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1 Introduction

Depending on the timescales of interest, several interrelated concepts have recently been
proposed to characterize the presence or absence of chaos in quantum dynamics. The
basic expectation in a quantum chaotic system is that states in the Schrödinger picture
and operators in the Heisenberg picture become more elaborate as time passes. For the
purposes of this work, we wish to compare and contrast two ways to quantify this growth:
the notion of size and the notion of complexity. We define these notions in detail below,
but in brief, size is a measure of how many degrees of freedom are involved in a state
or acted on by an operator while complexity refers to the number of elementary steps
of some type needed to prepare a state or implement an operator. These two concepts
are certainly interrelated in various ways, for example, a certain minimal complexity is
required in order for an operator to have large size. In this work, we study and compare
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precise versions of these notions in two models: the Sachdev-Ye-Kitaev (SYK) model and
2d Jackiw-Teitelboim (JT) gravity.

It is useful to consider two regimes of time, corresponding to times before or after the
system has come to approximate global equilibrium. The crossover time between these two
regimes, called the scrambling time, will be defined in detail below. Roughly speaking, it
refers to the time after which a small perturbation has spread over the entire system.

Prior to the scrambling time, out-of-time order correlation functions (OTOCs) [1, 2]
characterize the chaotic growth of Heisenberg operators of the form

Oβ(ϕ) ≡ e−(1−2ϕ/π)βH/4Oe−(1+2ϕ/π)βH/4, ϕ = θ + iu, (1.1)

where H is the Hamiltonian, β is the inverse temperature, θ labels the location of the
insertion in the imaginary-time evolution, and u = 2πt/β is the real time in the unit of
β/2π. For a simple operator O which disturbs only a few degrees of freedom, time evolution
causes information about this disturbance to spread over the system whenever O is not
conserved, [H,O] 6= 0, a process known as information scrambling [3–6]. For all-to-all
chaotic Hamiltonians, information initially spreads exponentially fast with an exponent
called a quantum Lyapunov exponent, until it scrambles over the whole system [1], as
illustrated in figure 1. The number of degrees of freedom affected during this scrambling
process is measured by the size n of the Heisenberg operator Oβ(ϕ) [7–11].

It will be convenient to translate the language of operators into the language of states
using the Choi-Jamiolkowski mapping. The space of operators acting on a Hilbert space
H can be mapped to a state in two copies of the Hilbert space H ⊗ H by O → |O〉 =
O ⊗ 1 |0〉 where |0〉 is a maximally entangled state in the doubled Hilbert space. It is
convenient to fix a Hamiltonian H for one copy of the system (e.g. we fix H for the left
system, and HT for the right system which is also denoted as H without confusions)
and take |0〉 =

∑
n |En〉 ⊗ |En〉 where {|En〉} is a basis of energy eigenstates of H. This

mapping is appropriate at infinite temperature; it can be extended to finite temperature
using the (unnormalized) thermofield double (TFD) state |1β〉 =

∑
n e
−βEn/2 |En〉 ⊗ |En〉

where 1β = e−βH/2 corresponds to O = 1 in (1.1). A general operator of the form (1.1)
is mapped to a so-called partially entangled thermal state (PETS) |Oβ(θ + iu)〉 [12]. The
evolution of the operator Oβ(ϕ) = U(t)†Oβ(θ)U(t) is mapped to the evolution of the state
|Oβ(ϕ)〉 ≡ U(−t)⊗U(t) |Oβ(θ)〉, where U(t) = e−iHt and the two copies evolve in opposite
directions in time, e.g. with Hamiltonians H and −H. Without the insertion of O, the
state U(−t) ⊗ U(t) |1β〉 = |1β〉 is invariant under time evolution. With the insertion of
non-conserved O, the state is no longer invariant and the dynamics can be conveniently
diagnosed using correlations between the two copies.

In the context of the SYK model made from N fermions ψi obeying {ψi, ψj} = δij

with q-body interactions, the operator growth structure is well understood in the large-q
limit [7, 8] and the conformal limit [13]. Here the notion of size n of an operator is the
number of elementary operators — the single Majorana operators ψj — contained in that
operator. The growth of size can be detected by the decay of correlations between the two
systems in the PETS state, which is equivalent to a kind of OTOC. More precisely, the size
is n[Oβ(ϕ)] = N/2− i

∑
j 〈Oβ(ϕ)|ψj⊗ψj |Oβ(ϕ)〉 /Z, where the maximally entangled state
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Figure 1. A cartoon of a Heisenberg operator inserted at the half of the thermal circle. Some
gates of U(t)† and U(t) on the unaffected channels have been canceled with each other, due to the
switchback effect.

|0〉 is defined by (ψj ⊗ 1− i1⊗ ψj) |0〉 = 0, ∀j = 1, . . . , N and the normalization factor is
Z = 〈Oβ(ϕ)|Oβ(ϕ)〉.

The notion of size growth has also been explored in the context of holography. There
the TFD state |1β〉 is dual to an eternal black hole in AdS space [14]. For θ = ±π/2,
acting a simple operator O on the TFD state |1β〉 corresponds to releasing a particle on
the asymptotic boundary. The gravity of the black hole forces the particle to fall into
the interior of the bulk and affect the near horizon region, which is the holographic bulk
counterpart of the boundary growth of size [15]. Operator size has also been conjectured to
be dual to the momentum of the particle [13, 15–19]. It is therefore interesting to compare
the SYK model and JT gravity model, which are closely related in the conformal limit
of low temperatures [20, 21]. In particular, the size-momentum relation can be studied
using SL(2) generators that function as both generators of spacetime transformations and
measures of size [13, 17].

Now consider the situation after the scrambling time. At these longer times, the
operator size has reached its equilibrium value, but operators (and states) are still evolv-
ing unitarily in the massive many-body Hilbert space. In particular, the complexity of a
Heisenberg operator, a quantity borrowed from quantum information theory, is conjectured
to continue to grow with time long after the scrambing time [22, 23]. We illustrate the
evolution after scrambling using a schematic circuit diagram in figure 1. The most com-
mon type of complexity considered in this context is that of circuit complexity, which is
defined as the minimal number of elementary quantum gates that are required to produce
a target state or operator from a reference. In a chaotic system, it is believed that the
circuit complexity of an initial state will grow linearly with time until a time of order the
exponential of the system entropy [22–26].

Various definitions of complexity for unitary operators in quantum mechanics and
quantum field theories have been proposed [6, 27, 28]. In this paper, we consider a different
notion of complexity for operators, the K-complexity [29, 30], defined through a Krylov
basis that is uniquely determined by the evolution Hamiltonian and the reference operator
in question. Using the state-operator mapping, we can define this complexity in terms of
states or operators; here we focus on PETS as the reference state. The Krylov basis is
obtained as follows. In the operator language, one repeatedly applies the Liouvillian map
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[H, ·] to an operator Oβ(θ) to generate a basis of operators. In dual state representation,
one generates a sequence of new states starting from a PETS, e.g. |[H,Oβ(θ)]〉 = (H ⊗ 1−
1⊗H) |Oβ(θ)〉. Note that, in the state language, the evolution generated by H⊗1−1⊗H
is called boost evolution due to the interpretation of this transformation as a boost in
AdS/CFT. It is one of the SL(2) generators mentioned above. Given this sequence of
states (or operators), one then orthonomalizes them to produce the desired Krylov basis,

|Oβ,j(θ)〉 ∝ (H ⊗ 1− 1⊗H)j |Oβ(θ)〉+ . . . , (1.2)

where j denotes the number of applications of the Liouvillian,1 and . . . comes from the
Gram-Schmidt orthonormalization process. The target state can then be decomposed into
the Krylov basis |ΨT (t)〉 =

∑
j i
jφj(t) |Oβ,j(θ)〉, where φj denotes the amplitude at j-th

basis and the factor of ij is for convenience. The K-complexity CK is then defined by
declaring that basis element j has complexity j,

CK |Oβ,j(θ)〉 = j |Oβ,j(θ)〉 , (1.3)

so the average K-complexity of the target state |ΨT (t)〉 is

CK [|ΨT (t)〉] = 〈ΨT (t)| CK |ΨT (t)〉 =
∑
j

j|φj(t)|2. (1.4)

K-complexity is somewhat analogous to a circuit complexity definition in which the
elementary operation is not a unitary but a Hermitian generator of unitary evolution,
the Liouvillian or boost generator H ⊗ 1 − 1 ⊗ H. The complexity can be defined as
an operator by fixing its eigenvectors and eigenvalues in terms of (1.3). Then one has a
notion of average complexity by expanding general states in the Krylov basis (1.4). Unlike
the circuit complexity, K-complexity is uniquely determined by the reference operator
and the Hamiltonian, without the introduction of a set of basic gates and a tolerance
parameter. This advantage is crucial when considering its gravitational correspondence,
since the dictionaries of operator and Hamiltonian are clear, whereas the artificial basic
gates and the tolerance parameter are not. We will give more details of the definition
K-complexity in the SYK model in the next section.

