
J
H
E
P
0
8
(
2
0
1
8
)
0
1
2

Published for SISSA by Springer

Received: April 9, 2018

Revised: June 27, 2018

Accepted: July 29, 2018

Published: August 3, 2018

Complexity functionals and complexity growth limits

in continuous MERA circuits

J. Molina-Vilaplanaa and A. del Campob,c

aUniversidad Politécnica de Cartagena,
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1 Introduction

In recent years, remarkable connections between gravitational physics and the patterns of

entanglement in dual quantum states have emerged [1–5]. These connections have been

mainly addressed in the context of the AdS/CFT duality [6–8], a prominent example being

the holographic formula for the entanglement entropy [1]. In this context, the quantum

complexity of a given state has been incorporated into the discussion very recently with

two holographic proposals aiming to measure the quantum complexity of states in the

boundary theory, namely, the Complexity=Volume (CV) conjecture [9, 10] and the Com-

plexity=Action (CA) conjecture [11, 12].

The complexity of a quantum state |T 〉 is usually understood as the minimum number

of gates needed to prepare the unitary transformation U that obeys |T 〉 = U |R〉, where

|R〉 is a simple reference state [13]. However, it is difficult to find a suitable definition of

circuit complexity for states in a continuous theory such as a quantum field theory (QFT).

The question is how to provide an operational definition of complexity based on smooth

properties or observables. As argued in [14], the main challenges in providing this op-

erational definition of complexity in the continuum include finding: i) suitable reference

states, ii) a set allowed gates and its corresponding generators that are simple (in the sense

of [9, 11, 12, 14, 15]), iii) a regularization procedure to deal with ultraviolet divergences

and iv) a measure of complexity. In [14], the choices for i)-iii) were inspired by the con-

tinuous version of the Entanglement Renormalization tensor networks, cMERA [16, 17].

For iv), a measure of the complexity of a quantum state was introduced by integrating the
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Fisher information line element along a path from the reference state |R〉 to the target |T 〉
associated to a realization of U . The unitary operators U under consideration arise from

iterating generators K taken from some elementary set of Hermitian operators K. Thus,

unitaries U can be represented as path ordered exponentials

U(u) = P exp

(
−i
∫ u

ui

K(u′) du′
)
, (1.1)

where u ∈ [ui, uf ] parameterizes a path starting at ui and ending at uf . The path-

ordering P is required for non-commuting generators K(u) and the interest lies on paths

achieving

|T 〉 ≈ U(uf )|R〉 , (1.2)

where (≈) indicates that states coincide for momenta below a cutoff Λ. If the path is

unrestricted, the unique unitarily invariant distance measure d(|R〉, |T 〉) = arccos |〈R|T 〉| ≤
π/2 is obtained [14]. This is the familiar Bures length between states |R〉 and |T 〉 given

by the (Fubini-Study) metric in projective Hilbert space, see e.g. [18]. By contrast, upon

restricting the generators K(u), a non-trivial notion of distance related to complexity may

be obtained. In the proposal [14], the complexity C of a quantum state is defined as

the minimal length (in terms of the Fisher metric) `(|Ψ(uf )〉) of a path running from

|Ψ(ui)〉 ≈ |R〉 to Ψ(uf ) ≈ |T 〉 driven by generators K(u) in K

C(|R〉, |T 〉,K,Λ) = min
K(u)

`(|Ψ(u)〉) . (1.3)

By definition, this measure of complexity C has properties of a distance function,

inherited from the Fisher information metric. In addition, C remains well behaved even

when K includes generators with unbounded norm (such as field operators). An interesting

discussion of these ideas in the case of thermofield double states can be found in [19].

It is noteworthy that cMERA tensor networks appear in an alternative approach to

the computation of the quantum complexity of a QFT state. In [20–22] an optimization

procedure was introduced for Euclidean path-integrals that evaluate QFT wave functionals.

This optimization is carried out by minimizing certain functional, which can be interpreted

as a measure of the computational complexity, with respect to background metrics for the

path-integrals. In two dimensional CFTs, the complexity functional is given by the Liouville

action [23, 24]. The approach resembles a cMERA tensor network and the results were

interpreted in terms of the AdS/CFT correspondence. Within this duality, and concretely

under the CA conjecture, it has been recently recognized the significance of bounds on the

complexification rates during a dynamical process. In [11, 12, 25] authors found that in the

context of black holes in AdS and thermofield double states, the speed of complexification of

the boundary state saturates a bound analogous to that derived by Margolus and Levitin

for unitary dynamics [26]. The latter constitutes a fundamental limit on the speed of

evolution of any quantum system. More generally, the dynamics of physical processes is

fundamentally constrained by so-called quantum speed limits, that set a bound to the rate

of change of a measure of distance between states related by translation in time under

the equations of motion of the system. Such bounds appear to be universal, and can be
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derived for both isolated [26–29] and open [30–32] quantum systems as well as classical

processes [33]. In particular, under unitary quantum dynamics, two-seminal results are

known that bound the rate of change of the fidelity as a function of time in terms of the

mean energy (the aforementioned Margolus-Levitin speed limit [26, 29]) and via the energy

fluctuations (Mandelstam-Tamm speed limit [27, 28]) of the system.

In this work, we focus on the cMERA renormalization group flow for the ground state

of free scalar theories for which some proposals for measuring complexity have shown to

be explicitly computable [14, 15]. The cMERA tensor networks continuously project a

reference state |R〉 into a final target |T 〉 state, via successive application of the continuous

equivalent of a single, simple and fundamental, logic gate. This pictures a cMERA tensor

network for a free theory as a series circuit. It has been argued that the serial description is

the one that applies naturally to black holes [34]. We show how the variationally optimized

cMERA flows extremize the action functional appearing in the coherent state path integral

representation for the circuit associated with the cMERA renormalization group (RG) flow.

This path integral has been previously interpreted in terms of non-critical string in two

dimensions [35]. The extremal values of the action functional account for the complexity of

the cMERA circuit as measured in other proposals, see [14], and it is suggested to interpret

the path integral as a complexity functional [20, 21, 36]. In one dimensional theories, the

complexity action functional for cMERA yields analogous results to the Liouville action of

2D Einstein gravity, which provides a connection between our proposal and those in [20–22].

To be concrete, the Liouville mode can be mapped to the variational parameter defining the

cMERA circuit. In addition, understanding the cMERA RG flow as a dynamical process,

we introduce Complexity Growth Limits (CGL) that strictly constrain the dynamics of

the renormalization group flow implemented by the cMERA circuit. In particular, we

obtain CGL of Margolus-Levitin and Mandelstam-Tamm type that set upper bounds on

the complexification rate of the circuit. We stress here that neither assumptions on the

CA conjecture nor facts about the proposed holography/Tensor Network duality [37] have

been considered in our derivations.

