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Abstract: We use the SYK family of models with N Majorana fermions to study the

complexity of time evolution, formulated as the shortest geodesic length on the unitary

group manifold between the identity and the time evolution operator, in free, integrable,

and chaotic systems. Initially, the shortest geodesic follows the time evolution trajectory,

and hence complexity grows linearly in time. We study how this linear growth is even-

tually truncated by the appearance and accumulation of conjugate points, which signal

the presence of shorter geodesics intersecting the time evolution trajectory. By explicitly

locating such “shortcuts” through analytical and numerical methods, we demonstrate that:

(a) in the free theory, time evolution encounters conjugate points at a polynomial time;

consequently complexity growth truncates at O(
√
N), and we find an explicit operator

which “fast-forwards” the free N -fermion time evolution with this complexity, (b) in a

class of interacting integrable theories, the complexity is upper bounded by O(poly(N)),

and (c) in chaotic theories, we argue that conjugate points do not occur until exponential

times O(eN ), after which it becomes possible to find infinitesimally nearby geodesics which

approximate the time evolution operator. Finally, we explore the notion of eigenstate

complexity in free, integrable, and chaotic models.
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1 Introduction

Quantum complexity has been proposed as a quantity relevant for understanding non-

perturbative phenomena in quantum gravity, such as the growth of wormholes behind

horizons [1–5], the structure of spacetime singularities [6], and the possible appearance

of firewalls [7] at late times in an evaporating black hole. The challenge in understanding

these conjectures is to have a well-defined measure of complexity in the underlying quantum

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
1

gravity theory, or, equivalently, in its holographic field theory dual, if the latter exists [8, 9].

If the conjectures relating complexity to black hole physics are correct, then we expect that

maximally chaotic theories with a holographic dual [10] feature linear growth of complexity

for a time exponential in the entropy of the system.

One possibility is that the relevant notion we seek is quantum state complexity. Some

progress has been made in computing the circuit complexity of constructing states in some

simple free field theories on a lattice [11–14], but defining state complexity in infinite-

dimensional Hilbert spaces that appear in the continuum limit is in general difficult. Free

systems have also been used by complexity theorists to build intuition about criteria for

complexity growth [15]. An alternative notion that might be relevant is the quantum circuit

complexity of the time evolution operator. There has been some progress in computing

this quantity in the context of quantum chaotic systems like black holes in holography,

and there is evidence that it grows linearly for a long time as expected, given appropriate

assumptions [16–18]. It is also interesting to consider integrable theories, as some of these

do admit quantum gravitational descriptions [19], as well as to discern by comparison what

aspects of chaos lead to an exponential time scale for complexity growth. In addition, it may

be potentially possible to use complexity as an order parameter in families of theories that

interpolate between free, integrable and chaotic limits to distinguish between each regime.

The purpose of this paper is to further develop methods for computing the complexity

of the time evolution operator in the context of a concrete family of models (the SYKq

models) which can be parametrically tuned between free, integrable, and chaotic regimes.

On general grounds, the complexity of time evolution is expected to grow linearly with time

and then plateau at some fixed value, and subsequently undergo Poincaré recurrences back

to small values. The questions of how long this linear growth persists and what height the

plateau reaches depend sensitively on the theory under consideration, and will be central

issues in this work.

A major drawback of complexity, from a physicist’s viewpoint, is its high degree of

non-uniqueness. Measuring complexity generally requires many choices, such as a choice

of gate set, reference state/operator, or tolerance in preparing the final state/operator.

Determining a natural set of these choices for computing complexity in quantum gravity

is beyond the scope of this work. Furthermore, computer scientists generally think of

complexity in terms of small, discrete operations which are composed to create a complex

quantum circuit. As physics generally happens in the continuum, it is advantageous to

work with a naturally continuous notion of complexity for operators in physical quantum

systems. Such a notion was formulated in terms of minimal geodesic lengths on high-

dimensional manifolds of operators [20–22], and many recent results on complexity make

use of this formalism [11–14, 17, 23–34].1 In this setting, there is a relatively natural

choice which leads to a unique definition of quantum complexity that is equivalent to the

1An alternative approach to defining complexity draws intuition from path integrals in quantum field

theory, and interprets quantum circuits as optimized procedures for performing such path integrals [35–37].

This approach builds on the tensor network formulation of holography [38–44]. For yet another approach

to the analysis of complexity growth, this time making use of unitary k-designs and random circuits,

see [45–47].
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quantum circuit definition: the degree of locality of the Hamiltonian defines a set of “easy”

operators (operators which are at most as local as the Hamiltonian). Operators which are

more non-local than the Hamiltonian are considered “hard”. This choice of splitting into

easy and hard operators corresponds to a choice of metric (the “complexity metric”) on

the group manifold of unitary operators, where directions corresponding to easy operators

have low weight and directions corresponding to hard operators have weight of order the

Hilbert space dimension.2

In this geometric formalism for complexity, studying complexity growth is related to

studying the growth of the distance function from the identity operator in the complex-

ity metric. As globally length-minimizing geodesics are often difficult to find on generic

Riemannian manifolds, the strategy employed by [17] was to look for geodesics that were

at least initially globally minimizing, and then to search along those geodesics for possible

obstructions to global minimality. On a general Riemannian manifold, such obstructions

are either local or global: local obstructions, also known as “conjugate points”, imply that

the geodesic is not a local minimum of the distance function (i.e., it is a saddle point), while

global obstructions, or “geodesic loops”, imply that the geodesic is not globally minimal.

Any complete picture of complexity growth must include an accounting of both local and

global obstructions. Locating global geodesic loops (which are not signaled by conjugate

points) in a systematic way is computationally intractable, but (as shown in [17]) conjugate

points can be more tractable under certain assumptions, and have a significant effect on

complexity growth.

Once global minimality of a given geodesic is obstructed, either by a conjugate point

or a geodesic loop, we are guaranteed that the growth rate of the distance function will no

longer be exactly linear along this geodesic. However, it may still be approximately linear

(with a smaller growth rate), if we encounter an isolated conjugate point or geodesic loop,

since the new geodesics involved in computing the distance may have growing lengths.

We expect, however, that the first conjugate point or geodesic loop along a fixed geodesic

associated with time evolution will quickly be followed by the end of complexity growth in

general, rather than just a reduction in growth rate, possibly due to a rapid accumulation

of subsequent conjugate points/loops. This intuition comes partially from the expected

behavior for chaotic Hamiltonians, where after meeting the first obstruction to complexity

growth, the complexity is expected to quickly plateau [52]. We will see that free and

integrable models also reproduce this expectation, with the first conjugate point signaling

the end of complexity growth entirely and a transition to a plateau regime in the distance

function within an O(1) time afterward.

Since this paper explores a variety of topics using both analytic and numerical tech-

niques, we now provide a road map by summarizing our main results by section. In

section 2, we begin with a review of the geometric formalism developed in [17, 22] to keep

the discussion self-contained. Since conjugate points play an important role in this work,

we explain their significance to complexity growth in detail. We also give new sufficient-

2There are proposals for complexity which utilize instead the bi-invariant geometry, which treats easy

and hard operators on an equal footing [48–50]. A proposal which defines the “infinite cost factor” limit

has also been explored [32, 51].
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but-not-necessary criteria for locating conjugate points in terms of more familiar quantities

from thermalization and quantum chaos such as adjoint eigen-operators of the Hamiltonian

and infinite-temperature thermal two-point functions.

In section 3, we apply these criteria to the free (q = 2) SYK model. Since free models

have relatively simple Hamiltonians, their time evolution operators are simple enough that

we can locate all conjugate points and even the geodesic loops which take over after some

of these conjugate points. In fact, we find a large number of conjugate points (associated

to easy operators) which occur at early (i.e., polynomial) times and signal a rapid end to

the linear growth of the complexity of time evolution in the free models, followed by a

long plateau. The geodesic loops we study are in one-to-one correspondence with these

early conjugate points, which demonstrates that these global obstructions to complexity

growth, which are otherwise very difficult to locate, can sometimes be found by leveraging

the study of the local obstructions, i.e., conjugate points. These effects place a sharp upper

bound on the complexity growth of free systems of N fermions, which is O(
√
N) in the

plateau regime.

In section 4 we consider a class of interacting-but-integrable deformations of the free

SYK model. We first study a subset of conjugate points in perturbation theory in the

coupling constant (which controls the deformation), and find that the deformation causes

these conjugate points to move to later times. Going beyond perturbation theory, we

also identify certain geodesic loops using the structure of the integrable interaction, which

bound the complexity of time evolution in this interacting model. These geodesic loops

may not be signaled by conjugate points; if so, this feature of complexity growth distin-

guishes integrable interacting theories from free theories. The bound on complexity in

this interacting integrable model predicts a plateau of height order O(N) which begins

at a time significantly later than in the free model (but still at polynomial time). Some

straightforward generalizations of this simple model show plateaus of height O(poly(N))

for any polynomial in N .

In section 5, we study the possibility of finding conjugate points at sub-exponential

times in chaotic theories. In [17], it was argued that in chaotic models, “almost all”

of the conjugate points occur at exponential times. One might worry that there are a

small number of conjugate points which can nevertheless appear at an earlier time; in

particular, prime suspects for this are conjugate points for which the Jacobi field involves

only local operators. Indeed, these are precisely the type of conjugate points which obstruct

complexity growth in the free SYK model at an early time. Using ideas from random matrix

theory and the Eigenstate Thermalization Hypothesis (ETH), we show that in chaotic

models, such conjugate points cannot occur before exponential time. This strengthens the

arguments of [17] that local obstructions to complexity growth in chaotic models do not

occur at sub-exponential times.

In section 6, we numerically study conjugate points for various integrable and chaotic

SYK Hamiltonians up to N = 8 (i.e., four qubits). We emphasize that this gives us

a concrete (albeit numerical) way to locate obstructions to complexity growth for SYK

models, which can in principle be extended to larger N . The numerical results show that a

class of conjugate points associated to simple operators (i.e., where the Jacobi field mostly
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involves simple operators) stay at a fixed time scale as we crank up the weighting of the

hard directions, while those associated to hard operators (i.e., where the Jacobi field mostly

involves hard operators) rapidly shift to late times proportional to the weighting factor

(which is taken to be exponential in N). Together with the results of section 5, this provides

further evidence that the complexity in chaotic models does not plateau until exponential

times, modulo global obstructions. Our results on the behavior of conjugate points and

geodesic loops in the complexity geometry illustrate how rich geometric structure underlies

the growth of the complexity of time evolution in free, integrable, and chaotic theories.

In section 7 we revisit and explore the Eigenstate Complexity Hypothesis (ECH) of [17].

We present the ECH matrices calculated from the eigenstates of SYK models with varying

degrees of integrability. The off-diagonal matrix entries for free SYK show fluctuations

that scale with the size of the system N , while those of the chaotic models are suppressed

uniformly for all N , modulo discrete symmetries of the system. The distribution of the

off-diagonal elements is discrete for the free system, which echoes the strong reduction

of the number of degrees of freedom analyzed in section 3. This reduction already does

not occur in interacting systems even if they are integrable. As expected, the off-diagonal

distributions of the interacting-integrable and the chaotic systems have continuous support.

Finally, we end with a discussion of interesting points and future work (section 8).

2 Conjugate points and complexity growth

In this section, we will discuss conjugate points and their effect on complexity growth. We

will see that conjugate points can be studied very concretely in terms of more familiar

quantities such as Hamiltonian eigenvectors, thermal two-point functions etc. Of course,

global geodesic loops (which are not signaled by conjugate points) should ultimately also

play an important role in any complete picture of complexity growth, but a systematic

study of these appears to be intractable for now.

2.1 Conjugate points in the Euler-Arnold formalism

Let U(H) be the group of all unitary operators on a finite dimensional Hilbert space H,3

and let {Ti} be an orthogonal basis for its Lie algebra with respect to the Killing norm.

Quantum circuit complexity is polynomially equivalent to a distance function on U(H),

with a certain right-invariant metric Gij (the “complexity metric”) which weights tangent

space directions corresponding to non-local operators heavily [22]. The choice of which

operators are to be considered non-local is not unique; a common choice for spin systems

or systems with clear notions of site-based locality is to consider as local all operators which

are at most k-local (act on at most k sites or k degrees of freedom) for some fixed k that

does not scale with N , the total number of degrees of freedom. Then, any operators which

are (k + 1)-local or greater are considered nonlocal and are weighted in the complexity

metric. The weighting of the “hard” directions is O(eS = dim H) to ensure the polynomial

equivalence to circuit complexity. To implement this weighting, we choose a metric that

3We will usually restrict to the special unitary group.

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
1

splits the tangent space into easy directions {Tα} and hard directions {Tα̇}, and weights

the hard directions in the length functional by a “cost factor” (1 + µ):

Gij =

(
δαβ 0

0 (1 + µ)δα̇β̇

)
. (2.1)

When the cost factor is µ = 0, all operators are equally weighted. In Nielsen’s setup, the

cost factor is taken to be µ ∼ eαS for some O(1) coefficient α, but we will let µ be arbitrary

throughout.

Quantum circuits in this context are paths on the unitary manifold, and the complexity

of a unitary U is measured by the length of a minimal geodesic connecting the identity to

U . An efficient formulation of the geodesic equation on Lie groups equipped with right-

invariant metrics was given by Arnold and is known as the Euler-Arnold equation [53, 54]4

Gij
dV j

ds
= fij

kV jGkℓV
ℓ, (2.2)

where Gij is the metric on the Lie algebra defined in (2.1), and fij
k are the structure

constants of the Lie algebra. The Euler-Arnold equation determines a velocity vector

V (s), which can then be integrated to give the path followed by the geodesic:

U(s) = P exp

(∫ s

0
ds′ V (s′)

)
, (2.3)

where P stands for path ordering. We will always parametrize our paths with s ∈ [0, 1].

Understanding the growth of complexity for a family of operators U(t) now essentially

reduces to the question of when a minimal geodesic becomes non-minimizing, and subse-

quently finding the new minimal geodesic. While the latter problem is difficult, there is

actually a local (in the space of paths) signature that a geodesic is non-minimizing: con-

jugate points.5 Conjugate points, which were the main objects of study in [17], represent

deformations of a geodesic which leave the length and the endpoint locations fixed to first

order in the deformation parameter. More precisely:

Definition. Given a geodesic U(s) : [0, 1] → U(H) with U(0) = P and U(1) = Q, if there

exists a one-parameter family of curves U(η, s) : [−ǫ, ǫ] × [0, 1] → U(H) such that U(η, s)

obeys the geodesic equation at first order in η with U(η, 0) = P and U(η, 1) = Q+O(η2),

then P and Q are said to be conjugate along the geodesic U(s).

Deformations which leave the length (but possibly not the endpoints) fixed to first

order in the parameter η above can be represented as vector fields dU
dη along the geodesic,

and are called Jacobi fields. If we imagine deforming the geodesic along a Jacobi field, we

are not guaranteed that the endpoint of the geodesic will remain fixed at leading order in

the deformation parameter. If we do find such a Jacobi field with fixed endpoints along

some segment of a geodesic, a shorter path between the initial point and a later point

4The Euler-Arnold equation, while not used in the original formulation of geodesic complexity [22], has

been previously used in the context of geodesic complexity and holography [17, 24, 32–34].
5Encountering a conjugate point is sufficient, but not necessary, for a geodesic to become non-minimizing.
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e
−itH

t∗

Figure 1. A cartoon of what happens when a geodesic between 1 and e−itH encounters a conjugate

point. The green geodesic is initially the locally minimizing geodesic, before it reaches t∗ where it

encounters a conjugate point (the blue point). For t > t∗, the green geodesic is no longer locally

minimizing, and a different geodesic (shown in red) will be the local minimum. Note that even

though the conjugate point indicates this transition, the new geodesic which takes over after t∗ is

not infinitesimally close to the original one (although we can reach it by gradient flow from the

original geodesic).

along the path can be found by deforming the geodesic along the Jacobi field between

the points which are conjugate, and subsequently smoothing out the resulting kink where

the deformed and original paths meet (this relies on the endpoint deviation vanishing).

This smoothing reduces the length at a lower order in the deformation parameter than

the deformation’s leading order effect on the length. Thus, the question of whether the

endpoint of a geodesic segment is conjugate to the initial point is equivalent to whether

there exists a Jacobi field along the segment that fixes the endpoints at leading order in

the deformation parameter. Importantly for us, the conjugate point is a signature that the

original geodesic is no longer locally minimizing, and is in fact a saddle point after that

time. It is worth emphasizing also that the new minimal geodesic which takes over may

not be infinitesimally near the original one, and can be highly non-trivial. See figure 1 for

a depiction of a conjugate point on a compact manifold.

The unitary operator studied in both this work and [17] is the time evolution operator

e−itH , where H is the system Hamiltonian. At small enough times t, the globally minimiz-

ing geodesic between the identity and e−itH solving (2.2) is the “linear geodesic”, a specific

geodesic with constant velocity V (s) = Ht. Since the linear geodesic is constant in s, the

path ordering in (2.3) is trivial, and the path of unitaries is U(s) = e−istH . By perturbing

the Euler-Arnold equation with V → V + δV and keeping the O(δV ) terms, we obtain the

Jacobi equation; plugging in V (s) = Ht for the original background geodesic around which

we are perturbing, we obtain the Jacobi equation specialized to the linear geodesic:

i
dδVL

ds
= µt[H, δVNL]L, (2.4)

i
dδVNL

ds
=

µt

1 + µ
[H, δVNL]NL, (2.5)

where the L,NL subscripts represent projections to the easy and hard subspaces of genera-
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tors in su(2N/2). As this is a first-order ordinary differential equation, any initial condition

δV (0) can be integrated to a solution δV (s). To find conjugate points, [17] defined a

super-operator Yµ (where the subscript µ denotes the cost factor) which takes as input

a tangent vector at the identity δV (0), produces the corresponding solution of the Jacobi

equation δV (s), and then computes the first order deviation of the endpoint e−itH under

deformation of the linear geodesic by δV (s):

P exp

(
−i
∫ 1

0
ds(Ht+ δV (s))

)
= e−itH

(
1 − iYµ(δV (0)) +O

(
δV 2

))
. (2.6)

By expanding the path ordered exponential in a Dyson series, the super-operator effectively

computes

Yµ(δV (0)) =

∫ 1

0
ds eistHδV (s)e−istH . (2.7)

Solving for δV (s) in terms of the initial velocity deformation δV (0) using equations (2.4)

and (2.5), we obtain

Yµ(δV (0)) =

∫ 1

0
dseiHts


δVL(0) − iµt

∑

α̇

exp
(

−iµtλα̇s
1+µ

)
− 1

−iµtλα̇

1+µ

δṼ α̇(0)[H, T̃α̇]L

+
∑

α̇

exp

(−iµtλα̇s

1 + µ

)
δṼ α̇(0)T̃α̇


 e−iHts,

(2.8)

where the L,NL subscripts denote projections to the purely local and purely nonlocal

operator subspaces, and {T̃α̇} is a new orthogonal basis of generators for the nonlocal

subspace which diagonalizes the super-operator [H, ·]NL with eigenvalues λα̇. The intuition

for this formula, derived in detail in [17], is essentially to sum up the total deviation

along the geodesic by translating the Jacobi field back to the identity and integrating.

Functionally, it is the first order correction term in a Dyson series expansion of the path

ordering (2.3) in the Jacobi field δV , as written in (2.7). The cost factor µ should be taken

to be O(eS) in the complexity geometry. A conjugate point appears when the first order

deviation in the endpoint vanishes for some initial tangent vector δV (0). Therefore, time

evolution encounters a conjugate point at time t if the super-operator Yµ has a zero mode

at time t. In particular, the zero modes must be Hermitian so that they are valid elements

of su(2N/2).

2.2 General criteria for locating conjugate points

In this section, we give general criteria for locating conjugate points. Our conditions are

sufficient for the existence of conjugate points, but not necessary. Their utility lies in the

fact that they relate the locations of conjugate points to more familiar properties of quan-

tum systems such as Hamiltonian eigenstates, adjoint eigen-operators, infinite-temperature

thermal two-point functions etc. Further, the hypotheses for these criteria are crucially in-

dependent of the cost factor µ and the precise form of H (so long as it is at most k-local).

– 8 –
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Claim 1. let H be a q-local Hamiltonian where q ≤ k.

