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Abstract In this work, we attempt to find an anisotropic
solution for a compact star generated by gravitational decou-
pling in f (Q)-gravity theory having a null complexity factor.
To do this, we initially derive the complexity factor condition
in f (Q) gravity theory using the definition given by Herrera
(Phys Rev D 97:044010, 2018) and then derived a bridge
equation between gravitational potentials by assuming com-
plexity factor to be zero (Contreras and Stuchlik in Eur Phys
J C 82:706, 2022). Next, we obtain two systems of equations
using the complete geometric deformation (CGD) approach.
The first system of equations is assumed to be an isotropic
system in f (Q)-gravity whose isotropic condition is similar
to GR while the second system is dependent on deforma-
tion functions. The solution of the first system is obtained by
Buchdahl’s spacetime geometry while the governing equa-
tions for the second system are solved through the mimic
constraint approach along with vanishing complexity condi-
tion. The novelty of our work is to generalize the perfect fluid
solution into an anisotropic domain in f (Q)-gravity theory
with zero complexity for the first time. We present the solu-
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tion’s analysis to test its physical viability. We exhibit that the
existence of pressure anisotropy due to gravitational within
the self-gravitating bounded object plays a vital role to sta-
bilize the f (Q) gravity system. In addition, we show that
the constant involved in the solution controls the direction
of energy flow between the perfect fluid and generic fluid
matter distributions.

1 Introduction

In recent years, a significant amount of astrophysical obser-
vational data, such as INTEGRAL [1], Swift [2], IXPE [3],
XMM-Newton [4,5], ATHENA [6], EHT [7,8], LIGO [9]
and Virgo [10], have been employed to describe the evolu-
tion of the cosmos. The scientific community is motivated by
these observations to investigate, develop more insights, and
devise cutting-edge methods for testing gravity in powerful
gravitational fields. Meanwhile, the most successful descrip-
tion of gravity, however, is general relativity (GR), whose
predictions for gravitational effects on the solar system and
cosmological scales closely match the observations. How-
ever, over the past few years, a few slight tensions, includ-
ing the H0 tension, have emerged. Additionally, the beauty
of GR is spoiled by theoretical challenges like singularities,
quantum gravity, and a lack of clarification for the gene-
sis of dark energy [11] and dark matter [12]. Further, GR
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diverges with the present higher-loop contributions and is a
non-renormalizable theory. It is therefore useful to consider
alternative theories of gravitation that might solve the theo-
retical and observational problems.

Apart from non-Lagrangian theories (MOND), alterna-
tive theories of gravity are typically described by the altered
Lagrangian density, which is further altered by the inclu-
sion of the extra geometrodynamical factors in the Einstein–
Hilbert action integral. Many such modified theories are cur-
rently being explored in the literature, including theories with
new scalar and vector dynamical degrees of freedom [13],
while some others rely on massive gravitons [14], string-
inspired concepts such as brane-worlds [15], and geometric
scenarios that deviate from the tradition set by Riemannian
geometry. In the latter scenario, we can find theories rely
on Einstein–Cartan geometry [16], Palatini (or metric-affine)
theories of different sorts [17], incorporating f (R) models
[18], and theories with dynamics based completely on torsion
and/or non-metricity [19,20]. In this context, selecting either
the torsion (T ) or the nonmetricity (Q) as the geometric basis
generates two distinct but equivalent representations of grav-
ity so-called GR’s teleparallel equivalent (TEGR) [21,22]
and symmetric teleparallel GR (STGR) [20,23–25]. Even
some basic principles are completely different, but these rep-
resentations are dynamically equivalent to GR. For instance,
TEGR considers torsion to be the field that describes gravity.
In this case, both curvature and non-metricity are zero, and
the Weitzenböck connection serves as the affine connection
[26,27]. Here, tetrads are the fundamental objects from which
the affine connection, torsion invariants, and eventually the
field equations can be derived. On the other hand, STEGR
is based on non-metricity. In this case, the gravitational field
is associated with non-metricity and a flat spacetime can be
taken into consideration. There is a metric tensor in STEGR,
and geometry has a non-metric connection, but torsion and
total curvature are vanishing.

Similarly to how curvature may be related to the rotation
of vectors when they are transported in parallel on closed
curves, non-metricity can be related to the change in length of
vectors when they are transported in parallel, allowing grav-
ity to be handled in accordance with the standard of gauge
theories. The three equivalent approaches based on the three
different connections are often known as: The Geometrical
Trinity of Gravity [28,29]. Although these three theories are
completely equivalent from a dynamical perspective, the fun-
damental principles upon which they are formulated seem
to be very different. Further, due to the different geometries
involved in formulating the theories, their modifications may
not be equivalent at the fundamental level.

Recently, Jiménez et al. [20] constructed an intriguing
modified theory of gravity by extending STEGR, known

as f (Q)-gravity or symmetric teleparallel gravity. In this
f (Q)-gravity, we take into account a flat and vanishing tor-
sion connection, where gravity is characterized by a non-
metricity scalar Q, thereby representing one of the geomet-
rical equivalent versions of GR. Intriguingly, partial deriva-
tives may be employed to simplify the associated connection,
and they vanish for a particular coordinate choice known
as the coincident gauge. Contrary to GR, we can also dis-
tinguish gravity from the inertial effects, which is one of
the f (Q) theory’s fundamental attributes. It should also be
noted that unlike f (R) gravity, where the field equations
are of fourth-order [30], f (Q)-gravity has field equations
of second-order, which is free from pathologies. Hence, the
building of this f (Q) theory provides a novel starting point
for several modified gravity theories. Several applications of
f (Q) theory have recently been explored, including cosmol-
ogy [31–34], the bouncing model [35], wormhole solutions
[36–40], energy conditions [41], the Newtonian limit [42],
spherically symmetric and stationary black hole spacetimes
[43] and star-like objects without singularity present [44],
among others.

For decades, the complexity of any system can be analyzed
using a variety of factors. The underlying concept relates to
measuring the entropy and information of the structure con-
tained within a system. Moreover, the concept of the self-
gravitating system’s complexity is extensively analyzed in
the study of massive objects. When considering a perfect
crystal in physics–which displays a periodic attitude and is
symmetrically ordered–the isolated gas–which exhibits dis-
ordering and the greatest quantity of information–is consid-
ered to be a complicated system with zero complexity. The
notion of disequilibrium was introduced by Lopéz-Ruiz et al.
[46] to analyze the system’s degree of complexity. In effect,
it is a measuring of “distance” from the system’s attainable
type’s equally likely dispersion. They came to the conclu-
sion that the notion of complexity dissipated in the situation
of an ideal gas and a perfect crystal by defining complexity as
the combination of these two components, i.e., information
and disequilibrium. In this context, Herrera [47] developed a
new notion of complexity incorporating fluid elements such
as pressure, energy density, and others after identifying defi-
ciencies in all previous concepts of complexity employed
to investigate the self-gravitating system. In a nutshell, it
is related to all characteristics of the fluid’s composition.
In this situation, the complexity is generated by means of
the complexity factor, which is one of the structure scalars
acquired from the orthogonal division of the intrinsic curva-
ture. This mechanism for dissipative fluid content was fur-
ther extended by Herrera et al. [48]. The prerequisites for
the progression design with the least amount of complexity
were also defined, going beyond simply analyzing the sys-
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tem’s complexity. They found that there are various solutions
and that the fluid dissipates shearingly and geodesically.