2 Complexity in QFT and entanglement renormalization

Tensor networks can be used as theoretical tools to characterize different features and

properties of the wavefunction of a quantum many body system. The discrete version

of an Entanglement Renormalization tensor network (MERA) [38] can be understood as

a quantum circuit that builds a unitary operator that produces a target state from an

initial set of decoupled qubits. Here we focus on the continuous version of MERA cir-

cuits (cMERA) [16] which allows to study the entanglement renormalization of states in

continuous field theories.

2.1 Continuous entanglement renormalization circuits

cMERA amounts to a real-space renormalization group procedure on the quantum state

(instead of the Wilsonian RG scheme) that represents the wavefunction of the quantum

system (usually in its ground state) at different length scales labeled by the parameter u.
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The renormalization scale parameter u in cMERA is usually taken to be in the interval

[uIR, uUV ] = (−∞, 0]. Here, uUV = uε is the scale at the UV cutoff. The real space UV

cutoff is the short-wavelength cutoff ε, and the corresponding momentum space UV cutoff

is Λ = 1/ε. uIR = uξ is the scale in the IR limit, where ξ is a long-wavelength correlation

length. In cMERA, the renormalized states |Ψ(u)〉 live all in the same Hilbert space HΛ,

where Λ is the UV-cutoff for the theory. The state |ΨUV 〉 = |Ψ(uUV )〉 is the state in the

UV limit. This may be the ground state of a many-particle system or the ground state of

a quantum field theory. The state

|Ω〉 = |ΨIR〉 = |Ψ(uIR)〉 (2.1)

is the unentangled reference state, with no entanglement between spatial regions, in the IR

limit. This state has zero entanglement entropy for any partition of space. The cMERA-

Hamiltonian

Hc(u) = K(u) + L (2.2)

generates translations along the cMERA parameter u. L is the (spatial) dilatation operator,

governed by the scaling dimensions of the fields. It can be understood as the “free” part

of the cMERA-Hamiltonian, and does not depend on the cMERA parameter u. The state

|Ω〉 is invariant under dilations, L|Ω〉 = 0.

The term K(u) in the cMERA-Hamiltonian is called the entangler operator. This

is the “interacting” part of the cMERA-Hamiltonian. The variational parameters of the

cMERA formalism are incorporated into K(u). The cMERA unitary evolution operator

U(u2, u1) along the parameter u is given by

U(u2, u1) = P exp

[
−i
∫ u2

u1

du (K(u) + L)

]
(2.3)

where P is the u-ordering operator. States at different scales are thus related by U(u2, u1).

In particular, we can represent the state |Ψ(u)〉 in terms of the IR state

|Ψ(u)〉 = U(u, uIR)|Ψ(uIR)〉 = U(u, uIR)|Ω〉 . (2.4)

For most purposes it is convenient to define the cMERA “interaction picture” by the

unitary transformation of states and operators

|Φ(u)〉 = exp(iLu)|Ψ(u)〉 , (2.5)

Õ(u) = exp(iLu)O exp(−iLu) .

In particular, the u-evolution in the interaction picture is determined by the

unitary operator

Ũ(u2, u1) = P exp

[
−i
∫ u2

u1

du K̃(u)

]
, (2.6)

with K̃(u) = exp(iLu)K(u) exp(−iLu) the corresponding entangler in this picture. Thus,

we may write

|Φ(u)〉 = Ũ(u, uIR)|Ω〉 = P exp

[
−i
∫ u

uIR

du′ K̃(u′)

]
|Ω〉 . (2.7)
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Starting in the IR state |Ω〉, the interaction Hamiltonian K̃(u) generates pairwise entan-

glement between modes of opposite momenta up to |k| ≤ Λeu, while for higher scales only

the dilatation operator L acts.

In this work, we will consider the cMERA circuit associated to the ground state of

a free scalar field theory in (d + 1)-dimensions with a Hamiltonian in momentum space

given by

H =
1

2

∫
ddk [π(k)π(−k) + ω2

k · φ(k)φ(−k)] , (2.8)

with ωk =
√
k2 +m2. It is convenient to express φ(k) and π(k) in terms of creation

and annihilation operators

φ(k) =
ak + a†−k√

2ωk
, π(k) =

√
2ωk

(
ak − a†−k

2i

)
, (2.9)

with commutation relations [ak, a
†
p] = δd(k− p). The |Ω〉 unentangled (in real space) state

is defined by

〈Ω|φ(k)φ(k′)|Ω〉 =
1

2M
δd(k + k′) , (2.10)

〈Ω|π(k)π(k′)|Ω〉 =
M

2
δd(k + k′) ,

where M =
√

Λ2 +m2. The cMERA variational optimization amounts to minimize the

total energy E = 〈Φ(0)|H|Φ(0)〉, where H is the Hamiltonian (2.8).

For this theory, the entangler in the interaction picture can be written in terms of

creation and annihilation operators as the quadratic operator

K̃(u) =
1

2i

∫
ddk [ g(k, u) a†ka

†
−k − g(k, u)∗ aka−k ] , (2.11)

where g(k, u) = g(u) Γ(|k|e−u/Λ) with Γ(x) = θ(1 − |x|) being a momentum cut -off

function where θ is the step function. This is a Gaussian ansatz which nomenclature

is fully justified in [16, 17, 39] in which the state-dependent variational parameter to be

determined is g(k, u). Working in the interaction picture, and noting that for the QFT

vacuum |0〉, ak|0〉 = 0, it is possible to write the cMERA state (2.7) as the squeezed state

|Φ(u)〉 = N exp

[
− 1

2

∫
ddk

[
Φ(k, u) a†k a

†
−k − Φ(k, u)∗ ak a−k

] ]
|Ω〉 , (2.12)

where

Φ(k, u) =

∫ u

−∞
du′ g(k, u′) (2.13)

and the normalization constant reads

N = exp

(
−1

2

∫
|k|≤Λeu

ddk |Φ(k, u)|2
)
. (2.14)
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Thus, the cMERA RG-flow generates a sequence of scale-dependent Gaussian squeezed

states |Φ(u)〉 that act as a set of scale-dependent Gaussian variational ansatz for the state

|ΦΛ〉 ≡ |Φ(u = 0)〉 by means of a variational parameter Φ(k, u) (g(k, u)). In what follows,

we will focus on the ground state of a d = 1 scalar theory for which [16, 17]