It was shown in [29] that the K-complexity grows exponentially with time before the
scrambling time for a variety of chaotic Hamiltonians. At these early times, each application
of the Liouvillian will increase the operator size by at most a constant amount. As a
result, the Krylov basis has a close relation with the operator size at early times. Indeed, it
turns out that the K-complexity bounds any properly defined notion of operator size [29].
After the scrambling time, the authors of [30] conjectured that the K-complexity of a
chaotic system will continue to grow, now linearly with time, until it reaches a value
that is exponential in the system size. The argument in [30] is based on the eigenstate
thermalization hypothesis (ETH) applied to the chaotic Hamiltonian of interest [31–33].
Here we explicitly show that the late-time growth of the K-complexity is bounded by a
linear function. We also numerically evaluate the K-complexity growth in the SYK model

1The Krylov basis generated by the Liouvillian can be incomplete in the Hilbert space H⊗H.
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and indeed find linear growth after the scrambling time. Combined with previous results,
our results demonstrate that K-complexity shows a exponential-to-linear growth pattern
in the SYK model. We conjecture that this holds true for all chaotic systems, namely that
after a short “dissipation time” typically set by the local energy scales of the problem, K-
complexity shows a universal exponential growth dictated by a Lyapunov exponent which
then gives way to a linear growth after the scrambling time. Although we do not see a
saturation of the K-complexity at late time due to the limited working precision in the
calculation, the late time saturation of K-complexity is seen in a recent preprint [34] after
we post our results.

To complete the background for our story, we consider the role of complexity in holog-
raphy. In that context, circuit complexity has received enormous recent attentions for its
potential relation to various features of the dual holographic geometry, especially wormholes
inside black holes [35]. Two conjectures on the duality of the complexity of a state were pro-
posed. The complexity-volume (CV) conjecture states that the complexity is proportional
to the volume of the maximal spatial surface (meaning spacetime codimension-one mani-
fold) connecting the boundary of the dual eternal black hole [22]. The complexity-action
(CA) conjecture states that the complexity is proportional to the action of the Wheeler-
DeWitt patch [36, 37]. The proposal of holographic complexity inspires new understanding
on the complexity in field theories [38–40] and in gravity [41–49].

In models with partial holographic duals, such as the SYK model, it is interesting to
compare microscopic notions of complexity to holographic proposals. For the situation of
interest to us, namely PETS states in the SYK model, we consider eternal black holes in
JT gravity with a matter field which is dual to the operator O defining the PETS [12]. In
this model of gravity, the problem of gravitational backreaction of the matter field can be
mapped to the motion of particles in a hyperbolic space [12, 50]. Focusing on the CV duality
for simplicity [22, 42], the holographic complexity becomes proportional to the geodesic
distance between the two boundaries of the eternal black hole in JT gravity. Interestingly,
this holographic complexity under time evolution also exhibits an exponential-to-linear
growth behavior for PETS. Similar behaviors of the complexity appear in the shock wave
geometry, which caused by the matter falling into the black hole [18, 19].

Because of the similarities between the microscopic K-complexity in the SYK model
and the “coarse grained” complexity defined through the CV conjecture, it is very interest-
ing to compare these two notions of complexity in detail. At early times, both complexities
exhibit an exponential growth at a rate set by a quantum Lyapunov exponent. In JT
gravity, what appears is the maximal Lyapunov exponent 2π/β, with β is the inverse tem-
perature. In the SYK model, one finds a temperature dependent Lyapunov exponent in
the large-q approximation, and in the conformal limit, this exponent approaches the same
2π/β exponent as in the gravity. We find that the K-complexity precisely matches the
holographic complexity up to an unimportant constant before the scrambling time. Simi-
larly, both complexities grow linearly after the scrambling time but with different slopes.
The slope in the SYK model is set by a microscopic energy scale while the slope in JT
gravity is set by the temperature. Nevertheless, both slopes are extensive in the system
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size and if we consider the rate of complexity growth ratio, i.e.,

R(t) = d logC(t)
dt

, (1.5)

where C refers to the complexity, then the two notions of complexity turn out to have the
same rate up to times that are exponential in system entropy.

To summarize, both size and complexity provide useful windows into quantum chaotic
dynamics depending on the timescale of interest. Still, it would be convenient if there is
a single quantity that could capture the relevant physics of both quantities. This is not
a implausible request since as the size of an operator grows, the complexity is increasing.
Indeed, it has been proposed that the growth of operator size is proportional to the rate of
increase of its complexity [51]. Actually, three seemingly distinct quantities in holography
— operator size, complexity, and radial momentum — are proposed to be closely related
to each other [16, 18, 19, 52], as schematically shown by the following equation,

n

β̃
∼ P ∼ dC(t)

dt
, (1.6)

where 1/β̃ represents an energy scale that sets appropriate units, and n and P refer to
the operator size and the momentum, respectively. To verify this relation, we also carry
out a calculation of operator size of the PETS in the SYK model and the corresponding
SL(2) charge in JT gravity. The results show agreement with both K-complexity and
holographic complexity up to the scrambling time. In this sense, the complexity serves as
a useful quantity that can capture the dynamics of a simple Heisenberg operator in chaotic
systems at both early and late times. While we focused on chaotic systems here, it would
be interesting to explore the notion of complexity in integrable systems as well [29].

The rest of this paper is organized as follows. In section 2, we explore the dynamics
of the K-complexity in the SYK model. We first review the definition of K-complexity, in
which the Lanczos coefficient plays an important role. The dynamics of the K-complexity
is mapped to a particle moving in one-dimensional lattice made up of the Krylov basis.
Then a proof concerning the late-time linear growth of K-complexity is given using a
bound on the Lanczos coefficient. We also evaluate the K-complexity in the SYK model,
and show that it exhibits an exponential-to-linear growth. In section 3, we calculate the
holographic complexity of the PETS in JT gravity. The insertion of a simple operator
causes a perturbation to the TFD state, which can be mapped to an insertion of a particle
moving in the hyperbolic space. The backreaction from the operator insertion is then easily
captured at the Schwarzian limit. Then the holographic complexity is measured by the
geodesic connecting two asymptotic boundaries of the AdS2 spacetime. The dynamics of
the microscopic K-complexity and the holographic complexity share many similarities, and
in certain aspect the K-complexity is a microscopic candidate of the holographic complexity.
In section 4, the relation between the operator size and the complexity growth rate is
considered. We calculate the size of the PETS in both the SYK model and JT gravity.
In particular the size is linearly related to the SL(2) charges of AdS2 spacetime. We also
verify that the growth rate of both K-complexity and holographic complexity of the PETS
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is given by its size in the Lyapunov regime. As a result, the notion of complexity is able
to characterize the dynamics of Heisenberg operators in chaotic systems at both short and
long times. In appendix A, we review the finite temperature generalization of K-complexity
and generalize the result for non-zero inserting angles θ 6= 0. In appendix B, we summarize
various coordinate systems of AdS2. In appendix C, we obtain the generating function of
size operator at generic inserting angles. In appendix D, we discuss the scrambling time of
OTOC from the Schwarizan dynamics.

