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Abstract:  12 

Megaprojects are characterised by their large-scale capital costs, long duration and extraordinary 13 

levels of technical and process complexity. Empirical data demonstrate that these projects 14 

experience alarming rates of failure. One of the main causes of such project failure is the high level 15 

of complexity and the absence of effective tools to assess and manage it. This study develops a new 16 

project complexity assessment method, which is specifically aimed at megaprojects in the energy 17 

sector. The assessment method contains a taxonomy of 51 complexity indicators and their 18 

consolidated weights, which are established through a novel Delphi-AHP Group Decision Making 19 

method. Numerical Scoring criteria for all indicators are defined on the basis of synthesis of existing 20 

knowledge of megaprojects to facilitate the application of the new method. It is reviewed and 21 

evaluated by experts and tested through a case study energy megaproject.  22 

 23 
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Introduction 29 

Megaprojects, are commonly defined as projects with a capital investment of at least one billion U.S. 30 

dollars (Flyvbjerg 2014; Merrow 2011). Beside the scale of their price tag, megaprojects are also 31 

typically characterised as being risky, complex, with high uncertainty and significant social impact, as 32 

well as engaging many stakeholders (Kardes et al. 2013; Peng et al. 2012). With growing demands for 33 

energy, more and more energy infrastructure megaprojects are being carried out worldwide 34 

(Merrow 2011; Sovacool and Cooper 2013). Examples include the UK's Round Three offshore wind 35 

farms, the Trans-ASEAN gas pipeline network, Flamanville 3 Nuclear Power Plant, and the Tsangpo-36 

Brahmaputra hydroelectric project dam. Unfortunately, megaprojects have experienced alarming 37 

rates of failure in meeting their business goals, their capital budgets and/or schedules (Cantarelli et 38 

al. 2012; Fiori and Kovaka 2005; Flyvbjerg et al. 2003; Merrow 2011; Hu et al. 2016). Studies of global 39 

energy and national oil companies suggest that one of the biggest risks to project delivery is the 40 

incapacity of the project team to adequately understand and manage the complexity of these 41 

projects (Merrow 2012).  42 

Project complexity is one of the main factors to be taken into account when planning and managing 43 

projects (Shenhar 1998; Shenhar and Dvir 1996). A project team needs to carry out reliable 44 

assessment of project complexity before adopting effective management and control strategies 45 

(Augustine et al. 2005; Austin et al. 2002; Thomas and Mengel 2008). In recent years, research has 46 

mainly focused on exploring the concept of project complexity and determining the characteristics 47 

of complex projects by defining the factors and indicators of complexity in a project (Geraldi et al. 48 

2011). Although various researchers have recognised the importance of objective and quantitative 49 

evaluation of complexity (Little et al. 1998; Williams 2002), existing studies are mostly devoted to 50 

the theoretical aspects of project complexity (Kardes et al. 2013; Maylor et al. 2008). Yet, what 51 

industry needs is practice-oriented complexity assessment methods that entail explicit objective 52 

measures (Remington and Pollack 2007). Unfortunately, there is a lack of research into this aspect, 53 

particularly in the context of megaprojects. While megaprojects are not unique to the energy sector, 54 
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they are more common in this sector. In addition to the common characteristics with all 55 

megaprojects, energy megaprojects often have some distinctive features. (1) The level of technical 56 

challenge is usually very high in energy projects. For example, new drilling techniques become 57 

essential for many oil and gas exploration projects; a nuclear power plant requires more complex 58 

technologies than a large road project. (2) Most energy megaprojects involve trans-national and 59 

multi-national collaboration. (3) In response to the global climate change agenda, many countries 60 

adopt new laws and regulations on energy use and energy supply. These create uncertainties for 61 

investment decisions in energy projects and increase their complexity. With these considerations, 62 

this study chooses to focus on the energy sector. However, the investigation approach can be 63 

applied in other sectors and the research outcomes can also be the basis for adaptation for other 64 

types of megaprojects.  65 

This research aims to fill this gap by developing a Project Complexity Assessment (PCA) method. The 66 

method enhances theoretical literature by establishing a comprehensive structure of project 67 

complexity indicators, i.e. a taxonomy of project complexity. Using a Group Decision Making (GDM) 68 

approach involving industry experts, the paper also defines numerical weights for all indicators. 69 

Finally, and quite uniquely in contrast with existing literature, the paper establishes scoring criteria 70 

for all indicators, which enables effective practical use of the method for the objective assessment of 71 

project complexity of megaprojects in the energy sector. 72 

Literature Review 73 

Megaprojects are highly complex (Remington and Pollack 2007; Williams 2013); their execution 74 

often requires organisations to develop capacities of dynamism, experience and technology (Fiori 75 

and Kovaka 2005; Gransberg et al. 2013; Puddicombe 2012). Megaprojects are usually characterized 76 

by their high internal complexity, such as task complexity (Brockmann and Girmscheid 2007), and 77 

structural and directional complexity (Remington and Pollack 2007). Previous megaproject research 78 

is mostly devoted to these internal complexity aspects. External complexity, or ‘contextual 79 
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uncertainty’, has received less attention by comparison (Hu et al. 2013). Economic instabilities, 80 

market fluctuations, and social and cultural transitions (the latter one emerging mostly in developing 81 

countries) transform megaproject environments into uncertain situations (Shehu and Akintoye 82 

2010). To understand and conceptualise the complexity of megaprojects comprehensively, both 83 

internal and external factors need to be investigated. 84 

Despite the growing recognition of the importance of project complexity, there is still a lack of 85 

consensus on its definition and on a way to quantify it (Hu et al. 2013; Sinha et al. 2001). Baccarini 86 

(1996) offered one of the early attempts to define project complexity as a number of interrelated 87 

parts of a project (differentiation) and the relationships between the different parts 88 

(interdependency). These two perspectives are based on two key aspects of projects, resulting in 89 

two different types of project complexity – organisational complexity and technological complexity. 90 

The former refers to the composition and structure of the project team and the latter refers to the 91 

process, tools and product. In many business sectors, the ever increasing demands from the multiple 92 

facets of project success, such as speed of implementation, cost and quality controls, health and 93 

safety requirements, environmental issues, together with technological advances, economic 94 

liberalisation and globalisation, have resulted in a rapid increase in project complexity (Gidado 95 

1996). Williams (1999) termed Baccarini’s definition as ‘structural complexity’ and added another 96 

element to it – uncertainty. Uncertainty here refers to the fact that, in a typical project, both the 97 

project’s goal and the methods needed to achieve this goal are not always certain. This uncertainty, 98 

together with the inherent structural complexity, produce the overall difficulty and messiness 99 

experienced in such projects (Williams, 1999). Geraldi and Adlbrecht (2008) characterised project 100 

complexity into three forms: faith, fact and interaction. Bosch-Rekveldt et al. (2011) determined 101 

technical, organisational, and environmental elements for the complexity of large engineering 102 

projects. Vidal et al. (2011) emphasised the difficulty of understanding, predicting, and controlling 103 

project complexity, but underlined the significance of project complexity assessment to enrich 104 

support to decisions making. The ability of  an organisations to foresee, recognise and pilot 105 
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complexity is a key criterion of project success or failure (Office of Government Commerce 2009). All 106 

the above authors consider project complexity as an intrinsic property of a project, which can be 107 

both described and measured. This approach is known as ‘descriptive complexity’, which emphasises 108 

the objective existence of complexity. There is another approach, ‘perceived complexity’ which 109 

considers complexity as subjective and may vary depending on the perception of different observers 110 

