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Abstract We study effects of non-abelian gauge fields on
the holographic characteristics for instance the evolution of
computational complexity. To do so we choose Maxwell-
power-Yang–Mills theory defined in the AdS space-time.
Then we seek the impact of charge of the YM field on the
complexity growth rate by using complexi ty = action con-
jecture. We also investigate the spreading of perturbations
near the horizon and the complexity growth rate in local
shock wave geometry in presence of the YM charge. At last
we check validity regime of Lloyd bound.

1 Introduction

In the context of AdS/CFT duality a thermal system on field
theory could be expressed by a gravity model in AdS space-
time. By considering various models of black hole solution
in the bulk we can explore field theory behaviors which may
be complicated when they are studied in a quantum field
theory. One of the important aspects of field theory is the
computational complexity. This is number of qubit gates in
the smallest quantum circuit [1,2] or in the another defini-
tion is the minimal depth of a quantum circuit [3]. Actually
computational complexity regarding AdS/CFT duality could
explain something about the inside of black hole and cor-
responding geometry. There are two conjectures that relate
complexity on the boundary to the geometry of bulk: (I) At
the first and older one, complexity is supposed to be equal to
the maximal volume in the spacelike slice into the bulk [4],
or CV as

C(tL , tR) ∼ V

L
, (1.1)
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where G is the Newton‘s coupling constant, L is a length
scale of the system which is given by the AdS radius for large
black holes and the horizon radius for small black holes. V
is the volume of spacelike slice or the Einstein–Rosen bridge
(ER) with connected points tL and tR corresponding to the
left and the right boundaries, respectively. (II) At the newer
conjecture, quantum complexity is proportional to classical
action in the bulk which is defined in “Wheeler-DeWitt”’
(WD) patch, or CA [5,6]. The privilege of this conjecture
rather than the older one is needlessness to any length scale
chosen by hand, such as “L” or the event horizon radius,

C(�) = AWDW

π h̄
, (1.2)

in which � is a time slice equals to the intersection of asymp-
totical boundary and Cauchy surface in the bulk [5,6]. Action
for WDW patch is given by the summation of the action and
all boundary terms of this patch which is defined between the
times tL and tR on the boundaries and at late time approxi-
mation could be restricted by the Lloyd bound [7] as follows:

d(Abulk + Aboundary)

dt
≤ 2E, (1.3)

in which E is the excited energy of the boundary quantum
state. It is now understood that satisfying the Lloyd bound in
holographic theories are due to the orthogonality of quantum
states and so in general does not need to be hold [8,9]. To
obtain the growth rate of complexity on the boundary we must
calculate the time derivative of this action on the boundary
by attention to conjecture of “CA” given by (1.2) as

dC
dt

≤ 2E

π h̄
. (1.4)

We can see the action growth rate by consideringCA conjec-
ture for the WDW patch at late time approximation in AdS
black holes is bounded as follows [5,6]:
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dA
dt

= 2M,

dA
dt

≤ 2[(M − μQ) − (M − μQ)gs],
dA
dt

≤ 2[(M − �J ) − (M − �J )gs], (1.5)

where “gs′′ stands for ground state and the first equation
satisfies for neutral black hole and second and third ones
happens for charged and rotating black holes, separately.
For a charged black hole solution this bound depends on
the size of the black hole [5,6] and can violate the Lloyd‘s
bound by assuming that it holds. The argument in the original
paper [5] involved the weak gravity conjecture. It is found
in [10] that all size of charged black hole violate the original
bound (1.4). The authors corrected the bound by investigat-
ing some other AdS black holes like Kerr-AdS black hole and
charged Gauss–Bonnet-AdS black hole and summarized the
final result as following bound:

dA
dt

≤ (M − �J − μQ)+ − (M − �J − μQ)−, (1.6)

at which + and − stand for the states of the most outer
and inner horizon, respectively. Equality satisfies for sta-
tionary AdS black holes in Einstein gravity and charged
AdS black hole in Gauss–Bonnet gravity. In general non-
stationary cases inequality would be expected. In the other
words the work [10] shows that there is a universal formula
for the action growth of stationary black holes for which the
Lloyd bound is independent of the charged black hole size
and so would be satisfied for any arbitrary size of charged
black hole.