2 K-complexity in the SYK model

2.1 Review of K-complexity

This section reviews K-complexity associated with the Krylov basis in the SYK model.
Unlike an a priori basis, the Krylov basis is uniquely determined by the evolution Hamilto-
nian and the initial state. As a result, the K-complexity is a natural notion capturing the
intrinsic dynamics of the evolution operator, without the ambiguity of choosing an operator
basis or elementary gates. We take the inner product in operator space A to be defined by
the inner product in H⊗H, namely 〈O|O′〉 = Tr[O†O′], so the norm is ||O|| = 〈O|O〉1/2.

We work at infinite temperature in this section, which means that the PETS is actu-
ally |Oβ=0(θ)〉, where θ is now irrelevant since the thermal circle is a point with no size.
Hence, for notational simplicity, we neglect the subscript β and the angle variable θ, and
denote the time evolved PETS by |Oβ=0(ϕ)〉 = |O(t)〉. It is convenient to normalize this
operator such that ||O|| = 1. The Heisenberg evolution of an operator is generated by
the Liouvillian L = [H, ·], i.e., |O(t)〉 = eitL |O〉. The Krylov basis is defined through the
Liouvillian superoperator:

|O0〉 = |O〉 , b0 = 0, (2.1)
|On〉 = b−1

n |An〉 , |An〉 = L |On−1〉 − bn−1 |On−2〉 , bn = ||An||, n ≥ 1. (2.2)

The second line is merely carrying out a Gram-Schmidt procedure on the states |An〉 to
produce the states |On〉. The iteration stops once the Liouvillian fails to generate a linearly
independent state. The set of states generated typically span a space of dimension K that
is of order K ∼ dimH2, but they do not always form a complete basis, K ≤ dimH2.
In particular, this happens when the Hamiltonian has conserved charges. For example,
the SYK Hamiltonian preserves fermion parity, so the Krylov basis spans the even (odd)
fermion parity subspace if one starts with an even (odd) parity reference state.

In terms of the Krylov basis, the Liouvillian superoperator is a simple tridiagonal
matrix,

Lmn = 〈Om|L|On〉 = δn,m−1bn+1 + δn,m+1bn. (2.3)

The coefficients bn are also known as Lanczos coefficients.
The Heisenberg operator corresponding to O can be decomposed in the Krylov basis,

i.e., |O(t)〉 =
∑m
n=0 i

nφn(t) |On〉, with φn real. Unitary evolution implies
∑K
n=0 |φn|2 = 1,

so φn can be understood as a wavefunction for the Heisenberg operator in the Krylov basis.
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The effective Schrödinger equation obeyed by the wavefunciton is

∂tφn(t) = bnφn−1(t)− bn+1φn+1(t), φ0(0) = 1. (2.4)

This Schrödinger equation (2.4) effectively describes a quantum particle moving in one
dimensional chain in which each lattice site corresponds to an element of the Krylov basis.
We note that this mapping from operators to quantum particles shares similar ideas with
the mapping from unitary operators to points in a complexity geometry [23, 53].

Now, the K-complexity is defined as a linear operator CK which is diagonal in the
Krylov basis and which simply counts the basis elements [29],

CK |On〉 = n |On〉 . (2.5)

Thus, the average K-complexity of the Heisenberg operator O(t) is the average position of
the particle moving in the chain, i.e.,

CK [O(t)] = 〈O(t)| CK |O(t)〉 =
K∑
n=0

n|φn(t)|2. (2.6)

The dynamics of K-complexity is governed by the Lanczos coefficient through the
Schrödinger equation (2.4). Following ref. [30], we can build intuition by considering a
continuum limit of the Schrödinger equation obtained by introducing a short-range cutoff ε
with x = εn. Expanding (2.4) and keeping the lowest-order term in ε, we get a continuous
version of the Schrödinger equation,

∂tφ(x, t) = −v(x)∂xφ(x, t)− 1
2v
′(x)φ(x, t), (2.7)

where the position-dependent velocity v(x) = 2εbn captures the information from the Lanc-
zos coefficient. Using a coordinate transformation defined by dy = dx

v(x) , the wavefunction
changes to ψ(y, t) =

√
v(x)φ(x, t), and the Schrödinger equation becomes a solvable wave

equation,

(∂t + ∂y)ψ(y, t) = 0, ψ(y, t) = ψi(y − t), (2.8)

where ψi(y) is the initial wavefunction at t = 0. Note that ψ can be also understood as a
wavefunction with normalization 1 = 1

ε

∫
dy|ψ(y, t)|2.

The average K-complexity of ψ is then

CK(t) =
∑
n

n|φn(t)|2

= 1
ε2

∫
dxx|φ(x, t)|2 = 1

ε2

∫
dyxv(x)|φ(x, t)|2 = 1

ε2

∫
dyx(y)|ψ(y, t)|2, (2.9)

where, again, x(y) is determined by the coordinator transformation dy = dx
v(x) .

Given a localized initial condition corresponding to the reference state, |ψi(y)|2 = εδ(y),
the average K-complexity is

CK(t) = 1
ε

∫
dyx(y)δ(y − t) = x(t)

ε
, (2.10)

which is fully determined by x(y) or, equivalently, by the velocity through dx
v(x) = dy.
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For Lanczos coefficients given by bn = αnδ, the velocity is v(x) = 2αε(x/ε)δ. Hence,
the K-complexity grows as

CK(t) ∼

e2αt, δ = 1
(2αt)1/(1−δ), δ < 1

. (2.11)

In particular, for δ = 1, the average K-complexity grows exponentially, while for δ = 0,
it grows linearly. Ref. [29] showed that the Lanczos coefficients are bounded by a linear
function when n� N , where N is the system size, implying that the average K-complexity
grows at most exponentially up to the scrambling time, αt ∼ logN . In the next section,
we show that the Lanczos coefficients are bounded by a constant when n � N , and
consequently, that the average K-complexity can grow no faster than linearly in time at
late times.

2.2 Dynamics of K-complexity in chaotic systems

To bound the Lanczos coefficients, it is useful to consider moments of the Liouvillian
superoperator,

µ2n ≡ 〈O0| L2n |O0〉 , (2.12)

which are closely related to the following Green function or auto-correlation function,

G(t) = Tr[O†(0)O(t)]
Tr[O†O]

= 〈O0| eitL |O0〉 =
∑
n

(it)2n

(2n)! 〈O0| L2n |O0〉 =
∑
n

(it)2n

(2n)! µ2n, (2.13)

µ2n =
∫
dω

2π ω
2nG(ω), G(ω) =

∫
dteiωtG(t). (2.14)

Note that the Green function is normalized such that G(t = 0) = 1.
Knowing the moments, one can get the Lanczos coefficients using an explicit relation

between the two (e.g., see appendix A of [29]). The relation between Lanczos coefficient and
the momemt can be obtained also by using saddle-point approximation [54]. If the Lanczos
coefficients have the smooth form bn = αnδ as n→∞, the moment is dominated by

µ2n = e2n
∫
dt[H(t)+δ log(2f(t))] × α2nn2δn, (2.15)

H(t) = −1 + f ′(t)
2 log[1 + f ′(t)]− 1− f ′(t)

2 log[1− f ′(t)], (2.16)

where f(t), 0 ≤ t ≤ 1 is a function uniquely determined by f(0) = f(1) = 0, f(t) > 0,
|f(t)| < 1 and f ′′(t)

1−f ′(t)2 + δ
f(t) = 0. For δ = 1, f(t) = sinπt

π which leads to µ2n =
(

4αn
πe

)2n
[54].

For a generic δ > 1
2 , f(t) can be solved by inverse hypergeometric function. But in any case

the prefactor of (2.15) is given by econstant×n, so the moments have the asymptotic behavior

µ2n ≈ α2ne2δn logn+o[n], n� 1. (2.17)

– 9 –



J
H
E
P
0
3
(
2
0
2
1
)
0
1
4

where o[n] denotes terms that are at least in the same order of n. While this calculation
gives some intuition of the relation between the Lanczos coefficient and the moment, in the
following, what we are going to use is the following rigorous bound [29],

n∏
k=1

b2k ≤ µ2n ≤ Cn max
{bk}

(b2nk ), (2.18)

where Cn = (2n)!
n!(n+1)! is the Catalan number.