Φ(k, u) = −1

2
log

ωk
M

∣∣∣
k=Λeu

= −1

4
log

e2uΛ2 +m2

Λ2 +m2
, (2.15)

that, differentiating with respect to u gives

g(u) = −1

2

e2u

(e2u +m2/Λ2)
. (2.16)

Finally, let us comment on the concept of simple (non-orthogonalizing) quantum logic

gates [11, 12, 40, 41]. It is said that a gate G operates simply on a state |Ψ〉 if 〈Ψ|G|Ψ〉 ∼
1 − O(ε) where ε is the tolerance of the gate. This definition fits nicely with a cMERA

tensor network pictured as a continuous quantum circuit. Indeed, a cMERA tensor network

implements a sequential quantum circuit on the reference state |Ω〉 by sequential application

of the simple gate

GcMERA(u) = e−i δ K̃(u) , (2.17)

where δ amounts to an infinitesimal displacement along the renormalization direction u

that will be interpreted as the infinitesimal volume associated with the gate. This fulfills

the criteria for it to be a simple gate. Interestingly, it has been argued that any “smooth”

notion of complexity should be based upon simple gates which do not orthogonalize, i.e,

gates that slightly change the wavefunction as the tolerance decreases [41].

2.2 Complexity as cMERA circuit length

In [14], authors have proposed to measure the complexity of a cMERA circuit as the

minimal length (in terms of the Fisher information metric) of a path running from the

reference state |Ω〉 to the target state |ΦΛ〉. This amounts to the real part of the quantum

geometric tensor gij introduced by Provost and Vallee [42]. The later governs the (square

of) Hilbert-Schmidt distance d2
HS between quantum states Φ(ξ) and Φ(ξ+dξ) that differ by

an infinitesimal value of a set of parameters ξ = (ξ1, ξ2, . . . , ξn), according to the expansion

d2
HS [Φ(ξ + dξ), Φ(ξ)] := 1− |〈Φ(ξ + dξ)|Φ(ξ)〉|2 = gijdξidξj , (2.18)

where the Fisher information metric reads

gij = Re〈∂i| (1− |Φ〉〈Φ|) |∂jΦ〉 , (2.19)

with Φ = Φ(u) for short. Thus, the proposal in [14] can be cast as

CcMERA :=

∫ 0

uIR

dHS [Φ(u+ du), Φ(u)] . (2.20)
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Using the coherent state formulation of a cMERA circuit for a Gaussian theory, we

first note that

〈Φ(u+ du)|Φ(u)〉 = e−
Vol
2

∫
ddk |Φ(k,u+du)−Φ(k,u)|2 = e−

Vol
2

∫
ddk |g(k,u)|2 du2 , (2.21)

where Vol ≡ δd(0) is the (infinite) volume of the d-dimensional space Rd. Thus, by defini-

tion we get

d2
HS(u) = N guu du

2 = Vol

∫
|k|≤Λeu

ddk |g(u)|2 du2 , (2.22)

where guu = |g(u)|2 and the normalization factor N is given by the volume of the effective

phase space at length scale u:

N = Vol ·
∫
|k|≤Λeu

ddk . (2.23)

Here we assume that Φ(u+ du, k) ≈ Φ(u, k) + ∂u Φ(u, k) du. In doing so, one may explic-

itly write

C(2)
cMERA =

∫ 0

−∞
du |g(u)|

√
Vol

∫
|k|≤Λeu

ddk =

√
Vol

∫
|k|≤Λ

ddkΦ2
k, (2.24)

where we have defined Φk ≡ Φ(k, 0) and the superscript (2) relates to an interpretation of

eq. (2.24) as a L2 norm. The result is independent of path reparameterizations.

Alternatively, authors in [14] also defined a L1 norm version (Manhattan distance) of

the circuit length given by

C(1)
cMERA = Vol

∫ 0

−∞
du |g(u)|

∫
k<Λeu

ddk = Vol

∫
k≤Λ

ddk |Φk| . (2.25)

This definition amounts to disallowing different elementary gates in a circuit to act

simultaneously and, according to our previous arguments, fits better as a measure for the

sequential-single-simple gate structure of a cMERA circuit.

Explicit expressions for the complexity C(2)
cMERA of the ground state of the scalar theory1

in arbitrary dimension d can be found [14]

Γ
(
d
2 + 1

)
2πd/2Vol Λd

(C(2)
cMERA)2 =

Λ4
2F1

(
1, d+4

4 ; d+8
4 ;− Λ2

m2

)
2

4(d+ 4)2m4
. (2.26)

In the CFT case this simplifies to

Γ
(
d
2 + 1

)
2πd/2Vol Λd

(
C(2)

cMERA

)2
∣∣∣∣
m=0

=
1

4d2
(2.27)

which in the d = 1 case yields

C(2)
cMERA =

√
Vol · Λ . (2.28)

1Results for C(2)cMERA in free fermionic theories can be found in [43].
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On the other hand, the complexity measure C(1)
cMERA for the ground state of the scalar

theory in d = 1 dimensions yields

C(1)
cMERA =

Vol · Λ
2

[
1− m

2Λ

(
π − 2 arctan

(
m

Λ

))]
, (2.29)

which in the CFT limit (m = 0) reduces to

C(1)
cMERA =

Vol · Λ
2

. (2.30)

3 Complexity action functionals in cMERA

Any complexity measure for a cMERA circuit must quantify the cost required to prepare

the state |ΦΛ〉 from the specific reference state |Ω〉 by applying the cMERA unitarity

U(0, uIR) builded as the path ordered exponential of equation (2.7). In this section we

provide an alternative to the circuit length as a measure of complexity in cMERA circuits.

The idea is to derive a new measure from a quantity able to encode the full RG-flow of a

cMERA state and then evaluate it for concrete cMERA circuits.