In this work we use non-rotating case of this universal
form of the action growth and seek relation between this
bound and the non-abelian charges. To do so we choose the
Yang–Mills (YM) field given in the Maxwell-power-Yang–
Mills theory propagating in AdS spacetime. There are two
important motivations which encourage us to consider YM
field in our study: at first we can find YM equations in the
low energy limit of some string theory models which leads to
certain revisions of the no-hair theory of black hole physics.
Secondly, the unification of general relativity and quantum
mechanics in high energy regime of the most of string theory
models is possible when it predicts a non-abelian gauge field.

In the other side, considering YM fields let us study small
range effects inside the nuclei which are neglected in the long
range effects of Maxwell field. Actually, these short-range
effects are due to some length scales arisen by confinement
in YM theory. Indeed, a confining YM theory undergoes a
confinement-deconfinement phase transition in CFT side at
a such given scale which leads to these short range effects.
In the AdS/CFT dictionary, it is interesting we seek opera-
tors in the field theory side because they correspond to other

quantities given in the gravity side. Actually in a top-down
approach we can specify dual field of the used gravity model
which is included both Maxwell and YM fields. It would be
an interesting subject to find familiar results from CFT side
which come from the string theory solutions. This can be
considered as a future work which we will study. Another
important aspect of thermal systems is chaos which could be
described with its corresponding dual in the bulk as the shock
waves near the horizon of AdS black holes [11–13]. Actu-
ally a perturbation disturbs the geometry of the black hole and
then grows by time due to the backreaction effects. During the
chaos behaviors, the similar initial orthogonal quantum states
are changed to some totally different states. An interesting
point that makes the study of shock wave geometry impor-
tant, is the reflection of complexity on the boundary as the
existence of a firewall. When the perturbation on the bound-
ary depends on transverse coordinates then corresponding
complexity is closely connected to the speed of the perturba-
tion spreading (butterfly velocity) in spatial directions. This
butterfly velocity is studied by out-of-time order four-point
function between pairs of local operators V (t = 0) and W (t)
which are separated in spatial coordinates such that [14]

〈V (0, x)W (t, y)V (0, x)W (t, y)〉β, (1.7)

in whichβ or the inverse of the temperature stands for thermal
expectation value. After the scrambling time t∗ the butterfly
effects could be seen by a sudden decay as follows [15].

〈V (0, x)W (t, y)V (0, x)W (t, y)〉β
〈V (0, x)V (0, x)〉β〈W (t, y)W (t, y)〉β ∼ 1 − e

λL

(
t−t∗+ |x−y|

vB

)
,

(1.8)

where λL = 2π/β stands for the Lyapunov exponent and vB
is the butterfly velocity. There is a wide variety of works has
been devoted to the calculation of butterfly velocity for grav-
ity theories in the bulk such as [16] for planar black hole in the
Einsteins general theory of relativity framework, [15] for the
topologically massive gravity (TMG) and the new massive
gravity (NMG), [17] for the Einstein–Gauss–Bonnet grav-
ity and other works [11,12,18,19]. The action growth could
be affected in the shock wave geometry by attention to the
characteristics of gravity models. Authors of the references
[20,21] used particular gravity models and showed that the
butterfly velocity is depended to change of the source fields
due to the alteration of the action growth. However there is
no fundamental connection in quantum information between
the growth of complexity and quantum chaos and the rela-
tions found in [20,21] are just merely circumstantial and do
not hold in general. In this paper we devotes our work to the
black hole solution including both Maxwell and YM fields in
the Einstein–Maxwell-power-Yang–Mills gravity. We seek
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Fig. 1 Penrose diagram for a
neutral two sided black hole and
WDW patch in a initial and b
late time regimes
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the constraints and circumstances on the parameter of YM
theory when the Lloyd bound is applied on the complexity
growth rate. The outline of this work is as follows: in Sect. 2
we obtain the evolution of complexity growth at the late time
approximation and check the Lloyd bound in presence of the
YM field and find a constraint condition on the parameters
of the gravity theory. In Sect. 3 we focus on the effects of
a disturbance on the boundary and the spreading of shock
wave in the used gravity model. We also discuss the effects
of the parameters of this theory on the butterfly velocity. Last
section denotes to summarize of the results and the conclu-
sion.