Now we show that the Lanczos coefficients are bounded by a constant for n � N .
Take the Hilbert space to consist of N Majoranas (with N an even integer) and consider
an all-to-all q-body Hamiltonian H =

∑
x hx such as the SYK model. Each term in the

Hamiltonian is taken to be bounded, ||hx|| ≤ E . We consider the moments and the Lanczos
coefficients generated from a simple operator O (for example, a single Majorana operator
in the SYK model). Defining lx = [hx, ·], the n-th power of the Liouvillian is

Ln |O〉 =
∑

x1,...,xn

lxn lxn−1 . . . lx1 |O〉 . (2.19)

Each application of lxk increases the size of the operator by at most q, so the largest
size of lxk . . . lx1 |O〉 is kq + 1. Here, the size of a given operator refers to the number of
elementary operators, such as a single Majorana operator ψ in the SYK model, contained in
that operator. In order to have a nonzero term lxk+1 lxk . . . lx1 |O〉, hxk+1 and lxk . . . lx1 |O〉
should have a nonvanishing overlap. For each nonvanishing term lxk . . . lx1 |O〉, applying L
will lead to at most 2(kq + 1)N q−1 nonvanishing terms. As a result, the total number of
nonvanishing terms of type Ln |O〉 is bounded,

n∏
k=1

2((k − 1)q + 1)N q−1 < (2qN q−1)nn!. (2.20)

Importantly, the number of nonvanishing terms increases as a factorial of n. Moreover,
each individual term lxn . . . lx1 |O〉 is bounded by ||lxn . . . lx1 |O〉 || ≤ (2E)n. So the moment
is bounded by

µ2n = ||LnO||2 ≤ (2E)2n(2qN q−1)2n(n!)2 < (4N qE)2n(n!)2. (2.21)

Thus, according to the bound between the moments and the Lanczos coefficients (2.18),
n∏
k=1

b2k ≤ µ2n < (4N qE)2n(n!)2, (2.22)

the Lanczos coefficients can grow asymptotically 1 � k < N/q at most linearly, i.e.,
bk ∝ kδ, δ ≤ 1. This is also consistent with the saddle-point calculation (2.17).

However, when the size of Ln |O〉 is greater than N , which occurs when n ≥ N/q, we
can improve the bound as follows. If lxk . . . lx1 |O〉 has size N , applying L can only lead
to at most 2N q nonvanishing terms. As a result, when n ≥ N/q, the total number of
nonvanishing terms in lxk . . . lx1 |O〉 is

(2qN q−1)N/q(N/q)!(2N q)n−q/N < (N/q)!(2N q)n. (2.23)
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In contrast to the situation when n < N/q, the number of nonvanishing terms now increases
at most exponentially with respect to n. The moments are bounded by

µ2n ≤ (2E)2n((N/q)!)2(2N q)2n = ((N/q)!)2(4N qE)2n. (2.24)

The Lanczos coefficients are bounded by the relation

b2N/q+1 . . . b
2
n ≤

µ2n
b21 . . . b

2
N/q

= ((N/q)!)2(4N qE)2(N/q)

b21 . . . b
2
N/q

(4N qE)2(n−N/q), (2.25)

which implies that δ = 0 for n� N/q. Combining above results, we have

bn ≤


λL
2 n, 1� n� N/q

λC
2 N, N/q � n� 2N

, (2.26)

where λL is the Lyapunov exponent, and λC is a constant independent of n. The factor N
in the second line is to capture the system size dependence of bn at n � N/q, such that
λC is independent of the system size (see the following). The Lanczos coefficients of n are
thus bounded by a linear function in n followed by a plateau that is independent of n.

Now as mentioned previously, the late-time plateau of Lanczos coefficients was first
discussed in [30] based on the ETH conjecture. Here, we provided an explicit proof of this
plateau behavior of the Lanczos coefficients, which strengthens the results of [30]. As we
now review, the ETH conjecture is still useful to give an estimate of the plateau value
of the Lanczos coefficients [30]. We continue to work in a Hilbert space of N Majorana
fermions, so the total dimension is 2N/2. Using the Lehmann representation in the energy
eigenbasis |Ea〉, the Green function and moments read

G(ω) = 1
Tr[O†O]

∑
ab

2πδ(ω − (Ea − Eb))|Oab|2, Oab ≡ 〈Ea|O|Eb〉 (2.27)

µ2n =
∫
dω

2π ω
2nG(ω) = 1

Tr[O†O]
∑
a,b

(Ea − Eb)2n|Oab|2. (2.28)

According to ETH, the matrix elements Oab can be approximated by a random matrix to
high accuracy in the thermodynamic limit, i.e., Oab = A(Ea, Ea)δab +A(Ea, Eb)2−N/4Rab,
where A(Ea, Eb) is a smooth function of energies, Rab denote a random matrix with zero
mean and unit variance. If we assume A(Ea, Eb) = A(0, 0)F (Ea − Eb) is a function of the
energy difference only, then we have

µ2n = 2−N/2
∑
a,b

(Ea − Eb)2n |A(Ea, Eb)|2∑
c |A(Ec, Ec)|2

= 2−N
∑
a,b

(Ea − Eb)2n|F (Ea − Eb)|2 ≈ (NE)2n, (2.29)

where we have implicitly averaged over the random matrix Rab. The moment µ2n is domi-
nated by the largest energy difference between two many-body energy eigenvalues at large
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Figure 2. (a) The Lanczos coefficient of the SYK model. The curves from the bottom to the
top correspond to q = 4 and N = 20, 22, 24, 26, 28, 30, respectively. (b) The plateau value of the
Lanczos coefficient at different N . b̄ given by the plateau value of the Lanczos coefficient n > N/q.
The dashed line is fitted by a linear function, showing that the platue value is proportional to N . (c)
The K-complexity of the Heisenberg operator

√
2ψ1(t) in the SYK model. We use the parameters

q = 4 and N = 30. (d) The time derivative of the K-complexity shown in (c). The scrambling time
is denoted by t∗. Due to the small system size, the exponential growth is not obvious.

n. This implies bn ≈ NE at n � N , namely, the plateau value of Lanczos coefficient is
proportional to the system size N .

The linear-to-plateau behavior of Lanczos coefficients in turn implies that, in a chaotic
system, the average K-complexity of a simple Heisenberg operator as a function of time
exhibits an exponential-to-linear growth,

CK(t) ≈

eλLt, td � t� t∗

λCNt, t∗ � t
(2.30)

where λL and λC are constants, and td = λ−1
L , t∗ = λ−1

L logN/q are the dissipation time
and the scrambling time, respectively.

2.3 K-complexity growth of operators in the SYK model

We now consider the example of SYK in detail. Our goal is to demonstrate the expecta-
tions (2.30) explicitly. Once again, the SYK Hamiltonian is defined as

H = i
q
2

q!
∑

j1,...,jq

Jj1,...,jqψ
j1 . . . ψjq , J2

j1,...,jq
= (q − 1)!J2

N q−1 = 2q−1(q − 1)!J 2

qN q−1 . (2.31)
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where the Majorana fermions satisfy ψ†j = ψj , and {ψi, ψj} = δij . Exponential growth of
K-complexity at early times in the SYK model has been obtained analytically in the large-q
limit and numerically by solving the Schwinger-Dyson equation (see appendix B in [29]).
At large q, the operator wave function of a single Majorana fermion at time t is

φn(t) =
√

2
nq

tanhn J t, n ≥ 1, (2.32)

leading to the exponential growth of K-complexity at early times,

CK(t) =
∞∑
n=1

n|φn(t)|2 = 1
q

(cosh 2J t− 1), (2.33)

where the summation over the basis can be extended to infinity because we work at finite
time with N →∞. The exponential growth exponent is 2J , consistent with the Lyapunov
exponent at infinite temperature.

