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We study circuit complexity for conformal field theory states in an arbitrary number of dimensions. Our
circuits start from a primary state and move along a unitary representation of the Lorentzian conformal
group. Different choices of distance functions can be understood in terms of the geometry of coadjoint
orbits of the conformal group. We explicitly relate our circuits to timelike geodesics in anti–de Sitter space
and the complexity metric to distances between these geodesics. We extend our method to circuits in other
symmetry groups using a group theoretic generalization of the notion of coherent states.
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Introduction.—The peculiarity of quantum systems is
rooted in their entanglement pattern. Hence, there is
increasing interest in studying measures characterizing
entanglement in quantum states. The most famous of these
measures is the entanglement entropy, which estimates the
knowledge a given subsystem has about the full quantum
state. In recent years, it became apparent that entanglement
entropy is not enough to capture the full information about
quantum correlations in a state. As a consequence, a new
measure from quantum information became prominent in
studies of quantum states. This measure, known as “quan-
tum computational complexity” (QCC), estimates how hard
it is to construct a given state from a set of elementary
operations [1–3]. QCC is also of clear interest in recent
efforts to construct quantum computers.
QCC has attracted a lot of attention in high energy theory

due to its proposed relation to black holes [4,5]. This
relation was explicitly formulated within the holographic
(or AdS/CFT) correspondence [6]. It turns out that the
growth of black hole interiors behaves in a very similar way
to the growth of complexity during Hamiltonian evolution
in quantum systems, see, e.g., [7–13]. These ideas suggest a
promising avenue to address puzzles related to black hole
spacetimes and their interior geometry.
However, the lack of a complete framework for studying

QCC within quantum field theory (QFT) has been a stum-
bling block toward rigorously establishing the connection
between black hole interiors and QCC. Significant progress
wasmade for free andweakly coupledQFTs [14–20] and for

strongly coupled two-dimensional conformal field theories
(CFTs) [21–25]. Yet, no results exist at present for circuit
complexity in CFTs in d > 2 and, further, its precise
connection with holography has not been established in
any dimension. The importance of studying complexity in
d > 2 becomes evident when noting that holographic
complexity behaves very differently in d ¼ 2 and in
d > 2, for example, when studying the complexity of
formation of thermofield double states [26] or its sensitivity
to defects [27,28]. The goal of this Letter is to bridge these
gaps by studying complexity of CFTs in d > 2 and further
by establishing a rigorous connection between complexity
and geometry in holography.
We employ the symmetry generators to construct circuits

in unitary representations of the Lorentzian conformal group
and present explicit results for state-dependent distance
functions along these circuits. Our circuits live in a phase
space that is a coadjoint orbit of the conformal group and the
various cost functions take the form of simple geometric
notions on these orbits. Using symmetry generators to
construct circuits restricts the circuits to move in the space
of generalized coherent states. We use this fact to generalize
our results to general symmetry groups. We illustrate our
methods by focusing on circuits starting from a scalar
primary state whose coadjoint orbit can be identified with
the coset space SOðd; 2Þ=½SOð2Þ × SOðdÞ�, but our tech-
niques are also applicable to more general spinning states.
We derive bounds on the complexity and its rate of change.
We explicitly relate our unitary circuits to timelike geo-

desics in anti–de Sitter spacetimes. We find that the line
element in the complexity metric admits a very simple
interpretation as the average of the minimal and maximal
squared distances between two nearby geodesics. This
provides a novel bulk description for complexity, which
is rigorously derived from the CFTand opens new possibil-
ities for testing the holographic complexity proposals.
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This Letter is organized as follows: In Sec. II, we
introduce the relevant complexity distance functions. In
Sec. III, we present the result for the complexity of CFT
states in general dimensions. In Secs. IVand V, we connect
our results to the notions of coadjoint orbits and generalized
coherent states. In Sec. VI, we connect our results to
holography. We conclude in Sec. VII with a summary and
outlook.
Preliminaries.—Explicitly, QCC is defined as the mini-

mal number of gates required to reach a desired “target”
state, starting from a (typically simpler) “reference” state.
For several applications, it is advantageous to focus on
continuous notions of complexity rather than a discrete gate
counting. Such ideas were put forward by Nielsen [29–31]
who translated the problem of studying minimal gate
complexity to that of studying geodesics on the space of
unitary transformations. In a very similar way, we can study
notions of continuous complexity using geodesics through
the space of quantum states.
Continuous complexity is defined using a cost function

F ðσÞ, with circuit parameter σ. The complexity is the
minimal cost among all possible trajectories moving from
the reference state to the target state: C≡min

R
dσF ðσÞ.