2 The complexity growth

As we know from [5,6] the growth rate of the action of a
WDW patch of the two-sided black hole at the late time, i.e.
tL + tR >> β, corresponds to the increasing rate of com-
plexity of the boundary state. At the late time and without
any shock wave the contribution of the region behind the
past horizon goes to zero exponentially. By adding any kind
of conserved charges WDW patch terminates slower than
neutral case and Lloyd bound must be generalized due to
changing of average energy of the quantum state related to
the ground state. In Fig. 1 we can see the general Penrose dia-
gram and WDW patch for a neutral two sided black hole for
initial times and late times approximations. In Fig. 1a which
is indicated initial times the patch intersects both the future
and past singularities at r = 0, but in late time indicated
by Fig. 1b only intersects the future one. In this section we
are about to consider a Maxwell–Yang–Mills theory for the
black hole inside the bulk and study action growth rate for the
late time approximation. Also we study the Lloyd bound in
presence of the conserved charges of this model. The action
for the Einstein–Maxwell-power-Yang–Mills gravity with a
negative cosmological constant in 4-dimension is given by
[22,23]:

A = 1

16πG

∫
d4x

√−g

×
(
R + 6

�2 − FμνF
μν −

[
Tr

(
F (a)

μν F (a)μν
)]γ

)

+ 1

8πG

∫

∂M
d3x

√−hK, (2.1)

in which the first integral equation represents the action in
the bulk and the second integral equation is the boundary part
of WDW patch (WDW patch located in our two sided black
hole is indicated in Fig. 2 in which only dark blue region
contributes to the complexity growth at late time approxi-
mation.). Radius of AdS spacetime is indicated by � and R
stands for Ricci scalar. γ is a real positive parameter and the
Yang–Mills tensor fields F (a)

μν are defined as follows.

F (a)
μν = ∂μA

(a)
ν − ∂ν A

(a)
μ + 1

2σ
C (a)

(b)(c)A
b
μA

c
ν, (2.2)

in which σ is a coupling constant andC (a)
(b)(c) are the structure

constants of (d − 1)(d − 2)/2 parameter Lie group G in
general d-dimensional theory and A(a)

μ is the SO(d − 1)

gauge group Yang–Mills potentials. According to Wu-Yang
ansatz the YM invariant F reduces to the following form
[23].

FYM = Tr
(
F (a)

μν F (a)μν
)

= −2q2
YM

r4 . (2.3)

The electromagnetic tensor field is defined by the usual
Maxwell potential Aμ such that

Fμν = ∂μAν − ∂ν Aμ, (2.4)

for which the gauge invariant counterpart FEM is

FEM = FμνF
μν = −2q2

E

r4 . (2.5)
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Fig. 2 Penrose diagram for a charged two sided black hole with mul-
tiple horizons and WDW patch in late time approximation. r1 is the
most internal horizon and r0 is the null spatial infinity. The wavy lines
indicate the singularities at r = 0, and r∞ stands for r = −∞

For a spherically symmetric 4 dimensional static space time
metric equation defined in a Schwarzschild frame is given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

2, (2.6)

which by substituting it into the Einstein metric equation
obtained from (2.1) one can infer that there is a black hole
solution [24] as

f (r) = 1 − 2M

r
+ r2

�2 + q2
E

r2 + Q

r4γ−2 , Q = 2γ−1

4γ − 3
q2γ

YM .