The axially symmetric geometry was employed by Her-
rera et al. [49] to further assess the effect of complexity on
various geometries, and they discovered three main sources
accountable for complexity. They demonstrated how com-
plexity and symmetry are related. In this particular circum-
stance, they also got some analytical answers. Herrera et al.
[50] also study the emergence of spherically symmetric non-
static geometry utilizing the notion of complexity, either in
terms of dissipation or non-dissipation. Along with develop-
ing specific models and calculating their appropriate impli-
cations for understanding the emergence, they employed the
quasi-homology criterion to relate the areal radius and the
areal radius velocity. Using this method, Contreras and Fuen-
mayor [51] investigated the stability of self-gravitating celes-
tial objects in terms of gravitational cracking. In addition
to analyzing the role of extra structure scalars which are
obtained by the orthogonal division of the intrinsic curva-
ture, Herrera et al. [52] expanded the concept of the com-
plexity factor on the hyperbolically symmetric geometry.
Recently, Contreras et al. [53–56] and Maurya et al. [57–59]
succeeded in analyzing the complexity of static and spher-
ically symmetric self-gravitating systems in the context of
gravitational decoupling [60] (see [61–83] for a list of addi-
tional applications of the gravitational decoupling mecha-
nism).

In this study, we are principally interested in investi-
gating the complexity-free spacetime for anisotropic stel-
lar configurations induced by gravitational decoupling in
f (Q)-gravity theory. We seek new solutions in a direct
way, employing the now-famous gravitational decoupling
formalism via the complete geometric deformation (CGD)
approach, which has proven to be an efficient tool for explor-
ing the energy exchange between relativistic fluids promot-
ing self-gravitating stellar systems, whatever their nature.
The article is organized as follows: In Sect. 2, we thor-
oughly reviewed the field equations in f (Q)-gravity the-
ory with vanishing complexity factor. By introducing an
extra source in f (Q)-gravity, we provide a complexity-free
anisotropic solution with gravitational decoupling method-
ology via CGD approach in Sect. 3. The external spacetime
and matching conditions are discussed in Sect. 4, in which
we match the decoupled interior solution generated by the
anisotropic matter distribution in f (Q)-gravity to the exte-
rior Schwarzschild (Anti-) de Sitter at a suitable boundary.
While in Sect. 6, it was addressed how energy is exchanged
between the sources Tεν and θεν . The full physical analy-
sis of complexity-free anisotropic in f (Q)-gravity is pre-
sented in Sect. 5. The concluding remarks are given in Sect. 7,
which will be chained by the appendix which comprises
some lengthy and pertinent formulations of physical quanti-
ties.

2 The field equations

The modified action for f (Q)-gravity by including of an
extra Lagrangian Lθ connected to the new source θεν through
a decoupling constant α source is defined as:

S =
∫

1

2
f (Q)

√−g d4x +
∫

Lm
√−g d4x

︸ ︷︷ ︸
SQ

+α

∫
Lθ

√−g d4x
︸ ︷︷ ︸

Sθ

, (1)

As usual, Lm denotes the Lagrangian density of mat-
ter fields described by energy-momentum tensor Tεν in the
f (Q)-gravity theory with the nonmetricity scalar Q which
drives the gravitational interaction. Here, we set 8πG = 1.
The correction in the f (Q)-gravity matter field due to the new
contribution may help in understanding the physical proper-
ties of the system beyond the f (Q)-gravity theory. We define
the sources Tεν and T θ

εν as,

Tεν = − 2√−g

δ
(√−gLm

)
δgεν

, (2)

T θ
ε ν = − 2√−g

δ
(√−gLθ

)
δgεν

, (3)

along with this, we also denoted the joint action of both
sources via decoupling constant α by T̄εν = (

Tεν + α T θ
εν

)
.

As a result of Bianchi’s identity, the total energy-momentum
tensor T̄εν must be covariantly conserved. i.e.

�ε T̄
μν = 0, (4)

The nonmetricity tensor Qλεν in terms of affine connection
is given by

Qλεν = �λgεν = ∂λgεν − 
δ
λεgδν − 
δ

λνgεδ, (5)

where 
δ
εν is known as the affine connection which assumes

the form


δ
εν = {δεν} + K δ

εν + Lδ
εν, (6)

where {δεν}, Lδ
εν , and K δ

εν are the Levi-Civita connec-
tion, disformation, and contortion tensors respectively that
are given as:

{δεν} = 1

2
gδσ (∂εgσν + ∂νgσε − ∂σ gεν) ,

Lδ
εν = 1

2
Qδ

εν − Q δ
(ε ν),

K δ
εν = 1

2
T δ

εν + T δ
(ε ν), (7)

123



317 Page 4 of 18 Eur. Phys. J. C (2023) 83 :317

here, T δ
εν denotes the torsion tensor. This T δ

εν describes
the anti-symmetric part of the affine connection as T δ

εν =
2
λ[εν]. Moreover, the nonmetricity tensor in connection to
superpotential is given as:

Pα
εν = 1

4

[
−Qα

εν +2Qα
(ε ν)+Qαgεν − Q̃αgεν − δα

(εQν)

]
,

(8)

where

Qα ≡ Q ε
α ε, Q̃α = Qε

αε. (9)

are two independence traces that help us to define the non-
metricity scalar term as

Q = −Qαεν Pαεν. (10)

By varying the action (1) with respect to the metric tensor
gεν , we obtain the system of governing field equations in
f (Q)-gravity as,

2√−g
�γ

(√−g fQ Pγ
εν

)+ 1

2
gεν f + fQ

(
Pεγ i Q

γ i
ν

−2 Qγ iε P
γ i
ν

) = −T̄εν, (11)

where fQ = d f
dQ . With the help of Eq. (1), it is possible to

derive the extra constraint over the connection as

�ε �ν

(√−g fQ Pγ
εν

) = 0. (12)

The torsionless and curvatureless constraints render the affine
connection as


λ
εν =

(
∂xλ

∂ξβ

)
∂ε∂νξ

β. (13)

Furthermore, we can choose a special coordinate choice, the
so-called coincident gauge, so that 
λ

εν = 0. Then, the non-
metricity Eq. (5) reduces to

Qλεν = ∂λgεν . (14)

It makes the calculation more simpler because the only
important variable is the metric function. However, exclud-
ing the case of conventional GR [85], the action is no longer
invariant with regard to the diffeomorphism. To overcome
this problem, one may employ the covariant formulation of
f (Q)-gravity. One might utilize the covariant formulation
by first figuring out the affine connection in the absence of
gravity [84], since the affine connection expressed in Eq. (13)
is entirely inertial.

