complexity. The phenomenon of com-
plexity has been discussed in many fields of science [1–11].
It varies from field to field and hence an appropriate defini-
tion of complexity that fulfils the requirement of all sectors
of science has not been attained yet.

The definition of complexity is introduced in the pioneer
work of Lopez-Ruiz et al. [7–9] via the terms, information
and entropy. Information can be a specific data set or knowl-
edge related to a certain object while entropy describes the
behavior of a system which is either organized or not. In a sys-
tem, there may exist many other basic factors through which
complexity of the system can be defined, thus it is not suffi-
cient to describe complexity only by the terms, information
and entropy. Lopez-Ruiz et al. [7] also introduced the idea
of disequilibrium to check complexity instead of these terms
and showed that it is more suitable to discuss complexity of
the system.

In physics, the complexity factor can be illustrated through
ideal systems such as isolated ideal gas and perfect crystal.
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The isolated ideal gas is completely disordered because it is
made of a system of random moving particles. All the parti-
cles equally participate and give maximum information about
the ideal gas. On the other hand, perfect crystal is entirely
arranged in a specific manner and a small amount of portion is
enough to describe the behavior of perfect crystal and hence
provides minimum information. These are the examples of
elementary models which are extreme in order and infor-
mation. In these models, the behavior of the system can be
illustrated without creating any complication, so they have
zero complexity. Similarly, disequilibrium would be maxi-
mum in the case of perfect crystal while for isolated ideal
gas, it would be zero.

The complexity factor is also important on astrophysical
scales for self-gravitating systems. These systems have vari-
ous characteristics such as energy density, pressure, stability,
mass-radius ratio and luminosity which have been studied
frequently. The phenomenon complexity has been examined
in literature [12–17] for neutron stars and white dwarfs by
using the concept of disequilibrium and information. These
terms include the probability distribution which is restated in
the form of energy density to investigate complexity for these
objects. However, energy density itself is not sufficient to
describe complexity because the main factor pressure com-
ponent of the energy-momentum tensor is missing which
plays an important role in the evolution of self-gravitating
systems.

Recently, a quite different way is introduced by Herrera
[18] to examine the complexity for astrophysical systems.
He involved both energy density and pressure to define the
complexity for the spherical self-gravitating system instead
of information and disequilibrium. In Herrera’s approach,
the complexity factor appears in the structure scalars formed
by orthogonal splitting of the Riemann tensor. He also used
active gravitational mass (or Tolman mass) of the fluid dis-
tribution which contains inhomogeneous energy density and
anisotropic pressure. The combination of these two terms is
summarized in a single scalar function (structure scalar) and
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is named as complexity factor. This factor vanishes if the
energy density is homogenous and pressures are isotropic
or the terms including inhomogeneous energy density and
anisotropic pressure that cancel the effect of each other. We
have extended the work of Herrera by adding the effect of
electromagnetic field [19] and found that complexity of the
system decreases in the presence of charge.

Generally, cylindrical systems have been used on dif-
ferent scales to examine the behavior of various physical
aspects. Particularly in astrophysics, the phenomenon like
gravitational collapse, its radiation, rotating celestial objects
and rotating fluids (that help to observe the beam of light
produced by stars) provide motivation to consider cylindri-
cal symmetry. According to Birkhoff’s theorem, spherically
symmetric spacetime is vacuum outside and no gravitational
waves are produced from spherical fluid collapse. For this
reason, one moves towards another simple symmetry, i.e.,
cylindrical geometry. Einstein and Rosen [20] found the solu-
tions for gravitational waves in the case of cylindrically sym-
metric star. Many astrophysical issues have been discussed
for cylindrically symmetric distribution. Herrera and Santos
[21] analyzed the matching conditions for collapsing cylin-
drical fluid distributions. They concluded that the radial pres-
sure is non-zero for this cylinder and the time dependent part
of radial pressure is proportional to collapsing fluid. Her-
rera et al. [22] observed the matching conditions and reg-
ularity in equations for cylindrical system and showed that
incompressible fluid is obtained for conformally flat solu-
tions. Sharif and Yousaf [23] analyzed the expansion-free
condition for cylindrically symmetric distribution including
anisotropic pressure and concluded that some solutions sat-
isfy the Darmois junction condition and some solutions show
the existence of thin-shell on the boundary.