(2.7)

for γ 
= 3
4 and

f (r) = 1−2M

r
+r2

�2 +q2
E

r2 − Q0lnr

r
, Q0 = 2− 1

4 q
3
2
YM . (2.8)

for γ = 3
4 where qEM and qYM correspond to the electric

and Yang–Mills charges respectively. Writing f (r) like an
equipotential surface f (r) = constant the first law of the
black hole thermodynamics could be derived for which

d f (S, M, P, qE , qYM ) = 0

= ∂ f

∂S
dS + ∂ f

∂M
dM + ∂ f

∂P
dP

+ ∂ f

∂qE
dqE + ∂ f

∂qYM
dqYM , (2.9)

where S = πr2 is the entropy of the black hole and P = 3
8π�2

is the pressure of AdS spacetime. Applying the above relation

we can obtain

dM = TdS + VdP + φEdqE + φYMdqYM , (2.10)

where T = 1
2r ∂S f is the temperature, V = 4πr3/3 is

the thermodynamic volume, φE = qE/r stands for electric
potential and the Yang–Mills potential reads.

φYM =
(

γ

4γ − 3

)
2γ−1q2γ−1

YM

r4γ−3 , for γ 
= 3

4

φYM = −3 × 2− 9
4 q

1
2
YMlnr, for γ = 3

4
. (2.11)

Regarding the above solution, Ricci scalar could be achieved
as:

R = −12

�2 − 4Q

r4γ

(
4γ 2 − 7γ + 3

)
for γ 
= 3

4
, (2.12)

and

R = −12

�2 + Q0

r3 for γ = 3

4
. (2.13)

Therefore, the growth rate of the bulk action given by first
integral equation in (2.1), can be calculated at late time
approximation as follows:

dAbk

dt
= 1

16πG

∫ ∫ r+

r−
r2

[
− 6

�2 − 4Q

r4γ
(4γ 2

−7γ + 3) + 2q2
E

r4 + 2γ q2γ

YM

r4γ

]
drd�2

= − 1

2�2

(
r3+ − r3−

)
− q2

E

2

(
1

r+
− 1

r−

)

+
(

2γ − 3

4γ − 3

)
2γ−2q2γ

YM

(
1

r4γ−3
+

− 1

r4γ−3
−

)
, (2.14)

for γ 
= 3
4 and

dAbk

dt
= 1

16πG

∫ ∫ r+

r−
r2

[
− 6

�2 + Q0

r3

+ 2q2
E

r4 + 23/4q3/2
YM

r3

]
drd�2

= 1

2�2 (r3+ − r3−) − q2
E

2

(
1

r+
− 1

r−

)

+ 3 × 2−9/4q3/2
YMln

(
r+
r−

)
,

(2.15)

for γ = 3
4 respectively. In the above integral equations we

put �2/4πG = 1. It must be noted that spatial integral is
calculated between two horizons r+ and r− which are the
outer and inner horizons of the black hole. As we can see
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from (2.7) there are multiple horizons which are obtained
from f (r) = 0 and its number depends on γ . So for any
values of γ we will have several horizons (see Eq. (2.8) as a
special case), but r− and r+ would be the most internal and
outer horizons, respectively. Penrose diagram for a black hole
solution depends on the number of horizons as it is shown for
a black hole with multiple horizons in Ref. [25]. In our case
for any values of γ we can have different real roots obtained
from f (r) = 0, but in a general form the Penrose diagram
looks like Fig. 2 in which r1 is the most internal horizon and
so 0 < r− ≡ r1 < r2 < r3 < · · · < r+, also r∞ stands
for r = −∞ and r0 indicates spatial null infinity. One can
see the position of singularities and multiple horizons in ref.
[25]. As we mentioned earlier Fig. 2 deoicted WDW patch
at late time approximation in our multiple horizon case. In
the other side, the boundary part [second integral Eq. (2.1)]
of the action growth rate at late time approximation is given
by:

dAbd

dt
= 1

8πG

∫

∂M
d�2

(√−hK
)

= 1

2

[
r2

√
f (r)

(
2

r

√
f (r) + f ′(r)

2
√

f (r)

)]

∂M
,

(2.16)

where the extrinsic curvature is defined by

K = 1

r2

∂

∂r

(
r2

√
f (r)