(i) If the Hamiltonian has an adjoint eigen-operator O, i.e., adHO = [H,O] = λO for

some λ ∈ R, such that O lies entirely within the subspace of k-local operators, then

time evolution will encounter conjugate points at

t∗ =
2π

λ
Z. (2.9)

(ii) If the Hamiltonian has an adjoint eigen-operator O′, i.e., adHO
′ = [H,O′] = λ′O′ for

some λ′ ∈ R, such that O′ lies entirely within the subspace of non-k-local operators,

then time evolution will encounter conjugate points at

t∗ =
2π(1 + µ)

λ′
Z, (2.10)

where µ is the cost factor.

Proof. the proof proceeds by evaluating the super-operator Yµ on the given adjoint eigen-

operators of H:

(i) Notice first that evaluation of Yµ on a purely local operator O involves only the first

term in the square brackets in (2.8). The second and third terms do not contribute

since they depend only on the nonlocal components δṼ α̇(0), which are all zero for

local δV (0) = O (by assumption).

By evaluating matrix elements of the output in the energy eigenbasis or by expanding

out the exponential in the first term of (2.8), we conclude that if O is a k-local,

adjoint eigen-operator of the Hamiltonian, then O is also an eigen-operator of the

super-operator Yµ:

Yµ(O) = φ(λt) O, φ(x) =
eix − 1

ix
. (2.11)

The eigenvalue φ(λt) becomes zero at the locations t∗ = 2π
λ Z, and so we have con-

jugate points at these locations. Of course, to have a conjugate point we must have

a Hermitian zero mode of Yµ, and indeed we do after observing that under these

conditions we also have

Yµ(O†) = φ(−λt)O†, (2.12)

which means that O + O† and i(O − O†) are zero modes at the specified times. In

this argument, we have not used the form of the Hamiltonian at all except in our

assumption that it has a k-local adjoint eigen-operator.

(ii) Likewise, the evaluation of Yµ on a purely nonlocal operator O′ involves only the

third term inside the square brackets in (2.8). The first term inside the square

brackets does not contribute because it involves a local projection which will vanish

for a purely nonlocal δV (0) = O′. To see why the second term does not contribute,

observe that it involves the commutator [H, T̃α̇] followed by a projection to the local

subspace. Since we have assumed [H,O′] = λ′O′ for a purely nonlocal O′, we may

– 9 –
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take a single T̃α̇ to lie along the O′ direction, and set the rest of δṼ α̇(0) to zero.

Then, every term of the form δṼ α̇(0)[H, T̃α̇]L vanishes; all but one vanish due to

δṼ α̇(0) = 0, and the final term with Tα̇ ∝ O′ vanishes due to the projection after

the commutator. Again evaluating matrix elements in the energy basis or expanding

out the exponential in the third term in equation (2.8), we find that if an adjoint

eigen-operator O′ exists such that O′ lies entirely along the hard directions, then O′

is also an eigen-operator of the super-operator Yµ:

Yµ(O′) = φ

(
λ′t

1 + µ

)
O′. (2.13)

In this case, the eigenvalue becomes zero at the locations t∗ = 2π(1+µ)
λ′ Z. Again, we

have in mind that the zero modes which lead to conjugate points at these times are

really the Hermitian combinations of O′ and O′†, where we have a minus sign in the

argument of φ for O′†.

We will encounter examples of such conjugate points when we discuss the free SYK

model in the next section. In fact, all conjugate points at q = 2 belong to either type (i)

or (ii) in Claim 1. As another non-trivial example, consider the q = 4 SYK model. Let

the gate set be chosen such that 2-local and 4-local operators are treated as easy, while

all other operators are treated as hard.6 Since the Hamiltonian has a fermion-number

symmetry, we can label eigenstates with the corresponding ±1 eigenvalue. Any adjoint

eigen-operator of H of the form |m〉〈n| where |m〉 and |n〉 have opposite fermion number

will therefore entirely lie along the hard directions, and will thus give conjugate points at

exactly t∗ = 2π(1+µ)
Em−En

Z.

Note that in case (ii), the conjugate points appear at late times, provided the cost

factor is taken to be large. In the geometric setup, this cost factor is often taken to

be exponential in S, and so we see that these late-time conjugate points appear as an

obstruction to complexity growth at exponential times, which is the expected time-scale for

complexity saturation in chaotic quantum systems. So, chaotic theories may have conjugate

points of the sort predicted by the hypothesis of Claim 1.(ii), as indeed exemplified by the

above example of the q = 4 SYK model with the gate set protected by fermion number

symmetry. On the other hand, in (i), the location of the conjugate points does not depend

on µ; in this case, conjugate points could potentially lead to a short-time obstruction to

complexity growth, where by “short-time” we mean a time of order poly(S). Indeed this is

precisely what happens in the free SYK model (see section 3). Since chaotic systems (or,

more precisely, systems with geometric, holographic duals) are expected to have complexity

growth for exponential time, then we expect such conjugate points which are “associated

to simple operators” do not occur in chaotic systems before exponential times. In order to

probe this further, we re-formulate the existence of such conjugate points as follows:

6Note that this is a different notion of locality than the notion we use in the majority of this work, where

instead we pick some constant cutoff k for which all operators that are at most k-local are considered easy.
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Claim 2. Let Mαβ be the positive semi-definite matrix

Mαβ(t) =

∫ 1

0
ds

∫ 1

0
ds′ Tr [ei(s−s′)tHTαe

−i(s−s′)tHTβ], (2.14)

where Tα and Tβ are simple (i.e., at most k-local) generators. If Mαβ(t) has a zero mode

at time t∗, then time evolution encounters a conjugate point at t∗.

Proof. Let Xα be the zero mode of Mαβ(t) at time t∗. Now consider

δV (0) =
∑

α

XαTα. (2.15)

We evaluate Yµ(δV (0)), and compute the Frobenius norm of the resulting operator:

||Yµ(δV (0))||2F = Tr
[
(Yµ(δV (0)))†Yµ(δV (0))

]

=

∫ 1

0
ds

∫ 1

0
ds′ Tr

[
eistHδV (0)†e−istHeis′tHδV (0)e−is′tH

]

=
∑

α,β

(Xα)∗Mαβ(t)Xβ, (2.16)

where in the second equality we have used the fact that the chosen δV (0) lies entirely along

the easy directions. Since at time t∗ we have
∑

β Mαβ(t∗)Xβ = 0, then we conclude that

at time t∗ we must have

||Yµ(δV (0))||F = 0, (2.17)

which consequently implies Yµ(δV (0)) = 0. Thus, we have a conjugate point at t∗.

We will henceforth refer to such conjugate points (which correspond to zero modes of

Mαβ) as simple or local conjugate points. Note that Mαβ(t) is the infinite temperature,

thermal two-point function between two time-averaged simple operators. Claim 2 above

states that the first time t∗ at which this matrix develops a zero mode is precisely when

the time evolution geodesic e−itH encounters a conjugate point, and thus necessarily stops

being a locally minimal geodesic. Conceptually, this relates complexity growth with a

more familiar quantity, namely the thermal two-point function. (In appendix A we write a

general expression relating the full super-operator to the infinite-temperature thermal two-

point function which may be of interest for future work.) On the practical side, note that

M is a much smaller matrix (polynomial in size) as compared to Yµ (which is exponential

in size), and thus gives a useful sufficient-but-not-necessary criterion for locating conjugate

points. Such conjugate points, should they exist, will be at a time t∗ which is independent

of µ.

We can also give a physical interpretation to the smallest eigenvalue of Mαβ(t). Let

λmin(t) be the smallest eigenvalue of Mαβ(t). From equation (2.16), we have

λmin = minδV (0)
||Yµ(δV (0))||2F
e−S ||δV (0)||2F

, (2.18)

where we minimize with respect to all (non-zero) local operators δV (0). Physically, this

means that it is possible to find an infinitesimally nearby curve with a local initial velocity
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V (0) = Ht+ ǫδV (0) (for infinitesimal ǫ) which satisfies the geodesic equation up to O(ǫ2),

such that the end point displacement from the target unitary e−itH satisfies:

||U(1) − e−itH ||2F = ǫ2 e−Sλmin(t) ||δV (0)||2F +O
(
ǫ3
)
, (2.19)

where the subscript F stands for Frobenius norm. Thus, λmin is a measure of the error

up to which we can approximate time evolution by an infinitesimally nearby geodesic. If

λmin is exactly zero for some t∗, then we have a conjugate point at that location. We will

call λmin the impact parameter since it measures how close a trajectory with local initial

velocity V (0) = Ht+ ǫδV (0) comes to hitting the exact final unitary e−iHt. We will return

to this in section 5, where we will argue that in chaotic models, λmin ∼ O(eS) for t < eS ,

but becomes small thereafter. Consequently, local conjugate points, should they exist,

cannot appear before exponential time in chaotic theories.

2.3 Relevance of conjugate points in complexity growth

In AdS/CFT, several conjectures relate the quantum complexity of the CFT time evolution

operator to the growth of a bulk quantity like an extremal volume or action. While there

has been progress in understanding the details of such bulk volume or action calculations,

a field-theoretic formulation of circuit complexity in infinite-dimensional Hilbert spaces

which reduces to the standard notion of quantum complexity in finite dimensions is still

incomplete. This has led to the development of toy models for the complexity geometry

which are designed to reproduce certain coarse-grained features of distances on the full

unitary manifold with a right-invariant complexity metric [55, 56]. For example, one such

toy model involves a particle moving on a high-genus Riemann surface with metric induced

from its universal covering space, the hyperbolic disk H
2 [55].

While such toy models have led to interesting insights into the behavior of holographic

complexity, they lack a crucial feature of the finite-dimensional complexity geometry: con-

jugate points. In the example of the particle moving on a Riemann surface, there are no

conjugate points because the sectional curvature of the induced metric is strictly negative.

In an attempt to justify this shortcoming, one might appeal to results of Milnor on sec-

tional curvatures of Lie groups [57], which roughly imply that most sectional curvatures

on “complicated enough” Lie groups with right-invariant metrics are negative. Crucially,

however, the results of [57] do not imply that all sectional curvatures are negative. In fact,

the most important result in [57] for our purposes is the fact that any right-invariant metric

on SU(n) for n > 2 is required to either have some strictly positive sectional curvature or

else be completely flat. Some of these curvatures were recently computed explicitly for

complexity metrics in [58] and were found to be positive.

There is an obvious tension between the lack of conjugate points in the toy models and

the fact that in the finite-dimensional complexity geometry (a right-invariant metric on

the unitary group), conjugate points are guaranteed to exist and obstruct the complexity

growth of time evolution with arbitrary Hamiltonians.7 This fact was emphasized in the

7See [59] for a simpler Lie group geometry where conjugate points are guaranteed to be the first ob-

struction to complexity growth.
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original formulation of complexity geometry [22], and also in its adaptation to the Euler-

Arnold formalism [17].

A possible perspective on this tension is to imagine that, in the context of finite-

dimensional holographic systems like the SYK model, conjugate points may move off “to

infinity” or simply disappear from the relevant minimal geodesic as the cost factor µ is

increased, leading to a situation where there are never any conjugate points along the

geodesic relevant to complexity. Unfortunately, as was briefly discussed in [17], this is

impossible due to two facts: 1) the initial linear growth of time evolution’s complexity

is captured by the linear geodesic, and 2) the right-invariant complexity metric depends

continuously on the cost factor µ. Using these two facts, we will explain in more detail an

argument sketched in [17] which demonstrates that conjugate points must exist along the

linear geodesic for arbitrary local Hamiltonians at finite distance and cost factor.

We begin by noticing that the case of zero cost factor, µ = 0, corresponds to a bi-

invariant metric on the Lie group. In this case, the exponential maps of the Lie group and

Riemannian manifold coincide, which means that all geodesics take the form e−isH for some

Hamiltonian H. In the bi-invariant metric, conjugate points are known to exist at finite

distance [22].8 Since they begin at finite distance, they cannot move “to infinity” since they

are zero modes of the super-operator Yµ, and these zero modes depend continuously on µ.

If they were to move to infinity at some finite value of µ, there would be a discontinuity in

the super-operator before and after this value.

The only other possibility is that the conjugate points could “disappear”, which would

correspond to a zero mode of the super-operator becoming complex. That is to say, the

Jacobi field which gives the conjugate point could pick up a non-Hermitian contribution

at some finite value of µ, and in order to have a true conjugate point the Jacobi field must

be purely Hermitian. We do not have a guarantee from simple continuity that this cannot

happen, since, for example, the same thing happens for the polynomial equation x2+µ = 0.

There is no discontinuity in µ on the left hand side but the solutions become complex as

µ goes from negative to positive. So too could the Jacobi fields generating the conjugate

points become non-Hermitian at some finite value of µ. However, it turns out that this

also cannot happen.

To understand why conjugate points cannot disappear, we apply Morse theory on

the space of paths. Let Ω(U1, U2) be the space of paths on the Lie group between unitary

operators U1 and U2. The dimensionality of this space is formally infinite, but this subtlety

turns out not to affect any conclusions [60–62].9 For the complexity of time evolution, the

relevant path spaces are

Ωt,H ≡ Ω
(
1, e−itH

)
. (2.20)

That is to say, Ωt,H is the space of all smooth paths γ(s) with γ(0) = 1 and γ(1) = e−itH .

For convenience, we parametrize all paths with s ∈ [0, 1]. We can consider a real-valued

8In particular, they appear at t∗ = 2π
(Em−En)

Z for all eigenvalues Em, En of H.
9The original work of Morse, reviewed by Milnor in section III of [60], relies on finite-dimensional

approximations of the full path space, to which Morse’s theory is then applied. By contrast, [61, 62] prove

the same results by working directly in the infinite-dimensional setting.
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function on Ωt,H which is often called the energy functional

E(µ)(γ) ≡
∫ 1

0
ds

(
∑

α

V 2
α + (1 + µ)

∑

α̇

V 2
α̇

)
, (2.21)

where we have made use of the splitting of the Lie algebra into local and nonlocal directions

(labeled by α and α̇, respectively), the right-invariance of the complexity metric, and also

the velocity along the path V (s) ≡ dγ/ds.

Critical points of the energy functional E(µ) on Ωt,H are precisely the paths with

velocity V (s) which are geodesics between the identity and e−itH . The most important of

these for us is the linear geodesic, which is simply the path V (s) = Ht. Since the linear

geodesic is independent of µ, the point in Ωt,H to which it corresponds is fixed as µ increases.

Call this point L ∈ Ωt,H . The tangent space to L, and more generally to any point γ in

the path space, is the space of vector fields δV (s) along γ for which δV (0) = δV (1) = 0.10

With this notion of tangent space, one can define the Hessian of the energy functional E(µ)

evaluated at L, which we will denote E′′ (where the derivatives are taken in the space of

paths), keeping all dependence on µ, t, and H implicit.

One can now apply the Morse index theorem on Ωt,H using E(µ) as the Morse function.

The Morse index theorem applied to our situation states that the number of negative

eigenvalues of E′′ is equal to the number of conjugate points (counted with multiplicity)

along the geodesic L, and that E′′ only has a zero eigenvalue if the endpoint e−itH is

conjugate to the identity along L [60]. Since E(µ) depends continuously on µ, and L is

independent of µ, the eigenvalues of E′′ must also depend continuously on µ. Therefore,

the only way we can “lose” a conjugate point along L is for an eigenvalue of E′′ to pass

continuously through zero. In other words, the conjugate point must move beyond e−itH

along the linear geodesic. This means that conjugate points cannot simply disappear;

the only way to get rid of them is to boost the cost factor µ high enough to push them

past the endpoint of the geodesic L. So, by taking t large enough (but still finite), we can

extend the endpoint of L to always find conjugate points along L at finite distance and cost

factor, just as we claimed. This also amounts to a non-perturbative proof that zero modes

of Yµ are always Hermitian matrices because if a zero mode were non-Hermitian then

the corresponding conjugate point would disappear, but the zero modes are in one-to-one

correspondence with the conjugate points.

All of this means that conjugate points are relevant for any complexity calculation

which employs complexity geometry and involves the linear geodesic L, and toy models

which ignore them are useful but incomplete representations of the total complexity geom-

etry. It would be interesting to find a toy model which can include conjugate points.

10δV must vanish at the endpoints since Ωt,H is defined as the space of paths with fixed endpoints at 1

and e−itH .

– 14 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
1

3 Free theories

We now study the growth of complexity in free and integrable models, starting with the

quadratic free fermion model, with Hamiltonian

H = i
∑

i,j

Jijψ
iψj , (3.1)

where Jij is an anti-symmetric matrix and the sums run from 1 to N . We consider this

model as a q = 2 instance of the SYKq family of models [10, 63],11

H = iq/2
∑

i1...iq

Ji1...iqψ
i1 . . . ψiq . (3.2)

There, Ji1...iq is totally antisymmetric and is drawn from a Gaussian distribution with mean

zero and variance parameterized by J ,

〈J2
i1...iq

〉 =
2q−1(q − 1)!

q

J 2

N q−1
. (3.3)

In our context, we consider a particular instance of the model where we have sampled the

couplings Jij from such a distribution. The matrix Jij is antisymmetric and therefore can

be written as

J = V DV T , (3.4)

where V is an orthogonal matrix, and D is block-diagonal with antisymmetric blocks:

D =




0 ω1/2 0 0 · · ·
−ω1/2 0 0 0 · · ·

0 0 0 ω2/2 · · ·
0 0 −ω2/2 0 · · ·
...

...
...

...
. . .




. (3.5)

The matrix V is constructed as follows. First, write the usual diagonalization J = UΣU †.

Since J is antisymmetric, the matrix U is unitary and the eigenvalues of J are ±iωp/2,

p = 1 . . . N/2. Next, define the unitary matrix

M =
1√
2

(
1 1

i −i

)
. (3.6)

Using M , build the matrix Ω = ✶( N
2

× N
2

) ⊗M , the N ×N block diagonal matrix formed by

N/2 copies of M . A short computation shows that Ω†ΣΩ = D, so J = UΩDΩ†U †. It turns

out that UΩ is always a real matrix, so we can identify V = UΩ and then J = V DV T .

Now we can define new fermion operators

Ψi =
∑

j

ψjVji, (3.7)

11See [64] for a pedagogical review.

– 15 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
1

which also satisfy the same anti-commutation relations

{Ψi,Ψj} = 2δij . (3.8)

The notion of locality is unchanged by this transformation, since the new fermion operators

are linear in the old ones and V is orthogonal. In terms of these new operators, the

Hamiltonian becomes

H = i

N/2∑

p=1

ωpΨ2p−1Ψ2p. (3.9)

Finally, we define the ladder operators

Ap =
1

2
(Ψ2p−1 + iΨ2p) , A†

p =
1

2
(Ψ2p−1 − iΨ2p) , (3.10)

which satisfy {
Ap, A

†
p

}
= 1, (3.11)

with all other anti-commutators vanishing. In terms of these, the Hamiltonian becomes

H =

N/2∑

p=1

ωp

(
Ap +A†

p

) (
Ap −A†

p

)
=

N/2∑

p=1

ωp

(
2A†

pAp − 1
)
. (3.12)

In this Dirac fermion language, there is a new useful basis of the 2N − 1 operators which

span the algebra su(2N/2). To define this basis, we begin by writing a vector of 4 operators

~J (p) ≡
(
1, Ap, A

†
p, 2A

†
pAp − 1

)
. (3.13)

With the entries of this vector labeled by indices in the order βp ∈ {0,−,+, 3}, the operator

basis is then the set of products over all choices of {βp},

J
(1)
β1
J

(2)
β2
. . . J

(N/2)
βN/2

, (3.14)

where we discard the identity β1 = . . . = βN/2 = 0. The Hamiltonian can be written

compactly as

H =

N/2∑

p=1

ωpJ
(p)
3 , (3.15)

and J
(p)
3 has eigenvalues ±1 in the energy eigenbasis. Thus, the 2N/2 eigenvalues of H are

N/2∑

p=1

σpωp, (3.16)

for every possible choice of the coefficients σp from {±1}. The natural notion of locality

in the Dirac basis, derived by considering an operator with k Majorana operators to be

k-local, is to consider J+ and J− as 1-local operators but J3 as a 2-local operator and J0

as a 0-local operator. Then, the locality of a general product of J
(p)
βp

’s is simply the sum

of the individual localities. Since the Hamiltonian is 2-local, then we will take k = 2 in

the rest of this section. Free fermion time evolution was also studied in [15]; we will see

that geodesic complexity techniques both reproduce the results found there and allow us

to uncover new features of free theories.
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3.1 Conjugate points

We are interested in the complexity of the unitary operator

U = e−itH . (3.17)

First, we study conjugate points for the linear geodesic. Let us look at the super-operator

Yµ derived in [17], whose zero modes as a function of t correspond to conjugate point

locations. For free theories, it turns out that every conjugate point corresponds to a local

or non-local eigen-operator of adH .