In getting (2.33), the large-N Wightman correlation function is used, but this only
works for the K-complexity before the scrambling time. After the scrambling time, we
expect a linear growth of K-complexity. To verify this conjecture, we choose O =

√
2ψ1,

and calculate the Lanczos coefficients numerically. For practical purposes, we can truncate
the Krylov space at some nmax � 1 and still capture the dynamics for a finite time related
to nmax. In figure 2(a), we plot the Lanczos coefficients for different choices of N , with all
showing plateau behavior in the regime n > N/q. Moreover, the value of the plateau is
proportional to the system size N , which is shown in figure 2(b). (At exponentially large
n ∼ eN , the Lanczos coefficient decreases and eventually vanishes because the dimension of
Krylov basis is bounded by that of the operator Hilbert space [34].) The K-complexity and
its time derivative are calculated by solving the Schrödinger equation (2.4) for q = 4 and
N = 30, with the results shown in figure 2(c) and 2(d). At late times, t� t∗ = λ−1

L logN/q,
the K-complexity grows linearly as expected. Due to the small number of qubits we simu-
late, N/2 = 15, the scrambling time is quite small, so the early time exponential regime is
not manifest.

So far, we considered only the infinite temperature case. One way to generalize K-
complexity to finite temperature is to consider the corresponding PETS |Oβ〉 ≡ |Oβ(θ = 0)〉
at temperature 1/β. We focus on θ = 0, and the case of nonzero inserting angles θ 6= 0
is considered in appendix A. This generalization is essentially equivalent to a change of
definition of the inner product,

〈O1|O2〉β = Tr[e−
βH
2 O†1e

−βH2 O2]. (2.34)

ref. [29] obtained an analytic result at large q prior to the scrambling time. We briefly
review their analytic results at short times (see appendix A, and also the appendix B
in [29] for more details), and present a numerical evaluation valid at late times.

The moments are now related to the finite temperature Wightman correlation function,

G(t) = Tr[ρ1/2Oρ1/2O(t)]
Tr[ρ1/2Oρ1/2O]

, ρ = e−βH , µ2n = i2n
d2n

dt2n
G(t)|t=0, (2.35)
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Figure 3. (a) The Lanczos coefficient of the SYK model at different temperatures. The slope of
the solid line is determined by 2α(β). We use the parameters N = 30, q = 4,J = 1/

√
2. (b) The

K-complexity growth of a single Majorana fermion at different temperature.

Using the large-q Wightman correlation function at finite temperature β > 0 (appendix A),
we get the generalized K-complexity at early times,

CK(t) =
∞∑
n=1

n|φn(t)|2 = 1
q

(cosh 2αt−1), α = J cos αβ2 →

J , J β � 1
π/β, J β � 1

. (2.36)

The exponential growth rate is given by 2α, which is equal to the Lyapunov exponent
λL = 2α at large q [2].

The analytic wavefunction from the large-q Wightman correlation function also allows
us to compute moments of CK operator. To do that, we can introduce the generating
function of K-complexity, i.e.,

〈
eµCK

〉
= 1 + 4

q
log sechαt+

∞∑
n=1

eµn
2
nq

tanh2n αt = (1 + (1− eµ) sinh2 αt)−2/q. (2.37)

The n-th moment is obtained by taking n-th derivative of the generating function, but
we restrict ourselves to the average K-complexity. It would be interesting to explore the
holographic duality of such an generating function in the future.

We also obtain the Lanczos coefficient at large n� N , as shown in figure 3(a), which
shows a similar linear-to-plateau pattern. The slope of the linear function in the Lanczos
coefficient gets smaller at lower temperature, because the dynamics is slower, reflecting
the decrease of the Lyapunov exponent λL = 2α with temperature. The ETH estimate
applied to the operator Oβ leads to (Oβ)ab = A(Ea, Ea)δab + A(Ea, Eb)2−N/2Rab with
A(Ea, Eb) = A(0, 0)F (Ea − Eb)e−β(Ea+Eb)/2. Similar to (2.29), µ2n ∼ (NE)2n for n � N .
As a result the plateau value of the Lanczos coefficient remains unaffected. The time
derivative of K-complexity growth for various temperatures is plotted in figure 3(b), where
the slope of the late-time linear growth is independent from the temperature, and the early-
time exponential growth region expands due to the decrease of the Lyapunov exponent at
finite temperatures.
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3 Holographic complexity in the JT gravity

3.1 Partially entangled thermal state in JT gravity

We now carry out corresponding calculations in JT gravity using complexity-volume dual-
ity. First, recall the setup of JT gravity. For a holographic conformal field theory, the bulk
representation of the PETS state is a half disk with an operator inserted on its bound-
ary [12, 14]. We assume that the dual bulk theory is JT gravity [20] with a free matter
field χ (the bulk field dual to operator O) coupling only to the metric,

I = Ibdy[g, φ] + IM [g, χ], (3.1)

Ibdy[g, φ] = − φ0
16πGN

[∫ √
gR+ 2

∫
∂
K

]
− 1

16πGN

[∫
d2xφ

√
g(R+ 2) + 2

∫
∂
dx
√
hφbK

]
, (3.2)

where GN is the Newton’s constant. g and h refer to the determinant of metric gµν and
of induced metric. R, K, φ, and φb denote the scalar curvature, the extrinsic curvature,
the dilaton field and its value on the boundary, respectively. We require that the constant
φ0 � φ. The boundary conditions are

h = 1
ε2
dτ2, φb = φr

ε
, (3.3)

where φr is chosen to be a constant and τ is the imaginary time of the boundary theory.
The first term of (3.2) is purely topological and gives the residual entropy S0 =

φ0/4GN . The second term in the bulk gives R + 2 = 0 after the dilaton field φ is in-
tegrated out. So the metric in the bulk is localized to EAdS2, ds2 = (dτ̃2 +dz2)/z2 (in this
section, we work in Euclidean signature). Thus, the remaining dynamics of the metric is
on the boundary and is governed by the last term of (3.2). This can be effectively reduced
to the reparametrization of the boundary time [20]

τ̃ = f(τ), z = εf ′(τ) + o[ε3], (3.4)

which automatically satisfy the boundary condition of metric in (3.3). The time
reparametrization field f(τ) is governed by the Schwarzian action [20, 50],

Ibdy[f ] = −Q
∫
dτ
√
h(K − 1)

= −Q
(

2π −
∫
dx2√gR2 −

∫
dτ
√
h

)
= −Q(2π +A− L) (3.5)

≈ −εQ
∫ β

0
dτ Sch(f(τ), τ), (3.6)

where Q = φb
8πGN

, L = β

ε
, Sch(f(τ), τ) = −1

2

(
f ′′

f ′

)2
+
(
f ′′

f ′

)′
. (3.7)

We have used the Gauss-Bonnet theorem and R = −2 in the second line. A is the area
enclosed by the boundary. L is the length of the boundary.
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We assume that the inserted operator O is a single trace operator with scaling dimen-
sion ∆ and the dual matter field χ vanishes in vacuum. We only consider the case of ∆ > 0
which agrees with the situation in the SYK model. The dimensionless inner product of the
PETS becomes [12]

ε2∆ 〈Oβ(θ)|Oβ(θ)〉
〈1β |1β〉

= ε2∆ 〈O(τ)O
(
τ ′
)〉
β

= ε2∆ δ2

δχr(τ)δχr(τ ′)

∫
Df e−Ibdy[f ]−Ieff

M [f,χ]

=
∫
Df

(
ε2f ′(τ)f ′(τ ′)

[f(τ)− f(τ ′)]2

)∆

e−Ibdy[f ]

≈
∫
Df

[
2 coshD(X,X ′)

]−∆
e−Ibdy [f ], (3.8)

τ = β

4

(
1 + 2θ

π

)
, τ ′ = −β4

(
1− 2θ

π

)
, (3.9)

where X(X ′) denotes the point on the boundary with the boundary time τ(τ ′), and
D(X,X ′) denotes the geodesic distance between the two points X and X ′. In getting
the above equation, we have used the effective action of the matter field [20] and the
approximation of geodesic distance under the reparameterization (3.4)

Ieff
M [f, χ] = −

∫
dτ̃1dτ̃2

χ̃r(τ̃1)χ̃r(τ̃2)
|τ̃1 − τ̃2|2∆ ,

χr(τ) =
[
f ′(τ)

]1−∆
χ̃r(f(τ)) (3.10)

coshD(X(τ1), X(τ2)) = (τ̃1 − τ̃2)2 + z2
1 + z2

2
2z1z2

= [f(τ1)− f(τ2)]2

2ε2f ′(τ1)f ′(τ2) + o[ε0]. (3.11)

where we have normalized the prefactor of the correlation function in the Poincare coordi-
nate, and χr(τ) is the source of O(τ).