)
= 2

r

√
f (r) + f ′(r)

2
√

f (r)
. (2.17)

One can see that the Eq. (2.16) only contains the Gibbons-
Hawking term. However, for the computation of complexity
one needs further boundary terms for the abelian and non-
abelian fields as well as extra terms for the null boundaries
and corners of the WDW patch. In fact these extra terms
become negligible just at late time approximation which we
considered here. So by attention to the metric solutions (2.7)
and (2.8) we can obtain:

dAbd

dt
= (r+ − r−) + 3

2�2

(
r3+ − r3−

)
+ q2

E

2

(
1

r+
− 1

r−

)

+ (3 − 2γ )Q

2

(
1

r4γ−3
+

− 1

r4γ−3
−

)
,

(2.18)

for γ 
= 3
4 and

dAbd

dt
= (r+ − r−) + 3

2�2

(
r3+ − r3−

)
+ q2

E

2

(
1

r+
− 1

r−

)

−3 × 2−9/4q3/2
YMln

(
r+
r−

)
,

for γ 
= 3
4 . Hence the total growth rate of the action for all

values of γ is achieved as follows.

dA
dt

= (r+ − r−) + r3+ − r3−
�2 . (2.19)

It is useful to rewrite the total growth action equation with
respect to the black hole characteristics like charges and
mass. By using the horizon equations f (r+) = f (r−) = 0,

one can obtain the following relations for the electric charge
and mass of the black hole.

q2
E = r+r−

[
1 + 1

�2

(
r3+ − r3−
r+ − r−

)

+ 2γ−1

4γ − 3
q2γ

YM

(
r−(4γ−3)
+ − r−(4γ−3)

−
r+ − r−

)]
, (2.20)

with

M = 1

2

[
(r+ + r−) + 1

�2

(
r4+ − r4−
r+ − r−

)

+ 2γ−1

4γ − 3
q2γ

YM

(
r−4(γ−1)
+ − r−4(γ−1)

−
r+ − r−

)]
, (2.21)

for γ 
= 3
4 and,

q2
E = r+r−

[
1 + 1

�2

(
r3+ − r3−
r+ − r−

)
− 2−1/4q3/2

YM

(
ln(

r+
r− )

r+ − r−

)]
,

(2.22)

with

M = 1

2

[
(r+ + r−) + 1

�2

(
r4+ − r4−
r+ − r−

)

+2−1/4q3/2
YM

(
r+lnr+ − 2r+lnr− + r−lnr−

r+ − r−

)]
.

(2.23)

for γ = 3
4 respectively. By attention to these definitions one

could rewrite the total action growth rate for various values
of γ as follows:

dA
dt

= −q2
E

(
1

r+
− 1

r−

)

−
(

2γ−1

4γ − 3

)
q2γ

YM

(
1

r4γ−3
+

− 1

r4γ−3
−

)
. (2.24)

for γ 
= 3
4 and

dA
dt

= −q2
E

(
1

r+
− 1

r−

)
+ 2− 1

4 q
3
2
YMln

(
r+
r−

)
. (2.25)

for γ = 3
4 respectively. So by attention to the conjugated

potentials (φE , φYM )which are derived earlier in this section,
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the total action growth at the late time approximation would
be:

dA
dt

=
(
M − φE+qE − 1

γ
φYM+qYM

)

−
(
M − φE−qE − 1

γ
φYM−qYM

)
, (2.26)

where γ can be take all real values. It is simple to check
the Lloyd bound is satisfied for γ ≥ 1 [7] regarding to the
Eq. (1.4) and so the case where γ = 3

4 , however all situations
where γ < 1 violate the Lloyd bound.