With this aim, we consider the coherent state path integral representation of the full

cMERA RG flow associated to the ground state of a one dimensional free scalar theory.2

This path integral is used as a recipe for mapping the Hamiltonian formulation of a cMERA

circuit (2.7) into a Lagrangian one. We propose it as the quantity able to fully encode the

RG-flow implemented by a cMERA circuit. To be explicit, we consider the amplitude

ZcMERA = 〈ΦΛ |P e
−i

∫ 0
uIR

du′ K̃(u′)|Ω〉 . (3.1)

Using standard techniques of coherent state path integrals which involve dividing the

integration interval into N infinitesimal subintervals and then inserting the resolution

of identity ∫
DΦ |Φ(u)〉〈Φ(u)| = I , (3.2)

at each subinterval limit, with DΦ being the gauge invariant Haar measure on SU(1,1)/

U(1), we obtain, after taking the limit N →∞

ZcMERA =

∫
DΦDΦ∗ eiA[Φ,Φ∗] . (3.3)

Here, the quantum mechanical structure of the cMERA RG-flow reveals through the

overlap of quantum states infinitesimally close in the u-direction. The action functional in

the path integral is given by

A [Φ, Φ∗] = −
∫ 0

−∞
du

(
NΛ Φ∗∂ Φ + K̃ [Φ, Φ∗]

)
, (3.4)

2In [35], this path integral was also considered and the cMERA RG flow was formally interpreted in

terms of the worldsheet action of a non-critical string in two dimensions. However, no physical content was

assigned to this formal interpretation.
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where we used for short NΛ ≡ Vol
∫
|k|≤Λ dk, Φ ≡ Φ(k, u), ∂ ≡ ∂u and

K̃ [Φ, Φ∗] = 〈Φ(u)|K̃(u)|Φ(u)〉 . (3.5)

Pursuing the analogy between the RG flow in a cMERA circuit and the time evolution

in unitary quantum dynamics, the action functional is given by the sum of a geometric

phase that arises from the Berry connection ∝ Φ∗∂ Φ and the analogue of the dynamical

phase generated by K̃ [Φ, Φ∗], playing the role of the driving Hamiltonian.

Noting that for the free scalar theory, Φ(k, u) ∈ R, the actionA [Φ, Φ∗] can be explicitly

written as

A [Φ] = −2 Vol

∫
|k|≤Λeu

dk

∫ 0

−∞
du g(u) Φ(k, u) . (3.6)

In this work, we propose that the complexity of a cMERA circuit can be measured in

terms of A[Φ]. Concretely, we suggest that

CA (|ΦΛ〉, |Ω〉) := A [Φ]on−shell , (3.7)

where on-shell indicates that the action (3.6) must be evaluated with the parameters Φ(k, u)

obtained from the cMERA variational optimization. For simplicity, in the following we will

use CA instead of CA (|ΦΛ〉, |Ω〉), keeping in mind the explicit dependence on |ΦΛ〉 and the

reference state |Ω〉.
Before moving forward, let us make few remarks on the explicit dependence of CA on

the cMERA reference state. The IR reference state of a cMERA circuit is usually chosen

as a topologically trivial state with no real-space entanglement. This choice has proven

to yield correct results in the case of free scalar and free fermion theories [16, 17]. In

other words, with this choice, the variationally optimized cMERA parameters correctly

reproduce correlators and entanglement entropies for the theories under consideration [44].

However, in [45], authors considered the cMERA RG flow in two dimensional free fermion

theories with topologically non-trivial reference states. This was required in order to obtain

suitable RG-flows (encoded by g(k, u) and Φ(k, u)) for describing two dimensional topo-

logical insulators. It was found that the non trivial topological entanglement of the initial

reference state was reflected in the variational parameters of the cMERA circuit which

showed non trivial modifications to those obtained with a trivial IR state. This result

suggests that CA might encode the choice of the initial reference state as the cMERA flow

automatically captures its entanglement properties into the variational parameters that

defines the full circuit.

For the free scalar theory, in the gapless case with m = 0 where g(u) = −1/2 and

Φ(u) = −u/2, the prescription in eq. (3.7) yields

CA = −Vol · Λ
2

∫ 0

−∞
u eu du =

Vol · Λ
2

. (3.8)

that matches the result obtained by the circuit length C(1)
cMERA in (2.29). One may also

estimate the result for the massive scalar by assuming that g(u) ≈ −1/2 and Φ(u) ≈ −u/2,
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for uIR < u < 0 with uIR ≈ logm/Λ to obtain

CA ≈
Vol · Λ

2

[
1− m

Λ

(
1− log

(
m

Λ

))]
. (3.9)

3.1 Complexity from Liouville action

The definitions and results discussed above suggest that the cMERA action A[Φ] is an

efficient construction to encode the complexity of the RG flow. As an encoder of the target

state complexity, it is worth pointing out that similar results can be obtained by considering

the on-shell (in cMERA parlance) evaluation of the action

AL[Φ] =
1

4

∫
dx

∫ ∞
ε

dz
[
4 (∂zΦ(z))2 + Λ2 e−4Φ(z)

]
, (3.10)

with z = ε e−u being a mere redefinition of the cMERA RG coordinate, ε = 1/Λ and

Vol =
∫
dx.

For simplicity, we evaluate AL[Φ] in the massless case where

Φ(z) =
1

2
log Λz , (3.11)

which being inserted into (3.10) yields,

AL[Φ(z)]on−shell =
Vol

2 · ε
=

Vol · Λ
2

. (3.12)

This result suggests that AL[Φ] can be regarded as an effective action for the cMERA

path integral and our proposal for measuring the complexity of the target state |ΦΛ〉 can

be expressed as

CA ≡ AL[Φ]on−shell . (3.13)

What is most remarkable about AL[Φ(z)] in (3.10) is that, by defining Φ(z) in terms

of a new field ϕL(z) such that

Φ(z) =
1

2
log Λ− 1

2
ϕL(z) , (3.14)

one obtains

AL[ϕL] =
1

4

∫
dx

∫ ∞
ε

dz
[

(∂zϕL(z))2 + e2ϕL(z)
]
, (3.15)

that is the action of Liouville Field Theory (LFT) in its semi-classical limit [23, 24]. As a

result, the Liouville field integral determines how the quantum correlations in a complex

target state conspire to produce an emergent semi-classical description through the pro-

posed connection between the cMERA variational parameter Φ(z) and the Liouville mode

ϕL in eq. (3.14).

For a cMERA on-shell evaluation of AL[ϕL] we note that ϕL(z) = − log z in the

massless case and thus

AL[ϕL(z)]on−shell =
Vol

2 · ε
=

Vol · Λ
2

. (3.16)
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Interestingly, Einstein equations in two dimensions reduce to the Liouville’s equation

obtained from varying AL[ϕL]. In this sense, LFT provides a quantum theory of 2D-gravity

that is called Liouville gravity and that is solved by a metric given by

ds2 = e2ϕL(z)
(
dz2 + dx2

)
, (3.17)

with the boundary condition e2ϕL(ε) = 1/ε2. The cMERA solution ϕL(z) = − log z is

therefore a solution of the of Liouville’s equation that imposes

e2ϕL(z) = z−2 , (3.18)

leading to the hyperbolic metric

ds2 =

(
dz2 + dx2

)
z2

= du2 + Λ2 e2u dx2 . (3.19)

Thus, one may say that the geometry (3.19) emerges from the tensor network circuit

of least complexity. Conversely, solutions of the 2D gravity theory (3.15) provide the

correct variational parameters that enable building suitable cMERA states/circuits with

minimal complexity [47]. As a result, in this framework, it is possible to establish the

correspondence Least Action = Minimal Complexity. These results can be consistently

linked to those obtained in [20–22] and thus it would be sensible to consider (3.3) and its

avatars as complexity path integrals or complexity functionals.