Combining the gravity part and the matter part, we obtain the effective action up to
some constants

I = −Q(A− L) + µLµ, µ = ∆, Lµ ≈ D(X,X ′). (3.12)

Equivalently, the first part describes a massive particle with charge Q moving in a hyper-
bolic space, where A is the area enclosed by the world line and L is the length of the world
line [50]. We call it the boundary particle because it locates the boundary. The second
part describes a neutral particle, where Lµ and µ are the world line length and the mass of
the inserted particle, respectively. We call it the inserted particle because it describes the
operator insertion. So the degree of freedom are the trajectories of the boundary particles
and the inserted particle, where the total length of the world line of the boundary particles
L is fixed to be β/ε.

We also need to connect the world lines between the boundary particle, and the inserted
particle according to the inserted position θ. The dimensionless parameters in the problem
are {Q,L, µ, θ}, where {Q,L, µ} are measured in units of the AdS radius.
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Figure 4. (a) A schematic trajectory of boundary particles in hyperbolic space. The two segments
and the vertical line represent the world lines of the two boundary particles and the inserted particle.
The true horizon is point HR. (b) The configuration of the dilaton field in the global coordinate of
AdS2 with the operator insertions. The parameters are Q = 100, L = 30, µ = 20 and θ = π/20. We
plot the geodesics of CV (−td, td) (dashed) and CV (td, td) (dotted). These geodesics intersect the
left boundary, left-outer horizon, left-inner horizon, right-inner horizon, right-outer horizon, and
right boundary at points

{
YL, H

+
L , H

−
L , H

−
R , H

+
R , YR

}
.

Throughout we assume a low-energy limit and a classical limit Q � L � 1. To
minimize the action, the classical solution tends to have a large A and a small Lµ. One can
have an intuitive picture of the solution in figure 4(a). We will discuss quantitatively below.

To prepare the PETS, it is convenient to use an embeddeding space, −(Y −1)2+(Y 0)2+
(Y 1)2 = −1 with the metric ds2 = −(dY −1)2 +(dY 0)2 +(dY 1)2. Other coordinate systems
are summarized in appendix B.

The action (3.12) is invariant under the an overall SL(2) transformation on the left
boundary particle, the right boundary particle, and the inserted particle. The SL(2)
charges of the three particles are denoted as

{
ZaL, Z

a
R, Z

a
µ

}
respectively. Their trajecto-

ries
{
Y a
L , Y

a
R , Y

a
µ

}
are determined by their own SL(2) charges via [17, 50]

ZR · YR = −Q, ZL · YL = Q, Zµ · Yµ = 0. (3.13)

Actually, the overall SL(2) transformation is a gauge redundancy due to the killing sym-
metries of the background AdS2. So the total charges vanish

ZaR + ZaL + Zaµ = 0, (3.14)

which controls the interactions between the three particles. In the rest frame of the inserted
particle, we make the following ansatz for the SL(2) charges,

Zai = Q

cosh ri
(si cosh ρi, 0,− sinh ρi), Zaµ = (0, 0,−µ), sL,R = −1, 1, i = L,R. (3.15)

where ri and ρi are constants determined by the equation of motion. From (3.13), the
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trajectories of the two boundary particles are

Yi(ϕ) = e−siρiT2(cosh ri, sinh ri sinϕ, sinh ri cosϕ)T , T2 =

 0 0 1
0 0 0
1 0 0

 , (3.16)

which are parameterized by the angle ϕ in the Rindler coordinates.
Schematic trajectories for these particles are shown in figure 4(a): the two segments

are world lines of the left and right boundary particles with centers at HL and HR, respec-
tively. The red line is the inserted particle. The segments are associated with angles θi
which satisfy

tanh ρi = − tanh ri cos θi2 , i = L,R, (3.17)

because the three trajectories join at X and X ′. The length of the world lines of two
boundary particles is fixed by

θi sinh ri = L

2

(
1 + si

2θ
π

)
, (3.18)

which also enforces the total length to be L. With eqs. (3.14), (3.17) and (3.18), we can
solve for {ρi, ri, θi} in terms of the parameters {Q,L, µ, θ}.

The dilaton field can be determined from its equation of motion. At point Y , one has

φ

8πGN
=

ZL · Y, Y 1 < 0
−ZR · Y, Y 1 > 0

. (3.19)

Figure 4(b) shows the configuration of the dilaton field for the PETS in global coordinates
for AdS2. When the centers HL and HR are on the both sides of the trajectory of the
inserted particle in Euclidean AdS2, as shown in figure 4(a), the dilaton field reaches
extremal values at the two points. We call them horizons HL, HR although only the one
with the smaller value of dilaton is the true horizon [12]. Each of the horizons extends along
a light cone in Lorentzian AdS2, as shown in figure 4(b). We call the left(right)-going light
cone of the left horizon as the left-outer(inner) horizon, and the right(left)-going light cone
of the right horizon as the right-outer(inner) horizon.

Using the conservation law (3.14) and the constraints (3.17), (3.18), the SL(2) charges
of the boundary particles can be obtained numerically. One can also can get analytic
solutions perturbatively in µL

Q � 1,

ri = r − 2 + (π + 2θsi) tan θ
4π2

µL

Q
, (3.20)

where sinh r = L
2π is the unperturbed radius.

However, at θ = π
2 , the expansion (3.20) breaks down. To get a meaningful result,

one can introduce a regularization, i.e., θ = π
2 − δ, and expand first in δ → 0 and then in

µL2

Q � 1. The result is

rR = r, rL = r − 1
4π2

µL2

Q
. (3.21)

In this case, the expansion parameter is µL2

Q which differs from the parameter µL
Q at generic

θ. This reflects the non-commutativity of the two expansions in the δ = 0 limit.
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3.2 Holographic complexity growth of the Heisenberg operator

We define the holographic complexity CV (t) of the Heisenberg operator as the holographic
complexity of the corresponding PETS. In two-dimensional spacetime, the CV conjec-
ture [22] states that the holographic complexity is proportional to the geodesic distance D
between the boundary points at times tL and tR in Lorentzian signature. It is approximated
by [42]

CV (tL, tR) ≈ φ0
GN

D (YL (π − iuL) , YR (iuR)) , ui = 2πti
βi

, βi = π + 2θsi
θi

β, (3.22)

where φ0 dominates the cross-section. The geodesic distance D(Y1, Y2) between points Y1
and Y2 can be evaluated by the inner product in the embeddeding space, cosh(D(Y1, Y2)) =
−Y1 · Y2. Finally, letting C̃V = GN

φ0
CV , we have

cosh C̃V (tL, tR) = cosh (ρL + ρR) (cosh rL cosh rR + sinh rL sinh rR cosh uL cosh uR)
− sinh (ρL + ρR) (sinh rL cosh rR cosh uL + cosh rL sinh rR cosh uR)
+ sinh rL sinh rR sinh uL sinh uR. (3.23)

Consider first the case with −tL = tR = t. The choice of opposing directions of time
evolution corresponds to the Heisenberg evolution of operators, U(t)†Oβ(θ)U(t). Without
the inserted particle, µ = 0, the bulk is unperturbed and recovers the Rinder patch of AdS2,
ρL + ρR = 0, rL = rR = r and −uL = uR = 2πt

β . The complexity is CV [1β ] = 2φ0r/GN ,
which is independent of time because of the boost symmetry of the TFD state.