3 The complexity growth in a shock wave geometry

In this section we are about to study the above mentioned
problem but in presence of a chaotic shock wave which makes
perturbed the background geometry. Actually when a shock
wave is sent into the bulk at time tw, a precursor operatorW (t)
acts on the boundary at the same time. It will be effective on
the initial state of black hole which is a thermofield double
state (T FD), so the old state changes to W (tw)|T FD〉. For a
local shock wave this operator depends on transverse coordi-
nates and localizes on the boundary at x . W (tw, x) grows in
this spatial direction vs the time which leads to the growth of
action due to the perturbation on the boundary. In the other
word action growth depends on the growth velocity of per-
turbation on the boundary in spatial direction which is called
“butterfly velocity”. To see the evolution of action growth
in the presence of a local shock wave it would be useful
to study this perturbation in more details. Shock wave per-
turbs the black hole solution by injection of a small amount
of energy from the boundary of AdS spacetime towards the
horizon. This perturbation grows by raising the time due to
the back reaction effects and so propagates on the horizon.
By attention to the work presented by Dary and t‘Hooft [26],
we study the problem in Kruskal null coordinates (u, v) as ,

uv = −exp

[
4π

β
r∗

]
, u/v = −exp

[
−4π

β
t

]
, (3.1)

in which β is proportional to the inverse of Hawking temper-
ature and r∗ is a function of r which is defined by dr∗ = dr

f (r) .
The effect of shock wave geometry is considered as the effect
of a massless particle at u = 0 which moves in the direction
of v with the speed of light. So geometry for u < 0 stays
unchanged like (2.6) and in Kruskal form will be [20] :

ds2 = −2A(u, v)dudv + B(u, v)dx2
2, (3.2)

where

A(u, v) = − 4

uv

f (r)

[ f ′(rh)]2 , B(u, v) = r2 (3.3)

while for u > 0 the particle moves in direction of shifted
advance coordinate v → v + α(x), where α(x) is the shift
function. So in general for all values of u we can determine
new coordinates system from the old ones by using the well
known step function θ(u) such as follows.

û ≡ u

v̂ ≡ v + θ(u)α(x)

x̂ ≡ x . (3.4)

By these transformations the metric and the energy momen-
tum tensor are affected. If there are some stress tensor of
matter fields then their non-zero components have changed
to new form. This new geometry and new energy momen-
tum tensor still satisfies the Einstein equation, Ĝ = T̂matter ,
in which Ĝ and T̂matter are the Einstein tensor and the energy
momentum tensor of all matter fields defined in the new coor-
dinates system, respectively. After acting a scalar operator at
tw < 0 and producing the shock wave, this perturbation prop-
agates along û = 0 and its stress-energy tensor will have only
ûû component [6],

T̂{shock}ûû ∼ δ(û) exp

[
2π |tw|

β

]
. (3.5)

By adding this part of perturbation to the stress-energy tensor
and solving the Einstein equation we find a relationship for
shift function α(x). If we consider this function independent
of the transverse coordinates, θ and φ which are valid just
for spherical shock waves, so it will be obtained as:

α ∼ eλL (|tw |−t∗), (3.6)

in which λL = 2π
β

is the Lyapunov exponent and the scram-

bling time t∗ = β
2π

ln(S) is related to the entropy S and it
is a delay time on the action growth due to the “switchback
effect”. In other side when the shock wave is local, the shift
function depends on the transverse coordinates. By solving
the equations in this case we have an extra term in the above
exponential part. If there is just one transverse coordinate,
named x , so the shift function yields:

α(x) ∼ e
λL

(
|tw |−t∗− |x |

vB

)
, (3.7)

where

vB =
√

f ′(rh)
4rh

, (3.8)

is called the butterfly velocity and presents the speed of the
local shock wave on the boundary. rh is the outer horizon
radius which is achieved by f (rh) = 0.
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The action behind the future horizon is A f uture =
2MλL

∫
ln(u0vR)dx where vR is the right boundary of the

WDW patch, vR = v0+α(x) (see [21]) which by substituting
the shift function (3.7) reads

A f uture = 2M

LλL

∫
ln e

λL

(
|tw |−t∗+tL− |x |

vB

)
dx (3.9)

where L = ∫
dx is the length of the transverse direction

that goes to infinite for a planar black hole [20]. Similarly,
substituting the expression of the shift Eq. (3.7) into the action
behind the past horizon, we obtain

Apast = 2M

LλL

∫
ln e

λL

(
|tw |−t∗−tR− |x |

vB

)
dx (3.10)

where the upper limit of the integrals should be chosen
as |x | = vB(|tw| − t∗ − tR) called as maximal trans-
verse coordinate coming from “the large shift condition” at
which shock wave could be effective and described through
|tw| − t∗ − |x |

vB
≥ tR . Now we can obtain action of WDW

patch by adding (3.9) and (3.10) as follows.