Past attempts to study state complexity in CFTs (e.g., [21])
focused on two cost functions: the F 1 cost function and the
Fubini-Study (FS) norm defined as

F 1ðσÞdσ ¼ jhψ j∂σψijdσ ¼ jhψRjU†dUjψRij; ð1aÞ

F FSðσÞdσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψRjdU†dUjψRi − jhψRjU†dUjψRij2

q
;

ð1bÞ

where jψðσÞi≡UðσÞjψRi are the states along the unitary
circuit, jψRi is the reference state, and ds2FS ¼ F 2

FSðσÞdσ2
is the well known FS metric. Our analysis in the next
section demonstrates that the F 1 cost function assigns zero
cost to certain gates and has, therefore, disadvantages as a
complexity measure.
The FS metric along straight-line trajectories eitHjψRi is

proportional to the variance ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH2i − jhHij2

p
. We

can interpret H as the Hamiltonian and t as the time. This
variance was shown in [32] to bound the time required to
reach an orthogonal state τorth ≥ πℏ=ð2ΔEÞ on compact
spaces. Inspired by these bounds on orthogonality time,
Lloyd conjectured a bound on the rate of computation [33]
(see also [8]). Unlike [32], our state manifold is non-
compact and our states never become orthogonal.
Nonetheless, we will derive bounds on the complexity
and its rate of change by other means. Deriving bounds on
the state overlap in our setup is an interesting question for
future study.
Complexity in general dimensions.—Consider the

Euclidean conformal algebra in d ≥ 2 with D;Pμ; Kμ,
and Lμν as the Euclidean conformal generators (used to

construct unitary representations of the Lorentzian con-
formal group; see Supplemental Material, Sec. A [34])
satisfying

D† ¼ D; K†
μ ¼ Pμ; L†

μν ¼ −Lμν; ð2Þ
in radial quantization.
As the reference state, we consider a scalar primary

state jψRi ¼ jΔi satisfying DjΔi ¼ ΔjΔi and KμjΔi ¼
LμνjΔi ¼ 0 and focus on circuits generated by the unitary

UðσÞ≡ eiαðσÞ·PeiγDðσÞD
�Y

μ<ν

eiλμνðσÞLμν

�
eiβðσÞ·K; ð3Þ

with σ as a circuit parameter and αμ, βμ, γD, and λμν a priori
complex parameters, further constrained by the restriction
that UðσÞ be unitary. The circuits take the form jαðσÞi≡
UðσÞjΔi≡N ðσÞeiαðσÞ·PjΔi, where N ðσÞ≡ exp½iγDðσÞΔ�
is a normalization factor and γDðσÞ≡ γReD ðσÞ þ iγImD ðσÞ,
with Re and Im indicating the real and imaginary part.
Unitarity of UðσÞ implies γImD ðσÞ ¼ − 1

2
logAðα; α�Þ (see

Supplemental Material, Sec. B [34]), where

Aðα; α�Þ≡ 1 − 2α · α� þ α2α�2 > 0; ð4Þ

and requiring a positive spectrum for the Hamiltonian
D along the circuit implies α� · α < 1 (equivalently
α2α�2 < 1).
Substituting jαðσÞi into the cost functions (1a) and (1b)

and using the expectation values of fPμ; Kμ; KμPνg (see
[34], Sec. B), we find for the F 1 cost function

F 1

Δ
¼

���� _α · α� − _α� · αþ α2ð _α� · α�Þ − α�2ð _α · αÞ
Aðα; α�Þ þ i_γReD

����;
ð5Þ

while for the FS metric we obtain

ds2FS
dσ2

¼ 2Δ
�
_α · _α� − 2j _α · αj2

Aðα; α�Þ þ 2
j _α · α� − α�2α · _αj2

Aðα; α�Þ2
�
: ð6Þ

The FS metric (6) is a positive-definite Einstein-Kähler
metric on the complex manifold of states with d complex
coordinates α bounded inside the domain (4). It satisfies
ds2FS ¼ ∂α∂α�Kðα; α�Þdαdα�, where the associated Kähler
potential is defined as Kðα; α�Þ ¼ −Δ logAðα; α�Þ.
Denoting collectively the indices of α and α� by capital
Latin letters, one finds that RAB ¼ −ð2d=ΔÞgAB and R ¼
−ð4d2=ΔÞ and that all sectional curvatures are negative.
This means that geodesics will deviate from each other.
In fact, (6) is a natural metric on the following quotient

space of the conformal group:

M ¼ SOðd; 2Þ
SOð2Þ × SOðdÞ ; ð7Þ

PHYSICAL REVIEW LETTERS 128, 051601 (2022)

051601-2



which can also be identified with the space of timelike
geodesics in AdSdþ1 [46,47], see Sec. VI. This is similar to
the relation between the metric on kinematic space and
spacelike geodesics in AdSdþ1, [48–51] where the relevant
orbit is SOðd; 2Þ=SOð1; 1Þ × SOð1; d − 1Þ [52]. While
some of the above observations are well known in the
context of geometry of Lie groups [53,54], here they find a
novel role in the context of circuit complexity.
Since the coset space (7) is a negatively curved sym-

metric space, its geodesics (using the FS-metric) passing
through jψRi take the form [55]

jψðσÞi ¼ exp ½iσðα̃μPμ þ α̃�μKμÞ�jψRi; ð8Þ

and do not reconnect; i.e., (7) has no conjugate points [54].
Here, we parametrized our geodesics in terms of the
straight-line trajectory parameter α̃ rather than α.
Explicitly, in terms of the α parametrization, the complexity
of a target state jαðσ ¼ 1Þi≡ jαTi is

C½α̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δα̃� · α̃

p
;

2α̃ · α̃� ¼ ½ðtanh−1ΩS
TÞ2 þ ðtanh−1ΩA

TÞ2�; ð9Þ

where Ω�
T ≡ ΩS

T � ΩA
T ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2αT · α�T � 2jα2T j
p

(see
Supplemental Material, Secs. C and D [34]). Earlier, we
chose to parametrize the states with αðσÞ rather than α̃ since
this facilitates the evaluation of correlation functions in the
state and therefore provides its more natural characteriza-
tion. We will see later that the relation to holography is also
done using the parameter α. The complexity (9) can be
bounded by employing the inequalities around (4)

Δ
ET þ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðET − ΔÞ

p
≤ C½αT � ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET − Δ

p
; ð10Þ

where ET ≡ hαT jDjαTi ¼ Δð1 − α2Tα
�2
T Þ=AðαT; α�TÞ is the

energy of the target state in radial quantization (see
[34], Sec. E).
A substantial difference between the F 1 cost function

and the FS metric is that the former depends on γReD , which
induces an overall phase in the states through which our
circuits pass. In fact, the F 1 cost function (5) without
absolute values vanishes on shell except for its part
associated with the overall phase γReD and is simply propor-
tional to the Berry gauge field, cf. [22,56,57].
We close by observing that the FS distance along time

evolved states eiτDjα0i satisfies a Lloyd-like bound [33]

dsFS
dτ

≤
Effiffiffiffi
Δ

p ≤
ffiffiffiffiffiffiffiffiffiffiffi
2

d − 2

r
E; ð11Þ

where E≡ hα0jDjα0i is the energy, jα0i is an arbit-
rary initial state, and we used the unitarity bound Δ ≥
d=2 − 1 [58].

We compare our results to the existing literature for
d ¼ 2 CFTs in the Supplemental Material [34], Sec. F. In
that case, holomorphic factorization allows us to also treat
spinning states ([34], Sec. G).
Geometric action and coadjoint orbits.—Our results for

the cost functions (5) and (6) can be understood in terms
of the geometry of coadjoint orbits, see, e.g., [59,60]. A
similar connection was pointed out in two dimensions
in [21,22].
Let us start by briefly describing the coadjoint orbit

method in representation theory. Consider a Lie group G
with Lie algebra g, a dual space g� consisting of linear maps
on g, and a pairing h·; ·i between the Lie algebra and dual
space. For matrix groups, the adjoint action of u ∈ G on
X ∈ g is defined as AduðXÞ ¼ uXu−1. At the level of the
algebra, the adjoint action is simply the commutator
adYðXÞ ¼ ½Y; X�, where X; Y ∈ g. The Maurer-Cartan
(MC) form on the full group is Θ≡ u−1du, where u ∈ G
and it satisfies dΘ ¼ −Θ ∧ Θ.
The coadjoint action on the dual space is defined

implicitly by

hAd�uξ; Xi ¼ hξ;Adu−1Xi; ξ ∈ g�; X ∈ g; u ∈ G;