The present work mainly focuses on the study of the
self-gravitating compact star in f (Q)-gravity theory in the

context of gravitational decoupling. For this purpose, we
assume a static spherically symmetric line element in the
Schwarzschild coordinate as,

ds2 = −e�(r)dt2 + eμ(r)dr2 + r2dθ2 + r2sin2θ dφ2. (15)

The unknown functions �(r) and μ(r) are called the met-
ric potentials depending on the radial coordinate r . Then the
expression of the nonmetricity scalar Q for spherically sym-
metric line element (15) is determined as:

Q = −2e−μ(r)
(
1 + r�′(r)

)
r2 . (16)

Furthermore, we consider that the internal structure of the
self-gravitating system in f (Q)-gravity is made by perfect
matter distributions. Then, Tεν can be written as,

Tε ν = (ρ + p) uε uν + p gε ν, (17)

where, ρ and p denote the energy density and fluid pres-
sure, respectively in pure f (Q)-gravity theory. The fluid
four-velocity vector is denoted uν such that u0u0 = −1.
In this connection, we denote the components for T θ

εν as

[T θ ]0
0 = −ρθ , [T θ ]1

1 = pθ
r , [T θ ]2

2 = [T θ ]3
3 = pθ

t . (18)

It is noted that we have assumed that θ1
1 �= θ2

2 . Then,
the new source will generate the anisotropy in the f (Q)-
gravity system. In order to write the field equations related
to Eq. (11), we define the components of total energy-
momentum tensor (T̄εν) as

ρtot = ρ + α ρθ , P tot
r = p + α pθ , P tot

t = p + α pθ
t .

(19)

Then the independent components of the equation of motion
(11) in f (Q)-gravity are,

ρtot = − f (Q)

2
+ fQ

[
Q + 1

r2 + e−μ

r
(�′ + μ′)

]
, (20)

P tot
r = f (Q)

2
− fQ

[
Q + 1

r2

]
, (21)

P tot
t = f (Q)

2
− fQ

[
Q

2
− e−μ

{
�′′

2
+
(

�′

4
+ 1

2r

)

×(�′ − μ′)
}]

, (22)

0 = cotθ

2
Q′ fQQ . (23)

where fQ(Q) = ∂ f (Q)
∂Q , and consequently the total anisotropy

is given as,

�tot = ptot
t − ptot

r = �θ, where, �θ = α (pθ
t − pθ

r ).

(24)
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It is observed that the behavior anisotropy in the system will
also depend on the signature of decoupling constant α. In
order to describe the explicit form of equations of motion
(20)–(22), we must define the functional form of f (Q). In
this regard, Wang et al. [88] proved that the exterior solution
of field equations gives the exact Schwarzschild (anti-) de
Sitter solution if and only if fQQ = 0. Therefore, the func-
tional form of f (Q) must be derived by assuming fQQ = 0
for obtaining the solution of self-gravitating compact star
models. Hence,

fQQ = 0 �⇒ f (Q) = β1 Q + β2, (25)

where β1 and β2 are constants. In this regard, a well-
explanation of the compatibility of the above linear func-
tional form of f (Q) for a static spherically symmetric space-
time with the coincident gauge can be seen in the work of
[84].

By inserting of Eqs. (15) and (26), the Eqs. (22)–(24) give
the following set of differential equation of motion,

ρtot = 1

2 r2

[
2 β1 + 2 e−μ β1

(
r μ′ − 1

)− r2 β2

]
, (26)

P tot
r = 1

2 r2

[
− 2 β1 + 2 e−μ β1

(
r �′ + 1

)+ r2 β2

]
, (27)

P tot
t = e−μ

4 r

[
2 eμ r β2+β1

(
2 + r�′ ) (�′ − μ′)+2 r β1 �′′

]
,

(28)

and corresponding a conservation equation or a Tolman–
Oppenheimer–Volkoff (TOV) equation [86,87] in f (Q)-
gravity [88,89] under the functional form of f (Q) given by
Eq. (25) can be written as,

− �′

2
(ρtot + P tot

r ) − (P tot
r )′ + 2

r
(P tot

t − P tot
r ) = 0. (29)

It is noted that Eq. (29) is similar to the TOV equation in clas-
sical general relativity. Now we focus on the procedure for
finding the solution of field equations (26)–(28) beyond the
f (Q)-gravity theory. In this regard, we would like to men-
tion some brief reviews of widely adopted methodologies to
solve the field equations in GR and modified gravity theory.
There were three main straightforward methodologies where
the metric potentials connected through the relations which
are well-described by Newton et al. [90]. The first relation
proposed by Ivanov [91] in connection to conformally flat
geometry [92,93] is given by,

e�(r) = A2
1r

2 cosh2

⎛
⎝
∫ √

eμ(r)

r2 dr + B1

⎞
⎠ , (30)

where A1 and B1 are constants, which has some drawbacks
in determining the redshift at the center of star r = 0. In the
same spirit, the second method was derived in the context of

a conformal killing vector whose relation can be given by the
following equation [94–97],

e�(r) = A2
2r

2 exp

(
− 2k

B2

√
eμ(r)

r2 dr

)2

, (31)

where A2 and B2 denote integration constants. The third
relation is known as a Karmarkar condition which has been
widely in most of the gravity theories to investigate the solu-
tions of compact star models, wormholes, and black holes.
This can be described by following the bridge equation,

e�(r) =
(
A3 + B3

∫ √
eμ(r) − 1 dr

)2

, (32)

with A3 and B3 being constants of integration. In view of the
above relations, now we develop another new bridge equation
that relates metric functions through the vanishing complex-
ity factor condition to solve the present system of equations
in f (Q)-gravity regime. To do this, we first apply Herrera’s
[98,99] definition of complexity factor for a self-gravitating
system to derive the complexity factor in f (Q)-gravity fac-
tor and consequently condition on vanishing complexity fac-
tor. Using Herrera’s definition, we define complexity factor
(Y Q

T F ) in f (Q)-gravity theory for the system (26)–(28) as,

Y Q
T F = (P tot

r − P tot
t ) − 1

2r3

∫ r

0
x3(ρtot)′(x)dx . (33)

On inserting of P tot
r , P tot

t and ρtot in above equation, we YT F

as

Y Q
T F = β1

[
�′{r(μ′ − �′) + 2

}− 2r�′′]
4 r eμ

. (34)

Then Y Q
T F = 0 gives,

β1
[
�′{r(μ′ − �′) + 2

}− 2r�′′] = 0. (35)

Since β1 can not be zero therefore the second factor must be
zero, which gives,
[
�′{r(μ′ − �′) + 2

}− 2r�′′] = 0, (36)

The simplified form of the above differential equation can be
written after performing the integration as [100]:

�′ e�/2 = Ar eμ/2. (37)

where A is a constant on integration. Lastly, we derive the
following relation between � and μ as,

e�(r) =
(
A1

∫
r eμ(r)/2dr + B1

)2

, (38)

where A1 and B1 are the constants of integration. It is very
interesting to note that the vanishing of complexity factor
condition under the f (Q)-gravity theory is the same as the
condition derived in Einstein GR [100]. As mentioned above,
our primary objective was to find an exact solution of the field
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equations (26)–(28) describing a compact star beyond the
f (Q)-gravity theory. Therefore, we use a well-known tech-
nique of gravitational decoupling via the complete geometric
deformation (CGD) approach in the next section.