(Schlindwein and Ison 2004). In practice, project managers always deal with perceived complexity 111 

because their perception of complexity of a project, and solutions to it, will depend on their personal 112 

knowledge and competence as well as the descriptive complexity of the project (Vidal and Marle 113 

2008). Descriptive complexity and perceived complexity are two ends of the complexity perception 114 

spectrum. The former focuses on the objective nature of complexity; while the latter looks at 115 

complexity from a particular perspective of an individual party, taking into account the individual’s 116 

ability to handle the concept of complexity. In reality, however, there is no hard boundary between 117 

these two. This study concentrates on the complexity measurement, not complexity management. 118 

This emphasis is on the objectivity of complexity measurement. The aim for the new assessment 119 

method is to produce the same result regardless who does the assessment. However, it is 120 

recognised that it may not be possible to eliminate the impact of assessor’s subjectivity completely. 121 

To gain a deeper understanding of project complexity, many studies tried to unpack the concept of 122 

project complexity and identify a list of elements or indicators of complexity, especially in the 123 

context of large engineering projects (Bosch-Rekveldt et al. 2011; Lessard et al. 2014; Liu et al. 2015) 124 

and megaprojects (He et al. 2015). Most of these studies were influenced by Baccarini (1996), first 125 

exploring organisational and technological aspects of the project or projects. Following a study of six 126 

large projects, Bosch-Rekveldt et al. (2011) identified five organisational complexity elements (size, 127 

resources, project team, trust and risk) and five technical complexity elements (goals, scope, tasks, 128 

experience and risk). They also introduced another ‘environment’ category and identified four 129 

elements within it (stakeholders, location, market conditions, and risk). Each of these elements is 130 

further divided into multiple elements at another lower level; altogether these form a Technology-131 
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Organisation-Environment (TOE) framework with 50 elements in total. The hierarchical 132 

decomposition principle of this framework offers an effective way of organising the large number of 133 

complexity elements. However, the inclusion and definitions of some of the elements are debatable. 134 

For instance, ‘risk’ is more like an outcome of complexity instead of part of project complexity; some 135 

members of ‘stakeholders’ are part of the ‘project team’. The coverage of external elements in the 136 

TOE framework is very limited and is not sufficient to reflect the important, even critical, impact of 137 

external factors in large projects. Lu et al. (2015) also presented a TO hierarchy of project 138 

complexity, which divides all influencing factors into two broad groups: task complexity factors and 139 

organisation complexity factors. Technological factors are considered part of task complexity factors, 140 

together with environmental (external) factors and others. In addition to the number and complexity 141 

of tasks, this study also distinguished the types of interdependency between tasks as pooled, 142 

sequential or reciprocal interdependencies. Lessard et al. (2014) proposed a ‘House of Project 143 

Complexity’, which combines inherent features of a project and performance aspects or outcomes. 144 

The inherent features refer to technical and organisational complexities that similar to those defined 145 

in the studies above (Baccarini, 1996; Bosch-Rekveldt et al. 2011; Lu et al. 2015). The desired project 146 

outcomes are defined as emergent properties such as quality, flexibility, maintainability, etc. An 147 

intermediate layer is introduced between inherent features and outcomes, which specifies project 148 

governance structure and execution process (architectural features). Lessard et al.’s study tries to 149 

establish the link between the inherent complexities of a project, the project team’s response to 150 

them and the final outcome of the project. In doing so, it defines a scaling system to determine 151 

complexity and performance scores, although but that system mainly relies on subjective 152 

assessment.  153 

The need to quantitatively measure project complexity has been the focus of a growing number of 154 

recent studies (He et al. 2015; Sinha et al. 2006; Vidal et al. 2011; Xia and Chan 2012). The research 155 

challenges include: the identification of a list of indicators against which measurement is to be 156 

carried out; the determination of the significance (weight) of each indicator; and specification of 157 



7 

 

scoring scales for these indicators. Sinha et al. (2006) proposed a project complexity measurement 158 

framework that breaks a project down into activities and subtasks at different stages. It goes on to 159 

define a way of measuring complexity at the subtask level by taking into account work, time, 160 

motivational and social factors. A complexity index can then be calculated for the whole project by 161 

aggregating that of all the subtasks. A framework is provided in (Global Alliance for Project 162 

Performance Standards 2007) to classify projects based on their management complexity, by using a 163 

tool known as CIFTER developed by Aitken and Crawford (2007). The tool analyses complexity 164 

through seven project management complexity factors: stability, number of distinct disciplines, 165 

magnitude of implication, expected financial impact, strategic importance, stakeholder cohesion, 166 

and number of interfaces for complexity of project in a four-point scale. Vidal et al. (2011) developed 167 

a comparative complexity measurement method, which is aimed at comparing different alternatives. 168 

It identifies 18 complexity drivers (indicators) and proposes a method to calculate their weights 169 

using an Analytic Hierarchy Process (AHP). Instead of measuring against objective scales, different 170 

alternatives are measured against each other. The aim of such an assessment is to establish a 171 

complexity ranking order of several alternatives. Xia and Chan (2011) put forward a relatively simple 172 

complexity measurement method to apply to building projects. It only contains six indicators and 173 

weights are calculated from the importance index using a 5-point Likert scale. The interesting aspect 174 

of this study is its use of the Delphi method when surveying a panel of experts in order to establish 175 

the importance of indices. In another study, He et al. (2015) developed a complexity measurement 176 

model comprising of 28 indicators in six categories, including technological, organisational, goal, 177 

environmental, cultural and information complexities. The method uses the fuzzy analytic network 178 

process (FANP) and Delphi method to obtain individual weights for these indicators, in the context of 179 

one construction megaproject. Their general research approach is broadly relevant to this study. 180 

However, as our focus is on megaprojects in the energy sector, the composition of the complexity 181 

indicators and their weights will be different in our study from theirs. Furthermore, their model does 182 

not define scoring criteria for the indicators, which are essential for quantifying the complexity of a 183 
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new project. Recently, Dao et al. (2016) propose a Project Complexity Assessment and Management 184 