ð12Þ

from which one can build the coadjoint orbit Oλ ≡
fAd�uλju ∈ Gg ⊂ g� of a given dual algebra element
λ ∈ g�. Oλ can be identified with the coset space G=Hλ,
where the subgroup Hλ ¼ StabðλÞ≡ fu ∈ GjAd�uλ ¼ λg is
the stabilizer and the corresponding algebra is hλ ≡ stabðλÞ.
Each coadjoint orbit corresponds to a symplectic mani-

fold with a local presymplectic form Aλ and the Kirillov-
Kostant symplectic form ωλ defined as

Aλ ¼ hλ;Θi; ωλ ¼ hλ; dΘi: ð13Þ

The geometric action associated with the coadjoint orbit is
Sλ ¼

R
Aλ [61,62].

The symplectic form ωλ is compatible with a complex
structure Jλ satisfying J2λ ¼ −1 if ωλðJλx; JλyÞ ¼ ωλðx; yÞ.
In this case it is possible to define a Kähler metric
ds2G=Hλ

ðx; yÞ ¼ ωλðx; JλyÞ on the coadjoint orbit Oλ.
In the Supplemental Material [34], Sec. H, we apply the

above definitions in the fundamental (matrix) representa-
tion of the conformal algebra soðd; 2Þ with representative λ
taken to be proportional to the dilatation matrix with
stabilizer group hλ ¼ soð2Þ × soðdÞ and orbit correspond-
ing to the quotient space G=Hλ from Eq. (7). This yields an
agreement with Eqs. (5) and (6), i.e.,

F 1dσ ¼ jAλj; ds2FS ¼ ds2G=Hλ
: ð14Þ

As alluded to above, Aλ can also be interpreted as a Berry
gauge field, and the Berry curvature is simply the
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symplectic form ωλ. Circuits starting from spinning pri-
mary states in d > 2 amount to a different choice of
representative to match with the relevant reduced stabilizer
group.
Coherent state generalization.—The equivalence of the

FS metric and the F 1 cost function with their geometric
counterparts on the coadjoint orbit is also valid within
infinite-dimensional Hilbert spaces obtained via geometric
quantization of the orbits of arbitrary Lie groups
[21,25,63]. This can be understood using a group theo-
retical generalization of the notion of coherent states, see,
e.g., [64–67]. The existence of these states is intrinsically
connected to the representation theory of the symmetry in
question. In this section, we explain how the coadjoint orbit
perspective leads to the complexity functionals of (5) and
(6) for general Lie groups.
As before, we consider some real Lie group G with Lie

algebra g. The corresponding complex algebra admits a
decomposition gC ¼ nþ þ hC þ n− with a real structure (a
dagger) that maps hC to itself and nþ to n−. For a detailed
account of this decomposition, see [34], Sec. I. The
generators of the real Lie algebra are anti-Hermitian. We
denote the real subalgebra of hC by h and its associated Lie
group by H. We also assume that ½nþ;nþ� ⊂ nþ and
similar for n− and that ½hC;n�� ⊂ n�. We take a basis
of raising operators Eα for nþ and lowering operators E−α
for n− with E†

α ¼ E−α and a basis hi for h.
We consider a unitary highest weight representation

generated by a one-dimensional base state jψRi satisfying
DðEαÞjψRi ¼ 0 and DðhiÞjψRi ¼ χijψRi with χi constants
and where D is the representation on the Hilbert space. In
other words, the base state is invariant up to a phase under
the action of the stabilizer subgroup H ⊂ G. This includes
the possibility of spinning highest weight representations,
cf. [68–71], in which case the stabilizer subgroup will be
smaller compared to the spinless case.
We act on our base state with a unitary transformation