3 Complexity free anisotropic solution via gravitational
decoupling in f (Q)-gravity

In this section, we start with a complete geometric deforma-
tion (CGD) approach through a specific transformation along
the gravitational potentials as,

�(r) −→ H(r) + α η(r) (39)

e−μ(r) −→ W (r) + α �(r). (40)

here η(r) and �(r) are known as a geometric deformation
function corresponding to the temporal and radial metric
components, respectively. The CGD approach gives us to
set η(r) �= 0 and �(r) �= 0. Moreover, this CGD technique
divides the decoupled system (26)–(28) in f (Q)-gravity into
two subsystems. In this regard, the first system is known as
a seed system in pure f (Q)-gravity theory respective to the
source Tε ν , while second system is for the new source θε ν ,
which are given as,

I. System of field equations in pure f (Q)-gravity:

ρ = β1(1 − W )

r2 − W ′β1

r
− β2

2
, (41)

p = β1(W − 1)

r2 + H ′Wβ1

r
+ β2

2
, (42)

p = β1(W ′H ′ + 2H ′′W + H ′2W )

4
+ β1 (W ′ + H ′W )

2r

+β2

2
, (43)

and according to the TOV Eq. (29),

− H ′

2
(ρ + p) − dp

dr
= 0, (44)

which is a TOV equation for the system (41)–(43) whose
solution can be given by the following spacetime,

ds2 = −eH(r)dt2 + dr2

W (r)
+ r2dθ2 + r2sin2θ dφ2, (45)

II. System of field equations for new source θεν :

ρθ = −β1

(�

r2 + � ′
r

)
, (46)

pθ
r = β1

[�

r2 + �′�
r

+ W η′
r

]
, (47)

pθ
t = β1

(1

4
� ′�′ + 1

2
�′′� + 1

4
�′2� + � ′

2r
+ �′�

2r

)

+β1

[W
4

(
2 η′′+β1 η′ 2 + 2 η′

r
+ 2 H ′ η′)+ W ′ η′

4

]
. (48)

The system of Eqs. (37)–(39) provide the following conser-
vation equation,

− �′

2
(ρθ + pθ ) − (pθ

r )
′ + 2

r
(pθ

t − pθ
r ) = η′

2
(ρ + p),

(49)

which is a linear combination of Eqs. (46)–(48). Now, we
have to solve both systems of equations under the condition
(38). It is noted that the equation (38) may be solved if the
metric potential μ is known. For finding the potential μ,
we must have W (r) and �(r) in our hands. Moreover, the
solution second system is also dependent on the first isotropic
system. Therefore, we must solve the first system initially.
For this purpose, we subtract Eqs. (42) and (43) to get the
isotropy condition in f (Q)-gravity as,

2H ′′r2 + H ′2r2 − 2H ′r − 4 + W ′r(H ′r + 2) + 4

W
= 0.

(50)

If we look at the above Eq. (50), we find a very interesting
result that the isotropic condition in f (Q)-gravity is similar
to the isotropic condition in standard GR, which implies that
any known isotropic solution in GR will be also an isotropic
solution in f (Q)-gravity. Therefore, a well-behaved perfect
fluid solution should be considered for which the Eq. (38)
must be integrable. For this purpose, we consider a well-
known perfect fluid solution corresponding to Buchdahl’s
space-time geometry [101],

W (r) = 2 − Cr2

2(1 + Cr2)
, (51)

H(r) = 2 ln
[
A(1 + Cr2)3/2 + B(5 + 2Cr2)

√
2 − Cr2

]
,

(52)

Using the above spacetime geometry, the expressions for seed
energy density and pressure in f (Q)-gravity are,

ρ(r) = 3β1C
(
Cr2 + 3

)
2
(
Cr2 + 1

)2 − β2

2
, (53)

p(r) = 9β1C

2 f1(r)

[
A
(

1 − Cr2
)√

2 + Cr2 − C2r4

+B
(

2C2r4 − 3Cr2 − 2
)] 1(

Cr2 + 1
) + β2

2
, (54)

where,

f1(r) = B
(

10 − Cr2 − 2C2r4
)

+ A
(
Cr2 + 1

)

×
√

−C2r4 + Cr2 + 2.

Now we still need to find the deformation function �(r) to
integrate the condition (38). For this purpose, we consider
the mimicking of density constraint approach ρ = ρθ for
determining the deformation function �(r), which provides
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the following differential equation in �(r) as,

d�

dr
+ �

r
+ 3rC

(
Cr2 + 3

)
2
(
Cr2 + 1

)2 − rβ2

2β1
= 0, (55)

After integrating the above differential equation, we find the
solution of �(r),

�(r) = r2
[
β2
(
Cr2 + 1

)− 9β1C
]

6
[
β1
(
Cr2 + 1

)] + F

r
. (56)

Here F denotes the arbitrary constant of integration which
is taken F to be zero throughout the study in order to avoid
singularity at the center. In this regard, the new form of the
metric function eμ is,

e−μ(r) = 6β1 − 3(3α + 1)β1Cr2 + αβ2r2
(
Cr2 + 1

)
6β1

(
1 + Cr2

) .