(PCAM) tool that includes 37 complexity indicators and objective scoring methods for these 185 

indicators. It was implemented as a simple spreadsheet tool, allowing the user to assess the 186 

complexity level of project at different stages during the project life cycle. The proposal to 187 

implement different strategies according complexity level of project is another element of this 188 

method; however, effectiveness of proposed strategies must be further investigated by applying in 189 

different projects and evaluation of performance.  190 

The literature review findings have revealed the magnitude of the challenge of studying project 191 

complexity. Given the diversity of projects, it is unlikely that one measurement system is suitable for 192 

all projects. Complexity indicators and their importance rankings and weights depend on the nature 193 

of the specific projects. Megaprojects in the energy sector have not been the main focus of any of 194 

the existing studies. This study intends to fill this gap. Lessons were learned from the literature 195 

review, which helped with the choice of research methods in this study. 196 

While existing studies contributed in improving the collective understanding of project complexity 197 

and proposed various assessment methods for general projects, there is still a lack of dedicated 198 

project complexity assessment methods for megaprojects in the energy sector. A number of 199 

knowledge gaps are particularly identified that need to be addressed before such a method can be 200 

developed:  201 

1. A raft of complexity indicators are proposed by different authors (Bosch-Rekveldt et al. 202 

2011; Geraldi et al. 2011; He et al. 2015; Vidal et al. 2011). There is a need to evaluate these 203 

indicators, synthesize them and establish their relevance from the particular perspective of 204 

megaprojects.  205 

2. There is limited research on the relative importance of different indicators when assessing 206 

project complexity of megaprojects.  207 
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3. Another clear shortcoming is the lack of any objective criteria for quantitatively measuring 208 

the impact of project complexity indicators – this is true in general not just in the energy 209 

sector. 210 

These observations underlie both the main rationale and the detailed conduct of our study. The aim 211 

of this study is to develop a project complexity assessment (PCA) method that defines: (1) the 212 

indicators that are relevant to energy megaprojects; (2) the weights of each indicator when 213 

assessing the overall complexity of the whole project; and (3) the scoring criteria for all the identified 214 

complexity indicators. Finally, the study must (4) evaluate the developed PCA method. This study 215 

seeks to build on existing studies with new contribution from academic and professional experts 216 

who have relevant practical knowledge of energy megaprojects.  217 

Research methods 218 

This research is carried out in four main phases as is depicted in Fig. 1:  219 

< Fig. 1. Research phases and methods> 220 

1. Compiling a list of Project Complexity Indicators (PCIs) is achieved through a comprehensive 221 

literature review and synthesis. Firstly a systematic review of project complexity is adopted 222 

based on the approach suggested by Geraldi et al. (2011). The Web of Science (WoS), Scopus 223 

and American Society of Civil Engineers (ASCE) databases are searched (these databases 224 

include papers from all these prominent journals). To ensure the quality and relevance of 225 

publications, only journal articles, books and published proceedings are considered. In total 226 

41 relevant papers and 5 books are identified, including studies on megaprojects as well as 227 

general projects. Secondly complexity indicators are identified in all those publications and 228 

recorded with a brief definition. Altogether 121 relevant indicators were identified.  The 229 

next task is to consolidate these indicators into a taxonomy of PCIs. This is carried out in two 230 

steps: (1) the identified indicators are compared and merged when similar. This step reduces 231 

the number of indicators from 121 to 51; (2) the remaining 51 indicators are categorised into 232 
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semantic groups to develop a logical hierarchical structure. The outcome is a taxonomy of 233 

PCIs for megaprojects, which are not specific to the energy sector at this stage.  234 

2. The second phase seeks to evaluate the appropriateness of the identified PCIs and to 235 

establish their relative importance when assessing megaprojects. This requires inputs from a 236 

group of domain experts. In recent years, some studies have proposed Group Decision 237 

Making (GDM) techniques to obtain consistent knowledge and opinions from groups of 238 

experts, instead of from separate individuals (Herrera-Viedma et al. 2007; Hwang and Lin 239 

1987; Moreno-Jiménez et al. 2007; Saaty 1989). The GDM method is defined as a process to 240 

find a plural answer to a decision problem, where a group of experts offer their judgments 241 

about multiple alternatives (Zhang et al. 2014). This study aims at establishing the relative 242 

importance of the indicators, based on input from a group of domain experts. A range of 243 

methods was adopted by other researchers (Locatelli and Mancini 2012; Nguyen et al. 2015; 244 

Vidal et al. 2011) for such a task. Based on a review of these methods, this study decides to 245 

use an integrated Delphi- AHP method. It involves two intertwining processes: a prioritising 246 

process of the indicators using AHP by individual expert and a consensus process using 247 

Delphi between all experts. 20 international experts with high familiarity and knowledge of 248 

the energy sector and megaprojects are selected and divided into two panels, with 10 249 

academics and 10 industry practitioners. Therefore, the results are specifically applicable to 250 

the energy sector. Adoption to other sectors can be achieved following the same method, 251 

but with contribution from domain experts in other sectors. More details of the application 252 

of this method are provided in the following sections.  253 

3. Scoring criteria are essential to the practical quantification of project complexity, yet this 254 

aspect is frequently neglected in existing research. To fill this gap, numerical scoring criteria 255 

for all identified indicators are defined for the comprehensive literature synthesis. 256 

4. The outcomes from the first three phases define the principle and algorithms of the new 257 

PCA method. The final phase is to implement the PCA method as a tool with a user interface 258 
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for data input and presentation of the output. It is then evaluated by expert review and 259 

tested through a case study project.   260 

Taxonomy of project complexity indicators  261 

A taxonomy is a semantic classification which organises a large number of related concepts into a 262 

logical hierarchy (Krishnaswamy and Sivakumar 2009; Marradi 1990). The taxonomy of PCIs for 263 

megaprojects is established to provide a clear, simple and effective structure to understand the 264 

factors influencing project complexity. It is also essential for the next step of the PCA development 265 

process which involves establishing a weight for each indicator using the AHP method (Kian Manesh 266 

Rad and Sun 2014). Indeed, it is not feasible to conduct pairwise comparisons between tens of 267 

indicators; nor is it meaningful to compare unrelated indicators. The development of the taxonomy 268 

allows comparisons to be conducted between fewer indicators within sub-categories, and between 269 

the sub-categories.  270 

At the first step, a comprehensive list of PCIs is obtained through a comprehensive literature review 271 

(Kian Manesh Rad and Sun 2014).  272 

The process of constructing the taxonomy consists of two interactive and iterative procedures: top-273 

down and bottom-up. The top-down process helps to determine the higher levels groupings of the 274 

taxonomy hierarchy, e.g. Levels 1 and 2 categories for both internal and external PCIs as well as 275 

Level 3 of internal PCIs . The bottom-up process analyses the list of PCIs to identify logical groups of 276 

related indicators and links the groups to the higher level categories.  This process leads to the 277 

development of the final PCI taxonomy (Tables 1 and 2). 278 

<Table 1. Taxonomy of PCIs - external factors > 279 

<Table 2. Taxonomy of PCIs - internal factors > 280 

At Level 1, there are two distinct categories which distinguish indicators within the project (internal) 281 

from those imposed from outside (external). External indicators are those outside the direct control 282 
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of the project delivery organisation and relate to external stakeholders, such as governments or 283 

market forces. In contrast, internal indicators are those actually within the control of the project 284 

management team.  285 

The external category contains 10 PCIs divided into five sub-categories (Level 2) including 286 

environmental, political, legal and regulatory, economic and social aspects.   287 

There are 41 internal indicators grouped into three sub-categories (Level 2) defined as 288 

corresponding to the questions ‘What’ ‘Who’ and ‘How’ respectively (Office of Government 289 