U ¼ exp ½PαðλαEα − λ�αE−αÞ þ
P

i xihi� in order to pro-
duce generalized coherent states

jui≡UjψRi ¼ N Hðz; z�; xÞ exp zαDðE−αÞjψRi; ð15Þ

with N H a normalization factor (including possibly an
overall phase), x are real coordinates on the stabilizer, and z
and z� are holomorphic coordinates on the orbit. The
relation between the coordinates that appear in U and
the coordinates z can be quite complicated, in general. Of
course, multiplying U from the right by an element of H
does not modify jui (up to an overall phase) and therefore
U can be thought of as an element of DðG=HÞ.
Generalized coherent states can be understood in terms

of coadjoint orbits. Consider the dual element

λðOÞ ¼ iTr½jψRihψRjDðOÞ�; ð16Þ

where the trace is taken in the infinite-dimensional repre-
sentation space. The coadjoint action (12) on λ is simply
hAd�Uλ;Oi ¼ iTr½jψRihψRjU−1DðOÞU� ¼ ihujDðOÞjui,
which indeed remains unmodified by the stabilizing ele-
ments U ∈ DðHÞ. Thus, we can view λ as a representative
that selects the orbit G=H.
The MC form of the unitary U in Eq. (15) can

be decomposed as Θ≡U†dU ≡ Θ− þ ΘðHÞ þ Θþ with
Θ� ∈ n�, ΘðHÞ ∈ hC. When acting with it on the base
state, we obtain

ΘjψRi ¼ U−1
�
dN H

N H
U þN HdðezαDðE−αÞÞ

�
jψRi: ð17Þ

So Θ−jψi ¼ ðU−1NHdezαDðE−αÞÞ−jψi and this only
depends on dzα and not on dz�α. Therefore, Θ−jψRi ¼
Θ−

μdzμjψRi and by conjugation hψRjΘþ ¼ hψRjΘþ
μ dz�μ.

Notice also that Θ† ¼ −Θ and therefore the FS metric (1b)
becomes ds2FS ¼ −hψRjΘþ

μ Θ−
ν jψRidz�μdzν.

The metric has a manifest complex structure J compat-
ible with the dagger, which maps z to −iz and z� to iz�.
Together, the metric and the complex structure define a
closed 2-form according to ωðX; YÞ ¼ −gðX; JYÞ, i.e.,

ω ¼ −ihψRjΘþ
μ Θ−

ν jψRidz�μ ∧ dzν

¼ −ihψRjΘ ∧ ΘjψRi ¼ ihψRjdΘjψRi: ð18Þ
We recognize this as the Kirillov-Kostant symplectic
form (13) through the representative (16).
Finally, the geometric action of the coadjoint orbit

associated with the representative (16) relates to the F 1

cost function (1a)

F 1dσ ¼ jhψRjU†dUjψRij ¼ jhλ;Θij ¼ jAλj: ð19Þ
For the specific case of the conformal algebra considered

in Sec. III, we can take as base states the scalar primary states,
jψRi ¼ jΔi. The stabilizing subalgebra is h ¼ soð2Þ×
soðdÞ, generated by D and Lμν. The raising operators nþ ¼
fKμg annihilate highest weight states and the lowering
operators are their conjugates n− ¼ fPμg. Together these
parametrize the coset (7).
Holography.—The symplectic geometry we found

equally describes the space of timelike geodesics in
anti–de Sitter (AdS) space, and this allows us to rigorously
derive a bulk description of complexity. Explicitly, our
circuits (3) starting from a scalar primary are mapped to the
following particle trajectory in embedding coordinates in
AdSdþ1 of curvature radius R (following the conventions
used in [72]):

X0 ¼ rðtÞ cosðt=RÞ; X00 ¼ rðtÞ sinðt=RÞ;

Xμ ¼
E0rðtÞ

EAðα; α�Þ ½αμB
�ðt; α�Þ þ α�μBðt; αÞ�; ð20Þ

where
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rðtÞ ¼ RE
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðα; α�Þp
jBðt; αÞj ; E ¼ E0

ð1 − α2α�2Þ
Aðα; α�Þ ;