AWDW = A f uture + Apast

= 2M(tL + tR) + 2MvB(|tw| − t∗ − tR)2. (3.11)

The first term denotes action of WDW patch for the case
with no shock wave and the second term that depends on the
butterfly velocity represents the effect of local shock wave.
As we can see the second term only depends on tR because
the shock wave reaches the right side of our two sided black
hole. By keeping one of boundary times fixed and varying
it with respect to another time we can study the growth rate
of boundary complexity. As we can see action growth with
respect to tL leads to the same result with no shock wave
case, but it linearly depends on butterfly velocity when it is
calculated with respect to tR or tw. Therefore to study the
action growth in the presence of a local shock wave it will
be necessary computing butterfly velocity and knowing how
it changes in various models of gravity. In the model under
consideration with f (r) defined in (2.7) or (2.8) the butterfly
velocity reads

vB = 1

2

√√√√ 1

r2
h

+ 3

�2 − q2
E

r4
h

− 1

2

(
2q2

YM

r4
h

)γ

. (3.12)

As one can see the butterfly velocity in the presence of Yang–
Mills fields takes an extra term which depends on the Yang–
Mills charge qYM and γ . It should be useful to compare
vB(qYM 
= 0) with vB(qYM = 0). To do so we ignore the
effect of Maxwell fields by setting qE = 0 for simplicity. In
the spacetime without the electric and Yang–Mills charge we
have simply the Schwarzschild spacetime with its own single

event horizon rh = 2M and the butterfly velocity become
simplified as

vB = 1

2

√
1

rh2 + 3

�2 . (3.13)

By attention to (2.7) and (2.8) for qE = 0 with fixed mass
we have f (r) > f (r), in which f (r) ≈ 1− 2M

r corresponds
to the Schwarzschild metric potential. This inequality is true
for all radiuses such as the event horizon rh , so:

f (rh) = 0 > f (rh), (3.14)

hence f (rh) < 0 and since f (rh) = 0 as well, then we lead
to the following statement.

f (rh) < f (rh) ⇒ rh < rh . (3.15)

It is easy to check from the above statement that for the
butterfly velocity in presence and absence of the YM fields
one can infer

vB > vB . (3.16)

Also it is interesting to know that the value of butterfly veloc-
ity is decreased by increasing γ. Regarding to the results of
these two sections we can conclude that the butterfly velocity
has a same behaviour for all γ and decreases by the increas-
ing of γ , but the system violates the Lloyd’s bound for γ < 1
at late time approximations. We can see opposite situation in
the gravity dual of a non-local theory in [28] in which the vio-
lation is correlated to some violation of the butterfly velocity
studied in [29].

4 Conclusion and summary

In this work we used a black hole metric solution containing
the electric and the Yang–Mills charges and calculate cor-
responding complexity growth rate by applying conjecture
of “complexity=action” [5,6]. We obtained that the Lloyd
bound is saturated only for γ ≥ 1 in late time approxima-
tion, but not for values less than one. In the other side, when
the boundary is disturbed by a small amount of energy and so
the spacetime takes form of a shock wave geometry [4,10],
then the spreading of perturbation near the horizon affects
on the complexity growth rate via the butterfly velocity. We
show that the existence of the Yang–Mills field causes to
increase the butterfly velocity and it decreases by raising the
γ factor of the YM field. This is in an opposition direction
of [29] at which the violation of Lloyd bound is correlated
to the exceeding of butterfly velocity from the speed of light.
It is shown that in large shift condition the action of WDW
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patch raises as linearly by increasing the butterfly velocity
vB .
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