A wide range of relativistic phenomena have been con-
sidered for cylindrical configuration. Sharif and Azam [24]
constructed thin-shell wormhole for the cylindrically sym-
metric black string and concluded that for specific val-
ues of different parameters static solutions exist. The same
authors [25] studied the instability of cylindrical system with
anisotropic fluid distribution and expansion-free condition.
They found that stability of the fluid distribution depends
upon anisotropic pressure and inhomogeneous energy den-
sity. Sharif and Bhatti [26] investigated the instability of
charged cylindrical system with expansion-free anisotropic
geometry and found that stability of the cylinder is controlled
by energy density, electric charge and principal stresses of the
fluid. Sharif and Sadiq [27] examined cylindrically symmet-
ric distribution with anisotropic fluid for polytropic equation
of state and deduced that among two polytropic models, only
one is physically applicable.

In this paper, we consider static cylindrical configuration
to discuss the complexity factor. This paper has the following
format. In Sect . 2, we formulate some basic equations related

to stellar objects while Sect. 3 defines the structure scalars. In
Sect. 4, we define the complexity factor and also discuss some
astrophysical systems with vanishing complexity. Section 5
provides a brief summary of our results.

2 Basic equations of stellar system

Here, we discuss the basic equations that are required to
examine the stellar structure. We consider static cylindrically
symmetric interior bounded by hypersurface � as

ds2 = −X2dt2 + Y 2dr2 + Z2dθ2 + α2Z2dz2, (1)

where X,Y, Z are functions of r and α shows the arbitrary
constant. For anisotropic fluid distribution, we consider the
energy-momentum tensor in the following form

T λ
γ = μuλuγ − Phλ

γ + �λ
γ , (2)

where μ represents the energy density and

�λ
γ = �

(
sλsγ + 1

3
hλ

γ

)
, P = 1

3
(2P⊥ + Pr ),

� = (Pr − P⊥), hλ
γ = δλ

γ − uλuγ . (3)

Here Pr , P⊥ are the only two principal stresses in the fluid
distribution. However, for general cylindrically symmetric
distribution there are three principal stresses as mentioned in
[22]. Defining the four-velocity and four-vector as

ua = X−1δa0 , sa = Y−1δa1 , (4)

with the properties

uaua = 1, sasa = −1, saua = 0. (5)

The Einstein field equations yield

8πμ = 2Z ′′

Y 2Z
− 2Y ′Z ′

Y 3Z
+ Z ′2

Z2Y 2 , (6)

8π Pr = − Z ′2

Y 2Z2 − 2X ′Z ′

XY 2Z
, (7)

8π P⊥ = − X ′′

XY 2 − Z ′′

Y 2Z
+ X ′Y ′

XY 3 − X ′Z ′

XY 2Z
+ Y ′Z ′

Y 3Z
, (8)

where prime shows derivative with respect to r . The corre-
sponding exterior geometry is considered as [28]

ds2 = 2M

R
dν2 − 2dRdν + R2(dθ2 + α2dz2), (9)

where M denotes the total mass in the exterior. On the hyper-
surface �, the necessary and sufficient conditions for the
smooth matching of two metrics (1) and (9) are given in
[28]. We take Z(r) = r as our Schwarzschild coordinate
[27], hence the field equations become

8πμ = 1

r2Y 2 − 2Y ′

rY 3 , (10)

123



Eur. Phys. J. C (2018) 78 :850 Page 3 of 7 850

8π Pr = −
(

2X ′

r XY 2 + 1

r2Y 2

)
, (11)

8π P⊥ = − X ′′

XY 2 + Y ′X ′

XY 3 + Y ′

rY 3 − X ′

XY 2r
. (12)

Using the conservation law, the following form of hydrostatic
equilibrium equation is obtained

P ′
r = − X ′

X
(μ + Pr ) + 2

r
(P⊥ − Pr ). (13)

This is the generalized form of Tolman–Opphenheimer–
Volkoff (TOV) equation for anisotropic fluid.