Commerce 2009). This grouping reflects the principle of the PRINCE2 project management standard 290 

provided by the Office of Government Commerce (2009).   291 

1. ‘What’ refers to “Project characteristics” that are further divided into two sub-292 

categories (Level 3): technical characteristics and project objectives. 293 

2. ‘Who’ refers to “Project delivery organisation/team” and includes four sub-294 

categories (Level 3): people, disciplines, capital and physical resources. 295 

3. ‘How’ is associated with “Process of delivery” of the project and includes four sub-296 

categories (Level 3) of tasks, information, tools and methods, and time. 297 

Table 2 and Table 3 present the detailed taxonomy of external and internal indicators respectively. 298 

For easier reference, a code is allocated to each indicator based on the level and category it belongs 299 

to.  300 

Establishing the weights of indicators 301 

When assessing project complexity, all indicators may not exhibit the same levels of importance (He 302 

et al. 2015). Therefore, different weights should be attributed to the indicators to ensure reliable 303 

assessment. In this research, this weighting is achieved through a Delphi-AHP method that elicits the 304 

collective knowledge and judgement of 20 international experts. Two challenges during this process 305 

are to ensure (i) consistency of judgement of individual experts; and (ii) consensus amongst experts 306 
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(Dyer and Forman 1992; Saaty 1989). Several studies have proposed methods for achieving 307 

consistency and consensus (Herrera-Viedma et al. 2002, 2014). Zhang et al. (2014) reviewed the 308 

advantages and drawbacks of these methods and concluded that the method developed by Chiclana 309 

et al. (2008) is one of the most effective. This method employs transitivity properties of criteria in a 310 

mathematical procedure to retain original values of judgments at an optimal level, whilst obtaining 311 

acceptable levels of consistency and consensus. Therefore, this study adopted an integrated 312 

consistency-checking consensus-building method based on that of Chiclana et al. (2008), with some 313 

additions to it. Fig. 2 summarises the steps of the integrated Delphi-AHP method, including the 314 

process for consistency checking and consensus building: 315 

< Fig. 2. Integrated Delphi-AHP consistency checking and consensus building method> 316 

1. Selecting experts: Identify, nominate and select the most appropriate experts for the panel. 317 

2. Delphi-AHP round 1: To elicit the weights of PCIs, by asking the selected experts to complete 318 

a series of pairwise judgements matrices. Responses from each expert are checked for 319 

consistency and corrections are applied automatically when required, following the method 320 

suggested by Chiclana et al. (2008). 321 

3. Delphi-AHP round 2 (consensus building): Builds the required level of consensus through 322 

sets of feedback matrices.   323 

4. Calculating weights for PCIs: Compute weights of indicators using the geometric mean 324 

method.  325 

Each step of this process is detailed in the following.  326 

Selecting experts: This study adopted a multi-stage process to identify experts to participate in the 327 

Delphi-AHP process, as suggested by Delbecq et al. (1975). In the first stage, a Knowledge Resource 328 

Nomination Worksheet (KRNW) was developed, which defines the key qualifications required for 329 

these experts. It was then used to record individual names identified from related publications in 330 

journals and books, professional social media (Linkedln), websites of some large energy 331 
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organisations and professional bodies such as governments and the European Cooperation in 332 

Science and Technology (COST). Using the KRNW helped ensure that there are no gaps in the skills of 333 

the expert panel. At the end of this stage, 78 potential experts were identified. At the second stage, 334 

all the identified experts were contacted and provided with information about this study. They were 335 

invited to participate in the Delphi-AHP process, with explanations about their roles and expected 336 

contributions. Twenty experts agreed to participate; 10 of them are academics and 10 are 337 

professionals working in the energy industry. Table 4 shows background information on the experts. 338 

<Table 3. Information of experts> 339 

Delphi-AHP Round 1: In the first round of the Delphi-AHP process, the experts were asked to 340 

complete a questionnaire, which contains pairwise comparisons matrices of complexity indicators, 341 

using a 1-9 Saati scale (Saaty 1977).  Twelve matrices were provided based on the taxonomy, 342 

comprising of: one matrix of external indicators at level 3, one matrix of internal indicators at level 3 343 

and ten matrices of internal indicators at level 4, one for each category (Table 5). The experts were 344 

asked to conduct the comparisons based on their cumulative knowledge/expertise rather than any 345 

specific project.  Table 6 shows a judgement matrix corresponding to the internal category of People 346 

(Level 4). 347 

<Table 4. Matrices used in the Delphi-AHP process> 348 

<Table 5. Sample of AHP pairwise comparison matrix in round 1 Delphi-AHP, category of people> 349 

In GDM problems, consensus of judgments of multiple experts is usually reached on the basis of 350 

rationality principles that each expert exhibits. The requirement of rationality demands consistency 351 

of judgement from each individual expert. Therefore, given the experts’ responses in round 1, the 352 

first task is to evaluate the degree of consistency of each expert, and improve it to an acceptable 353 

level (threshold) if required. To do this, inconsistent judgments are first identified from the Delphi-354 

AHP round 1 results. Chiclana et al. (2008) devised an iterative process requesting experts to amend 355 
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their initial judgments based on the advised values until an acceptable consistency level was 356 

reached. Whereas consistency of all individual judgements is mandatory for the basis of AHP 357 

method, the feedback process to experts seems unnecessary here. One of the dangers of using the 358 

Delphi method is that an increasing number of rounds may lead experts to lose interest and not 359 

returning the questionnaires, which would threaten the validity of the results. Therefore, in this 360 

research,  the inconsistent judgments are amended with advised values automatically generated by 361 

a software tool based on the method proposed by Chiclana et al. (2008). This process is iterated until 362 

the experts’ responses for all matrices satisfy the consistency threshold. Saaty (1977) defined 10% as 363 

an acceptable level of inconsistency in each matrix, so a consistency threshold value 𝛽 =  0.9 is used 364 

and each expert judgment is assessed against it. Firstly, for each set of judgments by an expert 𝑙 365 

related to alternatives (i.e. indicators) (𝑖, 𝑗), if one or more pairwise comparisons have a consistency 366 

degree 𝑐𝑑𝑖𝑗𝑙 ≤ 𝛽, then an automatic consistency checking process is applied. Although individual 367 

consistency is essential, it should be noted that the initial independence of each expert’s judgment 368 

should not be violated. To ensure this, a threshold 𝛿 =  35% is defined and each judgment matrix 369 

with more than δ of its values requiring update in the initial judgement values is omitted from 370 

further computations. Afterwards, a scenario analysis process is carried out to determine the 371 

optimal number of necessary updates for the inconsistent judgments. Our software tool not only 372 

implements the algorithm put forward by Chiclana et al. (2008) but also builds and performs a 373 

procedure of automatic maximum consistency checking. Using this method, new adjusted values 374 

and consistency levels for each matrix are computed.  375 

Table 7 shows the results of the application of the automated consistency checking process. 2.1% of 376 

judgment matrices exceeded 𝛿, which is small and thus indicates a good initial consistency for the 377 

majority of experts.  The process then updated on average 10.2% of the initial expert judgments to 378 

achieve individual consistency for all experts.  379 

< Table 6. Results of consistency building process> 380 
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Delphi-AHP Round 2: Consensus should be sought among all the experts for all PCIs, although a full 381 

consensus is not always necessary in practice. A consensus threshold 𝛾 ∈ [ 0,1 ] is defined; and at 382 

each stage of the process the level of consensus is measured and compared against it. If the 383 