To understand the free theory, we observe that the adjoint action of the Hamiltonian

is already diagonal in the Dirac fermion basis (3.14) and, recalling that βp ∈ {0,+,−, 3},

we can write it as

[
H,J

(1)
β1
. . . J

(N/2)
βN/2

]
= 2

∑

p

(
ωpδβp+ − ωpδβp−

)
J

(1)
β1
. . . J

(N/2)
βN/2

. (3.18)

For the 2N/2 − 1 operators in the basis that involve only J0 or J3, the adjoint eigenvalue

is zero. We take 3-local and higher operators to be nonlocal, since the Hamiltonian is

quadratic in the Majorana fermions, i.e., k = 2. Since the adjoint eigen-operators of the

Hamiltonian split nicely into simple and hard operators, we can obtain all the conjugate

points using Claim 1 in section 2.2. The locations of conjugate points associated to local

operators are given by Claim 1.(i). They are

t∗ =
π

ωp1 + ωp2

Z,
π

ωp
Z,

π

ωp1 − ωp2

Z, (3.19)

where p1 6= p2, ωp1 > ωp2 > 0, and ωp > 0. We may always define all ωp > 0 for the price

of introducing a minus sign in the definition of σ3
p, and we order the ωp so that ωp > ωq

for p < q. These families of conjugate points are associated with operators of the forms

A†
p1
A†

p2
+Ap2Ap1 , A†

p +Ap, A†
p1
Ap2 +A†

p2
Ap1 , (3.20)

respectively. These are two-fold degenerate conjugate points; there are corresponding part-

ner operators, such as i(A†
p −Ap) for the second operator in (3.20). Similarly, the locations

of conjugate points corresponding to the purely nonlocal operators are given by Claim

1.(ii),

t∗ =
π(1 + µ)

ωp1 + ωp2 + ωp3

Z,
π(1 + µ)

ωp1 + ωp2 − ωp3

Z, . . . ,
π(1 + µ)∑

p ωp
Z, (3.21)

where we cannot pick the same ωp twice, and all possible combinations of plus and minus

signs can occur in the denominators subject to the constraint that the overall result should

be positive. The associated operators are respectively

A†
p1
A†

p2
A†

p3
+Ap3Ap2Ap1 , A†

p1
A†

p2
Ap3 +A†

p3
Ap2Ap1 , . . . ,

(
∏

p

Ap

)†

+
∏

p

Ap. (3.22)
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3.2 Exact geodesics

As we showed above, the conjugate points associated to nonlocal directions are quite far

from the identity due to the cost factor, while those associated with local directions occur

at a time of O(poly(S)) since numerical experiments reveal the range of non-zero ωp to

be between O(1/N) and O(1), with a typical spacing of 1/N .12 Therefore, as one might

expect in the free theory, obstructions to complexity growth occur nearly immediately.

We would like to go beyond just identifying the location of such obstructions and actually

find the new globally length-minimizing geodesics which replace the linear geodesic in the

complexity calculation.

A general geometric strategy for finding these new geodesics will be to isolate relevant

subalgebras of su(2N/2) where the effect of the conjugate point can be completely under-

stood. While technically there are conjugate points associated with 2-local operators which

occur sooner, it is illustrative to begin with the family of points corresponding to a single

ladder operator A†
p. Again, there is a two-fold degeneracy of these conjugate points which

arises due to the Ap. To understand the behavior of the conjugate point at t∗ = π/ωp,

we must at least study the algebra generated by Ap and A†
p. Furthermore, whatever our

choice of subalgebra, we must also include the relevant terms in the Hamiltonian, namely

the projection of H to our subalgebra. The smallest possible subalgebra that fits our needs

is just a copy of su(2), generated by

[J
(p)
+ , J

(p)
− ] = J

(p)
3 , (3.23)

[J
(p)
3 , J

(p)
+ ] = 2J

(p)
+ , (3.24)

[J
(p)
3 , J

(p)
− ] = −2J

(p)
− . (3.25)

While J+ and J− are not Hermitian, they are traceless, and we may Hermiticize them by

taking linear combinations to obtain valid su(2) generators. This su(2) is essentially a copy

of the Pauli algebra, and exponentiates to an SU(2) subgroup within our total manifold

SU(2N/2). Since SU(2) is simply S3, we have an immediate interpretation of the conjugate

points at t∗ = π/ωp. The path traced by e−itH in SU(2N/2) begins at the north pole of

this S3, and the conjugate point sits at the south pole.

There is a corresponding algebraic avenue for understanding this result. Because J
(p)
3

has eigenvalues ±1 in the energy eigenbasis, and we have [J
(p1)
3 , J

(p2)
3 ] = 0, the time evolu-

tion operator splits as

e−itH =

N/2∏

p=1

e−iωptJ
(p)
3 . (3.26)

The conjugate point occurs at t∗ = π/ωp because it is precisely at this time that we have

the equivalence

e−iωpt∗J
(p)
3 = eiωpt∗J

(p)
3 . (3.27)

12It would be interesting to determine an analytic formula for these quantities, and it may be achievable

since we are interested in the eigenvalues of a particularly simple random matrix Jij : an N×N antisymmetric

random matrix with Gaussian entries of mean zero and variance 1/N (for J = 1).
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Thus, we are led to conclude that the new geodesics should be written by simply modifying

the coefficients in the Hamiltonian in the appropriate way to trace out the other half of

the great circle and to return to the north pole on S3 at time 2t∗.

We must simply reverse the velocity in the J
(p)
3 direction and decrease the coefficient

appropriately so that it returns to zero as we return to the north pole of the relevant

SU(2). The appropriate operation which achieves this, and takes into account the necessary

changes when encountering all other conjugate points in the family t∗ = πZ/ωp, can be

neatly written as

ωptJ
(p)
3 → −i log(eiωpt)J

(p)
3 , (3.28)

where we always take the principal branch of the logarithm with a cut on (−∞, 0). This

function effectively computes ωpt modulo 2π, with a result in the range (−π, π]. The new

velocity, including the effects of all conjugate points associated to 1-local operators, is

Ht → −i
∑

p

log(eiωpt)J
(p)
3 . (3.29)

This velocity is still constant (i.e., s-independent) and purely local, so it is still a geodesic.

This family of geodesics was found in [15] as fast-forwarding Hamiltonians for free fermion

time evolution. However, as we will now see, there is more structure in the free theory

which allows for a constant factor improvement over the above construction.

Before dealing with the conjugate points corresponding to 2-local operators, we note

that the family of geodesics just described induces a self-averaging behavior for the com-

plexity in precisely the way which was understood in a toy model developed in [17]. The

toy model made use of the single-qubit complexity geometry, which is simply SU(2). An

N -member ensemble of single-qubit Hamiltonians was defined, and the ensemble-averaged

complexity in that situation behaved in precisely the manner we have just described for

the free SYK model with N Majorana fermions. This is a quantitative instance of self-

averaging, an effect which is generally difficult to understand analytically.

With that being said, there are effects at times of O(poly(S)) in the N -Majorana

theory which are “intrinsically quantum”, and do not arise from self-averaging. These are

the conjugate points like t∗ = πZ/(ωp1 +ωp2) associated with 2-local operators, which have

no analog in the ensemble average toy model. We will see explicitly why this is the case by

again analyzing these conjugate points from both geometric and algebraic viewpoints. On

the geometric side, we search for a subalgebra which includes the operators generating the

(two-fold degenerate) conjugate point, any other operators necessary for the subalgebra to

close, and the projection of the Hamiltonian to this subspace. It turns out that we can

again manage with just a single su(2) subalgebra generated by

A†
p1
A†

p2
, Ap1Ap2 , J

(p1)
3 + J

(p2)
3 . (3.30)

It may seem like the third operator is not actually a projection of the Hamiltonian, since

H involves a weighted sum of J
(p)
3 ’s with different coefficients. The point here is that we

are projecting H along a particular direction which involves operators from both the p1

and the p2 subalgebras discussed in the 1-local case. In other words, we rewrite

ωp1J
(p1)
3 + ωp2J

(p2)
3 =

ωp1 + ωp2

2

(
J

(p1)
3 + J

(p2)
3

)
+
ωp1 − ωp2

2

(
J

(p1)
3 − J

(p2)
3

)
, (3.31)
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and project along the J
(p1)
3 + J

(p2)
3 direction. This subalgebra exponentiates to a copy of

SU(2), and we again have an interpretation of the conjugate point as the south pole of

an S3.

The algebraic viewpoint is a bit more instructive in this case as opposed to the 1-

local situation. In that case, we observed that iJ
(p)
3 had eigenvalues ±i, and so its matrix

exponential was 2π-periodic, which led to a conjugate point at π/ωp where ωp was the

coefficient of J
(p)
3 in H. However, in general, for sums of different J

(p)
3 , the most we can

say is that the eigenvalues are integers. Luckily, for the sum of precisely two J
(p)
3 , the

eigenvalues are ±2 or zero. Therefore, the matrix exponential of i(J
(p1)
3 +J

(p2)
3 ) is actually

π-periodic. This explains why the conjugate point sits at t∗ = π/(ωp1 +ωp2) as opposed to

2π/(ωp1 + ωp2).

With an understanding of these conjugate points, we can write the new velocity. Again

we simply make the replacement

ωp1tJ
(p1)
3 + ωp2tJ

(p2)
3 → −i log

(
ei(ωp1 +ωp2 )t

) J (p1)
3 + J

(p2)
3

2
+
ωp1 − ωp2

2
t
(
J

(p1)
3 − J

(p2)
3

)
,

(3.32)

which handles all conjugate points in the family t∗ = πZ/(ωp1 + ωp2). When we encounter

the conjugate point at t∗ = π/(ωp1 − ωp2), the same replacement will occur on the second

term on the right hand side above. Unfortunately, as much as we would like to write a

single expression which incorporates the changes in the geodesic after all conjugate points

associated to 1- and 2-local operators, we cannot accomplish this with our logarithm branch

cut trick. We will simply provide a description of the total velocity.

The linear geodesic begins with velocity Ht. As we increase t, the endpoint of the

geodesic moves, and we may encounter a conjugate point. To keep track of these changes,

we keep a table of coefficients cp(t), and we will periodically update these with t so that

the velocity of the globally minimal geodesic is always (before times of order µ)

V =
∑

p

cp(t)J
(p)
3 . (3.33)

Initially, at very small times t, we have cp(t) = ωpt, and these coefficients will always locally

increase linearly with ωpt. To know when we should update a particular cp(t), we keep

track of three types of quantities: cp1(t) + cp2(t), cp1(t) − cp2(t), and cp(t) themselves. We

will update cp(t) so that all such quantities are in the range (−π, π]. Whenever one of the

first or second type increases beyond π, we rewrite the velocity as in (3.32) and update

cp1(t) and cp2(t). In the case of the first type, their sum is updated to be in the range

(−π, π] but their difference is unchanged. For the second type, their difference is updated

but their sum is unchanged. Similarly, when one of the third kind increases beyond a

multiple of π, we simply update the individual cp(t) to be in the range (−π, π]. Notice

that in the first two cases we needed a second linear relationship (keeping one of the sum

or difference fixed) in order to update both cp1(t) and cp2(t).

It is this “quantum” effect which separates the exact N -Majorana free theory from

the ensemble average of single-qubit theories. Indeed, the quantum interference effects

of the conjugate points related to 2-local operators actually prevent us from reaching the
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Figure 2. A plot of complexity C(t) for instances of the N = 10, N = 20, N = 50, N = 100, and

N = 500 free SYK model with J = 1. The ωp/2 which control the growth of the coefficients cp(t)

in (3.33) are the positive eigenvalues of the antisymmetric coupling matrix Jij whose entries are

independent Gaussian random variables with mean zero and variance σ2 = J 2/N .

conjugate points associated with 1-local operators: if we ever had ci(t) = π for some ci(t),

we would certainly have some sum or difference of ci(t) equal to π already, unless all the

other cj 6=i(t) are zero, which is quite finely tuned. The fact that we are able to understand

all the globally minimizing geodesics before exponential times as a function of t by studying

only conjugate points on the linear geodesic is due to the geometric description of all local

operator conjugate points as south poles of 3-spheres. A plot of complexity for the free

SYK model is shown in figure 2. As all O(N) terms in the diagonalized Hamiltonian are

upper-bounded by π due to the local conjugate points and corresponding geodesic loops,

there is a hard upper bound on the free complexity of O(
√
N). The conjugate points

associated with non-local operators are not relevant for this discussion because they occur

at far later times of O(µ ∼ eαS). Thus, we have essentially determined the full structure

of geometric complexity in the free theory at sub-exponential times, up to the existence of

geodesic loops which are not signaled by conjugate points.

We can make progress on this front by ruling out at least one simple class of potential

geodesic loops which are not signaled by conjugate points. Though we have demonstrated

that conjugate points corresponding to nonlocal (3-local and higher) operators occur at

times of order µ, and are thus not relevant for complexity growth below such times, we

may wonder if a similar algebraic effect as (3.32) can occur for e.g. a sum of three J
(p)
3 ’s

even without a conjugate point. It is clear that there is an algebraic relationship which

would allow such a replacement: the sum of three or more J
(p)
3 ’s is still integer valued, so

the matrix exponential will be at most 2π-periodic. This would be a geodesic loop that

occurs without a conjugate point in the free theory. However, this cannot occur, because

of the way the coefficients scale. In general, a sum of m J
(p)
3 ’s has a half-periodicity (which

was the conjugate point location for m = 1 and m = 2) when

m∑

i=1

ci(t) = 4⌊ m−1
2

⌋π. (3.34)
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Notice that for m = 1 and m = 2, the right hand side is π, and this is led to our update

rules for the ci(t). However, for m = 3 it is 4π, which means the average value of the ci(t)

is 4π/3, which is greater than π. We cannot reach this regime, because the ci(t) are all

valued in (−π, π] due to effects of the 1- and 2-local operators. For m = 4, the average

value is π, but this also cannot occur because (since ci(t) ≤ π) we must have ci(t) = π for

all i for the average of them to be π. This violates the conditions placed by the 2-local

operators, namely that the sum of any two ci(t) is less than or equal to π. A similar story

holds for all m > 4. So, no periodicity effects arise for this number of J
(p)
3 ’s, and indeed

there are no conjugate points associated with such effects.

Throughout this discussion, we have assumed that k = 2, or in other words that 3-

local and greater operators are considered nonlocal from the perspective of the complexity

metric. However, the classification and locations of conjugate points at arbitrary µ that

we described in Claims 1.(i) and 1.(ii) in section 2.2, and then applied to the free theory,

does not actually depend on this assumption. The reason our analysis cannot be extended

to k > 2 is more subtle. Let us consider k = 3 for concreteness. By Claim 1.(i), there is

a conjugate point family at πZ/(ω1 + ω2 + ω3), associated with operators like A†
1A

†
2A

†
3 +

A3A2A1. The next step to understand these conjugate points is to analyze this operator

and the Hamiltonian projection from the geometric or algebraic perspective. From the

geometric perspective, the situation is significantly more complicated than the 1- and 2-

local cases because the relevant subalgebra is no longer su(2). The two Hermitian operators

associated to the conjugate point and the Hamiltonian projection do not close under the

Lie bracket, and more operators must be added to ensure closure. Moreover, beyond S3,

none of the higher-dimensional spheres are Lie groups, so the geometric interpretation of

the conjugate point will no longer simply be arrival at the south pole of a sphere. The

algebraic perspective has an analogous difficulty: the sum of three or more J
(p)
3 ’s can

certainly have an eigenvalue of ±1 or ±2, which is less than the multiplicity we would need

to explain the appearance of the conjugate point so soon by some periodicity condition on

the matrix exponential.

In a certain sense, this result is not surprising. The 3-local and higher operators do

not have such simple interpretations because physically they represent “shortcuts through

chaos” which generate free time evolution faster than the free system itself. That is, after

the linear geodesic (corresponding to time evolution with respect to the free Hamiltonian) is

replaced by a new globally minimizing geodesic at a non-local conjugate point, the shorter

trajectory along the new global minimizer can be thought of as Hamiltonian evolution with

respect to a different, chaotic effective Hamiltonian. These shortcuts would be interesting

to understand, as they utilize chaos in a structured way.13 In other words: “Chaos isn’t a

pit. Chaos is a ladder.”

13It is conceivable that the 3-local deformation added to the free Hamiltonian, which makes the total

effective Hamiltonian Heff = H + ǫδV/t, may not be chaotic for a finite range of values ǫ > 0. We do not

have concrete arguments against this, but it is unlikely that the flow in the space of paths generated by

a 3-local δV will remain in the local subspace, since closure of the relevant subalgebra will introduce even

more non-local operators which may enter the effective Hamiltonian of the new length-minimizing geodesic.

This would lead to a theory which involves many non-local interactions, which is likely chaotic. It would

be interesting to confirm this intuition.
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Of course, it could be that the chaotic deformation “wraps around” a submanifold in

the same way as the conjugate points we were able to understand above, and leaves us

with a globally minimizing velocity that does not actually involve 3-local or more terms.

This observation does not change our conclusion that there are special chaotic deformations

which allow speedups for free time evolution; it only means these speedups are not optimal.

Summary. We found all conjugate points along the linear geodesic in the complexity

metric, and we determined the associated geodesic loops. To find the conjugate points, we

determined all eigenvectors of the super-operator Yµ at arbitrary µ. Using this informa-

tion, we constructed a geodesic (as a function of t) which is globally length-minimizing from

the identity to e−iHt, up to the existence of possible geodesic loops which were not asso-

ciated with any conjugate points. The length, and therefore the complexity, was bounded

at O(
√
N).

4 Integrable theories and deformations

In section 3, we studied obstructions to complexity growth along the linear geodesic asso-

ciated with time evolution in the free SYK model. In this section, we will study a class of

interacting-but-integrable Hamiltonians. To this end, consider adding a quartic interaction

H1 to the free (quadratic) Hamiltonian H0 which preserves integrability. An example of

such an interaction is a term which is quadratic in the J
(p)
3 , so that the total Hamiltonian is

H = H0 + ǫH1 =
∑

i

ωiJ
(i)
3 +

ǫ

4

∑

ij

MijJ
(i)
3 J

(j)
3 . (4.1)

Since [J
(i)
3 , J

(j)
3 ] = 0, we may take Mij = Mji to be a symmetric matrix. In order to

avoid introducing a nonzero trace, we take Mkk = 0. Since H commutes with all the

J
(i)
3 ’s, this interaction term preserves integrability. It is important to note that since

our full Hamiltonian is now quartic, we will treat k ≤ 4-local operators as easy in the

complexity metric.

The analysis of conjugate points for the above integrable Hamiltonian is somewhat

involved, and so we will approach it via perturbation theory in the coupling ǫ. However,

we note that this analysis becomes much simpler if we modify our gate set slightly by

allowing ourselves access to one new elementary operation. To see this, observe that the

adjoint eigenvectors of the Hamiltonian H are given by

|m〉〈n| = cp,q A
†
i1

· · ·A†
ip
P0Ai1 · · ·Aiq , P0 = |0〉〈0|, (4.2)

where there are p Dirac excitations in |m〉 and q Dirac excitations in |n〉, and cp,q is a

constant. Note that these operators are almost like “local” operators built out of products

of individual fermions, except for the inclusion of the projector P0 in the product above. In

principle, we could consider a gate set where operators of the form (4.2) with (p+ q) ≤ k

are treated as local/simple, while the rest are treated as hard. We can then again use Claim

1 from section 2.2 to compute the locations of all conjugate points in this case. These will
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be given by

t∗ =
2π

Em − En
Z (4.3)

for the simple operators, and

t∗ =
2π(1 + µ)

Em − En
Z (4.4)

for the hard operators, where Em are the eigenvalues of H. At any rate, we will not

consider this choice of gate set any further in this work, instead focusing on the more

standard choice with k ≤ 4-local operators being treated as simple.