Let us illustrate this idea by considering the solution to the Liouville equation given by

e2ϕL(z) =
(2π/β)2

sin2 (2π z/β)
, (3.20)

with 0 < z < β/2. This amounts to an asymptotically hyperbolic geometry (3.19) close to

the boundaries z = ε and z = β
2 − ε where e2ϕL(z) = ε−2. This geometry, after a suitable

change of coordinates can be seen as the time slice of an eternal BTZ black hole [46], i.e an

Einstein-Rosen bridge. By evaluating the complexity action functional (3.15) one obtains

AL[ϕL] =
Vol

4

∫ β
2
−ε

ε
dz
[
(∂ϕL)2 + e2ϕL

]
= 2

[
Vol

2 · ε

(
1− π2 ε

2β

)]
(3.21)

= 2

[
Vol · Λ

2

(
1− π

2

M

Λ

)]
,

with M = π/β. This is a remarkable result in view of the following problem: which is the

cMERA circuit/state corresponding to this geometry? First, we note that the correspond-

ing variational cMERA parameter Φ(z) should be given by

Φβ(z) =
1

2
log Λ

sin (2π z/β)

(2π/β)
. (3.22)

Second, we note that at leading order

CA[Φβ ] = 2 · CA[ΦM ] , (3.23)
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where ΦM amounts to the Φ(z) corresponding to a free scalar theory with mass M =

π/β. According to this result, it is natural to think that the geometry (3.20) encodes the

complexity of a cMERA circuit consisting of two copies of the same circuit,

|Ψ〉β = e
−i

∫ 0
uIR

K̃(u1) du1 ⊗ e−i
∫ 0
uIR

K̃(u2) du2 |Ωβ〉 . (3.24)

where |Ωβ〉 is a pure state in the doubled Hilbert space. More details about this construction

can be found in [48].

Let us briefly comment here on the possible higher dimensional generalization of CA
which on general grounds simply reads as

CA[Φ] := −2 Vol

∫
|k|≤Λ

ddk

∫ 0

−∞
duΦ(k, u)∗ g(k, u) , (3.25)

with Vol = δd(0) denoting the (infinite) volume of the d-dimensional space Rd. In

cMERA RG-flows in higher dimensions (see for instance [39, 43, 45]) the variational pa-

rameters Φ(k, u) and g(k, u) are such that this complexity functional naturally produces

leading divergent terms

CA ∼ Vol · Λd . (3.26)

In [20, 21], it has been argued that an effective Liouville-like complexity functional that

could, upon minimization, account for this kind of leading divergent behaviour, is given by

A(d)
L [ϕL] ∝

∫
dxd dz e(d−1)ϕL

[
(∂zϕL)2 + e2ϕL

]
. (3.27)

Therefore, the minimization of A(d)
L [ϕL] yields the hyperbolic space Hd+1 which amounts

to the time slice of pure AdSd+2.

3.2 Perturbed cMERA circuits and vertex operators in LFT

From part of our previous analysis, the complexity of a cMERA circuit (e.g, the circuit for

the ground state of a massless scalar theory), measured by a Liouville action functional

such as (3.15), is related to the choice of the simple cMERA gates of the form

GcMERA ∼ e−iδVol Φ(z)O , (3.28)

where O is an operator of the su(1, 1) algebra. One may wonder what would be the effect of

perturbing or deforming these gates at some points of the renormalization scale direction z.

Here, we provide an argument based on the properties of correlation functions in Liouville

field theory. To this end, we first assume the perturbed gates to be located at a finite

number of points {zi}i=1···m. Second, we impose that the perturbation affects the shape of

Φ(z) only in a small neighborhood εi around each of the points zi. From the connection

between the Φ(z) in the cMERA circuit and the Liouville mode ϕL(z) appearing in AL,

one can infer that a suitable ansatz for the deformed Φ(z) would come from a sensible

choice for a deformed ϕL(z) in small neighborhood of zi.
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Thus, we consider the LFT correlation functions〈∏
i

eαi ϕL(zi)

〉
=

∫
DϕL eAL[ϕL]

∏
i

eαi ϕL(zi) , (3.29)

where operators V (αi, zi) = eαi ϕL(zi) are known as vertex operators. For values of αi
which do not exceed some bounds (see [24]) the functional integral (3.29) is dominated by

configurations of ϕL satisfying

ϕL(z) = − log z when |z − zi| � εi (3.30)

ϕL(z) = −2αi log |z − zi|+ ϕi + · · · at |z − zi| ≤ εi .

We notice that this is precisely the kind of deformation on ϕL and hence on a Φ(z)-

cMERA gate that we were looking for. Thus, we will interpret the action functional

in (3.29)

AL[ϕL, αi] = AL[ϕL] +
∑
i

αi ϕL(zi) , (3.31)

evaluated at (3.30), as the action functional which measures the complexity of the corre-

sponding deformed cMERA circuit. A direct evaluation leads to log |zi − zi| divergences

arising in the vicinity of the insertion points zi. A proper regularization is given (see [24]

for details) by,

AL[ϕL, αi] = AL[ϕL]/∪εi +
∑
i

(
αi ϕi − 2α2

i log ε2
i

)
, (3.32)

where /∪ εi means that the evaluation excludes the vicinity of the insertion points zi. Here,

we are not interested in explicit results on the evaluation of (3.32) but only in noticing that

the vertex operator insertion model for deforming the cMERA circuit leads to a complexity

increment given by

∆ CA(αi) =
∑
i

(
αi ϕi − 2α2

i log ε2
i

)
. (3.33)

While the exact value for ∆ CA(αi) in the case of an arbitrary number of insertions is

not known explicitly, results for some number of concrete settings can be found in [49].