consensus level is not satisfactory, the most diverse judgment values from combined experts’ 384 

judgments are identified and those experts are asked in the Delphi-AHP round 2 to review their 385 

initial judgment to reach a higher consensus level. This is an iterative process that continues until an 386 

acceptable level of consensus is reached, and only then are the consolidated and global weights of 387 

indicators computed. It should be noted that in this research, all levels of consistency and consensus 388 

were reached after only one iteration (i.e. at the end of round 2). 389 

Depending on the type of problem, experts’ backgrounds, or specific project situations, different 390 

levels of consensus may be required. For this reason, three ranges 𝛾1, 𝛾2 and 𝛾3 for consensus are 391 

defined to highlight the consensus rate (𝑐𝑟), as showed in Fig. 3. The thresholds gauge local 392 

consensus (each category) and total consensus, and identify if the obtained consensus is acceptable 393 

or if the process should progress into another round. In this research, a medium level i.e. 0.8 ≤ 𝑐𝑟 ≤394 0.9 is considered satisfactory for the total consensus because of the complex character of the 395 

problem. The consensus rates are acceptable if they are within any of the ranges defined by 𝛾1, 𝛾2 396 

and 𝛾3.  397 

< Fig. 3. Defined ranges of acceptable consensus> 398 

The consensus building process firstly identifies those experts and judgment values that should be 399 

reviewed. These normally are the furthest individual values from the combined panel’s judgement. 400 

Secondly, these experts are provided with advised values obtained by combining all judgment values 401 

of the panel, using the arithmetic mean method. A questionnaire is sent to these experts comprising 402 

their round 1 judgements alongside the advised values, and they are asked to reconsider their 403 

judgement. All experts responded to round 2 questionnaires; however some of them have chosen to 404 

keep their initial judgments and did not update them as suggested. Once all responses were 405 

received, the level of consensus based on the modified judgement values was re-evaluated. 406 
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As shown in Table 8, initially 𝑐𝑟 = 0.75 is in the low consensus range. After one iteration of the 407 

consensus building process, the overall 𝑐𝑟 =  0.81 suggests the effectiveness of the proposed 408 

Delphi-AHP GDM process to achieve consensus. The highest local consensus is found for the 409 

“Information” category with 86% while “Physical Resources” and “Tools and Methods” showed the 410 

lowest consensus levels with 72% and 71% respectively, although both still satisfy the (low) 411 

consensus threshold. Since the overall medium consensus level desired in this study is reached, 412 

there is no need for any further round of Delphi.  413 

< Table 7. Results of Consensus reaching and advice system 414 

 415 

Calculating weights of indicators: The subject of priorities derivation (here weights of indicators) in 416 

AHP has been discussed by Ishizaka and Lusti (2006) in order to establish the best method. A review 417 

of their study and other literature found that weight calculation methods can be classified in two 418 

categories:  the eigenvalue vector (EV) and geometric mean (GM) vector methods (Johnson et al. 419 

1979; Saaty 1977). The EV method obtains a scale of the importance of each element of a collection, 420 

relative to the others, while GM yields priority of elements using the geometric mean distance 421 

metric. Crawford & Williams (1985) conducted an extensive comparison of these two categories of 422 

methods using statistical and simulation analysis and demonstrated a better performance of the 423 

geometric mean method over the eigenvalue methods. Thus, this method has been applied in this 424 

research. Given 𝑝𝑖𝑗  a preference relation between indicator i and j in a 𝑛 × 𝑛 judgment matrix, i ≠ j, 425 

the consolidated weight of indicator i, 𝑤𝑖, is obtained with the geometric mean formula as follows:  426 

𝑤𝑖 =  ∏ 𝑝𝑖𝑗1/𝑛𝑛
𝑗=1  427 

While consolidated weights represent the relative importance of indicators within the given 428 

category, it is also useful to obtain the global weight of each indicator so that all indicators can be 429 

compared against one another, regardless of the category they belong to. One method to do this is 430 

to multiply the weight of the category with the weight of the indicator. However, a main weakness 431 
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of this method is that weights of indicators decline when the number of them in each category 432 

increases. Ramanathan (1997) proposed a solution to this problem by calculating the global weight 433 𝑔𝑤𝑖 of indicator i using its relative weight within the category. The proposed formula is:   434 

𝑔𝑤𝑖 = (𝑤𝑖𝑤∗) × 𝐴 435 

where 𝑤∗ is the highest value in the category,  𝐴 is the category’s weight and 𝑤𝑖 is the weight of 436 

indicator i.  437 

The consolidated and global weights of each indicator and category in level 2, 3 and 4 of the 438 

taxonomy have been calculated and are presented in Table 9 and Table 10. 439 

< Table 8. Consolidated and global weights of external complexity indicators> 440 

< Table 1. Consolidated and global weights of internal complexity indicators> 441 

Defining scoring criteria for complexity indicators 442 

Establishing scoring criteria is a key phase in the process of project complexity assessment. However, 443 

this phase is very often neglected in the existing studies and methods for project complexity 444 

evaluation. In contrast, this study established comprehensive scoring criteria for all identified PCIs 445 

based on an extensive literature review and synthesis. Both a content analysis and interpretive 446 

synthesis have been carried out to couple the indicators and criteria, and form the scoring metrics. 447 

As an example of the approach followed in this research, Locatelli & Littau (2013) and Locatelli et al. 448 

(2014) identified performance variables of energy megaprojects based on an analysis of eleven 449 

European case studies. In addition, Brooks (2013) extracted thematic influencing criteria from the 450 

analysis of a European megaprojects portfolio. These provided a set of objective criteria for the 451 

“Significance on public agenda” indicator (Table 11). While each project entails a level of complexity 452 

and megaprojects register higher levels of such, each numerical scale of complexity should be able 453 

to capture this variability. Therefore a 1-5 Likert scale (see “Scores” column in example shown in 454 

Table 11) is used to determine the numerical score for each indicator, based on the identified 455 
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scoring criteria, where “1” indicates the least and “5” the highest complexity level.  The scoring 456 

criteria are defined as objectively as possible, so that they can be understood and agreed by 457 

decision-makers.   458 

< Table 10. Scoring criteria defined for the “Significance on public agenda” indicator> 459 

Scaling the numerical indicators is also a critical stage in defining the measure. For example, 460 

“Number of activities” frequently appears in the existing PCA literature (Bosch-Rekveldt et al. 2011; 461 

He et al. 2015; Nguyen et al. 2015; Vidal et al. 2011). However, no viable measure or method has 462 

been proposed to quantitatively measure this indicator. It is problematic to determine absolute 463 

numerical thresholds for different levels of complexity, based on the number of activities, due to 464 

inaccessibility of reliable data. In addition, the absolute value may well vary for different companies 465 

based on their experience and capabilities: a project may be extremely complex in terms of activities 466 

for company A, but very simple for company B. In other words, using absolute numerical thresholds, 467 

based on the number of activities, would revert to assessing perceived complexity which this 468 

research aims to avoid. To tackle this problem and reach the most reliable numerical criteria, this 469 

research borrows the concept of a “competitiveness” criterion,  initially defined by Merrow (2011) to 470 

reflect relative cost overrun and schedule slip of megaprojects compared to similar projects in the 471 

company, and develops it to broader definitions. For instance, applying this relative complexity 472 

definition,   473 
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Table 12 shows the scoring criteria defined for the “Number of activities” indicator. To ensure 474 

validity of the developed scoring criteria, an expert review is adopted. The results of this review also 475 

helped to refine the obtained scoring criteria. 476 

< Table 11. Defined scoring criteria for “Number of activities”> 477 

With all the components of the PCA method defined (indicators, global weights and scoring criteria), 478 

a Complexity Index (𝐶𝐼) can now be computed for any project using the formula:  479 