Next, we evaluate two different forms of mass named as
C-energy and Tolman mass. The C-energy formula is defined
as [29]

E = 1

8

(
1 − 1

l2
∇ρr∇ρr

)
, (14)

and, in our case, it yields

m(r) ∼= Ẽ = l E = − rα

2Y 2

(
1 − Y 2

4

)
. (15)

Simplifying this equation by substituting Eq. (10), we obtain

m(r) = αr

8
− 4πα

∫ r

0
μr̄2dr̄ . (16)

From Eqs. (10)–(12) and (15), we have the following expres-
sion of m

m = rα

8
+ 8π(μ − Pr + P⊥) − 1

Y 2

(
rα

2
+ 1

r2

)

+ 1

XY 2

(
X ′′ − X ′Y ′

Y
− X ′

r
− X

r2 + XY ′

rY

)
. (17)

This expression can be simplified by using the Weyl tensor.
For the cylindrical system, the Weyl tensor has two parts one
is magnetic part and the other is electric part. For the sake of
simplicity, we use the following electric part

Eγ λ = Cγαλδu
αuδ, (18)

where

Cβακγ = (gβαγλgκγρδ − ηβαγληκγρδ)u
αuρEβδ, (19)

with gκγαβ = gκαgγβ − gκβgγα and ηαβμν shows the Levi–
Civita tensor. Another form of Eγ λ is

Eγ λ = E
(

1

3
hγ λ + sγ sλ

)
, (20)

with

E = X ′′ − X ′Y ′

Y
− X ′

r
− X

r2 + XY ′

rY
, (21)

and its non-vanishing components are

E11 = 1

3X
E, E22 = − r2

6XY 2 E ′ E33 = − α2r2

6XY 2 E .

We would like to mention here that for the considered
fluid distribution, the electric Weyl tensor is defined in terms
of a single scalar function E as given in Eq. (20) while in
the general case, it is described by two scalar functions [30].
Using Eq. (21) in (17), we obtain

m = 8π(μ − Pr + P⊥) + rα

8
− 1

Y 2

(
rα

2
+ 1

r2

)
+ E

XY 2 .

(22)

From the above equation and Eq. (16), it follows that

E = 4παXY 2

3

∫ r

0
r̄3μ

′
dr̄ − 4παXY 2r3μ

3

+αr X

2
+ X

r2 − 8πXY 2μ + 8πXY 2(Pr − P⊥). (23)

Inserting this value in Eq. (22), the mass function yields

m = rα

8
+ 4πα

3

∫ r

0
r̄3μ

′
dr̄ − 4παμr3

3
. (24)

The expression of E (23) contains inhomogeneous energy
density as well as anisotropic pressure and the corresponding
mass function (24) only has inhomogeneous energy density.
Using Eq. (15) in (11), it follows that

X ′

X
= −16πr Pr + 2π Prr2α

m
− 1

2r
. (25)

Substituting Eq. (25) in (13), the TOV equation becomes

P ′
r =

[
2π Prr

(
8r − rα

m

)
+ 1

2r

]
(μ + Pr ) + 2

r
(P⊥ − Pr ).

(26)

Tolman [31] defined another definition of energy for static
cylindrical system given by

mT = πα

∫ r�

0
XYr2

(
T 0

0 − T 1
1 − 2T 2

2

)
dr, (27)

and within the cylindrical configuration of radius r , the total
energy for the fluid is

mT = πα

∫ r

0
XY r̄2

(
T 0

0 − T 1
1 − 2T 2

2

)
dr̄ . (28)

Using Eqs. (10)–(12) in (28), it becomes [32,33]

mT = −2πα
X ′r2

Y
. (29)

Substituting the value of X ′ from Eq. (25) into (29), we obtain

mT = 32π2αr3X Pr
Y

− 4π2α2r4X Pr
m

+ παr X

Y
. (30)

Equation (29) may also be termed as active gravitational
mass, i.e., Tolman mass and this mass can also be expressed
as
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mT =
(

r

r�

)3

+ 2παr3

×
∫ r�

r

1

r̄Y

(
X ′′ + 2X ′

r̄
− X ′Y ′

Y
− 6X ′

r̄Y 2 − 6X

r̄2Y 2 + 3X

2r̄2

)
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

απ r̄3Y 2 − 4παr̄3 + 16 + 8π r̄2(E + 4π�)
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

48πX ′r̄
X − 128π2X ′′r̄2

X + 128π2X ′Y ′r̄2

X − 256π2X ′r̄
X

dr̄ . (31)