Complexity functionals in interacting field theories. Let us finish this section

by commenting on the possible validity of our proposal in the case of interacting field

theories. Despite the cMERA circuit lacks the generality of its discrete version, first steps

to systematically build a variational approximation to deal with interacting theories has

recently been proposed [39, 55, 56]. Here we briefly summarize this approach and comment

on its implications to evaluate the complexity of target states in interacting theories.

Due to the multipartite structure of quantum correlations expected for the ground

states of interacting QFT’s, a proposal to adapt cMERA to this situation amounts to
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expand the entangler K̃(u) as [39]

K̃(u) =
1

2i

∫
ddk1

(
g1,0(k1;u) a†k − h.c.

)
+

1

2i

∫
ddk1

∫
ddk2

(
g2,0(k1, k2;u) a†k1a

†
k2

+ g1,1(k1, k2;u) a†k1ak2 − h.c.
)

+
1

2i

∫
ddk1

∫
ddk2

∫
ddk3

(
g3,0(k1, k2, k3;u) a†k1a

†
k2
a†k3 + · · · − h.c.

)
+ · · · (3.34)

where now the optimization runs over the variational functions gi,j . It is clear that for

free theories, K̃(u) in eq. (3.34) is truncated after the first two lines to yield the cMERA

circuit defined by eq. (2.11).3 The physical interpretation of this expansion is the following:

with the quadratic terms we capture the entanglement structure and thus the complexity

of our target state due to pairwise correlations between modes, the cubic terms account

for tripartite correlations between modes and so on. Thus, truncating eq. (3.34) at order

n means the truncated ansatz account at most for n-partite correlations at each scale.

Regarding our proposal to measure complexity, going beyond quadratic order in the en-

tangler and thus building a path integral representation for this generalized cMERA circuit,

one faces a major difficulty: to efficiently compute expectation values with a non-quadratic

ansatz |Φ(u)〉 built as a path ordered exponential (see (2.7)). However, as the entangler

K̃(u) lies inside a path-ordered exponential, a possible approach to address this problem

is to perform perturbation theory on the non-quadratic terms. Despite this approximation

being perturbative from the point of view of the original entangler, the resulting varia-

tionally optimized ansatz resums infinite classes of Feynman diagrams, allowing to access

in principle, non-perturbative physics [50–54]. Very recent developments on cMERA cir-

cuits for weakly interacting theories have been reported in [55, 56]. There, authors use a

perturbation theory version of a cMERA quantum circuit to construct a local entangler

K̃(u) such that the corresponding cMERA state agrees with the 1-loop UV ground state

of the φ4 interacting scalar theory. Due to the locality of the entangler, in principle it

would be possible to retain the notion of simple cMERA gates and, in a future work, study

perturbative corrections to the complexity of a target state by means of cMERA circuits.

4 Complexity and entanglement in cMERA

In this section we establish explicit connections between the complexity of a target cMERA

state and its entanglement structure, conveniently encoded in the variational parameters

defining its associated cMERA circuit. First, we would like to recover the connection

between the Liouville mode ϕL and the entanglement entropy of the ground state of the

scalar theory noticed by [21, 22]. Here, the cMERA circuit construction is used to derive

it. To this end, we note that a cMERA circuit is builded by taking |Ω〉, the totally factor-

ized reference state, and then adding a variationally prescribed amount of entanglement

between neighboring regions at scale u. This is precisely the pairwise entanglement created

3Namely, in eq. (2.11) we set all gi,j = 0 except g2,0(k,−k;u) ≡ g(k, u).
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between modes with opposite momenta |k| = Λ eu. To be precise, the entanglement be-

tween neighboring “sites” at a scale u = − log ΛL represents, in the UV, the entanglement

between regions of size L/ε and the rest of the system. Remarkably, it is the variational

parameter Φ(z) which controls the precise amount of this scale-dependent pairwise en-

tanglement [39, 57]. In the massless scalar theory the ground state entanglement for an

interval A of length L is given by

SA[L] =
c

6
log

L

ε
=
c

6
log ΛL , (4.1)

where c = 1 is the central charge of the CFT. Recalling (3.11), it follows that

6

c
S[z] = 2 Φ(z) = log Λ− ϕL[z] , (4.2)

from which it is possible to see how the Liouville-like equation of motion

∂

(
6

c
S[z]

)
= Λ e−

6
c
S[z] (4.3)

dictates the entanglement structure of the quantum state under consideration. In other

words, the Liouville mode profile that measures the complexity of the target state through

AL is shown to be directly related with the entanglement structure of the target state.

In addition, we also provide an explicit connection between the complexity of a cMERA

circuit, measured through the circuit length, for the ground state of a free scalar theory,

and the quantum fluctuations created along the cMERA renormalization group flow of the

wavefunction. As commented above, the amount of scale-dependent entanglement that

must be added to the reference state |Ω〉 to create |ΦΛ〉 is given in terms of the left-right

entanglement (LREE) between modes with opposite momenta appearing in (2.12). This

can be measured by the von Neumann entropy of the reduced density matrix obtained by

tracing out the (for instance) left moving modes [57]. In a free theory where all modes are

decoupled one may focus on

ρRk (u) = (1− γk(u)) diag
(
1, γk(u), γk(u)2, γk(u)3 · · ·

)
, (4.4)

where

γk(u) = tanh2 Φ(k, u) . (4.5)

In [57] the rate at wich LREE (S±) is created along the cMERA RG-flow was obtained,

yielding

∂ S±k (u) ≈ 2 g(k, u) . (4.6)

This explicitly relates the rate of LREE generation with the variational strength of

the entangling operation g(k, u). As a result, the total amount of LREE created along a

cMERA RG-flow is given by

S± ≈ 2

∫
k≤Λ

dk

∫ 0

−∞
du g(k, u) = 2

∫
k≤Λ

dkΦk . (4.7)
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According to the expressions given above and recalling eqs. (2.24) and (2.25), it is

possible to establish

C(2)
cMERA =

1

2

∫ 0

−∞
du |∂S±k (u)|

√
Vol

∫
|k|≤Λeu

dk , (4.8)

and

C(1)
cMERA =

Vol

2
S± . (4.9)

These results show that the complexity of the cMERA state measured through its

circuit length, can be cast in terms of the total amount of the scale-dependent entanglement

created along the renormalization of the quantum state. Thus, the complexity of the state

is directly related to the depth of the renormalization group transformation that is needed

to project the generally highly entangled UV state to a direct product state in the IR.

For gapless states, this entanglement persistently spreads out to larger length scales. It is

noteworthy that the total amount of LREE is given in terms of the Liouville-like scalar

Φ(z) that, as shown above, it is directly related with the central charge of the theory

under consideration. Indeed, regarding eq. (3.13), this may suggest that the patterns of

entanglement in states of a QFT could determine their dual gravitational descriptions

through a principle of least complexity.