(57)

By plugging of deformed metric function μ(r) from Eq. (57)
into vanishing complexity factor condition (38) we find gen-
eralized form of metric function � as,

e
�(r)

2 = A1√
2(3α + 1)3/2C

√
1 + Cr2

⎡
⎣
√

1 + Cr2

2 − (3α + 1)Cr2

×
(√

3α+1
√
Cr2+1

{
(3α+1)Cr2−2

}−3(α+ 1)

×
√

2 − (3α + 1)Cr2 tan−1

×
(√

2 − (3α + 1)Cr2

√
3α + 1

√
Cr2 + 1

))⎤
⎦+ B1, (58)

and consequently, other deformation function η(r) can be
written from Eq. (39) as: η(r) = 1

α

[
�(r) − H(r)

]
, which

gives the expression of η(r),

η(r) = 1

α

[
2 log

(
A1 (3α + 1)−3/2

√
2C

√
1 + Cr2

×
⎧⎨
⎩
√

1 + Cr2

2 − (3α + 1)Cr2

(√
3α + 1

√
Cr2 + 1

×
{
(3α + 1)Cr2 − 2

}
− 3(α + 1)

×
√

2 − (3α + 1)Cr2 tan−1

×
(√

2 − (3α + 1)Cr2

√
3α + 1

√
Cr2 + 1

))⎫⎬
⎭+ B1

)

−2 log

{
A
(
Cr2 + 1

)3/2 + B

(
2Cr2 + 5

)
(2 − Cr2)−1/2

}]
,

(59)

On inserting of both deformation functions �(r) and η(r)
in the Eqs. (46)–(48), we find the components for θ -sector
as,

ρθ (r) =
3Cβ1

(
Cr2 + 3

)

2
(
Cr2 + 1

)2 , (60)

pθ
r (r) = − β1

2
(
Cr2 + 1

)
⎡
⎢⎢⎣3C

⎛
⎜⎜⎝

4(3α + 1)3/2A1Cr
2
√

2Cr2 + 2

√
Cr2+1

2−(3α+1)Cr2

H11(r)
+ 1

⎞
⎟⎟⎠+ H1(r)

(
Cr2 − 2

)
⎤
⎥⎥⎦ , (61)

pθ
t (r) = − 3β1Cr

2

4
(
Cr2 + 1

)
⎡
⎢⎢⎣−

8(3α+1)3A2
1C

2r2
(
Cr2+1

) (
2Cr2+2

)

H2
11(r)

(
(3α+1)Cr2 − 2

) +
4(3α+1)3/2A1C

√
2Cr2+2

√
Cr2+1

2−(3α+1)Cr2

H11(r)
+ N1(r)

⎤
⎥⎥⎦

− 3β1C

2
(
Cr2 + 1

)2

⎛
⎜⎜⎝

2(3α + 1)3/2A1Cr
2
√

2Cr2 + 2

√
− Cr2+1

2−(3α+1)Cr2

H11(r)
+ 1

⎞
⎟⎟⎠+ β1 f2(r), (62)

where,

f2(r) = 1

8
(
Cr2 + 1

)2
[ (

2 − Cr2
) (

Cr2 + 1
)

×
( 12Cr2H1(r)

(
A
√−C2r4+Cr2+2−2BCr2+B

)

A
(
Cr2+1

)√−C2r4+Cr2+2−B
(
2C2r4+Cr2−10

)

+2H2(r) + αr2H2
1 (r) + 2H1(r)

)
− 6Cr2H1(r)

]
.

The expressions for other symbols used in the above
Eqs. (61) and (62) used are given in the appendix. Further-
more, a complete mechanism for generating the anisotropic
solution from the perfect fluid solution in f (Q)-gravity the-
ory using extended gravitational decoupling along with the
complexity-free condition is shown in Fig. 1. In this regard,
it is necessary to mention that the idea of generating the
anisotropic solution from perfect fluid distribution using
gravitational decoupling was introduced by Ovalle [102].
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Fig. 1 The flow chart for anisotropic generalization of Buchdahl’s perfect fluid model to the anisotropic domain in f (Q)-gravity using gravitational
decoupling with the vanishing complexity factor condition

Some other seminal works can be found in the following
Refs. [103–107].

4 Matching condition in f (Q)-gravity

As stated previously that the Schwarzschild (Anti-) de Sitter
solution is the most suitable exterior solution in the f (Q)-
gravity theory in the context of the linear functional form of
f (Q) given in Eq. (25). Therefore, all the solution’s constant
must be obtained by joining the interior spacetime with exte-
rior Schwarzschild (Anti-) de Sitter spacetime at the pressure-
free boundary r = R. The exterior Schwarzschild (Anti-) de
Sitter spacetime is given by

ds2+ = −
(

1 − 2M

r
− �

3
r2
)
dt2 + dr2(

1 − 2M
r − �

3 r2

)

+r2
(
dθ2 + sin2 θ dφ2

)
. (63)

The suitable boundary conditions are known as the first and
second fundamental forms which can be derived by match-
ing the interior spacetime with exterior spacetime at r = R
via Darmois–Israel boundary conditions [108,109]. These
conditions can be expressed mathematically as,(

1 − 2M

r
− �

3
r2
)

= eν(R), (64)

(
1 − 2M

r
− �

3
r2
)

= e−λ(R), (65)

Pr (R) = 0. (66)

Here, M and � denote the total mass and the cosmologi-
cal constant, respectively. Thus, in principle, in the regime
restricted by the constants β1 and β2, the cosmological con-
stant � can be expressed in the form � = β2/2β1. Based on
the most recent observational evidence, the value of the cos-
mological constant � in the present cosmos is approximately
10−46/km2. Nevertheless, the current stellar configurations
will only be slightly affected by this value of the cosmolog-
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ical constant �, therefore it can be taken to be zero, which
indicates that β2 = 0. For the rest of the study, we will assume
that β2 = 0. We derive formulas for arbitrary constants using
the boundary conditions (64)–(66),

A1

B1
= −

[
3
√

6α + 2
(
3α2 + 4α + 1

)
C
(
CR2 + 1

) ]/
⎡
⎣
√

CR2 + 1

2 − (3α + 1)CR2

(√
3α + 1(15α + 7)

(
CR2 + 1

)

×
[
(3α + 1)CR2 − 2

]
− 9(α + 1)2

√
2 − (3α + 1)CR2

×
√
CR2 + 1 tan−1

(√
2 − (3α + 1)CR2

√
3α + 1

√
CR2 + 1

))⎤
⎦ , (67)

B1 =
[
(3α + 1)3/2C

√
2CR2 + 2

√
2 − (3α + 1)CR2

2CR2 + 2

]/

×
[
A1

B1

√
− CR2 + 1

(3α + 1)CR2 − 2

(√
3α + 1

√
CR2 + 1

×
[
(3α + 1)CR2 − 2

]
− 3(α + 1)

√
2 − (3α + 1)CR2

× tan−1

(√
2 − (3α + 1)CR2

√
3α + 1

√
CR2 + 1

))
+ (3α + 1)3/2C

×
√

2CR2 + 2

]
. (68)

5 Physical analysis of complexity free anisotropic
solution in f (Q)-gravity

In this section, we give a thorough physical analysis of
our solutions presented here for anisotropic stellar config-
urations induced by gravitational decoupling with vanish-
ing complexity factor in f (Q)-gravity theory. To see how
they hold up physically, we will examine the graph’s ten-
dencies for different values of decoupling constant α =
0.0, 0.05, 0.10, and 0.15. The case α = 0.0 yields a sit-
uation in a pure f (Q)-gravity theory. It is also mentioned
that the solution is not well-behaved when α > 0.18 due to
a violation of the causality condition.