Putting the value of E from Eq. (23) in (31), it becomes

mT =
(

r

r�

)3

+ 2παr3
∫ r�

r

1

r̄Y

(
X ′′ + 2X ′

r̄
− X ′Y ′

Y
− 6X ′

r̄Y 2 − 6X

r̄2Y 2 + 3X

2r̄2

)
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

απ r̄3Y 2 − 4παr̄3 + 16 + 8π r̄2( 4παdr̄ XY 2

3

∫ r
0 r̄3μ

′
)
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

+αr X
2 + X

r2 − 8πXY 2μ + 8πXY 2(Pr − P⊥) + 4π�)
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

− 4παXY 2r3μ
3 + 48πX ′r̄

X − 128π2X ′′r̄2

X + 128π2X ′Y ′r̄2

X − 256π2X ′r̄
X

dr̄ . (32)

This equation shows the presence of inhomogeneous energy
density and anisotropic pressure in the Tolman mass.

3 Structure scalars

Bel [34] proposed orthogonal splitting of the Riemann ten-
sor. Herrera et al. [35] established the structure scalars based
on this splitting. These scalars describe the fundamental
characteristics of fluid distribution including inhomogeneous
energy density, active gravitational mass and anisotropic
pressure. With the help of these scalars, we are able to find
the complexity factor for self-gravitating systems. The ten-
sors used for the orthogonal splitting of the Riemann tensor
are defined as [34–36]

Yγ λ = Rγαλδu
αuδ, (33)

Xγ λ = ∗R∗
γαλδu

αuδ = 1

2
ηεν

γαR
∗
ενλδu

αuδ, (34)

where R∗
αβγ δ = 1

2ηενγ δRεν
αβ while the trace-free (YT F , XT F )

and trace (YT , XT )parts of these tensors are related as [35,36]

Yγ λ = YT F

(
1

3
hγ λ + sγ sλ

)
+ 1

3
YT hγ λ, (35)

Xγ λ = XT F

(
1

3
hγ λ + sγ sλ

)
+ 1

3
XT hγ λ. (36)

For our fluid distribution, there is only one trace-free part in
the tensors Xγ λ and Yγ λ while in the general (cylindrically

symmetric) case, there are two trace-free parts [30]. With the
help of field equations, the structure scalars are obtained as
[36]

XT = 8πμ, (37)

XT F = 4π� − E . (38)

Inserting the value of E from Eq. (23) into (38), we have

XT F = 4π�(1 + 2XY 2) + 4παμXY 2r3

3

−4παXY 2

3

∫ r

0
r̄3μ′dr̄ − αr X

2
− X

r2 + 8πμXY 2.

(39)

The scalars XT and XT F control the energy density and inho-
mogeneous energy density, respectively [35].

Similarly, the scalarsYT andYT F have the following forms

YT = 4π(μ − 2� + 3Pr ), (40)

YT F = 4π� + E . (41)

Using Eq. (23) in (41), we obtain

YT F = 4π�(1 + 2XY 2) − 4παμXY 2r3

3

+4παXY 2

3

∫ r

0
r̄3μ′dr̄ + αr X

2
+ X

r2 − 8πμXY 2.

(42)
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The anisotropic pressure is obtained by adding Eqs. (38) and
(41)

XT F + YT F = 8π�. (43)

Substituting the value of YT F from Eq. (41) into (31), we
have

mT =
(

r

r�

)3

+ 2παr3
∫ r�

r

1

r̄Y

(
X ′′ + 2X ′

r̄
− X ′Y ′

Y
− 6X ′

r̄Y 2 − 6X

r̄2Y 2 + 3X

2r̄2

)
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

απ r̄3Y 2 − 4παr̄3 + 16 + 8π r̄2(YT F )
dr̄

+12π2α2r3
∫ r�

r

(2X ′r̄ + X)

48πX ′r̄
X − 128π2X ′′r̄2

X + 128π2X ′Y ′r̄2

X − 256π2X ′r̄
X

dr̄ . (44)

The comparison of Eqs. (44) and (31) yields

∫ r�

r

(2X ′r̄ + X)

8π r̄2(E + 4π�)
dr̄ =

∫ r�

r

(2X ′r̄ + X)

8π r̄2(YT F )
dr̄ . (45)