𝐶𝐼 =  ∑ 𝑔𝑤𝑖 × 𝑠𝑖𝑚
𝑖=1  480 

Where 𝑔𝑤𝑖 is the global weight of indicator 𝑖, 𝑚 is the total number of indicators and 𝑠𝑖 is the 481 

awarded score to the indicator. The 𝐶𝐼 value should be between 1 and 5; is calculated separately for 482 

external and internal indicators. The complexity levels of each category of the taxonomy are also 483 

calculated using this method.  484 

Evaluation of PCA method 485 

The developed PCA method is evaluated to gauge its validity and tested for application in practice. 486 

An expert review is conducted in two stages with both academics and professionals for the purpose 487 

of assessing the validity of the developed PCA method. Because the PCI taxonomy and the PCI 488 

weights were produced based on experts input, there is no need for additional evaluation of their 489 

validity. Therefore, expert review at this stage is focused on validating the scoring criteria for all the 490 

PCI indicators. To test the application of the PCA method, a case study is carried out using a real 491 

energy megaproject. 492 

Nine experts participated in the expert review including three academics and six professionals with a 493 

high level of familiarity and knowledge about the energy sector and megaprojects. The background 494 

information of the experts is summarised in Table 13. 495 

< Table 12. Background information of participants in expert review of scoring criteria> 496 
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A questionnaire is designed in the form of a spreadsheet. Assessment of each scoring criterion 497 

included two questions: a closed-ended yes/no questions to capture agreement or disagreement 498 

with the proposed scoring criteria for the given PCI, and an open-ended question to enable the user 499 

to state underlying reasons (particularly in the case of disagreement). 500 

The questionnaire was sent to the nine experts and the responses analysed for refining the criteria. 501 

Overall, the feedbacks showed that the experts strongly supported the numeric scoring criteria. Few 502 

but useful refinements of the criteria were nonetheless suggested, as summarised in Table 14.  503 

< Table 13. Summary of expert’s feedbacks and analysis> 504 

Case study 505 

To evaluate the application of the proposed PCA method further, a case study is carried out with an 506 

offshore gas field reservoir development programme. It is one of the world's largest reservoirs of 507 

natural gas condensates.  Development of the field is planned in multiple phases; each phase is 508 

appraised to have an average capital cost of more than US$1 billion, and is executed by international 509 

oil & gas contractors working in partnership with local companies. This case study is conducted on 510 

the development of two phases, referred to as A and B, which are at the tendering stage. The field 511 

development programme has been delayed and interrupted due to different technical, contractual, 512 

financial and political issues. The two phases are typical examples of energy megaprojects. Assessing 513 

their complexity shall provide valuable information to help the project management team adopt 514 

appropriate complexity management strategies. The weighted indicators produced by the proposed 515 

PCA method are provided in a spreadsheet tool for the project management teams of phases A and 516 

B. Also, in order to produce a reference, levels of complexity are computed for a set of completed 517 

phases currently in operation (OPT). The level of complexity of each phase is assessed by the project 518 

manager of each phase with high levels of knowledge about the project.  519 

Fig. 4 depicts and compares weighted aspects of project complexity and a computed final 520 

Complexity Index (CI) for each project. Phase A shows a higher degree of complexity than the 521 
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operational phases and phase B (𝐶𝐼(𝐴) > 𝐶𝐼(𝑂𝑃𝑇) > 𝐶𝐼(𝐵)). Furthermore, the values of 522 

complexity in each category enable decision makers to better understand the degrees of complexity 523 

in all aspects of the project, and therefore implement more effective mitigation strategies.  524 

By computing the level of complexity for each phase, the project team decided to implement specific 525 

strategies to cope with complexities in each aspect. For instance, phase A and B are significantly 526 

more complex than OPT in capital resources complexity, therefore the project team established a 527 

dedicated capital management system within the overall project management organisation to 528 

manage the financial resources. Another example is the political complexity of phase A that is far 529 

higher than Phase B and OPT. From this, it is decided that a separate team be put together during 530 

the project tendering and operation stages to manage political issues and communication with the 531 

main stakeholders. 532 

< Fig. 4. Level of complexity in aspects of internal and external complexity and values of CIs> 533 

Discussions and Conclusions  534 

The complexity assessment method developed in this study adds to the growing body of knowledge 535 

concerned with the issue of project complexity, from a particular perspective of megaprojects in the 536 

energy sector. Comparing with existing research, this study makes three significant contributions.  537 

 The taxonomy of project complexity indicators provides a more comprehensive framework 538 

to assess energy megaprojects. The groupings of internal complexity indicators reflect 539 

common project management principles and make them easily understandable to 540 

professionals (Office of Government Commerce, 2009). In recognition of the fact that 541 

external influencing factors, such as government policies and environment concerns, often 542 

play a crucial role in the success of energy megaprojects, the taxonomy also puts more 543 

emphasis on external complexity indicators compared with previous studies (Baccarini, 544 

1996; Bosch-Rekveldt et al. 2011).  545 
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 The PCA method developed in this research is tailorable and can be applied in other similar 546 

megaprojects to objectively measure various aspects of project complexity for improving the 547 

decision making process and enhancing the success of megaproject delivery. The weights for 548 

all complexity indicators used to calculate complexity indices were established based on 549 

inputs from 20 international experts obtained through an integrated Delphi-AHP process. It 550 

is acknowledged that a different group of experts may produce different indicator weights. 551 

Indeed, different interpretations of expert inputs, e.g. giving weights to different experts 552 

depending on their backgrounds and competencies, can lead to different results. 553 

Nonetheless, the breadth of expertise sought in this research suggests that the weights 554 

produced by this study offer an appropriate benchmark for assessing similar future projects. 555 

But, if a new project team wants to achieve more accurate measurement, it can follow the 556 

Delphi-AHP method of phase 3 of this study to establish indicator weights that are specific to 557 

its (type of) project.  558 

 The definitions of scoring criteria for all complexity indicators constitute a significant 559 

contribution of this study. These are specified as explicitly and objectively as possible to 560 

reduce the influence of subjectivity by the assessor(s). The defined criteria have been 561 

reviewed by highly knowledgeable experts and refined based on their feedback. 562 

The complexity assessment method has been implemented as a simple spreadsheet tool. When 563 

using it, a practitioner only needs to score the complexity indicators by applying the scoring criteria. 564 