4.1 Perturbative conjugate points

To begin with, we will study the effect of the interaction term on the location of conjugate

points perturbatively in the coupling constant ǫ.14 Since the general perturbative analysis

is very complicated, we focus specifically on the conjugate points of H0 associated with

Jacobi fields that are 1-local operators, such as A†
p +Ap. Recall that the conjugate points

associated with these operators correspond to zero modes of the super-operator Yµ which

appear at certain times, and in general they are eigen-operators of Yµ (defined using H0)

with eigenvalue

Yµ(A†
p) =

eiωpt − 1

iωpt
A†

p, (4.5)

Yµ(Ap) =
e−iωpt − 1

−iωpt
Ap. (4.6)

Since these zero modes (and all others in the free theory) are two-fold degenerate, we must

employ degenerate perturbation theory. In fact, since we have expanded our definition of

easy operators to include up to 4-local terms, there are additional 3-local operators which

have the same eigenvalues under Yµ. These are e.g. A†
pJ

(q)
3 and ApJ

(q)
3 for p 6= q, and these

3-local operators lead to conjugate points at the same times as the 1-local operators above,

so the degeneracy is enhanced.

We proceed by perturbing Jacobi fields and conjugate point times in response to the

perturbation of the Hamiltonian (4.1),

δV (s) = δV (0)(s) + ǫδV(1)(s) + · · · , (4.7)

t∗ = t
(0)
∗ + ǫt

(1)
∗ + · · · . (4.8)

We reproduce here the equations governing the Jacobi equation and the super-operator, in

which we will make the above replacements and expand:

d

ds
δVL(s) = −itµ [H, δVNL(s)]L , (4.9)

14Readers who do not wish to follow the detailed perturbative calculations may skip ahead to the summary

at the end of this section, and proceed to section 4.2.
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(1 + µ)
d

ds
δVNL(s) = −itµ [H, δVNL(s)]NL , (4.10)

Y(δV (0)) = U−1δU(1) =

∫ 1

0
ds eistHδV (s)e−istH = 0. (4.11)

Subsequently, we will proceed order by order to see the effect of the perturbation on

the locations of conjugate points.

Zeroth order. At O(ǫ0), the total Hamiltonian is the free Hamiltonian H0, so we can

pick δV0(0) to be any linear combination of the form:

δV (0)(0) = ziAi + z̄iA
†
i +

∑

j 6=i

J
(j)
3

(
zjAi + z̄jA

†
i

)
, (4.12)

where zi and zj 6=i are complex numbers. We then obtain a corresponding conjugate point

family at

t
(0)
∗ =

π

ωi
Z. (4.13)

Note that in this case δV0(s) = δV0(0), and lies entirely along the easy directions. Impor-

tantly, we assume µ > 0 here: if µ = 0, then there is a much larger degeneracy due to

operators of the form AiJ
(j1)
3 · · · J (jp)

3 (with j1 6= . . . 6= jp 6= i) and the above ansatz needs

to be modified.

First order. At O(ǫ1), the Jacobi equation reads

d

ds
δV

(1)
L (s) = −itµ

[
H0, δV

(1)
NL(s)

]

L
(4.14)

(1 + µ)
d

ds
δV

(1)
NL(s) = −itµ

[
H0, δV

(1)
NL(s)

]

NL
, (4.15)

Since H0 is quadratic, it does not mix between local and non-local directions. Thus, the

solutions are

δV
(1)

L (s) = δV
(1)

L (0), δV
(1)

NL(s) = e
−i µts

1+µ
H0δV

(1)
NL(0)e

i µts
1+µ

H0 . (4.16)

From here, we can compute the perturbative terms in the super-operator,

U−1δU(1)

=

∫ 1

0
dseis(t

(0)
∗ +ǫt

(1)
∗ )(H0+ǫH1)

(
δV (0)(s) + ǫδV (1)(s) + · · ·

)
e−is(t

(0)
∗ +ǫt

(1)
∗ )(H0+ǫH1)

= ǫ

∫ 1

0
ds ist

(1)
∗ eist

(0)
∗ H0

[
H0, δV

(0)(0)
]
e−ist

(0)
∗ H0

+

∫ 1

0
dseist

(0)
∗ H0

[
δV (0)(0) + ǫ

(
δV

(1)
L (0) + e

−i
µt

(0)
∗

s

1+µ
H0δV

(1)
NL(0)e

i
µt

(0)
∗

s

1+µ
H0

)]
e−ist

(0)
∗ H0

+ iǫt
(0)
∗

∫ 1

0
ds s eist

(0)
∗ H0

[
H1, δV

(0)(0)
]
e−ist

(0)
∗ H0 +O(ǫ2), (4.17)

where we have assumed [H0,H1] = 0 as is the case for the particular integrable deforma-

tion (4.1). In order to extract the change in the location of the conjugate points, we set
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the O(ǫ) term to zero so that zero modes of the super-operator with respect to the free

Hamiltonian remain zero modes of the perturbed Hamiltonian:

∫ 1

0
ds ist

(1)
∗ eist

(0)
∗ H0

[
H0, δV

(0)(0)
]
e−ist

(0)
∗ H0

+

∫ 1

0
dseist

(0)
∗ H0

[(
δV

(1)
L (0) + e

−i
µt

(0)
∗

s

1+µ
H0δV

(1)
NL(0)e

i
µt

(0)
∗

s

1+µ
H0

)]
e−ist

(0)
∗ H0

+ it
(0)
∗

∫ 1

0
ds s eist

(0)
∗ H0

[
H1, δV

(0)(0)
]
e−ist

(0)
∗ H0 = 0. (4.18)

In order to make further progress, we project this equation into the local and non-local

directions:

Local :

∫ 1

0
dsist

(1)
∗ eist

(0)
∗ H0

[
H0, δV

(0)(0)
]
e−ist

(0)
∗ H0 +

∫ 1

0
dseist

(0)
∗ H0

[
δV

(1)
L (0)

]
e−ist

(0)
∗ H0

+it
(0)
∗

∫ 1

0
dsseist

(0)
∗ H0

[
H1, δV

(0)(0)
]

L
e−ist

(0)
∗ H0 = 0. (4.19)

Non-local :

∫ 1

0
dse

i
t
(0)
∗

s

1+µ
H0δV

(1)
NL(0)e

−i
t
(0)
∗

s

1+µ
H0

+it
(0)
∗

∫ 1

0
dsseist

(0)
∗ H0

[
H1, δV

(0)(0)
]

NL
e−ist

(0)
∗ H0 = 0. (4.20)

Here we have again used the fact that H0 is quadratic, and so does not mix between local

and non-local operators. Plugging in the Hamiltonian deformation H1 and the ansatz for

δV (0)(0), we find
[
H1, δV

(0)(0)
]

=
∑

k

Mik

(
−ziAi + z̄iA

†
i

)
J

(k)
3 +

∑

k

Mik

∑

j 6=i

(
−zjAi + z̄jA

†
i

)
J

(j)
3 J

(k)
3 .

(4.21)

In taking the local projection, we need to be careful because (J
(p)
3 )2 = 1. So the local

projection becomes
[
H1, δV

(0) (0)
]

L
=
∑

k

Mik

(
−ziAi + z̄iA

†
i

)
J

(k)
3 +

∑

j 6=i

Mij

(
−zjAi + z̄jA

†
i

)
. (4.22)

Now going back to the local constraint:

Local :

∫ 1

0
ds ist

(1)
∗ eist

(0)
∗ H0

[
H0, δV

(0)(0)
]
e−ist

(0)
∗ H0 +

∫ 1

0
dseist

(0)
∗ H0

[
δV

(1)
L (0)

]
e−ist

(0)
∗ H0

+ it
(0)
∗

∫ 1

0
ds s eist

(0)
∗ H0

[
H1, δV

(0)(0)
]

L
e−ist

(0)
∗ H0 = 0, (4.23)

we take its overlap with Ai and AiJ
(j)
3 respectively. This kills the δV

(1)
L term above, and

we get

t
(1)
∗

t
(0)
∗

zi +
1

2ωi

∑

j 6=i

Mijzj = 0. (4.24)

t
(1)
∗

t
(0)
∗

zj +
1

2ωi
Mijzi = 0. (4.25)
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Here taking i = 1 suffices to show the general structure. The equations then can be written

in the matrix form X~z = 0, where

X =




t
(1)
∗

t
(0)
∗

1
2ω1

M12
1

2ω1
M13

1
2ω1

M14 · · ·
1

2ω1
M12

t
(1)
∗

t
(0)
∗

0 0 · · ·
1

2ω1
M13 0 t

(1)
∗

t
(0)
∗

0 · · ·
...




, ~z = (z1, z2, . . .). (4.26)

There are only nontrivial solutions when the determinant of X vanishes. The determinant

can be written

det(X) = t̃N/2−2


t̃2 −

∑

j 6=1

1

4ω2
1

M2
1j


 , (4.27)

where t̃ = t
(1)
∗

t
(0)
∗

. So we find N/2 − 2 pairs of conjugate points do not move, while the

remaining two pairs move to the new locations:

t
(1)
∗ = ± t

(0)
∗

2ω1

√∑

j 6=1

M2
1j . (4.28)

The ~z’s which correspond to the non-trivial displacement at first order are given by

~z(±) =


∓

√∑

j 6=1

M2
1j ,M12,M13, · · · ,M1 N

2


 . (4.29)

The ~z’s corresponding to t
(1)
∗ = 0 all have z1 = 0 and satisfy

∑
j 6=1M1jzj = 0, with solutions

of the form

~z(3) = (0,−M13,M12, 0, · · · , 0),

...

~z(N/2) = (0,−M1 N
2
, 0, · · · , 0,M12). (4.30)

In addition, we need to also work out δV (1)(0). From (4.19) it follows that δV
(1)

L (0) should

be of the general form:

δV
(1)

L (0) = wiAi + w̄iA
†
i +

∑

j 6=i

(
wjAi + w̄jA

†
i

)
J

(j)
3 , (4.31)

but the coefficients wi and wj are not determined at this order. A priori, we could have had

other operators appearing in this expansion, but their coefficients must be zero by (4.19).

On the other hand, we can solve for δV
(1)

NL from equation (4.20). Note that

[
H1, δV

(0)(0)
]

NL
=
∑

j 6=i

∑

k 6=j

Mik

(
−zjAi + z̄jA

†
i

)
J

(j)
3 J

(k)
3 , (4.32)
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which suggests the following ansatz for δV
(1)

NL(0):

δV
(1)

NL(0) =
∑

j 6=i

∑

k 6=i

(
cjkAi + c̄jkA

†
i

)
J

(j)
3 J

(k)
3 , (4.33)

where the cjk’s are some complex coefficients to be determined. Substituting this into

equation (4.20), we find cjj = 0, while for j 6= k,

cjk =
t
(0)
∗ φ′

(
−2ωit

(0)
∗

)

φ

(
−2ωit

(0)
∗

1+µ

) Mi(kzj) =
−1

2ωiφ

(
−2ωit

(0)
∗

1+µ

)Mi(kzj), φ (x) =
eix − 1

ix
. (4.34)

Second order. At second order in ǫ, the Jacobi equations are given by

d

ds
δV

(2)
L (s) = −itµ

[
H1, δV

(1)
NL(s)

]

L
, (4.35)

(1 + µ)
d

ds
δV

(2)
NL(s) = −itµ

[
H0, δV

(2)
NL(s)

]

NL
− itµ

[
H1, δV

(1)
NL(s)

]

NL
. (4.36)

We will only need to know the explicit form of δV
(2)

L , which is given by

δV
(2)

L (s) = δV
(2)

L (0) − itµ

∫ s

0
ds′

[
H1, δV

(1)
NL(s′)

]

L

= δV
(2)

L (0) − itµ

∫ s

0
ds′ e

− iµts′

1+µ
H0
[
H1, δV

(1)
NL(0)

]

L
e

iµts′

1+µ
H0 . (4.37)

In order to study the displacement of conjugate points at second order, we now compute

U−1δU :

U−1δU =

∫ 1

0
ds eist(H0+ǫH1)

(
δV (0)(s) + ǫδV (1)(s) + ǫ2δV (2)(s)

)
e−ist(H0+ǫH1). (4.38)

Then, we must substitute t = t
(0)
∗ + ǫt

(1)
∗ + 1

2ǫ
2t

(2)
∗ , and extract the second order terms. In

doing this, we should be careful to keep in mind that δV also depends on t.

U−1δU
∣∣∣
ǫ2

=

∫ 1

0
ds

[
1

2
ist

(2)
∗ eist

(0)
∗ H0 [H0, δV

(0)(0)]e−ist
(0)
∗ H0 +ist

(1)
∗ eist

(0)
∗ H0 [H1, δV

(0)(0)]e−ist
(0)
∗ H0

]

+

∫ 1

0
ds

(is)2

2
eist

(0)
∗ H0

[
(t

(1)
∗ H0+t

(0)
∗ H1),

[
(t

(1)
∗ H0+t

(0)
∗ H1), δV (0)(0)

]]
e−ist

(0)
∗ H0

+

∫ 1

0
dsiseist

(0)
∗ H0

[
(t

(1)
∗ H0+t

(0)
∗ H1), δV

(1)
L (0)

]
e−ist

(0)
∗ H0

+

∫ 1

0
dsise

i
st

(0)
∗

1+µ
H0

[(
t
(1)
∗

1+µ
H0+t

(0)
∗ H1

)
, δV

(1)
NL(0)

]
e

−i
st

(0)
∗

1+µ
H0

+

∫ 1

0
dseist

(0)
∗ H0

(
δV

(2)
L (0)−iµt(0)

∗

∫ s

0
ds′ e

−
iµt

(0)
∗

s′

1+µ
H0
[
H1, δV

(1)
NL(0)

]

L
e

iµt
(0)
∗

s′

1+µ
H0

)
e−ist

(0)
∗ H0

+

∫ 1

0
dseist

(0)
∗ H0 δV

(2)
NL(s) e−ist

(0)
∗ H0 . (4.39)
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As in the first order case, the displacement of the conjugate points is determined by taking

the overlap of this equation with the local directions, in particular with Ai and AiJ
(j)
3 (for

j 6= i). The terms proportional to δV (2) drop out of these overlaps, and so we do not need

to explicitly compute δV (2) at this stage.

In order to simplify the computation, we will only track the conjugate points which do

not already move at first order, i.e., which have t
(1)
∗ = 0. For these points, we have

U−1δU
∣∣∣
ǫ2

=

∫ 1

0
ds

1

2
ist

(2)
∗ eist

(0)
∗ H0 [H0, δV

(0)(0)]e−ist
(0)
∗ H0

+

∫ 1

0
ds

(is)2

2
eist

(0)
∗ H0

[
t
(0)
∗ H1,

[
t
(0)
∗ H1, δV

(0)(0)
]]
e−ist

(0)
∗ H0

+

∫ 1

0
ds is eist

(0)
∗ H0

[
t
(0)
∗ H1, δV

(1)
L (0)

]
e−ist

(0)
∗ H0 +

∫ 1

0
ds is e

i
st

(0)
∗

1+µ
H0
[
t
(0)
∗ H1, δV

(1)
NL(0)

]
e

−i
st

(0)
∗

1+µ
H0

+

∫ 1

0
ds eist

(0)
∗ H0

(
δV

(2)
L (0) − iµt

(0)
∗

∫ s

0
ds′ e

−
iµt

(0)
∗

s′

1+µ
H0
[
H1, δV

(1)
NL(0)

]

L
e

iµt
(0)
∗

s′

1+µ
H0

)
e−ist

(0)
∗ H0

+

∫ 1

0
ds eist

(0)
∗ H0 δV

(2)
NL(s) e−ist

(0)
∗ H0 .

So, we need to compute

[
H1,

[
H1, δV

(0)(0)
]]

=
∑

k,ℓ

MikMiℓ(ziAi + z̄iA
†
i )J

(k)
3 J

(ℓ)
3

+
∑

k,ℓ

∑

j 6=i

MikMiℓ(zjAi + z̄jA
†
i )J

(j)
3 J

(k)
3 J

(ℓ)
3

=
∑

k

M2
ik


(ziAi + z̄iA

†
i ) +

∑

j 6=i

(zjAi + z̄jA
†
i )J

(j)
3




+ 2
∑

j 6=i

∑

k 6=j

MijMik(zjAi + z̄jA
†
i )J

(k)
3 + non-local terms. (4.40)

In addition, we also need

[
H1, δV

(1)
NL(0)

]
=
∑

j 6=i

∑

k 6=i

(
−cjkAi + c̄jkA

†
i

) (
MijJ

(k)
3 +MikJ

(j)
3

)
+non-local terms. (4.41)

Finally, it is easy to check that the displacement projected along Ai vanishes for the con-

jugate points which do not move at first order, if we take
∑

j Mijwj = 0. For these, the

displacement projected along AiJ
(j)
3 is given by:

0 = −ωiφ
′(−2ωit

(0)
∗ ) t

(2)
∗ zj − t

(0)
∗ φ′(−2ωit

(0)
∗ )Mijwi (4.42)

+




1

2
(t

(0)
∗ )2φ′′(−2ωit

(0)
∗ ) +

t
(0)
∗

2ωi

φ′

(
−2ωit

(0)
∗

(1+µ)

)

φ

(
−2ωit

(0)
∗

1+µ

) − 1 + µ

4ω2
i




(
∑

k

M2
ik − 2M2

ij

)
zj
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Using φ(x) = eix/2 sin(x/2)
x/2 , one can check that the imaginary parts inside the square brackets

precisely cancel. Therefore, these equations take the form:
[

1

2t
(0)
∗

t
(2)
∗ + α

(
∑

k

M2
ik − 2M2

ij

)]
zj = − 1

2ωi
Mijwi. (4.43)

where α is the real constant equal to the term in brackets above. Assuming that the Mij

are all different, then we can solve these equations for the zj :

zj =
−Mijwi

2ωi

[
1

2t
(0)
∗

t
(2)
∗ + α

(∑
k M

2
ik − 2M2

ij

)] . (4.44)

Finally, we need to impose the constraint
∑

j 6=iMijzj = 0 assuming wi 6= 0, which trans-

lates to
∑

j 6=i

M2
ij[

1

2t
(0)
∗

t
(2)
∗ + α

(∑
k M

2
ik − 2M2

ij

)] = 0. (4.45)

Defining τ = ( t
(2)
∗

4αt
(0)
∗

+ 1
2

∑
k M

2
ik), we can then write this equation as

f(τ) =
∑

j 6=i

M2
ij

(τ −M2
ij)

= 0. (4.46)

Therefore, the second order displacements of the N/2 − 2 conjugate points are generically

nonzero and can be obtained from the zeros of the complex function f(τ). These zeroes are

always real, as can be checked by explicitly substituting τ = x+ iy into (4.46). Note that

if any two Mij coincide, then we lose a zero, and that zero corresponds to looking for a

solution with wi = 0. We will not consider these additional special cases here.