5 Complexity growth rates

Given the structure of the cMERA RG-flow encoded in the action A[Φ] of eq. (3.4) (i.e, a

Lagrangian representation of the RG - dynamics along the renormalization direction under

the action of the entanglement Hamiltonian K̃(u)), one might wonder if the aforementioned

complexity measure CA is fundamentally constrained in some sense. We next show that

this is indeed the case, by introducing a bound to the complexification dynamics inherent

to any cMERA circuit that we shall refer to as Complexity Growth Limit (CGL). To this

end, let us define the complexity of the intermediate state |Φ(u)〉, CA(u) ≡ CA (|Φ(u), |Ω〉)
given by

CA(u) = −2 Vol

∫
k≤Λ

dk

∫ u

−∞
du′Φ(k, u′)∗ g(k, u′) , (5.1)

from which, the rate of growth reads

d CA(u)

du
= −2 Vol

∫
k≤Λ

dkΦ(k, u)∗ g(k, u) . (5.2)

On the other hand, regarding eqs. (2.11) and (2.12), a straightforward calculation gives

〈K̃(u)〉 = 〈Φ(u)|K̃(u)|Φ(u)〉 = Vol

∫
k≤Λ

dkΦ(k, u)∗ g(k, u) , (5.3)

thus allowing to write,

d CA(u)

du
= −2 〈K̃(u)〉 . (5.4)
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Given that u ∈ (−∞, 0], we find upon integration,

uf − ui =
CA(uf )− CA(ui)

2 K̃
, (5.5)

which provides a CGL of the Margolus-Levitin type, by analogy with the quantum speed

limit known for unitary quantum dynamics [26, 29]. In particular, (twice) the time-averaged

mean value of the entanglement Hamiltonian

K̃ =
1

uf − ui

∫ uf

ui

〈K̃(u)〉du , (5.6)

provides the CGL, in close correspondence with the time-averaged mean energy in the case

of unitary dynamics of driven systems [58]. In our analogy, u plays the role of time and the

entanglement Hamiltonian that of the driving Hamiltonian generating the time evolution.

However, equation (5.5) is an equality as opposed to a lower bound on the required

u-shift. This reflects the optimality of the entanglement Hamiltonian for the generation of

complexity along the cMERA circuit. Physically this means that for a target state with a

fixed complexity measured by CA, from the reference state |Ω〉, a cMERA circuit creates

complexity (measured by CA) at a maximum rate, which amounts to an optimal circuit

with minimum depth u. We would like to emphasize this last point. One might wonder

if a true minimal complexity can be achieved using the tensor network path integral. As

proving optimality in quantum field theory is a difficult task at this moment, the saturation

of fundamental limits in the form of our proposed CGL, seems to be a useful tool for

assessing circuit optimality.

A complexity growth rate from circuit length. It is also possible to derive a CGL

for the rate of complexity when the circuit lengths C(1)
cMERA and C(2)

cMERA are considered

as the measure for the complexity of the target state. We wonder how these complexity

measures, based on the distance between states that are related by the evolution under the

action of K̃(u), are constrained. Proceeding in a similar way as before, we first consider

the complexity of the cMERA state |Φ(u)〉 in terms of the circuit length C(2)
cMERA

C(2)
cMERA(u) =

∫ u

−∞
|g(u′)| du′

√
Vol

∫
|k|≤Λeu

ddk . (5.7)

Taking the derivative with respect to u yields

d C(2)
cMERA(u)

du
= |g(u)|

√
Vol

∫
|k|≤Λeu

ddk =
√
N |g(u)| = ∆K̃(u) , (5.8)

where we used that N |g(u)| ≡ ∆K̃(u) with [17]

∆K̃(u)2 = 〈Φ(u)|K̃2(u)|Φ(u)〉 − 〈Φ(u)|K̃(u)|Φ(u)〉2 . (5.9)

We can readily integrate this differential equation to rewrite it in a form resembling a QSL,

uf − ui =
C(2)

cMERA(uf )− C(2)
cMERA(ui)

∆K̃
, (5.10)
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where we have introduced the averaged dispersion of the entanglement Hamiltonian

∆K̃ =
1

uf − ui

∫ uf

ui

∆K̃(u)du . (5.11)

Therefore, the rate of change of the complexity is exactly set by the averaged fluctuations

of the entanglement Hamiltonian along the cMERA RG flow. This result is analogous to

the Mandelstam-Tamm bound for unitary quantum dynamics [27] generated by a driving

Hamiltonian. In particular, it provides a CGL equivalent to that for the rate of change of

the fidelity between a quantum state and its time-evolved state via the time-average of the

energy fluctuations [28, 59]. As before, in this analogy, u plays the role of time and the

entanglement Hamiltonian that of the driving Hamiltonian generating the time evolution.

Likewise, equation (5.10) is an equality and not only a lower bound on the required u-

shift. Again, this is a signature of the optimality of the entanglement Hamiltonian for

the generation of complexity in analogy with the quantum brachistochrone problem that

concerns the time-optimal evolution, saturating the Mandelstam-Tamm bound [60].

A similar Mandelstam-Tamm like CGL can be derived using the circuit length C(1)
cMERA

by noticing that

d C(1)
cMERA(u)

du
= Vol |g(u)|

∫
|k|≤Λeu

ddk = N |g(u)| =
√
N∆K̃(u) . (5.12)

We remark here that the Margolus-Levitin CGL can not be directly obtained from the

complexity measure C(1)
cMERA.

5.1 Complexodynamics in time dependent settings

At this point, it is natural to ask whether our proposal to measure the complexity and

complexity rates by means of action functionals of the type in eq. (3.15) can be applied to

settings in which the states are subjected to real time evolutions

|ΦΛ(t)〉 = e−iHt |ΦΛ〉 , (5.13)

with generic Hamiltonians denoted by H. In general, a unique complexity measure for

unitarities U(t) = e−iHt can not be defined a priori. As we have discussed, any operational

definition of complexity relies on having a set allowed gates and its corresponding generators

that must be simple, something that is not guaranteed in generic situations. Namely, by

measuring the complexity with a gate set that depends directly on H, it is expected that

the complexity will be a function of both the Hamiltonian and the state. In other words,

by changing H, one must change the way to measure the complexity [12].