The tool then calculates two separate complexity indices – one for internal complexity and the other 565 

for external complexity. These indices provide an indication of the overall level of complexity of a 566 

project. The tool also provides detailed breakdowns of complexity in the different categories of 567 

indicators. This allows the project team to identify particular areas where high levels of complexity 568 

exist, so that due attention can be paid to managing them. The method and tool have been 569 

evaluated by the experts involved in the study and tested in one case study. Results suggest that it is 570 

a useful tool for managing megaprojects in the energy sector.  571 
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This study has only developed a PCA method, and did not propose ways for managing various levels 572 

of project complexity in different categories. Future work could explore this subject and establish 573 

managerial strategies that could be suggested to the management team for each complexity degree.  574 
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Figures 739 

 740 

Fig. 1. Research phases and methods 741 
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Fig. 2. Integrated Delphi-AHP method 744 
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Fig. 3. Defined ranges of acceptable consensus 747 
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 750 

Fig. 4. Calculated level of complexity for case study 751 
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Tables 752 

Table 2. Taxonomy of PCIs - external factors (indicators are compiled from number of sources such as Geraldi 753 
et al. 2011; Flyvbjerg, 2014; Merrow, 2011) 754 

Level2 Level3 

Economy (EC) 

EEC1 Changing economy 

EEC2 Market competition 

EEC3 Market unpredictability and uncertainty 

Environmental (EN) 

EEN1 Stability of project environment 

EEN2 
Interaction between the technology system 

and external environment 

Legal & regulations (LE) ELE1 Local laws and regulations 

Politics (PO) EPO1 Political influence 

Social (SO) 

ESO1 Cultural configuration and variety 

ESO2 Cultural differences 

ESO3 Significance on public agenda  

  755 
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Table 3. Taxonomy of PCIs - internal factors (indicators are compiled from number of sources such as Bosch-756 
Rekveldt et al. 2011; Vidal et al. 2011; He et al. 2015)  757 

Level2 Level3 Level4 

Organisation / 

Team of 

Delivery (OR) 

Capital 

resources  (CA) 

IORCA1 Size of capital investment 

IORCA2 Variety of investors and financial resources 

Disciplines  (DI) 

IORDI1 Contract types 

IORDI2 Variety of institutional configuration 

IORDI3 Support from permanent organisations 

IORDI4 Team cooperation and communication 

People (PE) 

IORPE1 Availability of human resources 

IORPE2 Level of trust ( inter/intra teams) 

IORPE3 Diversity of participants 

IORPE4 Dynamic and evolving team structure 

IORPE5 Experience and capabilities within teams 

IORPE6 Interest and perspectives among stakeholders 

Physical 

resources (PH) 

IORPH1 Resource and raw material interdependencies 

IORPH2 Variety of resources  

IORPH3 Availability of physical resources 

Process of 

Delivery (PR) 

Information 

(IN) 

IPRIN1 Availability of information 

IPRIN2 Reliability of information platforms 

IPRIN3 Interdependence of information systems 

IPRIN4 Level of processing and transferring information 

Tasks (TA) 

IPRTA1 Diversity of sites and locations 

IPRTA2 Process interdependencies 

IPRTA3 Dependencies between tasks 

IPRTA4 Number of activities  

IPRTA5 Unpredictability of tasks 

IPRTA6 Diversity of activities elements 

Time (TI) 

IPRTI1 Duration of project 

IPRTI2 Dependencies between schedules 

IPRTI3 Intensity of project schedule 

Tools & 

methods (TO)  

IPRTO1 Applicability of project management methods and tools 

IPRTO2 Variety of project management methods and tools  

Project 

Characteristics 

(PC) 

Objectives (OB) 

IPCOB1 Variety of goals and objectives 

IPCOB2 Interdependence of objectives 

IPCOB3 Transparency of objectives 

IPCOB4 Scope changing 

Technical (TE) 

IPCTE1 Level of innovation  

IPCTE2 Technological experience and capabilities 

IPCTE3 Repetitiveness of process 

IPCTE4 Specifications interdependencies 

IPCTE5 Technological varieties 

IPCTE6 Variety of system components 

IPCTE7 Changing technology 

  758 
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Table 4. Information of experts 759 

a) Experience in energy sector 

Years 6-10 11-15 16-20 >20  

Academia 2 3 3 2  

Professional 2 1 3 4  

b) Sub-Sector of professionals 

Sector Oil&Gas Renewable Utility Consultancy Construction 

Professional 3 2 1 1 3 

c) Level of experience in megaprojects 

Level Familiar Knowledgeable Advanced Expert  

Academia 0% 50% 30% 20%  

Professional 0% 20% 30% 50%  
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Table 5. Matrices used in the Delphi-AHP process 761 

Name of matrix Size of matrix 

External indicators - Level 3  10 

Internal indicators - Level 3 10 

Capital resources - Level 4 of internal  2 

Disciplines - Level 4 of internal  4 

People - Level 4 of internal  6 

Physical resources - Level 4 of internal  3 

Information - Level 4 of internal  4 

Tasks - Level 4 of internal 6 

Time - Level 4 of internal  3 

Tools & Methods - Level 4 of internal 2 

Objectives - Level 4 of internal  4 

Technical - Level 4 of internal  7 
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Table 6. Sample of AHP pairwise comparison matrix in round 1 Delphi-AHP, category of people 763 

 A B C D E F 

Availability of human resources (A)  5 7 3 1 1 

Level of trust ( inter/intra teams) (B)   3 1 1/3 1 

Diversity of participants (C)    1/3 1/3 1/3 

Dynamic and evolving team structure (D)     1/5 1 

Experience and capabilities within teams (E)      5 

Interest and perspectives among stakeholders (F)       

  764 
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Table 7. Results of consistency building process 765 

Panel Expert 

Avg initial 

individual 

consistency 

(cd) 

Number of 

inconsistent 

matrices 

%Avg 

updated for 

inconsistent 

matrices 

Avg built 

individual 

consistency 

(cd) 

A
ca

d
e

m
ic

 

P1 0.91 5 13.3% 0.94 

P2 0.93 2 1.0% 0.94 

P3 0.87 5 22.6% 0.92 

P4 0.88 4 11.4% 0.92 

P5 0.95 3 4.0% 0.95 

P6 0.90 5 11.0% 0.94 

P7 0.91 4 8.7% 0.93 

P8 0.89 5 18.0% 0.93 

P9 0.93 1 3.8% 0.94 

P10 0.91 5 10.9% 0.92 

P
ro

fe
ss

io
n

a
l 

P11 0.92 1 5.0% 0.93 

P12 0.90 6 13.8% 0.93 

P13 0.90 4 17.8% 0.93 

P14 0.92 2 4.9% 0.92 

P15 0.92 3 2.9% 0.93 

P16 0.92 4 11.7% 0.94 

P17 0.89 8 20.6% 0.92 

P18 0.92 1 1.7% 0.93 

P19 0.91 2 7.7% 0.93 

P20 0.92 4 12.8% 0.94 
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Table 8. Results of Consensus reaching and advice system 767 