4.2 Integrable geodesic loops

While we have focused on perturbation theory for the conjugate point locations, it is also

possible to find certain geodesic loops in this model analytically. Recall that in the free

theory, we found many geodesic loops, each of which came from a conjugate point associated

with an easy operator. In the deformed theory, we do not have an exact analytic handle

on conjugate point locations, but the same sorts of loops can occur because the two terms

in (4.1) commute. This means that the time evolution operator splits as

e−iHt = e−iH0te−iǫH1t. (4.47)

The loops we found for the operator e−iH0t in section 3 also apply here. Furthermore, since

the product J
(i)
3 J

(j)
3 also has eigenvalues ±1, there are additional loops associated with

the π/2 half-periodicity of the coefficients ǫMijt/4. The individual coefficients have this

half-periodicity because Mij = Mji, so there is an extra factor of 2 in the total coefficient

of J
(i)
3 J

(j)
3 . To take these into account, we follow (3.33) and define coefficients dij(t) with

bounded range

dij(t) ≡ ǫMijt/4 mod π, (4.48)
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Figure 3. Complexity bound (4.50) for an N = 20 instance of the integrable Hamiltonian (4.1)

where ǫMij/4 is drawn from the q = 4 SYK distribution with J = 1. The initial sharp linear growth

is due to the combined initial linear growth of both terms in (4.50), and the small fluctuations are

due to the frequent geodesic loops in e−iH0t. The larger fluctuations, and the coarse-grained shape

of the function itself, are controlled by the geodesic loops in e−iǫH1t that we have included in

defining dij(t). The plateau is clearly O(N); its height without the integrable perturbation would

be less than the height of the initial sharp rise, which is at most O(
√
N).

where we define the π modulus to take values in (−π/2, π/2]. Then, using the global

velocities (3.33) for H0, a bounded-length path to e−iHt is

V =
∑

p

cp(t)J
(p)
3 +

∑

i,j

dij(t)J
(i)
3 J

(j)
3 . (4.49)

The complexity is upper-bounded by the length of this path:

C(t) ≤
√∑

p

cp(t)2 +
∑

i<j

(2dij(t))2. (4.50)

An instance of this function is shown in figure 3. Qualitatively, we may conclude that the

complexity reaches a plateau here as well, but with greater height than the free case. The

free complexity is upper-bounded by O(
√
N) since there are N/2 coefficients cp(t) with

maximum value π, but the integrable perturbation allows for N(N − 1)/2 more terms in

the dij(t), which leads to an upper bound of O(N). A strict upper bound in this case is

in fact

C(t) <

√
N

2
π2 +

N

4

(
N

2
− 1

)
π2 ∼ πN

2
√

2
as N → ∞, (4.51)

where we simply took the upper limits cp = π and dij = π/2. We have been careful to

say upper-bounded in this discussion because we have not exactly located the conjugate

points in this model, and there may be some which are closer to the identity than any of

the geodesic loops we considered here. Of course, as in the free case, we also do not have

analytic control over every geodesic loop. This and other integrable interacting models

could furnish interesting examples of geodesic loops in complexity geometry which are not

signaled by a conjugate point in a straightforward way.
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The above construction is clearly generalizable to the case where the Hamiltonian

perturbation is

Hc−1 =
1

2(c!)

∑

i1,...,ic

λi1...icJ
(i1)
3 . . . J

(ic)
3 , (4.52)

where we require k ≥ 2c so that Hc−1 is an easy operator in the complexity metric, and

λ is symmetric in all indices and vanishes when ij = iℓ for any j 6= ℓ (so it is strictly

2c-local). Following the same procedure as before, the complexity of e−i(H0+ǫHc−1)t is

upper-bounded by

C(t) <

√√√√N

2
π2 +

(
N/2

c

)
π2 ∼ πN c/2

2c/2
√
c!

as N → ∞. (4.53)

Thus, we have a family of integrable models with complexity of time evolution that is

upper-bounded by a polynomial O(poly(N)) that depends on the order of the interaction c.

Summary. We calculated the first and second order shifts in location of the conjugate

points associated with 1-local operators in the free theory under the integrable deforma-

tion (4.1). At first order, all but two of the N/2 degenerate conjugate points remain fixed,

and the two which move do so by a distance which depends on the perturbation couplings

Mij but not on the cost factor µ. At second order, the N/2 − 2 points which did not move

at first order begin to move, and are shifted by a distance which is sensitive to µ. As

this shift can become large for µ ≫ 1, the perturbation theory may break down. We also

found geodesic loops which were analogous to certain loops found in the free theory, but

for which we did not find associated conjugate points. These represent potential examples

of geodesic loops which are not signaled by conjugate points.

The perturbative results suggest that the complexity grows linearly for a long time

as the conjugate points we studied move to later times as µ is increased; however, the

existence of these geodesic loops shows otherwise. There are also other conjugate points

associated to operators of higher locality which may be independent of µ, the existence of

which will be suggested by our numerical results in section 6. Due to the geodesic loops,

an upper bound of O(N) can be placed on the complexity of e−iHt for the integrable H

in (4.1). More generally, if the perturbation term commutes with the free Hamiltonian, our

results will carry over, with a possibly greater upper bound on complexity. An example of

this more general result is the bound (4.53), which is O(poly(N)) and specifically O(N c/2),

on the complexity of e−i(H0+ǫHc−1)t with the 2c-local integrable perturbation Hc−1 given

in (4.52).

5 Impact parameter and local conjugate points in chaotic theories

We now turn to the interesting case of chaotic Hamiltonians. In [17] it was argued that in

a chaotic model, the super-operator Yµ takes a simple form in the energy eigen-operator

basis:

Yµ(|m〉〈n|) = φ

(
(Em − En)t

1 + µ

)
|m〉〈n| + · · · , (5.1)
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where under appropriate assumptions the Frobenius norm of the correction term · · · was

shown to be exponentially small. Thus, the diagonal entries of the super-operator Yµ in

the |m〉〈n| basis are O(1) for t ≪ (1+µ)
Em−En

. Since the off-diagonal entries are small, we thus

expect that the eigenvalues will also be bounded away from zero, and given that µ scales

exponentially with S, we conclude that conjugate points do not occur at sub-exponential

times. However, there is a caveat: while the off-diagonal elements of Yµ are suppressed,

at the same time there are an exponentially large number of such off-diagonal entries. So

although “almost all” of the eigenvalues of Yµ will be O(1) for sub-exponential times,

we cannot be certain that a small number of zero modes cannot occur. In fact, local

conjugate points (see Claim 2 in section 2.2) are prime suspects at sub-exponential times,

as their locations do not depend on the cost factor µ. In Claim 2, we re-formulated such

conjugate points in terms of zero modes of the positive semi-definite matrix Mαβ , which

is the matrix of infinite temperature thermal two-point functions between time-averaged

simple operators:

Mαβ(t) =

∫ 1

0
ds

∫ 1

0
ds′ Tr

(
Tαe

i(s−s′)tHTβe
−i(s−s′)tH

)
. (5.2)

We will now argue that in chaotic systems, zero modes of Mαβ — and hence local conjugate

points — can only potentially arise at exponential times. Our strategy will be to show that

the minimum eigenvalue λmin(t) of Mαβ is exponentially large for t < eS , and becomes small

only thereafter. We will refer to λmin as the impact parameter (see section 2.2).

By expanding in the energy eigenbasis and evaluating the integrals, the matrix Mαβ

can be written as:

Mαβ(t) =
∑

m,n

〈m|Tα|n〉〈n|Tβ |m〉g(t(Em − En)), g(x) =

(
sin(x/2)

x/2

)2

, (5.3)

where |m〉, |n〉 are energy eigenstates with energies Em, En. With the above formula for

Mαβ(t), we can now estimate the time t∗ at which we expect a zero mode by using intuition

from random matrix theory and the Eigenstate Thermalization Hypothesis (ETH). In this

context, we assume ETH is satisfied for the k-local operators that we consider easy in the

complexity metric.15 First, notice that for times less than the inverse maximum energy

difference 1/(Emax−Emin), we have g(t(Em−En)) ≈ 1. If we were to make this replacement

in Mαβ , we would find

Mαβ ≈
∑

m,n

〈m|Tα|n〉〈n|Tβ|m〉 = eSδαβ , t ≪ 1

(Emax − Emin)
. (5.4)

This diagonal result appears because the projectors |n〉〈n| sum to the identity operator,

and then we are left with the trace tr(TαTβ). The generators {Tα} are orthogonal, and we

have chosen the norm to be

eS = dim H = 2N/2, (5.5)

15This may not always be a safe assumption, as the precise degree of locality and the particular operators

for which ETH is expected to hold are not always clear. But for our purposes, we can take this as the

definition of a chaotic system.
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since in the SYK model the Tα are traceless, Hermitian products of Majorana fermions

which square to the identity operator. This matrix clearly has no zero modes. Going back

to the exact expression in equation (5.3), the sum over m and n is modified by the presence

of the function g, but the diagonal (i.e., m = n) terms in the sum are unaffected by g:

Mαβ =
∑

n

〈n|Tα|n〉〈n|Tβ|n〉 +
∑

m,n
m6=n

〈m|Tα|n〉〈n|Tβ|m〉g(t(Em − En)). (5.6)

We can replace these diagonal terms with 2N/2δαβ by rearranging the above equation as:

Mαβ = 2N/2δαβ +
∑

m,n
m6=n

〈m|Tα|n〉〈n|Tβ|m〉 (g(t(Em − En)) − 1) . (5.7)

Now our basic strategy will be to argue that for t < eS , (i) the diagonal entries of Mαβ are

O(eS), while (ii) the off-diagonal entries of Mαβ are O(1). Since the matrix is polynomial

in size (as the α, β indices run over simple operators), this then implies that the eigenvalues

will all be O(eS). On the other hand, when t ≫ eS , the diagonal entries can become O(1),

and thus the impact parameter, i.e., the minimum eigenvalue of Mαβ , can become small,

and zero modes could potentially arise.

Diagonal elements. In general, the sum over m,n in the second term above for α 6= β

involves a sum of many g functions along with incommensurate complex numbers 〈m|Tα|n〉
and 〈n|Tβ|m〉. However, the diagonal of Mαβ obeys

Mαα = 2N/2 +
∑

m,n
m6=n

|〈m|Tα|n〉|2 (g(t(Em − En)) − 1) , (5.8)

and so the sum of g functions appears here with all strictly non-negative coefficients. At

this point, we invoke ETH, which in this context states that (for m 6= n)

|〈m|Tα|n〉|2 ∼ 2−N/2|rα,mn|2, (5.9)

where rα,mn is a random matrix with entries of O(1) magnitude whose squared elements

|rα,mn|2 are all roughly equal and O(1). What this means is that the sum

∑

m,n
m6=n

(g(t(Em − En)) − 1) , (5.10)

must become O(2N ) before the diagonal entries Mαα can vanish. This will only occur when

almost all of the g functions are close to zero, which can only happen when t ≫ eS .

More quantitatively, let us try to approximate the timescale at which this occurs.

Notice that we can expand the sum above to include m = n, since these terms have

g(0) = 1. Then, we must determine when the sum
∑

m,n g(t(Em − En)) becomes small,

i.e., O(1). At large N , we can approximate the double sum as a double integral over two

copies of the spectral density ρ(E):

Mαα ≈ 2−N/2
∫
dEm

∫
dEn ρ(Em)ρ(En)

(
sin(t(Em − En)/2)

t(Em − En)/2

)2

. (5.11)
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Strictly speaking, we should use the SYK spectral density for the function ρ(E).16 How-

ever, we expect that our conclusions about conjugate points should apply to other chaotic

systems as well. The key feature of the spectral density for q = 4 SYK is that there is an

exponential number of states, eS = 2N/2, within a polynomial size window −N ≤ E ≤ N .

The precise size of the window is not important for the argument, only that it is polynomial

in N . Similarly, the relevant information about the exact height of the spectral density is

that it is exponential in N . These properties also hold in e.g. a microcanonical ensemble

of black hole microstates, where the window is actually O(1) in size with O(eN ) states.

Since we are only interested in these very coarse features of the spectral density, we may

approximate ρ(E) above by a constant distribution on −N ≤ E ≤ N :

ρ(E) ≈ 2N/2

2N
. (5.12)

Of course, for sufficiently abnormal models, this density will not be a good approximation,

but for chaotic SYK or a black hole microstate ensemble it is sufficient. The result of the

integrals is

Mαα ≈ 2N/2

2N2t2
(2Nt Si(2Nt) + cos(2Nt) − 1) , (5.13)

where Si(x) ≡ ∫ x
0 dz sin(z)/z. The above estimate is generically an underestimate because

the ansatz of a constant spectral density gives additional support to pairs of eigenvalues Em

and En which have separation larger than O(e−S). The most important feature of (5.13)

is that the function Si(x) ≈ π for x ≫ 1, so Mαα is bounded away from zero by roughly
2N/2

Nt at large N . This quantity is exponential in N for any t ∼ poly(N), and becomes O(1)

only when

t ∼ 2N/2

N
= O

(
eS
)
. (5.14)

Therefore, the diagonal Mαα is O(eS) until an exponential time t ∼ eS , at which point

it becomes O(1). It is clear that this conclusion holds when the spectral width is any

O(poly(N)), instead of exactly 2N , as long as the spectral height is O(eS).

Notice that we did not assume anything about the structure of the matrix rα,mn in

making this argument. We only needed the entries to be distributed so that the squares

|rα,mn|2 took roughly the same O(1) value for any m and n, but the entries themselves did

not need to be independent random variables. This is less than the usual statement about

the ETH ensemble, where the variance of any given rα,mn is not only fixed, but the rα,mn

themselves are all independent random variables.

Off-diagonal elements: having understood the rough order of magnitude for the diago-

nal entries of Mαβ , we now turn to the off-diagonal pieces. For these, we have again a sum

of g functions from equation (5.7), but now the coefficients in the sum can be negative.

16If we consider the SYK ensemble, we should use the density-density correlator 〈ρ(Em)ρ(En)〉. In

random matrix theory, there are additional contributions to this object which include a contact term and

the sine kernel. However, for our purposes it is sufficient to approximate this quantity as the product of

two densities at large N .

– 35 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
1

We can get some rough intuition for the order of this quantity by again invoking ETH on

the local operator matrix elements.

〈m|Tα|n〉〈n|Tβ|m〉 ≈ e−S/2rα,mnrβ,nm, (5.15)

If the rα,mn were drawn from independent Gaussian distributions with mean zero and O(1)

variance, it would be straightforward to compute the typical (expectation) value of the

above expression. We would simply find zero for the typical value since rα and rβ are

independent matrices and have mean zero. To ensure that the fluctuations of this quantity

are not excessively large, we could also estimate the variance, which involves a calculation

of 〈rα,mnrβ,nmrα,m′n′rβ,n′m′〉 in the aforementioned ensemble. Since rα,mn and rβ,mn are

independent, this four-point function factorizes into a product of two-point functions. ETH

would then tell us that these two-point functions 〈rα,mnrα,pq〉 are proportional to δmpδnq

since the entries of rα,mn are supposed to be independent Gaussian random variables.

Going back to (5.7), we thus conclude that the off-diagonal entries of Mαβ are always O(1).

However, it cannot be precisely correct to employ ETH in this manner for any choice of

eigenstates |m〉 and |n〉 because the operators Tα have a known spectrum (all eigenvalues

are ±1) which greatly differs from the spectrum of a random matrix with independent

Gaussian random entries at large N . So, we will need a different sort of ensemble to get a

consistent estimate of the mean and variance of Mαβ for α 6= β.

One candidate which is consistent with all constraints on the matrices Tα is the Haar

ensemble of unitary matrices employed in the following manner. We pick some fixed basis

|i〉P (for instance, the Pauli basis) in which the form of Tα is known by construction to

be relatively sparse or simple. Then, we assume that the eigenvectors |n〉E of the chaotic

Hamiltonian H can be roughly thought of as a Haar random unitary rotation of this

basis via17

|n〉E =
∑

i

Uni|i〉P . (5.16)

The off-diagonal terms in Mαβ are given by

Mαβ =
∑

m,n
m6=n

〈m|Tα|n〉E〈n|Tβ|m〉E(g(t(Em − En)) − 1), α 6= β. (5.17)

We would like to get an estimate for the mean value of the quantity

〈m|Tα|n〉E〈n|Tβ|m〉E =
∑

i,j,k,ℓ

〈i|U †
imTαUnj |j〉P 〈k|U †

knTβUmℓ|ℓ〉P . (5.18)

17A similar ensemble was used to model a microcanonical window of states in quantum gravity in [65],

although in that context the ensemble had a physical interpretation as the dual of a gravitational path

integral in the spirit of [66]. Here, by contrast, we use the Haar ensemble to extract information about the

typical value and variance of certain matrix elements with the understanding that we are really studying

the expected behavior of a quantum chaotic system with fixed Hamiltonian, such as a single instance of the

SYK model.
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To compute the typical value, we integrate this expression over the Haar ensemble for U

by making use of
∫
dU UnjUmℓU

†
imU

†
kn =

1

e2S − 1
(δnmδijδkℓ + δjkδiℓ) − 1

eS(e2S − 1)
(δijδkℓ + δnmδjkδiℓ) .

(5.19)

The asymptotic forms [67] and exact expressions [68] for such integrals are well known.

With an eye toward the sums over m and n in Mαβ , we notice that any term with δnm

must vanish in the full expression since m 6= n. We obtain (writing 〈·〉H for the Haar

expectation)

〈Mαβ〉H =
∑

m,n
m6=n

(
1

e2S − 1
tr(TαTβ) − 1

eS(e2S − 1)
trTα trTβ

)
(g(t(Em −En))−1), α 6= β.

(5.20)

The Haar integration has given us the typical value of Mαβ in terms of traces of the

operators Tα and Tβ. By construction, we have trTα = 0 and tr(TαTβ) = 0 for α 6= β, so

the typical value in a chaotic Hamiltonian ensemble defined this way is

〈Mαβ〉H = 0, α 6= β. (5.21)

Incidentally, this calculation also shows that the diagonal terms α = β have a Haar average

of order eS until exponential times. By setting α = β in the large parentheses of (5.20),

we conclude

〈|〈m|Tα|n〉E |2〉H ∼ e−S , (5.22)

which is consistent with our estimate that relied on the ETH ensemble (5.9), so the con-

clusions from that discussion concerning Mαα match the results of the Haar ensemble.

If the off-diagonal elements of Mαβ are all approximately zero for a given chaotic

Hamiltonian, the only way a zero mode can arise is by the vanishing of a diagonal element,

which we have shown does not occur until t ∼ eS . To be complete, we should also study

the variance 〈M2
αβ〉H and ensure it is not too large. A small O(1) variance will ensure that

fluctuations in the off-diagonal elements are small relative to the diagonal magnitude.

The variance can be estimated by computing 〈M2
αβ〉H , where

M2
αβ =

∑

m,n
m6=n

∑

m′,n′

m′ 6=n′

〈m|Tα|n〉E 〈n|Tβ|m〉E 〈m′|Tα|n′〉E 〈n′|Tβ|m′〉E (g(∆mnt) − 1)(g(∆m′n′t) − 1),

(5.23)

where α 6= β and ∆mn ≡ Em − En. The basic quantity which we would like to integrate

against the Haar measure is

〈m|Tα|n〉E 〈n|Tβ|m〉E 〈m′|Tα|n′〉E 〈n′|Tβ|m′〉E , (5.24)

which can be converted to the Pauli basis |i〉P by
∑

i,j,k,ℓ,p,q,r,s

〈p|U †
pmTαUni|i〉P 〈q|U †

qnTβUmj |j〉P 〈r|U †
rm′TαUn′k|k〉P 〈s|U †

sn′TβUm′ℓ|ℓ〉P .

(5.25)
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The relevant Haar integral is

∫
dU UniUmjUn′kUm′ℓU

†
pmU

†
qnU

†
rm′U

†
sn′ . (5.26)

On general grounds, the overall result for the Haar expectation of (5.24) will be written in

terms of traces or products of traces of the operators Tα, Tβ, Tα, and Tβ. There are three

such combinations which can be nonzero:

trT 2
α trT 2

β = 2N , tr
(
T 2

αT
2
β

)
= 2N/2, tr (TαTβTαTβ) = −2N/2. (5.27)

We deal with each of these three case by case.

The first combination in (5.27), the double trace factor yielding 2N , is produced by

certain products of delta functions from the Haar integral

δirδjsδkpδℓq

(
O
(
e−4S

)
δnm′δmn′ +O

(
e−5S

)
(δmn′ + δnm′) +O

(
e−6S

))
, (5.28)

where we have only kept terms which contribute at leading order to 〈M2
αβ〉H . Notice that

all of these terms actually contribute at O(1). For example, the O(e−4S) term comes with

two delta functions that cancel two of the four sums over n,m, n′,m′ in (5.23), which leads

to a sum over e2S terms of order O(e−2S) since the e−4S suppression can absorb the double

trace factor e2S . Similarly, the O(e−5S) terms come with one delta function to cancel one

of the n,m, n′,m′ sums in (5.23), and again contributes at O(1). Finally, the O(e−6S) term

comes without any delta function constraints, but is suppressed enough to absorb all four

sums in (5.23) (each over eS elements) where all elements have magnitude of order the

trace contribution e2S , and ends up at O(1).

The second combination in (5.27) can be formed with a variety of delta function com-

binations appearing from the Haar integral. Fortunately, because the trace factor is only

eS in this case, the only possible dangerous term which may contribute beyond O(1) must

take the form

O
(
e−4S

)
δiqδjpδksδℓr, (5.29)

which is the unique term that appears at O(e−4S) Haar suppression without any additional

delta functions which would cancel the sums in (5.23). However, a term of this form does

not lead to tr(T 2
αT

2
β ), but instead leads to tr(TαTβ) tr(TαTβ), which vanishes. So, the

leading contribution of the Haar integral to the coefficient of the second term in (5.27) is

O(e−5S), and this is enough to absorb the eS trace factor appearing in all e4S terms of the

four sums in (5.23), yielding an at most O(1) contribution to 〈M2
αβ〉H .