This indicates that YT F is related to the effects of inhomo-
geneous energy density and pressure anisotropy of the fluid
configuration or in other wordsYT F associate these two quan-
tities with the Tolman mass. Equation (27) shows the Tolman
mass which can be written in structure scalar form as

mT = α

4

∫ r

0
XY r̄2YT dr̄ . (46)

4 The complexity factor

There are many terms producing complexity in any stellar
system like inhomogeneous energy density, viscosity, heat
dissipation, electromagnetic field and anisotropic pressure.
Negligible complexity has been obtained by considering
the simplest system with homogenous energy density and
isotropic pressure. However, we consider inhomogeneous
energy density plus anisotropic pressure that are responsible
to produce complexity in cylindrical system in the absence
of other factors. The scalar YT F (42) consists of those terms
which induce complexity in the system and for this reason,
the complexity factor can be associated with YT F . However,
in general for non-static cylindrical system, there are two
trace-free parts of tensor Yγ λ [30]. Consequently, in this case
the combination of these two trace-free parts can define the
complexity factor. Furthermore, we discuss the stellar con-
figuration with vanishing complexity condition. For this pur-
pose, we replace YT F = 0 and obtain

� =
4παμXY 2r3

3 − 4παXY 2

3

∫ r
0 r̄3μ′dr̄ − αr X

2 − X
r2 + 8πμXY 2

4π(1 + 2XY 2)
.

(47)

The set of three ordinary differential equations is obtained
from the field equations with five unknowns X,Y, μ, Pr , P⊥.
To find the unique solution of such system, we use the con-
straint YT F = 0. But still we need another constraint to
obtain the unique solution which we fix by using some spe-
cific model of self-gravitating system.

Here, we consider two models among various stellar struc-
tures models. In the first one, we fix the energy density and
radial pressure while in the second the polytropic equation
of state is used.

4.1 The first model

In this model, we use the expression of variable energy den-
sity and radial pressure proposed by Gokhroo and Mehra
[37] that describe the behavior of stellar object. The energy
density has the following form

μ = μ0

(
1 − Kr2

r2
�

)
, (48)

with K = (0, 1) and the radial pressure is defined as

Pr = CY−1

(
1 − r2

r2
�

)n

, n ≥ 1, (49)

where C shows the central pressure. Using the value of μ

from Eq. (48) in (16), we obtain

m(r) = α̃r3

(
−1

3
+ Kr2

5r2
�

)
+ rα

8
, (50)

and substituting this value in (15), we have

Y =
√√√√√

α

2α̃r2

(
− 1

3 + Kr2

5r2
�

) , (51)

where α̃ = 4παμ0. Putting the value of Y from Eq. (51) in
(49), we obtain

Pr =
C

(
1 − r2

r2
�

)n

√
α

2α̃r2

(
− 1

3 +Kr2

5r2
�

) . (52)

123



850 Page 6 of 7 Eur. Phys. J. C (2018) 78 :850

Using Eq. (50) in (25) and after integration, it follows that

X = e

∫
(−16πr Pr+ 2π Pr r2α

α̃r3

(
− 1

3 +Kr2

5r2
�

)
+ rα

8

− 1
2r )dr

. (53)

Now, we form the vanishing complexity condition given in
Eq. (47) and obtain the value of P⊥ as

P⊥ = Pr −
4παμXY 2r3

3 − 4παXY 2

3

∫ r
0 r̄3μ′dr̄ − αr X

2 − X
r2 + 8πμXY 2

4π(1 + 2XY 2)
. (54)

Hence, we find the unique solution of stellar system by find-
ing five unknowns given in (48), (51)–(54) that describe the
energy density, Y , radial pressure, X and tangential pressure,
respectively.

4.2 The second model

The polytropic equation of state plays an important role in
the self-gravitating systems. In literature [39,40], polytropes
have been studied with anisotropic fluid distribution to exam-
ine the behavior of stellar objects. Here, we consider two
forms of polytropic equation of state. In the first form, the
polytropic equation of state is defined as

Pr = Kμρ = Kμ1+1/n, (55)

where K is known as polytropic constant, ρ is known as poly-
tropic exponent and n is known as polytropic index. Further,
we convert the TOV Eq. (13) into dimensionless form by
introducing the following dimensionless variables

σ = Prc
μc

, r = ς

A
, A2 = 4πμc

σ(n + 1)
, (56)

v(ς) = A3m(r)

4πμc
, ϕn = μ

μc
, (57)

where subscript c represents that the term is determined at the
center. On the boundary, r = r� (ς = ς�) and ϕ(ς�) = 0.
Using Eqs. (25) and (55)–(57) in (13), we obtain

dϕ

dς
− (1 + α̂ϕ)