Bðt; αÞ ¼ eit=Rα2 − e−it=R: ð21Þ

Here, α parametrizes the phase space of the geodesics, and
Aðα;α�Þ > 0 and α2α�2 < 1. E is the energy of the massive
particle, which is minimal at rest and equal to
E0 ¼ mR½1þOð1=mRÞ�, with m as the mass of the
particle. The phase space is identical to that of the CFTd

with the identification Δ ¼ E0. Time evolution eiτDjαi ¼
jαeiτi amounts to translating the geodesic in time in
AdSdþ1 and fixed radius geodesics correspond to
α2 ¼ 0. The complexity (9) is expressed in terms of the
energy E and the angular momentum J of the massive
particle through ΩS=A

T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE� J − Δ=E� J þ ΔÞp
(see

Supplemental Material, Sec. J [34]). For a circuit of circular
geodesics starting at the origin and ending at a radius rT ¼
R2=δ close to the boundary, the complexity diverges
as C½δ� ∼ ffiffiffiffi

Δ
p

log½2R=δ�.
The FS metric over the space of circuits receives a

surprisingly simple interpretation in terms of the maximal
and minimal perpendicular distance between two infini-
tesimally nearby geodesics (as illustrated in Fig. 1; see [34],
Sec. J)

ds2FS ¼
Δ
2R2

ðδX2
perp;min þ δX2

perp;maxÞ: ð22Þ

Summary and outlook.—We studied the circuit complex-
ity of trajectories associated with unitary representations of
the conformal group in general dimensions. We considered
primary states as reference states. Boundary states that are
disentangled [73] could be an interesting alternative. Our

gates, consisting of global conformal transformations, are
nonlocal, similar to the gates relevant for holographic
complexity [74]. We explained how our results can be
understood using the geometry of coadjoint orbits. We
presented general proofs relating the FS metric and F 1 cost
function to a coadjoint orbit metric and geometric action in
the context of generalized coherent states. These proofs are
also applicable to circuits starting from spinning primaries
and to other symmetry groups.
Our complexity geometry does not provide a notion of

distance between any two states in theCFTHilbert space. It is
an important question for the future to describe the complex-
ity for circuits moving across different conformal families.
Furthermore, considering more general states formed by
nonlocal insertions could reveal the role of operator product
expansion coefficients in studying complexity.
Considering the complexity of mixed states in CFT, e.g.,

thermal states or subregions of the vacuum, is another
important question. For example, coherent states can be
used as a starting point for the ensemble approach to mixed
state complexity [75]. It is also interesting to explore the
complexity of states with a conformal timelike defect or
boundary and compare to holography [27,28,76].
The path-integral approach to complexity [77–82]

involves the two-dimensional Liouville action and central
charge. Hence, it relates to circuits going beyond the global
conformal group. It is therefore compelling to study the
d > 2 complexity of circuits constructed from general
smearings of the stress tensor and tie the result to a
higher-dimensional Liouville action [77,83].
Our complexity geometry is highly symmetric. It is

interesting to break some of the symmetry by adding
penalty factors—effectively favoring certain directions
through the manifold of conformal unitaries. Our F 1 cost
function (1) (also considered in [77]) vanishes along
certain nontrivial trajectories and differs from the F 1 norm
used when studying the complexity of Gaussian states
(e.g., [14]). The difference is reminiscent of exchanging the
order of the absolute value in the complexity definition and
the sum over circuit generators. We intend to compare these
two different definitions in the future.
We rigorously derived a bulk description of our circuits

as trajectories between timelike geodesics in AdS space.
We could connect this picture to the holographic complex-
ity proposals, for instance, by exploring the influence of
massive particles on the action. It is valuable to study
generalizations of our circuit-geodesic duality in other
spacetimes and for more than one (possibly spinning)
particle. Further, it is important to explore the relation of
our bulk picture to the phase space of Euclidean sources
[84–87] and hence possibly to the complexity ¼ volume
proposal (see also [88]). Another compelling possibility is
to connect our bulk picture to a parallel transport problem
of timelike geodesics, similar to what was done for
spacelike geodesics [89,90] in the context of kinematic
space [48–51].

FIG. 1. Illustration of two nearby timelike geodesics in AdS3
(blue, red) corresponding to two boundary circuits and the
minimal (green) and maximal (brown) perpendicular distance
between them. The infinitesimal variation was exaggerated to
improve the visualization.
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Complexity provides us with a new measure of entan-
glement in CFTs and it is interesting to probe its potential in
diagnosing phase transitions. Some inspiration can be
drawn from [91–95]. We hope to come back to this question
in the future.
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