The third and final combination in (5.27) must also contribute at most an O(1) result

to 〈M2
αβ〉H , as the same argument concerning the unique form of the possible dangerous

term holds in this case as well, since the trace factor is again only O(eS).

Putting it all together, we have shown that the Haar average of M2
αβ , assuming the

eigenvectors of our chaotic Hamiltonian are related to some simple basis by a Haar-random

unitary transformation, is

〈M2
αβ〉H ∼ O(1), α 6= β. (5.30)
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Figure 4. An array plot of the matrix e−S |Mαβ | for N = 10, q = 3, k = 3, J = 1 SYK and time

t = 50. We note that most of the off-diagonal elements are smaller than e−S , while many diagonal

matrix elements are also O(e−S) at such late times.

An analogous argument shows that the diagonal variance is similar,

〈M2
αα〉H − 〈Mαα〉2

H ∼ O(1), (5.31)

where the dangerous term (5.29) actually makes an important O(e2S) contribution to

〈M2
αα〉H in order to cancel the leading term from 〈Mαα〉2

H . The next-to-leading term from

the trace factor generated by (5.29) actually contributes O(1) to the diagonal variance

rather than O(eS), since we will have O(e−5S) Haar suppression along with at least one

delta function to cancel one sum in the analog of (5.23) for α = β. This is because (5.29) is

the unique permutation leading to tr(TαTβ) tr(TαTβ), which is the first of only two new non-

vanishing trace factors when α = β, without any such delta functions. The permutation

leading to the second new pairing tr(TαTβ) tr(TβTα), where the first Tα is multiplied instead

with the second Tβ in (5.23), comes with two delta functions δnn′δmm′ at O(e−4S) and one

delta function at O(e−5S), just as in (5.28), so there are only O(1) contributions due to

this trace factor. The other non-vanishing trace factors for α = β are all captured by the

three cases in (5.27), and the suppression arguments we made for those when α 6= β also

apply when α = β. Thus, all diagonal variance contributions are O(1) as claimed. Note

that the diagonal variance may have some mild dependence on t; here we have only argued

that it is O(N0). The numerical structure of Mαβ at large t is shown in figure 4.

As we discussed above, this estimate is sufficient to argue that there should be no zero

mode of Mαβ(t) before times t ∼ eS , as the diagonal of the matrix is overwhelmingly large

compared to the off-diagonal elements, and in addition, the matrix size scales as poly(S).

Thus, for t < eS , the impact parameter will be O(eS). On the other hand for t > eS , the

diagonal elements of Mαβ(t) are O(1) and in particular of the same order as the off-diagonal

elements; we thus expect the impact parameter to become small (see figure 5).

Summary. We have argued in this section that the minimum eigenvalue of Mαβ(t) must

be O(eS) for t < eS , but becomes small for t > eS . This implies that local conjugate points

in chaotic theories can potentially occur only beyond exponential time. Even if exact zero
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Figure 5. (Left) The minimum eigenvalue of e−SMαβ , i.e., the impact parameter, for an SYK

Hamiltonian with N = 10, q = 3, k = 3, J = 1 at small times. (Right) The minimum eigenvalue

past exponential time becomes very small.

modes of Mαβ do not occur, we expect the minimum eigenvalue λmin of Mαβ to become

very small after t ∼ eS (see figure 5). Physically, this means that for t ≫ eS , it is possible

to find an infinitesimally nearby curve with a local initial velocity V (0) = Ht + ǫδV (0)

which satisfies the geodesic equation up to O(ǫ2), such that the end point is very close to

the target unitary e−itH :

||U(1) − e−itH ||2F = ǫ2 e−Sλmin||δV (0)||2F +O(ǫ3) ≪ 1 · · · (t ≫ eS). (5.32)

Thus, it becomes possible to approximate time evolution by an infinitesimally nearby

geodesic with a small error after exponential time. If the impact parameter λmin is ex-

actly zero for some t∗ > eS , then we have a conjugate point at that location, and then we

can find a shorter geodesic path to e−itH exactly, with no error.

Our arguments in this section were based on ETH and random matrix theory. A fairly

similar story was told for the complete super-operator under the Eigenstate Complexity

Hypothesis assumption in [17] (also explored in section 7), but there are two key differences

here. First, since there are only polynomially many entries in Mαβ , we need not worry about

the off-diagonal entries “backreacting” on the diagonal to force an unexpected zero mode at

early times. Instead, a zero mode can only occur when a significant portion of the diagonal

becomes suppressed at the same order as the off-diagonal entries, and this does not occur

until t∗ ∼ eS . Second, the zero modes which arise in this way are actually independent

of µ, and thus are fixed obstructions to the complexity growth of even maximally chaotic

systems. We speculate further on the implications in section 8.

6 Numerical analysis of conjugate points

We now present numerical calculations of conjugate point locations for free, interacting

integrable, and chaotic SYK models. The general method that we use is to explicitly

construct a matrix representation of the super-operator and compute its smallest eigen-

value (i.e., the eigenvalue with the smallest absolute value) using the Arnoldi (iterative)

algorithm [69]. This gives us a concrete, albeit numerical, method to study obstructions

to complexity growth. We will limit ourselves to systems up to N = 8 (four qubits) for

computational feasibility, but in principle this method is not limited to small N .
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We first reproduce the general expression for the super-operator from previous sections

for reference,

Yµ(δV (0)) =

∫ 1

0
dseiHts

[
δVL(0) − iµt

∑

α̇

exp
(

−iµtλα̇s
1+µ

)
− 1

−iµtλα̇

1+µ

δṼ α̇(0)[H, T̃α̇]L

+
∑

α̇

exp

(−iµtλα̇s

1 + µ

)
δṼ α̇(0)T̃α̇

]
e−iHts.

(6.1)

There are two key observations that allow us to represent the super-operator more effi-

ciently. The first is that the integrand simplifies immensely if we construct the super-

operator in the basis of {Tα, T̃α̇} where the Tα are a basis for the local subspace and the

T̃α̇ are the basis for the nonlocal subspace that diagonalizes [H, · ]NL with eigenvalues λα̇.

In that case, the sums disappear and we need only consider the first term or the last two

terms depending on the column of the matrix representation that we wish to construct.

The second observation is that the integral can be done analytically provided that we ex-

press the basis {Tα, T̃α̇} in the energy eigenbasis |m〉〈n|. Note that this is not the same

thing as writing the super-operator in the energy eigenbasis, which would not respect the

split into local and nonlocal terms. In the energy basis these operators have coefficients:

Tα =
∑

m,n

cmn|m〉〈n|, cmn = 〈m|Tα|n〉. (6.2)

The cmn, as well as the energy eigenstates |m〉, their corresponding eigenvalues, and the

diagonalization of [H, · ]NL, can all be precomputed before constructing the super-operator.

Now we construct the matrix representation of the super-operator Yij = tr(O†
i Yµ(Oj))

as follows, letting Oi =
∑

m,n c
(i)
mn|m〉〈n| index {Tα, T̃α̇}, φ(x) = (exp(ix) − 1)/(ix), ∆mn =

Em − En be the difference of energy eigenvalues, and Mα̇ = µλα̇

1+µ ,

Yij = tr





∫ 1
0 dsO

†
i e

iHtsOje
−iHts, Oj ∈ {Tα}

∫ 1
0 dsO

†
i e

iHts

[
−iµtφ(−µtλα̇s

1+µ )[H,Oj ]L + exp
(

−iµtλα̇s
1+µ

)
Oj

]
e−iHts, Oj ∈ {T̃α̇}

=





∑
m,n c

(i)
nmc

(j)
mnφ(t∆mn), Oj ∈ {Tα}

∑
m,n c

(i)
nmc

(j)
mn

[
φ(t(∆mn −Mα̇)) + µ (∆mn − λα̇)

(
φ(t(∆mn−Mα̇))−φ(t∆mn)

Mα̇

)]
, Oj ∈ {T̃α̇}.

(6.3)

In writing the second equality we have used the fact that [H, T̃α̇]L = [H, T̃α̇] − λα̇T̃α̇,

evaluated the Hamiltonian on the energy eigenstates, and used cyclicity of the trace to

remove some sums. By precomputing the energy spectrum and the coefficients cmn, Yij

can therefore be more efficiently constructed without costly numerical integration or ma-

trix products. In terms of the dimension d = 2N/2 of the Hilbert space, computing the

coefficients cmn naively requires O(d2) operations for each of the d2 = 2N operators for a

total of O(d4) complexity to compute the cmn. Similarly, at each fixed i, j one must sum

up O(d2) function evaluations for each of the d4 matrix elements Yij , so evaluating the

matrix representation of the super-operator is O(d6). In practical terms this means that at
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N = 8 fermions constructing the super-operator requires a reasonable O(107) operations

at each time point, with a number of time points that is typically on the order of d2, while

at N = 10 one already requires O(109) operations at each time point. For this reason,

we restrict to N ≤ 8 in the numerical results below. The plots of minimum eigenvalue

versus time below with N = 6 take one to two minutes per curve to generate on a four-core

desktop while at N = 8 they take one to two hours per curve.

6.1 Free SYK

We first recall the key point of section 3 regarding the location of conjugate points in the

free model. When H is quadratic, the adjoint action of the Hamiltonian does not mix the

local and nonlocal operator subspaces. Consequently, we can diagonalize [H, · ] in the local

and nonlocal subspaces independently with corresponding eigenvalues λα and λα̇. The

super-operator then reduces to the simpler expression

Yµ =

∫ 1

0
ds

[
eistHδVL(0)e−istH + e

istH
1+µ δVNL(0)e

− istH
1+µ

]
(6.4)

=
∑

α

1

itλα
(eitλα − 1)δVα(0) +

∑

α̇

1 + µ

itλα̇
(e

itλα̇
1+µ − 1)δVα̇(0). (6.5)

In the basis of operators {Tα, T̃α̇} the super-operator is therefore diagonal with eigenvalues

given by the coefficients above. Consequently, we have two18 zero modes whenever

t =
2π

λα
Z or t =

2π(1 + µ)

λα̇
Z. (6.6)

So in the free model, every conjugate point is associated with an individual easy or hard

operator. The easy conjugate points never move with µ, while the hard ones are occur at

exponential times when µ is O(eαS).

As computed numerically, the minimum eigenvalue of the N = 6 free theory is shown

for several values of µ in figure 6, where we take k = 2 to match the locality of the

Hamiltonian. Conjugate points occur where the minimal eigenvalue of Yµ touches the x

axis. The conjugate point locations as displayed in figure 6 exactly match the analytic

expression in (6.6). One can clearly see the shifting of several conjugate points as µ is

increased; for example, the first conjugate point near t = 0.7 at µ = 0 gets shifted to three

times its value, near t = 2.1, when µ = 2, and subsequently moves off the right end of the

figure for larger values of µ. Most of the curves overlap for µ > 2 since once µ is sufficiently

large only the local conjugate points, whose locations are not functions of µ, remain in a

bounded-time region.

6.2 Integrable and chaotic models

We now compute the locations of conjugate points where we deform the free Hamiltonian

as in section 4 by H = H0 + ǫ δH. Since the numerics are not restricted to taking ǫ to be

perturbative we will consider ǫ = 1.0 in all plots in this section to illustrate large effects

18The degeneracy can be larger than two when multiple λα or λα̇ coincide, as discussed in section 4.
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Figure 6. The smallest eigenvalue of the super-operator Yµ for the N = 6 free fermion model for

various µ with the various ω equal to 2.06238, 1.59206, and 0.703448. The plots for µ > 2 overlap

for nearly all of the displayed values of t.

of each type of interaction.19 We will consider three different choices of δH with the same

base Hamiltonian H0 considered across all cases at fixed N ,

δH1 =
∑

ij

MijJ
(i)
3 J

(j)
3 integrable 4-body, (6.7)

δH2 =
∑

1≤i<j<k<ℓ≤N

Jijkℓψ
iψjψkψℓ chaotic 4-body, (6.8)

δH3 = i
∑

1≤i<j<k≤N

Jijkψ
iψjψk chaotic 3-body. (6.9)

Notably, δH2 and δH3 are effectively the maximally chaotic SYK4 and SYK3 theories [10]

while δH1 is the integrable interaction from section 4.20 The results for δH1, δH2, and

δH3 are displayed below in figures 7, 8, and 9, respectively. We compare the plots of

minimum eigenvalue versus time for µ = 0 and µ = 10, where we have chosen µ = 10 as

a numerically feasible upper bound to illustrate the large µ regime.21 Clearly, in all three

cases, a number of conjugate points remain fixed, corresponding to local eigen-operators of

the super-operator (which were the main subject of section 5 for large N chaotic theories),

while those corresponding to eigen-operators with some nonlocal component will tend to

shoot off with some µ-dependent speed. One can see this by examining the zeros of the

below plots, which correspond to zero modes of the super-operator and thus conjugate

points. Zeros that remain fixed in location between µ = 0 and µ = 10 are independent of

µ and therefore correspond to local eigen-operators, while those that move do not.

19One reason to keep the H0 term is that the algebra generated by adH acting on a basis of operators

has too trivial a structure at small N when H is chosen to be only a single q-local term, which can cause

unwanted numerical coincidences.
20We drop the numerical prefactor of 1/4 on δH1 that was written in section 4, but draw Mij rather

than ǫMij/4 from the q = 4 SYK distribution with J = 1 in this section, so the numerical results in each

section are on equal footing.
21Note that for N = 6, the large µ scale is eS ∼ 2N/2 = 8, while for N = 8 it is only 24 = 16.
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Figure 7. The smallest eigenvalue of the super-operator Yµ for the SYK model with the integrable

4-body deformation δH1, with N = 6 (left) and N = 8 (right) for µ = 0 (blue) and µ = 10 (gold).

The values for t & 0.5 are displayed inset for visual clarity.
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Figure 8. The smallest eigenvalue of the super-operator Yµ for the SYK model with the chaotic

4-body deformation δH2, with N = 6 (left) and N = 8 (right) for µ = 0 (blue) and µ = 10 (gold).

The values for t & 0.5 are displayed inset for visual clarity.
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Figure 9. The smallest eigenvalue of the super-operator Yµ for the SYK model with the chaotic

3-body deformation δH3, with N = 6 (left) and N = 8 (right) for µ = 0 (blue) and µ = 10 (gold).

The values for t & 0.5 are displayed inset for visual clarity.

In figures 10, 11, and 12, we illustrate how the times of various conjugate points

behave as µ is increased for all three types of interactions. The results clearly illustrate

the following conclusions:

1. At very early times for N = 6, 8 (3, 4 qubits) the linear geodesic encounters a conju-

gate point and e−iHt fails to be the globally minimizing geodesic. This is remarkable

because the complexity geometry corresponds to the manifolds SU(8) and SU(16)

which are already very complicated fiber bundles over spheres. What this illustrates
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is that even in such highly nontrivial geometries conjugate points can become rele-

vant for complexity growth almost immediately. This fact is also interesting since it

implies that interacting qubit Hamiltonians can be fast-forwarded at early times.

2. There exist a family of conjugate points whose times are independent of µ. These

correspond to local eigen-operators of the super-operator, since the expression (2.8)

for the super-operator shows that eigen-operators with a nonlocal component will

generically have eigenvalues that are functions of µ. These nonlocal eigen-operators

clearly correspond to the conjugate points that move to later times as µ is increased.

The existence of the local eigen-operators is surprising; as the subspace of local

operators is small compared to the space of all operators, one might have expected

that the typical eigen-operator generically contained nonlocal pieces.

3. The size of the nonlocal subspace controls the density of nonlocal conjugate points

and possibly also the speed at which they approach later times as µ is increased.

This is visible in the greatly increased density of conjugate points at early times in

figure 12, where the degree of locality is k = q = 3 in contrast to the other two cases

that take k = q = 4. It appears that many of these conjugate points rapidly shoot off

to late times whereas in the other two cases many of the nonlocal conjugate points

appear to level off quickly.

Notably, there is not a large distinction between the integrable interaction δH1 in

figure 10 and the 4-body chaotic interaction δH2 in figure 11 with regard to the

behavior of the conjugate points. It appears that the degree of the locality of the

Hamiltonian is the most significant factor in these small N plots.

We note here that we have chosen k to be the same order as the locality of the

Hamiltonian, both so that the linear geodesic V (s) = Ht is explicitly a solution to

the geodesic equations as well as so that the energies of the system are an “easy”

observable to measure. However, we could have also chosen k to be smaller, since

k = 2 is sufficient for the geometric complexity to approach the true quantum circuit

complexity [22]. In this case, the nonlocal subspace of operators is substantially

enlarged and we expect that at even smaller values of µ the nonlocal conjugate points

occur at late times.

Although we take N to be small for computational feasibility, we emphasize that in

the large N limit the size of the nonlocal subspace vastly exceeds the size of the local

subspace. The size of the nonlocal subspace scales as O(eN ) while the size of the

local subspace scales as O(poly(N)) regardless of k. In this limit, there will be many

more nonlocal conjugate points than local, in contrast to what we see in the N = 6

plots.

4. The first conjugate point is rapidly followed by many more conjugate points, both

local and nonlocal. This substantiates arguments detailed in section 3 that the occur-

rence of the first conjugate point is rapidly followed by the end of the linear regime
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Figure 10. The times of all conjugate points with the integrable 4-body deformation δH1 with

N = 6 fermions. This plot and figures 11 and 12 are made by identifying all of the zeros of Yµ

at each fixed µ point and sampling a lattice of time values, rather than by tracking the motion

of individual conjugate points. Consequently, it may be difficult to distinguish conjugate points

that lie within a lattice spacing of each other for certain values of µ. Some of the more easily

distinguishable nonlocal conjugate points are highlighted in orange by hand, while the blue lines

correspond to µ-independent local conjugate points.

for complexity, even though many conjugate points may be required to reach the

plateau regime.

That the local conjugate points occur at times which are independent of µ might seem

prima facie to be at tension with the result in [17] that the first conjugate point should not

occur until times of order µ ∼ eαS for Hamiltonians respecting the Eigenstate Complexity

Hypothesis (to be discussed in section 7). However, there is no real contradiction. Firstly,

the results of [17] apply to large N systems, and the present numerical studies are at small

N . Secondly, as we increase N , the µ-independent time scale at which such local conjugate

points occur cannot be sub-exponential in chaotic systems. Indeed, in section 5, we gave

a general argument for chaotic Hamiltonians based on the Eigenstate Thermalization Hy-

pothesis [70] and random matrix theory ideas that this time scale should be exponential,

resolving the apparent tension. This argument need not apply to integrable Hamiltonians,

which may still encounter conjugate points at early times in the large N limit.

We also note that Claim 2 in section 2.2 shows that in order to identify the locations

of local conjugate points, we need not compute the full super-operator. Instead, we can

compute a smaller matrix of polynomial size,

Mαβ(t) =

∫ 1

0
ds

∫ 1

0
ds′ Tr

[
ei(s−s′)tHTαe

−i(s−s′)tHTβ

]
(6.10)

=
∑

m,n

c(α)
mnc

(β)
nmg(t(Em − En)), g(x) =

(
sin(x/2)

x/2

)2

, (6.11)
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Figure 11. The times of all conjugate points with the chaotic 4-body deformation δH2 with N = 6

fermions. For ease of visibility, some of the easily distinguishable nonlocal conjugate points are

highlighted in orange, while the blue lines correspond to µ-independent local conjugate points.
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Figure 12. The times of all conjugate points with the chaotic 3-body deformation δH3 with N = 6

fermions. For ease of visibility, some of the easily distinguishable nonlocal conjugate points are

highlighted in orange, while the blue lines correspond to µ-independent local conjugate points.
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Figure 13. The minimum eigenvalue of the super-operator (orange) and of the matrix Mαβ

(blue) for N = 6 fermions and the integrable interaction δH1 with the same coupling strengths as

chosen above.

.

where α, β only index the local operators. The zero modes of this matrix Mαβ then identify

the times of local conjugate points with substantially increased computational efficiency.