(n + 1)

[
16πμcϕ

n+1

A2

−ας2ϕn+1

2v
+ 1

2ςα̂

]
− 2�

(n + 1)ςα̂μcϕn
= 0. (58)

The dimensionless form of Eq. (16) has the following form

dv

dς
= αA2

32πμc
− ας2ϕn . (59)

The three unknown functions ϕ,�, v, appear in (58) and
(59). These are two ordinary differential equations and for the
unique solution of these equations, we need one additional
condition. For this reason, we use dimensionless form of
vanishing complexity condition (47) given by

d�

dς
A − �

(
X ′Y 2 + 2XYY ′) [

1

XY 2 − 2

(1 + 2XY 2)

]

= XY 2

4π(1 + 2XY 2)

[
dϕ

dς
8πnϕn−1μc A + 4παϕnμcς

2

A2

− α

2Y 2 + αY ′ς
AY 3 + 2A3

Y 2ς3 + 2Y ′A2

Y 3ς2

]
. (60)

Now, we have a system of three Eqs. (58)–(60) having three
unknown functions ϕ,�, v. Using suitable conditions, this
system has a unique solution for any value of σ and n.
Physically, this system describes stellar configuration includ-
ing vanishing complexity condition and satisfies polytropic
equation of state.

The second form of polytropic equation of state is con-
sidered as Pr = Kμ

ρ
b = Kμ

1+1/n
b , where μb shows the

baryonic mass density. Following the same procedure as in
the first case, we have

dϕ

dς
− (1 + α̂ϕ)

(n + 1)

[
16πμbϕ

n+1

A2 − ας2ϕn+1

2v
+ 1

2ςα̂

]

− 2�

(n + 1)ςα̂μbϕn
= 0. (61)

d�

dς
A − �

(
X ′Y 2 + 2XYY ′) [

1

XY 2 − 2

(1 + 2XY 2)

]

= XY 2

4π(1 + 2XY 2)

⎡
⎣4παr2

⎛
⎝ϕn

bμbc + Kϕn+1
b μ

1+ 1
n

bc

γ − 1

⎞
⎠

− α

2Y 2 + αY ′ς
AY 3 + 2A3

Y 2ς3 + 2Y ′A2

Y 3ς2

⎤
⎦ , (62)

with

ϕn
b = μb

μbc
,

while Eq. (59) remains the same. Again, the set of differential
Eqs. [(59), (61), (62)] define a stellar object with this equation
of state and vanishing complexity factor.

5 Conclusions

The study of astrophysical objects is a captivating phe-
nomenon for researchers which motivates them to explore
physical properties of these objects. The physical proper-
ties like energy density, anisotropy, stability/instability and
luminosity of stellar structure have widely been studied in
literature. However, for compact objects, the phenomenon
of complexity is not discussed in detail. In this paper, the
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complexity factor is studied for static cylindrical astrophysi-
cal system. We have also investigated vanishing complexity
condition using some examples. We have established the field
equations and calculated the mass function through two dif-
ferent formalisms namely, C-energy and Tolman mass. We
have studied structure scalars and found the complexity factor
via these scalars. The complexity factor is given in Eq. (42)
which depends upon the inhomogeneous energy density as
well as anisotropic pressure implying that these terms pro-
duce complexity in the system.

We have also examined the vanishing complexity condi-
tion (47) by using YT F = 0 for two types of self-gravitating
system. In the first case, we have discussed stellar cylindri-
cal objects with specific energy density and radial pressure
introduced by Gokhroo and Mehra [37]. Equations (48), (52)
and (54) have been obtained for these objects which interpret
the behavior of energy density, radial pressure and tangential
pressure, respectively. Next, we have studied the cylindri-
cal stellar configuration satisfying the polytropic equation of
state and found a set of differential equations namely, TOV
equation, mass equation and vanishing complexity condition
in the form of dimensionless variables. With the vanishing
complexity condition, this set of differential equations pro-
vide the solution for some suitable initial conditions for better
understanding of the system.

Finally, we have compared the complexity factor for cylin-
drical system with the spherical one [18]. The comparison
between both the expressions shows that there are some addi-
tional terms related to energy density in cylindrical complex-
ity factor which are not present in spherical one.
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