In the light operator limit, µL � Q, and considering |θ| 6= π/2, the perturbed solu-
tion (3.20) can be used to get the geodesic length,

cosh C̃V (−t, t) =


e2r

2

(
1 + π sec θ cosh u− (2+2θ tan θ)

2π2
µL

Q

)
, td � t� t∗

1
2

(sec θ
8π

µL

Q
er+u

)2
, t� t∗

, u = 2π
β
t

(3.24)
where r ∼ logL, and the dissipation time and the scrambling time are, respectively,

td = β

2π , t∗ = β

2π log 8πQ cos θ
µL

. (3.25)

At late times, we only need consider the leading time dependence in (3.23). The complexity
grows exponentially at early times and linearly at late times,

C̃V (−t, t) ≈


2r + sec θ

2π
µL

Q
cosh u, td � t� t∗

2 log
(sec θ

8π
µL

Q

)
+ 2r + 2u, t� t∗,

(3.26)

The early time exponential growth has Lyapunov exponent λL = 2π/β, and at late time
the linear growth rate of C̃V is λC = 4π/β.
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Figure 5. (a) The complexity growth of a light Heisenberg operator, where the contributions from
the intervals between points

{
YL, H

+
L , H

−
L , H

−
R , H

+
R , YR

}
are shown, where the contribution from

D(H−L , H
−
R ) is too small to be seen. (b) The time derivative of the complexity growth. The two

dashed lines indicate the dissipation time td and the scrambling time t∗ in (3.25). The parameters
are Q = 100, L = 30, θ = 0, and µ = 0.1.

In the θ = π
2 case, we use instead the perturbed solution (3.21), and expand the

geodesic length in the limit δ → 0 and µL2 � Q,

cosh C̃V (−t, t) =


e2r

2

(
1 + cosh u− 1

4π2
µL2

Q

)
, td � t� t∗

1
2

( 1
2π

1
8π

µL2

Q
er+u

)2
, t� t∗

, u = 2π
β
t, (3.27)

leading to the following complexity dynamics,

C̃V (−t, t) ≈


2r + 1

4π2
µL2

Q
cosh u, td � t� t∗

2 log
( 1

2π
1

8π
µL2

Q

)
+ 2r + 2u, t� t∗

. (3.28)

In particular, the qualitative behavior is not modified by the change in perturbation pa-
rameter and the Lyapunov exponent and late time exponent are still given by λL = 2π/β
and λC = 4π/β, respectively. It is also interesting to note that if one regularizes the infinity
at π

2 by sec π
2 →

L
2π , then (3.24) can include the case θ → π

2 as well.
These analytic results are also consistent with a numerical evaluation of the complexity

as shown in figure 5. The numerical solution indeed shows that the complexity grows
exponentially at first and linearly after the scrambling time.

Now, when HL, HR are on both sides of the trajectory of the inserted particle,
the geodesic giving the complexity crosses the left/right-inner/outer horizons at points{
H+
L , H

−
L , H

−
R , H

+
R

}
from left to right, as shown in figure 4(b). Combining with the two

points {YL, YR} on the boundaries, they divide the complexity geodesic into five intervals.
We plot the contributions of these intervals to the complexity in figure 5 in the light op-
erator limit. The growth of complexity is mainly due to the growth of the length of the
geodesic distances inside the black hole interiors D(H+

L , H
−
L ) and D(H−R , H

+
R ). Note in

particular the similarity between figure 5 and the K-complexity in figures 2(c), 2(d).
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Figure 6. The complexity growth of a heavy Heisenberg operator. The parameters are Q = 100,
L = 30, µ = 20 and θ = π/20.

To compare with the SYK model, we identify ε = 1/J . Then the parameters of the
JT gravity and the SYK model are related by

Q = αSN, L = βJ , µ = 1
q
,

φ0
4GN

= sN, (3.29)

αS and s are some numerical constants. At the large q limit, αS = 1
4q2 and s = 1

2 log 2 [2].
Based on (2.36), if the boundary length segments are subtracted from the holographic
complexity, we get the following equality in the conformal limit,

∆CV (t)
L

= αC
q

(
cosh 2πt

β
− 1

)
= αCCK(t), αC = 2s

παS
, td < t < t∗. (3.30)

where we have set θ = 0 for comparison. (Actually we verify in appendix A that for
a nonzero θ, the equality still holds.) Note that the scrambling time for K-complexity,
β
2π log N

q
J
α ≈ t∗

(
1 + O[(logN)−1]

)
, is approximately equal to the scrambling time of the

holographic complexity in the large N limit. It is also interesting to compare the rate of
complexity growth for both K-complexity and holographic complexity. In the conformal
limit, the following equation hold after the scrambling time,

d log ∆CV (−t, t)
dt

= d logCK(t)
dt

, t > td. (3.31)

At this level, the K-complexity defined in (2.6) thus gives a microscopic counterpart of
holographic complexity.

If two sides are evolved in the same time direction, then the complexity will grow
linearly at first since the complexity of the time evolution operator U will dominate over
the simple operator O. The geodesic length and complexity are

coshD(t, t) = e2r

2 cosh2 u

(
1 + π sec θ sech u− (2 + 2θ tan θ)

2π2
µL

Q

)
, (3.32)

C̃V (t, t) ≈ 2r + 2u, t� td, u = 2πt
β
. (3.33)

At late times, this growth is equivalent to the late-time linear growth of the complexity
in simple Heisenberg operators. This is because the Heisenberg operator becomes compli-
cated after the scrambling time, and the Heisenberg evolutions at two sides become mostly
uncorrelated.
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Another interesting limit is the heavy operator limit. When µ = 2Q, the two segments
in figure 4(a) become two tangent thermal circles now with inverse temperatures βi =
π+2θsi

2π β, respectively. The operator O is already complicated initially, and there is not
a large separation between the scrambling time and the dissipation time, as shown in
figure 6. In this limit, the complexity approximately decomposes into the complexities of
two wormholes separately,

C̃V (tL, tR) ≈ 2 log
(
βL
πε

cosh πtL
βL

)
+ 2 log

(
βR
πε

cosh πtR
βR

)
(3.34)

= C̃V [e−( 1
2βL+itL)H ] + C̃V [e−( 1

2βR+itR)H ].

This form exhibits quadratic growth when t � td and linearly growth when t � td. The
decomposition reflects the fact that the heavy operator O effectively cuts the wormhole
into two shorter wormholes while creating a large interior, similar to a Python’s lunch
geometry [55], as shown in figure 4(b). The geodesic length at two wormholes grows with
time independently with their own inverse temperature βi.

4 The size of the partially entangled thermal state

4.1 The size from the SYK model

In this section we obtain some results for operator size and compare them to the preceding
complexity results. The maximally entanglement state |0〉 defined in the doubled SYK
Hilbert space satisfies cj |0〉 = 0, ∀j where cj = (ψjL + iψjR)/

√
2. The size of an operator

ψ in the SYK model can be defined as n[ψ] = 〈ψ| n̂ |ψ〉 / 〈ψ|ψ〉, where the size operator is
n̂ =

∑N
j=1(cj)†cj = N/2 + i

∑
j ψ

j
Lψ

j
R [8]. At large q and early time, the growth of size of

operator Oβ(θ + iu) =
√

2ψ1
β(θ + iu) is characterized by

∆ñ(t) = n[Oβ(θ + iu)]− n[1β ]
δβ

= sec
(
πv

2

)
sec(θv) cosh

(2πv
β
t

)
−

2 tan
(
πv
2
)

(θv tan(θv) + 1)
πv + 2 cot

(
πv
2
) , (4.1)

where v = αβ/π, u = 2πt/β, and the normalization factor δβ = 2G(β2 ) is determined by
∆ñ(0) = 1 when θ = π

2 . At late time, the exponential growth will slow and eventually
vanish as the size approaches ∆ñ(∞) = N/2. More generally, one can obtain the generating
function of size operator at arbitrary inserting angle θ, and it turns out the generating
function of size operator agrees with that of K-complexity C.