In figure 13 we have demonstrated this by plotting the minimum eigenvalues of the super-

operator and of Mαβ . The zero modes of each clearly coincide, though the matrix Mαβ

also appears to be more numerically stable in the sense that the precision of the numerical

zero modes locates them closer to exactly zero.22

Summary. We computed the zero modes of the super-operator numerically for N = 6, 8

fermions by applying the Arnoldi algorithm to compute the minimum eigenvalue of its ma-

trix representation, for various choices of Hamiltonian including free, integrable interacting,

and chaotic SYK models. We demonstrated that a large class of conjugate points corre-

sponding to local eigen-operators of the super-operator remain fixed, while those which

have nonlocal components occur at later times for larger µ. The density of nonlocal con-

jugate points and the times at which they occur appears to be controlled by the size of

the subspace of nonlocal operators, which becomes very large when N is large. Lastly, we

confirmed that the matrix Mαβ(t) defined in section 2.2 correctly identifies the locations

of local conjugate points with greatly improved efficiency. This indicates that there are

no conjugate points obstructing the linear growth of complexity until time scales of order

O(eN ) when the Hamiltonian is chaotic, based on the arguments of section 5. This result

is complementary to the results of section 3 and section 4, which showed respectively that

the free fermion complexity growth ends at O(
√
N) time and that the complexity of an

integrable Hamiltonian is upper bounded by O(poly(N)).

22At such small times, there are almost no nonlocal conjugate points of the super-operator present.
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7 Eigenstate complexity Hypothesis

From the geometric formulation of quantum computation, we have found evidence that

there is a difference between chaotic and integrable models in the location of obstructions

to complexity growth. Free models reach a complexity of order O(
√
N) at late times, while

integrable models plateau at order O(poly(N)). Chaotic models, on the other hand, have

complexity of order O(eN ) at late times. Depending on the location and number of easy

conjugate points, this linear growth may continue until exponential times.

To argue for this behavior of the complexity of time evolution in chaotic theories, [17]

found that a certain matrix Rmn of operator matrix elements in the energy eigenbasis was

relevant:

Rmn =

∑
α |〈m|Tα|n〉|2∑

α |〈m|Tα|n〉|2 +
∑

α̇ |〈m|Tα̇|n〉|2 . (7.1)

The Tα are the easy operators (at most k-local), Tα̇ are the hard operators (at least (k+1)-

local), and |m〉 and |n〉 are energy eigenstates. In order for chaotic Hamiltonians to show

the expected complexity growth, individual off-diagonal matrix elements (m 6= n) should

be suppressed by

Rmn ∼ e−2Spoly(S)rmn, (7.2)

where S is the log of the dimension of the Hilbert space and rmn are independent random

numbers of order 1. In [17], the conjecture that (7.2) should hold for chaotic Hamiltonians

was called the Eigenstate Complexity Hypothesis (ECH), and we refer to R in (7.1) as

the ECH matrix. Intuitively, (7.2) states that the eigenstates of a chaotic Hamiltonian are

sufficiently different that acting with a local operator on an energy eigenstate will not yield

a different one even approximately.

To make the polynomial factor in (7.2) a bit more precise, we can compute the ECH

matrix numerically in some simple chaotic systems; it is also interesting to compare to the

integrable case. We will find that the average Rmn (with m 6= n) is in general suppressed

by roughly the fraction s(N, k) of operators that are k-local,

s(N, k) =
(number of k-local operators)

(total number of operators)
. (7.3)

This holds regardless of whether the dynamics are chaotic or integrable, although higher

moments of the distribution of Rmn show more of a sensitivity to the dynamics.

For SYK, this means poly(S) in (7.2) is roughly Nk. If there are extra symmetries

in the problem, which is true in the case of q = 4 SYK, some elements Rmn could be

slightly reinforced, but in general R (the average of all off-diagonal Rmn) should still be

approximately equal to (7.3).

7.1 Pure SYK

Here we check the ECH criterion in a general SYKq model (3.2) for different choices of

N and q. Recall that N > q, and we also take k ≥ q so that the Hamiltonian is a

simple operator. We first verify the integrability/non-integrability of the model using level

spacing statistics: the integrable q = 2 model shows a clear exponential distribution (i.e.,
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Figure 14. Level spacing for the (a) q = 2 and (b) q = 3, 4 SYK models, with exponential and

Wigner-Dyson level spacing distributions, respectively.

Figure 15. ECH matrix Rmn for the q = 2 SYK model with up to k = 4-local operators consid-

ered easy.

Poisson distribution for the energies) while for q = 3, 4 the model is chaotic and shows

Wigner-Dyson statistics (figure 14). These distributions match the expected level spacing

distributions from random matrix theory [71].

In the SYK model, the ratio (7.3) is exactly

sSYK(N, k) =
1

2N − 1

k∑

i=1

(
N

i

)
. (7.4)

For example, for N = 14 and k = 4, this gives

sSYK(N = 14, k = 4) ≈ 0.0897. (7.5)

For q = 2, since the Hamiltonian is free, we would expect the ECH criterion to fail, i.e.

the off-diagonal entries should not be suppressed by the ratio defined by (7.3). Visu-

alizing Rmn for q = 2 in figure 15, we see that there are indeed large off-diagonal ele-
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Figure 16. The Rmn matrices of the q = 3 SYK model with up to k = 3-local operators taken to

be easy. As one increases N , the overall Rmn values are suppressed according to (7.3).

ments that are comparable to the diagonal itself. By contrast, for the q = 3 model (fig-

ure 16), the off-diagonal elements are fairly uniformly suppressed with the exception of the

anti-diagonal entries.

In the higher q models, the fermion number operator F becomes relevant for interpret-

ing our results.

F ≡ iN/2
N∏

j=1

ψj . (7.6)

For q = 4, there is an extra fermion number symmetry preserved by the Hamiltonian,

[H,F ] = 0, so the spectrum is 2-fold degenerate, and F is a conserved charge with values

±1 (even and odd fermion number) on the eigenvectors of H. The conserved charge for

q = 4 leads to additional suppression and enhancement within the ECH matrix. This

can be explicitly seen in that there are two dominant colors in the ECH matrix across

N = 10, 12, 14, 16 (figure 17) when the eigenvectors are organized into even and odd sym-

metry sectors. The bright colors (larger magnitude) in the diagonal blocks indicate that

two eigenstates within a given symmetry sector will have enhanced overlap with k-local op-

erators. The darker colors (smaller magnitude) in the off-diagonal blocks indicate that only

small overlaps can be achieved by acting with local operators between states in different

symmetry sectors.

We can get a better quantitative picture of the differences between q = 2, 3, 4 by

studying the distribution of all of the off-diagonal entries in Rmn (figure 18). For q = 4, we

do see the two separate peaks corresponding to the two superselection sectors generated by

the charge F , but the average of all off-diagonal entries (roughly the point in between the

peaks, ≈ 8.8 × 10−2) is still suppressed by the ratio (7.5). For q = 3, we have no additional

symmetry, and we see that the off-diagonal values of the matrix Rmn are all suppressed by

approximately the same value (poly(S)e−2S), following (7.2).
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Figure 17. The Rmn matrix for q = 4 SYK model, featuring an extra fermion number symmetry

F . The eigenvectors are organized into the even and odd symmetry sectors. The average value of

the off-diagonal matrix elements becomes suppressed as N increases. For N = 2, 6 mod 8, the even

and odd symmetry sectors are exactly equal (appendix B).

Figure 18. The distribution of off-diagonal Rmn for the q = 2, 3, 4 SYK model with N = 14. The

degree of locality is controlled at k = 4. Notice that the q = 3 case has a small spike at less than the

majority of the off-diagonal values. The spike comes from a more suppressed anti-diagonal values.
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Figure 19. Comparison among the average and the standard deviation of the Rmn matrix of the

q = 2, 3, 4 SYK model. The degree of locality is k = 4. Each data point comes from a single

realization of the model.

Though we have claimed the ECH matrix should distinguish between integrable and

chaotic theories by the magnitude of off-diagonal elements, one cannot discern the integra-

bility of the model from the averaged value of Rmn (figure 19). The off-diagonal values of

both the free q = 2 SYK model and the chaotic q = 3, 4 models are suppressed on average

in figure 18 by the ratio (7.5) with system size N = 14 and the degree of locality k = 4

fixed. The key distinction is that in the q = 3 case, the Rmn are continuously distributed

with a small standard deviation (figure 19). This is also true for q = 4 within the same

superselection sector of the charge F . The cluster centered at the larger averaged Rmn in

figure 18 consists of the overlaps of the eigenvectors within the same superselection sector.

The more suppressed Rmn cluster comes from the overlaps between eigenvectors across dif-

ferent sectors. By contrast, for q = 2, Rmn essentially has a delta function distribution at

discrete points and a very large standard deviation consequently. The masses at different

values suggest multiple symmetries in the q = 2 SYK model, and the discrete support re-

flects the integrability of the free theory, where a very small number of parameters control

the energies and correlations of the model. The overlaps in the q = 2 case with N = 14

have delta functions at five major values (figure 18). Notably in the free case, a significant

number of the overlap matrix elements Rmn are 0. This leads to smaller average value

of Rmn in figure 19. This together with the delta-function at outlying value indicates a

large coefficient of variation at large N (figure 19). Similar observations have been made

regarding the matrix elements of local operators in the energy basis of an integrable system,

〈m|A|n〉, in the context of the Eigenstate Thermalization Hypothesis [71, 72]. In the case

of the XXZ-chain, for example, the off-diagonal entries of 〈m|A|n〉 are generically either

highly suppressed or very large, whereas the entries in the non-integrable case show a more

uniform distribution.

We have focused on the SYK model here, but see appendix C for a companion study

of the ECH matrix for the mixed-field Ising chain of length N = 7, 8, 9, 10, which similarly

features regimes of chaos and integrability.
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Figure 20. Level spacing for free SYK with an integrable quartic perturbation (6.7) (a) when

the coupling ǫ is small and (b) when the coupling is large. Both small and large coupling show

integrable statistics.
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Figure 21. Level spacing for free SYK with an chaotic cubic perturbation (6.9) (a) when the

coupling ǫ is small and (b) when the coupling is large. As the chaotic term becomes comparable in

magnitude to the free term, the level spacing statistics shift from exponential to Wigner-Dyson.

7.2 Deformations of free SYK

In addition, we consider adding integrable or chaotic deformations to the free model as

in section 4 and section 6. Adding an integrable term (6.7) to the free Hamiltonian with

Gaussian random coupling Mij does not change the level spacing distribution, regardless of

the coupling strength ǫ (figure 20). By contrast, adding a 3-local chaotic perturbation (6.9)

to the Hamiltonian affects the energy spacings. As the coupling ǫ becomes large, the level

spacing transitions to chaotic Wigner-Dyson statistics (figure 21).

However, both the integrable and non-integrable perturbation to the Hamiltonian

change the distribution of the off-diagonal entries of Rmn. At very small perturbation

parameter, the peaks concentrated at Rmn values of the free SYK model widen. When
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Figure 22. The distribution of off-diagonal Rmn for the SYK model with an integrable perturba-

tion (6.7). The number of Majorana fermions is 14 and the degree of locality is k = 4.

the perturbation parameter becomes large, the Rmn form distributions centered around

new values that reflect the symmetry of the system (figures 22 and 23). Since the inte-

grable Hamiltonian commutes with the fermion number operator, its Rmn distribution is

bimodal corresponding to the two symmetry sectors; the cubic chaotic SYK model has

no such symmetry as discussed before, so the distribution is unimodal. Apart from the

existence of these symmetry sectors, the integrable and chaotic perturbations do not show

qualitative differences in their distributions. Indeed, the Rmn distribution shows a big-

ger contrast between free systems and interacting systems, rather than between integrable

and non-integrable systems. Similar observations can be made in the Rmn distribution of

transverse Ising model (appendix C), where the free spin chain also has a delta-function

like probability distribution. The integrable but interacting spin chain, analogous to the

SYK model perturbed by an integrable deformation, instead clusters around values that

reflect the symmetry of the system.

The number of conserved quantities in an integrable theory scales extensively with the

number of degrees of freedom, so we might have expected that the distribution of Rmn

in free and interacting integrable theories would be similar. However, free and interacting

integrable theories are distinct in that free Hamiltonians can be diagonalized into a sum of

O(N) independent terms whereas interacting integrable theories cannot in general. Because

of this, the 2N eigenstates of a free theory carry redundant information about the system,

and this is why the values of the overlap matrix Rmn show delta-function support. This

reduction in the number of effective variables required to characterize Rmn is already

impossible for interacting integrable theories.

Summary. From the simulations of the free, integrable, and chaotic SYK model with

varying system sizes, we have observed that the mean of the off-diagonal ECH matrix Rmn

is suppressed by the ratio (7.3) in every type of system. The free systems have outliers
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Figure 23. The distribution of off-diagonal Rmn for the SYK model with a chaotic perturba-

tion (6.9). The number of Majorana fermions is 14 and the degree of locality is k = 4.

compared to the mean but also a large number of zero entries that “balance out” the large

entries. However, the standard deviation in the free case scales linearly with the system

size N while it remains approximately constant in the chaotic cases. From the distribution

of the Rmn, one can distinguish the free systems from interacting integrable and chaotic

systems by the discreteness of their support, but the latter two are difficult to differentiate.

Many characteristics of the ECH matrix have also been observed in the ETH matrix. The

reason why interacting-integrable and chaotic theories have similar Rmn distribution and

the precise relation between the ECH and ETH matrices will be explored in future works.

8 Discussion

In this paper, we studied conjugate points and geodesic loops in various SYK models. In

the free model, we located all conjugate points and characterized the family of geodesic

loops associated to the local conjugate points. This allowed us to exactly compute the

complexity, which is bounded by O(
√
N), and to specify the fast-forwarding Hamiltonian

at sub-exponential times. We studied the motion of conjugate points with µ under the

addition of integrable or chaotic interactions both analytically and numerically. In the

integrable case, we first showed how to set up perturbation theory for conjugate point

locations in the strength of the coupling constant controlling interactions. We also de-

scribed a family of geodesic loops which bound the complexity by O(poly(N)) for the class

of integrable systems we considered. We then studied local conjugate points in chaotic

theories. We argued based on the statistics of the matrix Mαβ(t) that such local conjugate

points do not occur in chaotic systems before exponential time, thus strengthening the

arguments given in previous work [17]. We then studied the locations of conjugate points

non-perturbatively using numerics for SYK models up to N = 8. Finally, we explored the

Eigenstate Complexity Hypothesis (introduced in [17]) in free, interacting-integrable and

chaotic SYK Hamiltonians. We view these results as demonstrating a hierarchy of complex-
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ity growth between free, integrable, and chaotic models, and as a preliminary attempt at

describing a more complete picture of the growth of complexity of time evolution, in which

conjugate points play an essential role. Of course, global loops (which are not signaled

by conjugate points) should also play an important part in this story, and perhaps they

could even obstruct complexity growth before conjugate points. A more complete picture

of complexity growth must therefore also include these.

Quantum error correction and AdS/CFT. The modern picture of bulk reconstruc-

tion in AdS/CFT involves interpreting the bulk-to-boundary map as an isometry which

encodes bulk “logical” degrees of freedom within the set of CFT “physical” degrees of free-

dom in an approximate quantum error correcting code (QECC) [73]. This picture sheds

light on several subtle issues in bulk reconstruction, such as the fact that a single bulk

operator can have multiple distinct boundary reconstructions on different subregions of

the boundary. However, just as there is some ambiguity in the definition of quantum

complexity, there are some choices to be made in the definition of the QECC. One such

choice is the notion of the code subspace, which is usually taken to be (roughly speaking)

the subspace of states which correspond to a bounded number of bulk operator insertions

around a semiclassical background. The QECC then reconstructs bulk operators within

this Hilbert subspace, rather than on the full CFT Hilbert space. This allows the AdS bulk

to incorporate, for instance, radial locality in the form of commutation between a bulk

local operator and a boundary local operator [74].

It has always been relatively ambiguous what precisely the code subspace ought to be in

a given situation. There are known restrictions on, for instance, what fraction of black hole

microstates in a single microcanonical window may be included in a code subspace while

keeping the error in the approximate bulk reconstruction under control [75]. Relatedly,

the choice of simple operators in geodesic complexity is somewhat ambiguous. One way

to construct the code subspace from a CFT perspective is to start with some holographic

state (say, the vacuum) and act on it with a few, not-too-heavy single-trace operators.

The span of such states forms a subspace which one could regard as the code subspace.

Taking inspiration from this idea, one could regard as simple operators (from a complexity

perspective) the span of such not-too-heavy single-trace operators which generate the code

subspace. This ties together the complexity-theoretic notion of locality and the error

correction notion of locality.

One speculative way of operationalizing these ideas in the context of conjugate points

is the following. Suppose we take a CFT state which corresponds to a small number of

light operator insertions in some background state. In the bulk, this creates some particles

near the boundary in some semiclassical geometry. Now one considers time evolution on

the boundary by the (local) boundary Hamiltonian H. At very late boundary times t, we

expect that the corresponding linear geodesic e−iHt encounters a conjugate point. After

the conjugate point, a new globally minimizing geodesic takes over, which may correspond

to evolution with a nonlocal effective Hamiltonian as we have discussed in this paper.

Meanwhile, in the bulk this time evolution is dual to a scattering process between the

particles that were created near the boundary. Assuming this scattering process did not
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create a black hole, the local time evolution on the boundary does not take our initial

state out of the code subspace. Since the new minimizing boundary geodesic at late times

does not lie in the code subspace, we expect it corresponds to a time evolution in the bulk

involving black holes, as it will take the initial state out of the code subspace. This suggests

that the late-time out states of the scattering process in the bulk could have been reached

more efficiently by a scattering process involving black holes in the bulk.

Remarks about switchback effect. The geometric complexity theory that we studied

was constructed to be polynomially equivalent to quantum circuit complexity [22]. This

required choosing the cost factor µ to be exponential in the system size, µ ∼ eS . However,

there are arguments from AdS/CFT involving the so-called switchback effect [2] which

appear to imply that the notion of complexity which is relevant for holography is compatible

with a more gradual weighting scheme [52].23 The graduated scheme roughly involves

taking operators below a locality threshold k to have cost 1, and operators above this

locality to have weight equal to the exponential of their degree of locality. So, a K-local

operator for K > k would have weight eK .

A potential issue with the graduated scheme is that it allows (logN)-local gates to

act with a polynomial cost. In the more conventional formulation of complexity theory, a

fixed upper bound k ∼ O(N0) is chosen on the locality of polynomial cost gates. However,

if we interpret the graduated scheme as setting k ∼ c logN instead of k ∼ O(N0), it is

in fact still polynomially equivalent to the standard scheme where only O(N0)-local gates

have polynomial cost. To see this, notice that an arbitrary unitary operator acting on

c logN qubits has complexity at most roughly ec log N = N c, which is still polynomial in

N . Therefore, in a polynomial-length circuit formed using the graduated scheme, we may

simply replace any (logN)-local gates with polynomially many O(1)-local gates without

changing the fact that the total circuit length is polynomial in N .

In fact, the graduated scheme assigns a cost of N to a (logN)-local gate, which is

precisely the same as the maximum cost of a (logN)-qubit unitary operator if we had used

O(1)-local gates in the standard scheme. Given this observation, it is not hard to imagine

that the graduated and standard schemes are actually related by some O(1) factor rather

than only a polynomial. Since there are differences in sectional curvature between the

graduated and standard schemes [55], it would be interesting to understand whether these

differences really appear at the level of the complexity of time evolution. It may be that

they are only related to O(1) prefactors in that quantity, and more significant differences

can only be seen for more complicated quantities like the complexity of a precursor [2].

Relation of ECH to ETH. The behavior of the Rmn is similar to the behavior of

matrix elements of local observables in the energy basis that show up in the Eigenstate

Thermalization Hypothesis (ETH) [70, 76]. The ETH matrix in integrable systems features

off-diagonal elements that are mostly either very small or zero, with a sparse number of

large values. By contrast, the ETH matrix in chaotic models has more uniformly suppressed

23Although, see [18] for a situation where the ordinary weighting scheme with µ ∼ eS appears to give the

holographically expected results, at least for small N .
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entries. We have demonstrated analogous properties in the ECH matrix Rmn for both the

integrable and chaotic SYKq models (figure 18, 22, 23) as well as the mixed-field Ising

models in appendix C.

Although the statistical properties of these matrices are similar, the physical settings

behind the ECH and ETH statements are different. ECH is founded in ideas of circuit

complexity whereas ETH is based on ideas in many-body physics and thermalization.