Here, we show that a formalism developed in [17, 48] to deal with time-dependent

states in cMERA can overcome these difficulties. The formalism addresses time-dependent

states generated by a quantum quench. Quantum quenches induce a time evolution on

an initial state |ΦΛ〉 due to a sudden change of the Hamiltonian. For instance, the time

evolved states can arise due to an instantaneous change of the mass parameter in the scalar
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theory. Authors in [17, 48] build up a cMERA circuit that maps the initial reference state

|Ω〉 onto the target state |ΦΛ(t)〉 by solving a time dependent variational problem such that

|ΦΛ(t)〉 = P exp

[
−i
∫ 0

uIR

du K̃(u; t)

]
|Ω〉 , (5.14)

where, remarkably, K̃(u; t) is a cMERA entangler Hamiltonian with the same struc-

ture as (2.11) while the variational parameter g(k, u; t) is now time dependent. This is

relevant as it provides us with a set of simple cMERA gates that can be used to evaluate

the complexity of the time dependent state |ΦΛ(t)〉 by directly evaluating the complexity

functionals presented above.

Following [48], we focus on a special process where the mass parameter is suddenly

shifted from a non-zero value ∆m to zero such that ∆m ∼ 1/J . We note that the quantum

quench has no effect for ∆t/J ≥ 1. As a result, quantities such as entanglement entropy,

grow with a concrete time dependence for ∆t/J ≤ 1 and then saturate at a final value for

∆t ≥ J [61]. In order to present our result, let us introduce the following notation: for the

case of the massless scalar we recall the definition of the cMERA-Liouville mode ϕL(z) via

eϕL(z) = χ(z) = z−1 , (5.15)

with χ(z) = 2 ∂z Φ(z). In [48] it is shown that for the mass quench in the scalar theory

χ(z, t) ≈ 1

z

(
1 +

Akt+B kJ
sinh(kJ /2)

)
, (5.16)

where k ∼ 1/z and A and B are order one positive constants. As the quench has effect

only for modes with kJ � 1, we approximate

eϕL(z,t) = χ(z, t) ≈ 1

z

(
1 +

t

J

)
, (5.17)

or equivalently

ϕL(z, t) = − log z + log

(
1 +

t

J

)
= ϕL(z) + log

(
1 +

t

J

)
. (5.18)

Finally, we proceed to evaluate the complexity CA(t) ≡ CA(|ΦΛ(t)〉, |Ω〉) by means of

the Liouville complexity functional as

CA(t) = AL[ϕL(z, t)] =
1

4

∫
dx

∫ J
ε

dz

[
(∂zϕL(z, t))2 + e2ϕL(z,t)

]
, (5.19)

which yields

CA(t) ≈ Vol

4

∫ J
ε

dz

z2

(
2 +

2 t

J

)
=

Vol · Λ
2

(
1− ∆m

Λ

)
︸ ︷︷ ︸

CA(0)

(
1 +

t

J

)
= CA(0)

(
1 +

t

J

)
.

(5.20)
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As a result, we see that the complexity of the time evolved state |ΦΛ(t)〉 grows linearly

in time until it saturates for times t ≥ J . During this period, the rate for the complexity

growth amounts to a constant which is given by

d CA(t)

dt
= CA(0) ∆m ≈ Vol · Λ

2
∆m+O(∆m/Λ) . (5.21)

It is worth to compare these results with estimations on the complexity growth mea-

sured in terms of the circuit length C(1)
cMERA. As shown in section 4, C(1)

cMERA can be cast

in terms of the total amount of LREE created along the cMERA RG-flow. In addition,

it was shown in [48] that the growth of the entanglement entropy over time ∆SA(t) for a

subsystem A that amounts to the half space is

∆SA(t) ≡ ∆S±(t) ∝ Λ

(
t

J

)
. (5.22)

Then, according to (4.9), one might write

∆ C(1)
cMERA(t) ≈ Vol

2
∆SA(t) =

Vol · Λ
2

( t
J

)
, (5.23)

which amounts to the constant growth rate given by

d C(1)
cMERA(t)

dt
≈ Vol · Λ

2
∆m. (5.24)

Thus, over some range of time, the complexity of a state evolving after a quantum

quench, measured both by CA and C(1)
cMERA, does increase linearly (i.e with constant com-

plexity growth rate) and then saturates at a final value. These results remarkably show

that the cMERA circuit representation (eq. (5.14)) of the Hamiltonian evolution caused by

a quantum quench, is able to correctly capture growth features of both the entanglement

entropy and the quantum complexity of a time-evolving state [9, 62].

6 Discussion and conclusions

Using a coherent state path integral representation for the cMERA circuit of a one dimen-

sional free scalar theory, it has been shown that the variationally optimized cMERA flows

extremize the action functional appearing in the path integral. The extremal values of the

action functional account for the complexity of the cMERA circuit and we suggest to in-

terpret the path integral as a complexity functional. Remarkably, this cMERA complexity

action functional yields analogous results to the Liouville action of 2D Einstein gravity. In

this interpretation, the Liouville mode is mapped to the variational parameter defining the

cMERA circuit. We stress here that neither assumptions on the CA conjecture nor facts

about AdS/CFT and holography/Tensor Network duality have been invoked.

We have also introduced a kind of complexity growth limits (CGL) that constrain

the entanglement renormalization flow in cMERA. In particular, we have derived CGL of

Margolus-Levitin and Mandelstam-Tamm type that set an upper bound to the complexity
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growth rate in terms of the mean value and average variance of the entanglement Hamil-

tonian along the renormalization group direction, respectively. Remarkably, these bounds

are saturated, a feature shared with holographic systems [11, 12]. We hope that CGL

will constitute a new tool that can be used to further elucidate the proposed connection

between tensor networks and holography.

In this sense, it has been shown how the cMERA formulation for time dependent

settings such as quantum quenches, in conjuction with the proposed action functionals that

measure CA, yields constant complexity rates for these time dependent cMERA RG-flows.

However, in spite of cMERA being able to address these kind of time dependent states, it

tackles space and time on quite different grounds. Namely, a fully covariant formulation of

cMERA is not known at this moment. As a result, we expect that a connection between

time dependent versions of cMERA with recognizable gravitational theories in the bulk of

the tensor network will not be so straightforward to establish.

Finally, it would be worth to better understand what kind of universal data can be ex-

tracted from complexity [63]. One hint may come from the established connection between

the complexity measure based on the cMERA circuit length and the amount of Left-Right

Entanglement created along the RG-flow. Further insight may be obtained from the con-

nection between the cMERA variational parameter and the entanglement entropy of an

interval of the cMERA target state. It is worth investigating which approach, if any, could

lead to additional conformal data.
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