5.1 Physical behavior of density, pressures, and anisotropy
inside the compact objects

Let us start by analyzing the physical behavior of the mat-
ter variables, namely, effective density (ρtot), radial pressure
(P tot

r ), tangential pressure (P tot
t ) and anisotropy (�tot) versus

radial coordinate r within the stellar configurations. These
matter variables are displayed in Fig. 2, at each interior point
of the compact objects. The three effective quantities: ρtot,
P tot
r , and P tot

t , fall off smoothly as they move from the core

toward the stellar surface. We have fixed the contributions
from the nonmetricity scalar, Q, denoted by β1 = 0.66 km2,
while varying the decoupling constant, α. It is obvious that
the magnitude of density for the compact object grows as
α grows. However, since there is no energy transfer to the
surrounding space-time, then effective radial pressure disap-
pears at the stellar surface, as we anticipated. We also note
that the magnitude of effective pressure components rises
when the decoupling constant, denoted by α, increases, as
well as the effective tangential pressure dominates its radial
counterpart. On the other hand, the effective anisotropy fac-
tor �tot is positive in all stellar configurations, which leads
to the production of a repulsive force. This repulsive force
aids in balancing the inwardly directed gravitational force.
It is intriguing to note that the effective anisotropy factor
�tot rises as the decoupling constant α rises, emphasizing
that the decoupling constant α has a significant effect on the
strengthening the force owing to anisotropy.

5.2 Causality conditions and stability

In astrophysics, when analyzing any physically viable sys-
tem, the stability of the stellar configurations plays a crucial
role. By using superluminal speeds based on Herrera’s crack-
ing concept [110], we discuss the stability for anisotropic
stellar configurations generated by gravitational decoupling
with vanishing complexity factor in f (Q)-gravity theory.
According to the causality condition, physically stable struc-
tures in the interior geometry of stellar objects require that the
squared speed of sound, denoted by the formula v2

s = dp/dρ,
must be within the range [0, 1], i.e., 0 ≤ v2

s = dp/dρ ≤ 1.
In this regard, Herrera [110] has developed the idea of crack-
ing, by taking into account a distinct method for obtain-
ing potentially stable or unstable regions of compact stel-
lar structures. These regions are assessed using the formula
−1 ≤ |v2

t − v2
r | ≤ 0 (stable regions) and 0 ≤ |v2

t − v2
r | ≤ 1

(unstable regions), where v2
r and v2

t stand for squared sound
speed in the radial and tangential directions, respectively. To
ensure the stability analysis, we present the sound speeds in
Fig. 3. It is seen that the sound speeds are less than the speed
of light (taking into account that the speed of light is unity
in relativistic units) and the radial speed of sound is always
greater than within the object for each α which interprets that
our resulting complexity free anisotropic stellar solutions in
f (Q)-gravity theory generated by gravitational decoupling
satisfies the causality and stability condition for all adopted
values of the decoupling constant α and the contributions
from the non-metricity scalar, Q, denoted by β1.

5.3 Adiabatic index and stability

We keep focusing on the stability of our stellar models gen-
erated by gravitational decoupling with vanishing complex-
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Fig. 2 The figures show the variation of effective density (ρtot)-top
left, radial pressure (P tot

r )-top right panel, tangential pressure (P tot
t )-

bottom left panel and anisotropy (�tot)-bottom right panel versus radial

coordinate r within the stellar object for different α with constant values
C = 0.0043 km−2, and β1 = 0.66 km2

Fig. 3 The figures show the variation of the radial velocity of sound (v2
r )-left panel and tangential velocity of sound (v2

t )-right panel versus radial
coordinate r within the stellar object for different α with constant values C = 0.0043 km−2, and β1 = 0.66 km2

ity factor in f (Q)-gravity theory, but this time, we do so
using the adiabatic stability criterion, which was originally
inferred by Chandrasekhar [111,112] for isotropic pressure
gradients. This adiabatic stability criterion was described by
the following formula:


 =
(

1 + ρ

p

)(
dp

dρ

)
S
, (69)

with 
 > 4/3 as the limiting case for constrained structures
with isotropic pressure, p. Here, the velocity of sound is
denoted by dp

dρ and the subscript S signifies a constant specific
entropy. This condition (69) gets modified when anisotropy
and dissipation are involved, according to findings by Herrera
et al. [113,114]. In the presence of pressure anisotropy, the
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Fig. 4 The behavior of adiabatic index (
) versus radial coordinate r
with same constant values as used in Fig. 3

stability criterion modifies and takes the following form,


 <
4

3
+
[
−4

3

(P tot
r − P tot

t )

|(P tot
r )′|r

]
, (70)

where the prime displays differentiation with regard to the
radial coordinate r . For unstable regions, the Newtonian
limit, 
 < 4/3, is generated by the vanishing of the sec-
ond term in (70), which occurs by relativistic contributions.

However, the adiabatic index can be modified by radial
heat transfer dissipation or the occurrence of density inho-
mogeneities. It has been shown by Moustakidis [115] that
the critical value for the adiabatic index is given by,


cri t = 4

3
+ 19

21

M

R
, (71)

where the stellar model’s compactness is represented by the
ratio M/R. Moustakidis [115] argued that stability versus
radial perturbations ensures the stability of relativistic fluid
configurations if 
 > 
cri t . The Chandrasekhar stability cri-
terion is satisfied by our complexity-free anisotropic stellar
models in f (Q)-gravity theory generated by gravitational
decoupling, as shown in Fig. 4, since the adiabatic index 
 is
rising and exceeds 4/3 everywhere in the anisotropic stellar

models for each α. It is worth noting that the stronger stability
criterion, 
cri t , which is not satisfied in pure f (Q)-gravity
theory, i.e., 
0 < 
cri t for α = 0, (where 
0 denotes the cen-
tral values of the adiabatic index 
) but this has been ensured
in f (Q)-gravity in the presence of gravitational decoupling,
i.e., 
0 > 
cri t , as illustrated in Table 1. This demonstrates
how stable configurations can be generated from unstable
models using the gravitational decoupling approach.

5.4 Energy conditions

In this section, we discuss the energy conditions (ECs) to
understand the geodesics of the Universe. Such conditions
can be established by using the well-known Raychaudhury’s
equations [116] which satisfy the following equations under
the attractive gravity,

Rενu
εuν ≥ 0, (72)

Rενn
εnν ≥ 0, (73)

where uν and nν denote the vector field and null vec-
tor. Therefore, under the anisotropic matter distribution, the
energy conditions in f (Q) recovered from standard GR as
[41],

(i) null energy condition (NEC) :
ρtot + P tot

r ≥ 0, (74)

(ii) weak energy condition (WEC) :
ρtot ≥ 0, ρtot + P tot

r ≥ 0, (75)

(iii) strong energy condition (SEC) :
ρtot + P tot

r + 2 P tot
t ≥ 0, (76)

(iv) dominant energy condition (DEC) :
ρtot ≥ 0, ρtot − |P tot

r | ≥ 0, ρtot − |P tot
t | ≥ 0. (77)

Since total pressures (P tot
r & P tot

t ) and total energy density
are positive throughout the model which can be visualized
from Fig. 2. Then NEC, WEC, and SEC energy conditions are
automatically fulfilled. Only we need to check the dominant
energy condition (DEC) for the model. For this purpose, we
draw the Fig. 5 for the dominant energy condition. From this
Fig. 5, it is observed that the dominant energy condition is
also fulfilling for our model.