Regardless, the mathematical expression of ECH involves the matrix elements of local

operators in the energy basis that appear in ETH. Specifically, one might wonder if there

is a relation between ECH and ETH applied to the local operator
∑

α Tα which is the sum

of all local operators. One approach that might be fruitful in understanding the statistics

of the matrix elements of such an operator is to consider perturbing a Hamiltonian with a

perturbation δH =
∑

α Tα. In this case, it may be possible to understand the statistics by

relating the eigenstates of the perturbed and unperturbed Hamiltonian since the corrections

to the energies and eigenstates generically involve matrix elements like 〈m|δH|n〉. A related

thought experiment investigating the statistics of matrix elements of such perturbations

was carried out in [76].

In section 5 we showed that in a chaotic theory complexity will grow linearly until times

O(eN ) provided we assume that the energy eigenstates of the chaotic theory are essentially

Haar random rotations of a fixed “simple” basis. There is a related expectation in ETH,

i.e., that all the eigenstates of a thermalizing Hamiltonian “look” thermal [70]. Indeed,

Deutsch showed that for a real, symmetric Hamiltonian, a thermalizing perturbation leads

to energy eigenstates that are Gaussian random linear combinations of the unperturbed

eigenstates [76]. This averaging suppresses the variance of observables by factors of eS just

like in the Haar ensemble we proposed for chaotic systems. In [77] entropic suppression

of variance was also described for typical, random states in a quantum microcanonical en-

semble. In section 5 we are using similar reasoning to argue that typical energy eigenstates

of a chaotic theory will be random combinations of a fixed “simple” basis, and so variances

will be suppressed via averaging.

General integrable systems. In this paper we have considered an interacting integrable

deformation which is a quadratic function of the local operators J
(i)
3 in the diagonalized

free theory. Consequently, the structure of the operator dynamics as governed by [H, · ] is

simplified, which allowed us to obtain analytic results in perturbation theory in section 4.

General integrable systems can look much more complicated. For instance, in appendix C

we study the ECH matrix for the (integrable) transverse-field Ising model, which appears to

be a nontrivially interacting lattice spin model. This model is equivalent to a free fermion

model after performing a non-local Jordan-Wigner transformation taking the bosonic spins

to fermions. It is natural to choose the k-local operators in the theory to be the bosonic

spin operators supported only on contiguous size-k regions of the bosonic spin lattice for the

purposes of computing complexity. However, the Jordan-Wigner transformation will not

respect this split into local and nonlocal operators. Consequently, it is plausible that more

general integrable theories behave similar to chaotic systems with respect to complexity,

owing to the fact that local operators in the theory are scrambled into the nonlocal sector

when the theory is diagonalized.
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In full generality, integrable systems in a finite-dimensional phase space can be written

in action-angle variables. Much like the dynamics of the harmonic oscillator (a canonical

example of an integrable system) consists of “rotation” in phase space, the dynamics of

these more general systems also consists of periodic motion in phase space, albeit with a

possibly action-dependent frequency.24 So there is no guarantee that integrable systems

appear free in any basis. Infinite-dimensional integrable systems like the Korteweg-de Vries

(KdV) system [80] or the solitonic Sine-Gordon system [81] exemplify this fact. Similarly,

a broad class of highly interacting quantum integrable systems consists of the lattice spin

models that are exactly solvable using the Bethe ansatz [82]. Nevertheless, the Hamiltonian

in all these systems is built out of the commuting charge operators, and so we expect our

analysis of section 4.2 to be generalizable to such systems. It would be interesting to further

explore whether it is possible to make precise analytic statements about complexity in these

highly structured models whose notion of locality in the original variables does not align

with locality in the variables that simplify the dynamics.

A version of complexity restricted to local circuit modifications. In AdS/CFT,

tensor networks have proven useful in gaining intuition about properties of the bulk semi-

classical theory [38–44]. Roughly speaking, the tensor network lives on a tessellation of

a bulk Cauchy slice. There is an approximate notion of quantum complexity for tensor

networks which corresponds simply to counting the number of tensors in a region of the

bulk spacetime, and this supports the suggestion that a quantity like bulk wormhole vol-

ume should be dual to quantum complexity in a two-sided black hole [3]. However, once

the complexity saturates at its maximum value (polynomial in the entropy for integrable

systems and exponential for chaotic systems), the tensor network which grew to foliate the

wormhole interior is no longer expected to be the minimal network, just as the quantum

circuit which builds the state will become a non-minimal circuit. In the geometric language,

the linear geodesic will encounter conjugate points or geodesic loops.

As physics is at least approximately local, for a geometric wormhole interior it would

be surprising if there could be large correlated fluctuations of geometry which act in concert

to decrease the tensor network size. Such large fluctuations with global changes to tensor

network structure would correspond to geodesic loops in the complexity geometry which

have little or no relation to the original linear geodesic. This motivates a notion of “local

complexity”, where only local updates to the tensor network (equivalently, the quantum

circuit) which decrease the length are allowed.25 Of course, if many sequential local updates

are made, we can still achieve a large decrease in the size of the tensor network.

24More precisely, the “actions” are first integrals of motion. For the one-dimensional harmonic oscillator,

the action is proportional to the energy. For the harmonic oscillator, the constant-energy slices foliate

phase space by a set of concentric circles, and the dynamics is rigid rotation around these circles. More

generally the phase space of an integrable system need only be foliated by topological tori, with the dynamics

corresponding to a periodic motion around each torus whose frequency depends on the corresponding action.

In fact, the KAM theorem [78, 79] guarantees that most of these tori are preserved given small deformations

of the Hamiltonian, so we expect results that hold for integrable systems may also hold for perturbatively

chaotic systems.
25This notion was inspired by discussions during the It from Qubit annual meeting in December 2019 and

the IAS It from Qubit workshop in December 2020. A similar notion is discussed as “pseudo-complexity”

in appendix B of [83].
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In the geometric complexity language, local complexity is computed by starting with

the linear geodesic L and flowing downward in the space of paths, where the downward

directions all correspond to conjugate points along L. These downward flows will explore

the space of paths at least in the neighborhood of L, and will find the geodesic of small-

est length which is continuously connected by upward flows in path space to L. To our

knowledge, local complexity has not been explored, and may be an interesting alternative

to the usual complexity-theoretic definition. We will not explore it in any great detail here,

but we will make the following point: local complexity behaves more or less analogously to

circuit complexity in chaotic theories like holographic CFTs. There are conjugate points

along L which sit approximately at t ∼ eS , which will terminate the linear growth at the

expected timescale just as geodesic loops would [17]. Furthermore, the density of conjugate

points along the linear geodesic is roughly constant after an initial growth, as can be seen

from a simple calculation in the bi-invariant geometry. So, we expect multiple exchanges of

dominance between many geodesics induced by all of these conjugate points, which should

generate the plateau.

Of course, after we encounter the first conjugate point, the remainder along the linear

geodesic are not relevant for complexity growth since there is a new geodesic which com-

putes the complexity. So, in order for this argument to hold, we need a sort of universality

among geodesics under the flow from µ = 0 to µ ∼ eS which ensures that, even as the

location of the geodesic changes in path space, the conjugate points which were present at

µ = 0 are shifted in roughly the same way as occurs for the linear geodesic. That is to

say, all geodesics at µ ∼ eS have a constant density of conjugate points around exponential

length, just as we expect for the linear geodesic. We have not proven this, but it seems

likely from general intuitions about the complexity growth of chaotic Hamiltonians [17].

One difference in these notions is that geometric complexity is always bounded by the

diameter of the manifold, and local complexity may slightly violate this bound. However, it

is unknown whether anything physical would be associated with such a slight modification

of complexity’s behavior. If local complexity is really the notion to consider in holography,

it will have implications for the complexity of the AdS/CFT dictionary, following the

arguments of [83]. This is because the calculation of local complexity is essentially a local

optimization problem in path space, which should be polynomially computable in general,

unlike circuit complexity which would involve searching the entire path space for potential

geodesic loops.26
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A Two-point functions and the super-operator

In this appendix we will write an interesting expression relating the super-operator to the

matrix of thermal two-point correlation functions at infinite temperature,

RIJ(s) = e−STr
(
TJe

isHTIe
−isH

)
, (A.1)

where TI = {Tα, T̃α̇} denotes all the generators. The direct connection between the two

comes from the fact that we can rewrite the Heisenberg operators TI(s) in terms of the

RIJ via

eisHTIe
−isH = RIJ(s)TJ . (A.2)

with summation on J implied here and below.

Starting with the general expression for the super-operator,

Yµ(δV (0)) =

∫ 1

0
dseiHts

[
δVL(0) + (1 + µ)

∑

α̇

exp
(

−iµtλα̇s
1+µ

)
− 1

λα̇
δṼ α̇(0)[H, T̃α̇]L

+
∑

α̇

exp

(−iµtλα̇s

1 + µ

)
δṼ α̇(0)T̃α̇

]
e−iHts,

(A.3)

we first use the trick of section 6 to remove the local projection in the second term via

[H, T̃α̇]L = [H, T̃α̇] −λα̇T̃α̇. For the resulting commutator term, we use the fact that (using

the notation adHO = [H,O])

d

dx
eadxH O = eadxH adHO.

This identity can be derived simply by comparing the Taylor series of both sides. Recalling

the Campbell-Baker-Hausdorff identity exHOe−xH = eadxH O, this new identity is useful

because it converts a commutator into a derivative that can be integrated by parts.

Using these substitutions and evaluating the integration by parts, after a short com-

putation one can write the super-operator as

Yµ(δV (0)) = −µ
∑

α̇

φ(−Mα̇t)δṼ
α̇(0)eiHtT̃α̇e

−iHt +

∫ 1

0
dseiHts

[
δVL(0) + (1 + µ)δVNL(0)

]
e−iHts,

(A.4)

where we have defined Mα̇ = µλα̇

1+µ and φ(x) = (exp(ix) − 1)/(ix) as in section 6. The

integral term is nearly the average of the Heisenberg operator δV (t) over the time interval
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0 to t, but with the nonlocal components given extra weight (1 + µ). This expression can

also be written in terms of the two-point functions. Rescaling s → s/t and defining the

time-averaged two-point function

RIJ(t) =
1

t

∫ t

0
dsRIJ(s), (A.5)

the resulting expression for the super-operator is simply

Yµ(δV (0)) =
[
−µφ(−Mα̇t)δṼ

α̇
NL(0)Rα̇J(t) + δV α

L (0)RαJ(t) + (1 + µ)δṼ α̇
NL(0)Rα̇J(t)

]
TJ ,

(A.6)

where summation on J, α, and α̇ has been left implied.

The last two terms only involve the averaged R matrix, and so have a smooth limit

for large t. The first term however involves the exact R matrix, which oscillates wildly at

late times. It would be interesting for future work to explore further connections between

the super-operator and thermal two-point functions.

B Symmetries of the ECH matrix in the SYK model

In this appendix, we analyze the symmetry properties of the SYK model to explain some of

the structure of the ECH matrix found in section 7. We reproduce the SYK Hamiltonian:

H = i
q
2

∑

1≤i1<...iq≤N

Ji1,...,iqψ
i1 · · ·ψiq , (B.1)

where Ji1,...,iq ∼ N (0, σ2), σ2 = 2q−1(q−1)!J 2

qNq−1 and {ψi, ψj} = 2δij .

Starting from the Pauli matrices, we construct N = 2k Hermitian Majorana fermions

by writing

ψ1 = 1 ⊗ 1 ⊗ · · · ⊗ σ1,

ψ2 = 1 ⊗ 1 ⊗ · · · ⊗ σ2,

ψ3 = 1 ⊗ · · · ⊗ σ1 ⊗ σ3,

ψ4 = 1 ⊗ · · · ⊗ σ2 ⊗ σ3,

...
...

ψ2k−1 = σ1 ⊗ σ3 ⊗ · · · ⊗ σ3,

ψ2k = σ2 ⊗ σ3 ⊗ · · · ⊗ σ3.

(B.2)

where the tensor products are taken over N/2 slots. Similar to CPT symmetries, the

Majorana fermions either commute or anticommute (depending on dimension of the Hilbert
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space) with the following special operators defined by

fermion number : F = iN/2
N∏

j=1

ψj , (B.3)

time reversal : T = iN(N−1)/2
N/2∏

j=1

ψ2j , (B.4)

charge conjugation : C = iN(N−1)/2
N/2∏

j=1

ψ2j−1. (B.5)

There are certain N -dependent additional relations between these operators which are

important,

[T , F ] = [C, F ] = 0, N = 0, 4 mod 8, (B.6)

{T , F} = {C, F} = 0, N = 2, 6 mod 8. (B.7)

These symmetry relations are also observed in classifying topological insulators [84] and

can be traced back to the Bott periodicity in homotopy groups of classical groups.

We now explain the curious fact noted in figure 17 that the off-diagonal matrix elements

Rmn of the ECH matrix are exactly symmetric between the even and odd sectors. There is

no a priori reason that operator matrix elements in different superselection sectors should

be exactly equal. As we will see, it follows from the form of the ECH matrix and the

enhanced symmetries above. For the q = 4 model, the Hamiltonian commutes with F .

Write |n,±〉 for the simultaneous eigenstates of H and F . These satisfy H|n,±〉 = En|n,±〉
and F |n,±〉 = ±|n,±〉. Let N = 2, 6 mod 8 (in particular, this includes N = 14). Then the

operator T anticommutes with F . In fact, up to a phase, its inverse T −1 is actually just

its adjoint T †, since it is a phase times a product of Majorana fermions which all square

to 1. This means we must have

T †TiT = e−iφTi, (B.8)

where we have made the phase explicit and also written Ti for any traceless Hermitian

generator of su(2N/2). A basis of such generators is given by the 2N − 1 appropriately

Hermiticized products (excluding the identity) of the Majorana fermions (B.2).

The crucial point now is that the time reversal operator exchanges the F superselection

sectors due to the anticommutation relation:

FT |n,±〉 = −T F |n,±〉 = ∓T |n,±〉, (B.9)

so, because [H,F ] = 0, we must have

T |n,±〉 = |πn,∓〉. (B.10)

It may be the case that T permutes the energy levels by π; however, this does not change the

conclusion because these permutations will cancel up to an overall phase in the expression
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T †TiT . Now all that’s left is to analyze the matrix element magnitudes:

|〈m,+|Ti|n,+〉|2 = |〈m,+|eiφT †TiT |n,+〉|2

= |〈m,−|eiφTi|n,−〉|2

= |eiφ|2〈m,−|Ti|n,−〉|2

= |〈m,−|Ti|n,−〉|2.

(B.11)

Therefore, the plus and minus charge sectors have identical ECH matrix elements. This

explains why the two diagonal blocks in figure 17 are exactly equal, rather than only

approximately equal. By Bott periodicity, this argument should also apply to N = 10, and

we numerically verified that for N = 10, 14 the diagonal blocks are the same (up to machine

precision) while for N = 12, 16 the diagonal blocks have similar but different values.

C Mixed-field Ising model

One can also check the suppression of the matrix elements in the ECH criterion in the

mixed-field Ising model. This model consists of a spin-1/2 chain with nearest neighbor

interactions and external fields in the parallel and transverse directions. The 2-local Hamil-

tonian is:

H =
N∑

j=1

σz
jσ

z
j+1 + hσz

j + gσx
j . (C.1)

This model can demonstrate either chaotic or integrable behavior depending on the

regime of the parameter space (h, g). This can be observed from the level spacing statistics

after exact diagonalization of the model with different choices of (h, g) [85] as shown in

figure 24. We focus on three cases, two of which are integrable and one of which is chaotic.

The first choice takes h = 0 but g 6= 0. This is the transverse-field Ising model, which is

an interacting integrable model. Although it can be mapped to free fermions through the

Jordan-Wigner transformation, the physical interpretation of the model is usually through

interacting hard-core bosons, so we refer to it as the “interacting integrable” choice. The

second model takes g = 0 and h 6= 0, which can be reduced to the Ising model in the

absence of external fields, so this model is effectively free. The third choice takes h 6=
g 6= 0 and is generally chaotic. We choose (h, g) = (0.5,−1.05) as a particular chaotic

point in the space of couplings, (h, g) = (0,−1.05) as an example of interacting integrable

couplings, and (h, g) = (0.5, 0) as the non-interacting integrable choice. For the integrable

choices of couplings, the level spacings are exponentially distributed. By contrast, in the

chaotic case the level spacing distribution is roughly Wigner-Dyson. When (h, g) takes

intermediate values between any of these combinations, the level spacing distributions

interpolate between the Wigner-Dyson and exponential distributions. This model also has

nontrivial momentum sectors which can lead to zero modes if left unfixed; here we generally

consider momentum eigenstates in the k = 1 momentum sector.

We represent the spin chain operator algebra su(2N ) with tensor products of Pauli

operators σx
i , σy

i , and σz
i where i = 1, . . . , N is the site index. Since the spin-chain with
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(b)

Figure 24. Level spacings for the mixed field Ising model with N = 10 at three different points

in parameter space. (a) compares two parameter choices, one of which corresponds to a free model

and other to an interacting integrable model, to the exponential distribution, while (b) shows a

choice of parameters in the chaotic regime compared to the Wigner-Dyson distribution.

nearest-neighbor interaction still retains a notion of spatial locality, we define simple op-

erators to be operators which are supported on at most k sites (that is, they act as the

identity outside a k-site contiguous region). For example, if we consider easy operators to

be at most 2-local, σz
3σ

z
4 is an easy operator, but σz

3σ
z
6 is not.

We expect that the off-diagonal matrix elements of the ECH matrix Rmn will be

suppressed by (7.3), which for the Ising model is

sMF(N, k) =
N

4N − 1

k∑

j=1

3j . (C.2)

Below, we compute the ECH matrices for spin chains of length N = 7, 8, 9, 10 with

k = 2-local operators taken as simple. As in the case of the SYK model, we expect that in

general the off-diagonal entries of the ECH matrix are suppressed according to (C.2), and

that the variance in the chaotic regime is O(1). We numerically verify these properties in

figure 26 taking k = 2-local operators to be simple to demonstrate the behavior. And this

behavior persists independent of the choice of degree of locality k, as long as it is larger

than the degree of interaction of the Hamiltonian, as shown in figure 25.

In figure 27 we compare the ECH matrix elements between the different choices of cou-

plings at fixed N = 9. Because the choice of the specific momentum sector has eliminated

all the potential symmetries in the system, the ECH matrix entries does not show the same

symmetry-sector structure as the q = 4 SYK model. The greater degree of suppression of

the off-diagonal matrix elements can be easily seen in the heat map. Another difference

between the regimes comes from comparing the free theory to the two interacting theories.

The distribution of the overlaps in the free theory is again a discrete distribution with a

sizeable mass at 0. On the other hand, the overlap-distribution at the chaotic point and the

interacting integrable point look more like a density function, analogous to what happens

in the q = 3, 4 SYK models.
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(a) (b)

Figure 25. Comparison of the average and standard deviation of the Rmn matrix in the maximally

chaotic regime with varying sizes.

Figure 26. The ECH matrices of the mixed-field Ising model of length N = 7, 8, 9, 10 at the

maximally chaotic point h = 0.5, g = −1.05, with k = 2-local operators taken as simple.

Figure 27. ECH matrices of the mixed-field Ising models of length N = 9 at the free, integrable

interacting, and maximally chaotic points, with k = 2-local operators taken as simple.

– 67 –



J
H
E
P
0
7
(
2
0
2
1
)
0
1
1

Figure 28. Distributions of ECH matrix elements for the mixed-field Ising model in the integrable,

integrable-interacting and chaotic regimes, calculated using spin chain of length N = 9, with k = 2-

local operators taken as simple.

(a) (b)

Figure 29. Comparison of the average and standard deviation of the Rmn matrix in the chaotic

and integrable regimes showing (a) the scaling of the average off-diagonal element divided by the

proportion of simple operators (N = 9, k = 2), and (b) the scaling of the standard deviation with

system size (k = 2).

We have also investigated the behavior of the distributions of off-diagonal entries of

Rmn as N is increased in the various cases (figure 28). Because of the large number of

vanishing overlaps, the average value of an off-diagonal entry of Rmn in the integrable

case is smaller than that of the chaotic case (figure 29(a)). However, the variance in

the chaotic case remains significantly smaller when N → ∞; it appears to grow very

slowly and approximately linearly while the variance in the free theory grows approximately

quadratically (figure 29(b)).
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