Category Initial 𝑐𝑟 
% of judgments 

asked to modify 

% of judgments 

accepted to modify 

Combined final 𝑐𝑟  

External 0.76 16% 13% 0.81 

Internal 0.79 16% 10% 0.81 

Capital Resources 0.73 30% 23% 0.81 

Disciplines 0.72 18% 14% 0.84 

People 0.82 15% 9% 0.84 

Physical Resources 0.64 40% 33% 0.72 

Information 0.83 8% 6% 0.86 

Tasks 0.74 36% 21% 0.79 

Time 0.75 29% 21% 0.81 

Tools & Methods 0.62 45% 33% 0.71 

Objectives 0.77 30% 25% 0.84 

Technical 0.80 28% 21% 0.84 

Average 0.75 26% 19% 0.81 
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Table 9. Consolidated and global weights of external complexity indicators  769 

Level2 
category 

weight 

Level3 

indicators 
𝑤𝑖 𝑔𝑤𝑖 

Economy 34.84% 

EEC1 13.00% 20.50% 

EEC2 9.10% 14.35% 

EEC3 12.74% 20.10% 

Environmental 22.52% 
EEN1 14.50% 10.48% 

EEN2 8.02% 5.80% 

Legal & 

regulations 
11.63% ELE1 11.63% 5.23% 

Politics 12.52% EPO1 12.52% 5.85% 

Social 18.47% 

ESO1 4.72% 4.52% 

ESO2 4.32% 4.14% 

ESO3 9.43% 9.03% 
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Table 10. Consolidated and global weights of internal complexity indicators  771 

Level2 Level3 
category 

weight 

Level4 

indicators 
𝑤𝑖 𝑔𝑤𝑖 

O
rg

a
n

is
a

ti
o

n
 /

 T
e

a
m

 o
f 

D
e

liv
e

ry
 

Capital 

resources  
15.78% 

IORCA1 67.02% 5.43% 

IORCA2 32.98% 2.67% 

Disciplines  7.29% 

IORDI1 33.54% 2.51% 

IORDI2 24.08% 1.80% 

IORDI3 22.62% 1.69% 

IORDI4 19.76% 1.48% 

People  12.73% 

IORPE1 16.33% 3.14% 

IORPE2 22.80% 4.38% 

IORPE3 9.77% 1.88% 

IORPE4 15.06% 2.89% 

IORPE5 21.73% 4.17% 

IORPE6 14.32% 2.75% 

Physical 

resources  
7.09% 

IORPH1 40.07% 2.44% 

IORPH2 29.34% 1.79% 

IORPH3 30.59% 1.86% 

P
ro

ce
ss

 o
f 

D
e

liv
e

ry
  

Information  12.71% 

IPRIN1 36.12% 3.97% 

IPRIN2 39.73% 4.37% 

IPRIN3 11.55% 1.27% 

IPRIN4 12.60% 1.39% 

Tasks  7.68% 

IPRTA1 18.97% 2.30% 

IPRTA2 15.90% 1.93% 

IPRTA3 21.78% 2.64% 

IPRTA4 11.54% 1.40% 

IPRTA5 20.33% 2.47% 

IPRTA6 11.48% 1.39% 

Time  9.88% 

IPRTI1 36.85% 3.40% 

IPRTI2 27.69% 2.56% 

IPRTI3 35.47% 3.27% 

Tools & 

methods  
5.40% 

IPRTO1 64.46% 1.86% 

IPRTO2 35.54% 1.02% 

P
ro

je
ct

 C
h

a
ra

ct
e

ri
st

ic
s 

 

Objectives  13.83% 

IPCOB1 11.99% 1.38% 

IPCOB2 14.51% 1.66% 

IPCOB3 41.47% 4.76% 

IPCOB4 32.03% 3.67% 

Technical 7.61% 

IPCTE1 19.12% 2.37% 

IPCTE2 21.09% 2.62% 

IPCTE3 9.92% 1.23% 

IPCTE4 17.45% 2.17% 

IPCTE5 11.17% 1.39% 

IPCTE6 10.35% 1.29% 

IPCTE7 10.90% 1.35% 
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Table 11. Scoring criteria defined for the “Significance on public agenda” indicator 773 

  774 

Indicator Criteria Scores 

Significance 

on public 

agenda 

Regarding significance of project in public, how many of the 

following criteria are (will be) met? 
1: If 4 or 5 criteria are 

met. 

3: If 2 or 3 criteria are 

met. 

5: If 0 or 1 criterion is 

met. 

a. Green Peace or other international environmental activists 

have been involved in the project 

b. The project has national public acceptability (no protest at 

national level) 

c. The project has local public acceptability (no protest at local 

levels) 

d. Previous similar national/local project were successful 

e. Local residents are involved in the project 
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Table 12. Defined scoring criteria for “Number of activities” 775 

Indicator Criteria Scores 

Number of 

activities 

Relative to other projects in your organisation, what 

is the level of project task competitiveness, 

considering elements or deliverables in the work 

breakdown structure? 

1: In bottom 25%  

3: Between 25% and 50% 

5: In top 50% 

  776 



43 

 

Table 13. Background information of participants in expert review of scoring criteria 777 

a) Experience in energy sector 

Years 6-10 11-15 16-20 >20  

Academia 0 2 1 0  

Professional 0 1 3 3  

b) Sub-Sector of professionals 

Sector Oil&Gas Renewable Utility Consultancy Construction 

Professional 2 2 1 1 0 

c) Level of experience in megaprojects 

Level Familiar Knowledgeable Advanced Expert  

Academia 0 1 1 1  

Professional 0 0 3 3  
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Table 14. Summary of expert’s feedbacks and analysis 779 

 780 

Indicator Comments from experts on criteria Results 

Market 

competition 

“None of the operators/modes 
(competitors) leaving the market” 
criterion is repeating the first two 

criteria 

The criterion redefined into “None of the 
operators/modes (competitors) leaving the 

market (or extremely reduce their operation) 

during the operation phase” 

Local laws and 

regulations 

An expert was not certain about 

the credibility of “The project is 
considered in the long term plan of 

the country's government” 
criterion 

The rest of experts agreed with the criterion, 

so no change has been made 

Cultural differences 
The majority of experts suggested 

that more criteria are needed 

The sources of criteria were reviewed, and as a 

result the  criterion was split into two different 

‘cultures’, business and national-geographical 

culture criteria. 

Contract types 
Two experts argued that more 

criteria were needed.  

A new criterion is defined as “The organisation 
obtaining the contract will subcontract to 

other companies”. 
Support from 

permanent 

organisation 

Five experts disagreed with 

“Project manager has a position in 
the company’s board” criterion.  

This criterion was removed. 

Interdependence of 

information 

systems 

Four experts suggested the 

question is not clear. 

The question was re-written in a more explicit 

way. 

Level of processing 

and transferring 

information 

Three experts criticised the clarity 

of the question. 
The question was rewritten and expanded. 

Intensity of project 

schedule 

Two experts proposed more 

criteria were needed and offered a 

related publication. 

The review of the publication led to the 

selection of a new criterion: “Harsh physical or 
environmental conditions”. 

Applicability of 

project 

management 

methods and tools 

An expert declared uncertainty 

about the “Existence of sensitivity 
analysis” and “Appointment of a 
dedicated project manager in the 

team” 

The rest of experts agreed with the criterion, 

so no change has been made 

Variety of goals and 

objectives 

Two experts were unsure about the 

importance of “Environmental 
activist have opinion and voice 

about the project”. 

The importance of criterion is supported by 

the rest of experts, then no change has been 

made 