Table 1 Numerical values of the physical parameters by taking different values of decoupling constant α for fixed β1 = 0.66 (km)2 and R =
13.44 km

α Mass Central density Surface density Central pressure M/R 
cri t 
0 zs
(M/M�) (g/cm3) (g/cm3) (dyne/cm2)

0.0 1.97 6.85803 × 1014 2.73497 × 1014 1.07741 × 1035 0.216397 1.52912 1.36368 0.327792

0.05 2.07 7.20093 × 1014 2.87172 × 1014 1.58521 × 1035 0.227217 1.53891 1.57629 0.353869

0.10 2.17 7.54383 × 1014 3.00847 × 1014 2.33158 × 1035 0.238037 1.5487 1.85821 0.381545

0.15 2.27 7.88673 × 1014 3.14522 × 1014 3.50819 × 1035 0.248857 1.55849 2.29721 0.410992
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Fig. 5 The behavior of (ρtot − P tot
r ) and (ρtot − P tot

t ) versus radial
coordinate r with same constant values as used in Fig. 3

5.5 Mass measurements of anisotropic star via equi-mass
diagram on R − α, R − β1, and α − β1 planes

In this section, we measure the mass of the anisotropic star
through the equi-mass diagram on different R − α, R − β1,
and α − β1 planes. Figure 6 shows the mass distribution on
R − α plane with fixing β1 = 0.66 km2. It can be observed
that if we increase the radius R and fix α, then the mass of the
star is also increasing. On the other hand, if we fix the radius
between 0 to 10, then no deviation in mass is observed for
all α ∈ [0, 0.18] but when r ≥ 10, then we start observing
that the mass is increasing with increasing α. This increment
is maximum when R = 13.44 km. The maximum mass is
observed 2.3 M� for α = 0.18 and R = 13.44 km.

Now we move to Fig. 7, which is showing the equi-mass
diagram on R − β1 plane with fixing α = 0.1. As we can
observe clearly from this figure that the pattern of mass distri-
bution on the R−β1 plan is similar to the R−α plane as dis-
cussed above. It is important to mention that the star becomes

Fig. 6 The equi-mass diagram on R − α plane with constant value
C = 0.0043 km−2, and β1 = 0.66 km2

Fig. 7 The equi-mass diagram on R − β1 plane with constant value
C = 0.0043 km−2, and α = 0.1

too massive when we increase β1 with R = 13.44 km. This
implies that the total mass of the anisotropic star in f (Q)-
gravity can be controlled by coupling parameter β1.

Finally, the last Fig. 8 is showing for the mass distribution
on α − β1 plane with fixed radius R = 13.44 km. As we
can observe that if we fix β1 ∈ [0.6, 1.2] and increase α,
then mass also increases but this increment can be clearly
noticed when β1 is high. Similarly, if β1 increases with fixing
α ∈ [0, 0.18], the mass is also increasing. This implies that
the mass of the objects depends on both parameters α and
β1.
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Fig. 8 The equi-mass diagram on α − β1 plane with constant value
C = 0.0043 km−2, and R = 13.44

6 Energy exchange between the sources Tεν and T θ
εν

Before going to discuss the direct analysis of the energy
exchange between the sources, it is necessary to mention why
the energy exchange is required in the context of extended
gravitational decoupling. In this regard, Ovalle [60] proved
that both sources Tεν and T θ

εν can be successfully decoupled
as long as there is the exchange of energy between them. This
concept can be understood by the following explanations:
Since the Einstein tensor G{H,W }

εν for the line element (45)
fulfills its corresponding Bianchi identity, then the energy-
momentum tensor Tεν is conserved in this spacetime geom-
etry, which is shown by Eq. (44), explicitly we can write
as,

�{H,W }
ε T ε

ν = 0, (78)

where �{H,W } implies the above divergence is calculated in
the connection to the metric (45). We note that

�ε T ε
ν = �{H,W }

ε T ε
ν − α η′

2
(T 0

0 − T 1
1 )δ1

ν , (79)

here the divergence shown in the left-hand side is calculated
in connection to the deformed spacetime given by Eq. (15).
In view of Eqs. (17) and (18), the Eq. (4) leads,

− H ′
2

(T 0
0 − T 1

1 ) + (T 1
1 )′ − 2

r
(T 2

2 − T 1
1 ) − αη′

2
(T 0

0 − T 1
1 )

−�

2

(
[T θ ]00 − [T θ ]11

)
+
(
[T θ ]11

)′ − 2

r

(
[T θ ]22 − [T θ ]11

)
= 0,

(80)

As expected, the Eq. (78) will provides the explicit form,

−H ′

2
(T 0

0 − T 1
1 ) + (T 1

1 )′ − 2

r
(T 2

2 − T 1
1 ) = 0, (81)

which is a linear combination of the Einstein field equations
(41)–(43). Thus we can confirm that the source Tεν has been
successfully decoupled from the system (26)–(28). Finally,
by considering the condition (78), the Eq. (80) gives,

�ε T
ε
ν = −α η′

2
(T 0

0 − T 1
1 )δ1

ν , (82)

and

�ε [T θ ]εν = α η′

2
(T 0

0 − T 1
1 )δ1

ν . (83)

In the above equations, the divergence is calculated in con-
nection to the deformed spacetime (15). Also, the Eq. (83)
is a linear combination of “quasi-Einstein” field equations
(46)–(48) in f (Q)-gravity. Based on the above explanation,
it can be clearly observed that both sources Tεν and T θ

εν can
be successfully decoupled as long as there is an exchange of
energy between both the sources.

Later on a critical phenomenon of the energy exchange
between both sources Tεν and T θ

εν was initially discussed by
Ovalle et al. [117] and Contreras & Stuchlik [118]. Accord-
ing to them, the energy exchange between the sources was
denoted by �E and determined by the formula,

�E = η′

2

(
p + ρ

)
. (84)

Since p and ρ are positive then from above equation (84, if
η′ > 0 means �E > 0, then Eq. (83) yields �ε [T θ ]εν > 0.
In this situation, the new source T θ

εν is giving energy to the
environment while the opposite occurs when η′ < 0.

Then, using Eqs. (53), (54) and (59) into Eq. (84), we find
the expression for Energy exchange,

�E = −3Cβ1r H1(r)
[
A
√

2 − C2r4 + Cr2(3 − C2r4

+2Cr2) + B
(
2Cr2 + 3

) (
Cr2 − 2

)2 ]/[
2
(
Cr2 + 1

)2

×
{
B
(
2C2r4 + Cr2 − 10

)− A
(
Cr2 + 1

)

×
√

2 − C2r4 + Cr2
}]

. (85)

Figure 9 shows the distribution of energy exchange (�E)
between the relativistic fluids on the r −α plane for the con-
stant value A/B = −0.5 (left panel) and A/B = 0.5 (right
panel) with fixed C = 0.0043 km−2 and β1 = 0.66 km−2.
It can be observed from both the left and right panels of
this Fig. 9 that the �E is positive. This shows that the new
source T θ

εν always gives the energy to the perfect fluid mat-
ter distribution. Also, there is no energy exchange between
the fluid distributions near the core for all α ∈ [0.6, 1.2].
But the value of �E is maximum and positive at α ≈ 0.025
when 7 ≤ r ≤ 11 and 9 ≤ r ≤ 12 for A/B = −0.5 and
A/B = 0.5, respectively. The magnitude of the maximum
value decreases and moves near the boundary when A/B
increases. Also, the value of �E is ruled out for α < 0.025.
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Fig. 9 Left panel: The variation of energy exchange �E on r − α plane for C = 0.0043 km−2, β1 = 0.66 km2 and A/B = −0.5. Right panel:
The variation of energy exchange �E on r − α plane for C = 0.0043 km−2, β1 = 0.66 km2 and A/B = 0.5

Fig. 10 Left panel: The variation of energy exchange �E on r − β1 plane for C = 0.0043 km−2, α = 0.1 and A/B = −0.5. Right panel: The
variation of energy exchange �E on r − β1 plane for C = 0.0043 km−2, α = 0.1 and A/B = 0.5

Fig. 11 Left panel: The variation of energy exchange �E on β1 − α plane for C = 0.0043 km−2, R = 13.44 km and A/B = −0.5. Right panel:
The variation of energy exchange �E on r − β1 plane for C = 0.0043 km−2, R = 13.44 km and A/B = 0.5
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The energy exchange between the relativistic fluids on
r −β1 plane is shown in Fig. 10 for A/B = −0.5 (left panel)
and A/B = 0.5 (right panel) with fixed C = 0.0043 km−2

and α = 0.1 km−2. It can be observed from both figures
that �E is positive at each point of r − β1 plane which
shows the new source T θ

εν is giving the energy to the per-
fect fluid matter distribution in this case also. Also, there
is no energy exchange between the relativistic fluids near
the core i.e. when r ≤ 1 but when r > 1, then �E
increases with increasing β1. The maximum value of �E is
achieved between 6 ≤ r ≤ 10 at β1 = 1.2 km−2 which
is �E = 0.0053 and �E = 0.0054 for A/B = −0.5
(left panel) and A/B = 0.5 (right panel), respectively. This
implies that when A/B increases then �E will also increase.
The next Fig. 11 shows the mass distribution on β1 −α plane
with fixed radius r = 13.44 km for A/B = −0.5 (left panel)
and A/B = 0.5 (right panel). For fixing β1 and increasing
α, the energy exchange �E decreases while it is increas-
ing for increasing β1 and fixed α. It is also noticed that
�E is positive throughout the β1 − α plane which means
the new source is giving the energy to the environment.
Furthermore, the maximum value of �E in both cases is
achieved when β1 ≈ 1.2 and α ≈ 0.3. Also, we observe
thatmax{�E}A/B=−0.5 < max{�E}A/B=0.5 which implies
max{�E} is increasing when A/B increases. Furthermore,
the value of �E is ruled out for α < 0.03. Finally, we con-
cluded that both constants β1 and α play an important role to
predict how much amount of energy is exchanged between
the sources.

7 Concluding remarks

In this work, we have successfully investigated the complexity-
free spacetime for anisotropic self-gravitating stellar con-
figurations generated by gravitational decoupling in f (Q)-
gravity theory. In this context, the gravitational decoupling
via CGD approach basically enlarged spherical isotropic
solutions by incorporating an anisotropic gravitational source.
It should be noted that we have employed this CGD technique
and transformed both the temporal and radial metric poten-
tials, which divides the decoupled system of non-linear field
equations in f (Q)-gravity into two subsystems. One set cor-
responding to the seed source and the other one involves extra
source terms. The effects of a new gravitational source have
been introduced to the well-known perfect fluid solution that
corresponds to Buchdahl’s space-time geometry in order to
test the consistency of the CGD approach with this f (Q)-
gravity theory. While the conservation equation for the mat-
ter sources expressed in (46) has shown the energy exchange
between the two sources. Moreover, all the solution’s con-
stants were determined by joining the interior spacetime
with exterior Schwarzschild (Anti-) de Sitter spacetime at
the pressure-free boundary r = R.

The eventual model has been carefully analyzed and obeys
the necessary conditions for viability inside the stellar fluid’s
interior. The effective energy density and effective pressure
stresses are physically well-behaved and reflect the proper-
ties for realistic stellar objects. For anisotropic solutions, we
have found that the magnitude of effective pressure stresses
rises when the decoupling constant, denoted by α, increases,
as well as the effective tangential pressure, dominates its
radial counterpart which results in a repulsive force aids in
balancing the inwardly directed gravitational force. More-
over, the behavior of the effective anisotropy factor rises as
α rises, highlighting the fact that the decoupling constant
α significantly affects the force’s ability to be strengthened
due to anisotropy. Our model is stable for all chosen values
of the decoupling constant, α, and the contributions from the
non-metricity scalar, Q, denoted by β1, according to a sta-
bility analysis employing superluminal speeds based on Her-
rera’s cracking concept and the anisotropic generalization of
the Chandrasekhar adiabatic index. However, the most cru-
cial point is that when gravitational decoupling is taken into
account, the stronger stability criterion,
cri t , which is not sat-
isfied in pure f (Q)-gravity theory, i.e., 
0 < 
cri t for α = 0,
becomes ensured in f (Q)-gravity, i.e., 
0 > 
cri t . This
shows how the gravitational decoupling approach can gener-
ate stable configurations from unstable models. An intriguing
finding is the mass measurements of anisotropic star pre-
dicted by equi-mass diagram on different R − α, R − β1,
and α − β1 planes. Here we showed that our equi-mass dia-
gram predicts a maximum mass of 2.3 M� for α = 0.18
when R = 13.44 km, and the star becomes excessively mas-
sive when we increase β1 with R = 13.44 km. Moreover,
the total mass of the anisotropic star in f (Q)-gravity can be
controlled by both parameters α and β1. This experiment has
shown how useful the gravitational decoupling approach is
for constructing astrophysical models that are coherent with
empirical occurrences.
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