Notice that, in the large q limit, the scrambling time obtained from both CK and CV
is t∗ ∼ λ−1

L ln(N/q) rather than λ−1
L lnN . So ∆ñ(t∗) = N/q rather than its saturation

value N/2, which implies that ∆ñ(t∗) deviates from exponential growth before saturation.
We will discuss this point in appendix D.

– 22 –



J
H
E
P
0
3
(
2
0
2
1
)
0
1
4

4.2 The size derived from JT gravity

The size is related to the symmetries of AdS2 in JT gravity. The SL(2) generators B̃, Ẽ, P̃
in the dual AdS2 are related to the operators in the two sites SYK model [17]

B̂ = β

2π (HR −HL) , (4.2)

Ê = β

2π [HR +HL + µ̃n̂− 〈1β | (HR +HL + µ̃n̂) |1β〉] , (4.3)

P̂ = −i[B̂, Ê], (4.4)

where µ̃

J
= 2αS

∆δβ

( 2π
βJ

)2
. (4.5)

For conciseness, we consider that the states are normalized. The normalized change of size
can be written as

∆ñ(t) = 1
δβ

[〈Oβ(θ + iu)| n̂ |Oβ(θ + iu)〉 − 〈1β | n̂ |1β〉]

= 1
µ̃δβ

2π
β

[
〈Oβ(θ + iu)|

(
Ê − B̂ − β

π
HL

)
|Oβ(θ + iu)〉+ β

π
〈1β |HL |1β〉

]
(4.6)

= ∆J
2αS

β

2π

[
〈Oβ(θ + iu)| (Ê − B̂) |Oβ(θ + iu)〉

+∂ϕ ln G
(
β

2

(
1− 2θ

π

)
;β
(

1 + ϕ

π

))∣∣∣∣
ϕ=0

]
,

where G(τ ;β) = Tr[e−βHO†(τ)O]/Tr[e−βH ]. Its time derivative is proportional to the
momentum

∂t∆ñ(t) = ∆J
2αS
〈Oβ(θ + iu)| P̂ |Oβ(θ + iu)〉 . (4.7)

According [17], when we insert operators to the thermal circle at π
2 −θ+iu and −π

2 +θ+iu,
the generators in the semiclassical limit are

〈Oβ(θ + iu)|
(
B̂, P̂ , Ê

)
|Oβ(θ + iu)〉

〈Oβ(θ + iu)|Oβ(θ + iu)〉 = ∆
cos θ (sin θ, sinh u, cosh u) (4.8)

At large q limit, we obtain

∆ñ(t) = βJ
π2

(
− 2− π tan θ + π sec θ cosh 2πt

β

)
, (4.9)

which is equal to (4.1) from the SYK model at βJ � 1 limit.

4.3 Relation between the operator size and the complexity

We first discuss the relation between K-complexity and the size operator. At infinite
temperature, the time derivative of K-complexity is proportional to the size at early times
td � t� t∗. Relating (2.36) and (4.1), we find that

1
2J

dCK(t)
dt

≈ 1
q

∆ñ(t), β → 0. (4.10)
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Actually, the generating functions of K-complexity and size operator agree, as shown in ap-
pendix C. For finite temperature and θ = 0, the relation will be modified by a temperature
dependent factor,

1
2J

dCK(t)
dt

≈ 1
q

(
cos2 πv

2

)
∆ñ(t). (4.11)

This relation may be extended to late times after the scrambling time. The linear growth of
K-complexity at late times is proportional to the system size, i.e., 1

2J
dCK(t)
dt ∝ N

2 = ∆n(t)
for t� t∗.

Now we consider the relation between the holographic complexity and the size operator.
The size of an operators is linearly related to its out of time order correlator (OTOC) with
Majorana fermions ψi [8]. From the geometric interpretation of effective theory [12, 56],
we find the following relation between the size in the SYK model and the complexity in
JT gravity at the limit q � 1, N � βJ � 1 and the early time,

π2

βJ
∆ñ[ψ1

β(θ + iu)]
N/2 = −2− 2θ tan θ + π sec θ cosh t

= 2π2Q

µL

GN
φ0

(CV [ψ1
β(θ + iu)]− CV [1β ]) (4.12)

which is valid under the dictionary (3.29). Combining it with the Epidemic relation d
dt∆ñ =

λL∆ñ at the Lyapunov regime [8], we find

1
TS0

dCV
dt

= ∆ñ
N/q

, (4.13)

where entropy S0 = φ0
4GN = sN and temperature T = 1/β.

5 Conclusion and outlook

We calculated the complexity of a Heisenberg operator in both the SYK model and JT
gravity. In the SYK model, we used the notion of K-complexity defined through the Krylov
basis. In the JT gravity model, we used the CV conjecture to define the complexity. The
simplicity of JT gravity allowed us to treat the problem of gravitational back-reaction
by mapping it to motions of particles in a rigid hyperbolic space. We found that both
complexities show an exponential-to-linear growth behavior. In particular, the two notions
of complexity actually match up to a constant before the scrambling time. After the
scrambling time, although the characteristic energy scales for the two complexities are
different, they both show a linear growth with a slope proportional to system size. We
also verified the relation between the complexity growth and the operator size before the
scrambling time. The complexity can be used to capture the quantum dynamics at both
short and long times.

It is worth noting the temperature dependence of the holographic complexity. For a
generic insertion θ 6= ±π/2, the complexity is inversely proportional to the temperature,
CV ∝ (β/ε)e2πt/β before the scrambling time, and it is proportional to the temperature in
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the linear growth regime CV ∝ (φ0/GN )4πt/β after the scrambling time. The former is due
to the fact that the inserted operator is perturbing the wormhole with temperature 1/β,
while the latter is due to the relation between the Lorentzian time and the Rindler time.

By contrast, the role of temperature is less clear in the context of computational
complexity, so it is interesting to attempt to introduce temperature into the definition of
computational complexity. For example, the temperature dependence of the holographic
complexity means a simple identification of the circuit time and the Lorenzian time is not
enough to set the complexities equal up to an overall constant. In our study, we generalized
the K-complexity to finite temperature by considering the PETS at temperature 1/β as the
reference state. This is essentially the same as a temperature-dependent inner product [29].
However, as we showed based on (3.30), such a generalization does not give a completely
consistent identification between the two notions of complexity after the scrambling time.
By adjusting the overall normalization of one or the other, one could match the early or
late time growth but not both. Hence, it is interesting to consider further refinements that
might produce even more harmony between the two notions of complexity. Nevertheless,
we emphasize that at the level of the rate of complexity growth, the identification between
the notions works perfectly well at early and late times as in (3.31). This suggests that as
far as the temperature dependence is concerned, the rate of complexity growth ratio and
the related time scales have simpler holographic interpretation than the absolute value of
complexity itself.

A possible reason for the above mismatch is the difference between the reference states
of K-complexity and holographic complexity. The reference state of K-complexity is the
PETS state |Oβ〉; the reference state of holographic complexity is the maximally entangle
state |0〉 [22]. It is worth developing an algorithm of complexity which is independent from
the choice of initial operator O. It will also benefit the generalization on the complexity of
multi operators, which is related to multi shock waves geometries [22].

The CV proposal used in this paper only depends on the geometry and the dilaton.
It is an open question that whether matter fields should have a direct contribution to
the holographic complexity besides their indirect contribution via back-reaction on the
metric. The answer to this question may be crucial for the complexity of heavy operators,
such as (3.34). From the perspective of complexity-action (CA) conjecture [36, 37, 41–46],
the action of the matter field along the trajectory of the inserted particle can directly
contribute. We hope to explore this problem in the future.

It is also interesting to consider higher dimensional generalization of PETS and its
gravity dual. For instance, in three dimensions, we may insert an end of world brane
behind the horizon of an eternal black hole, corresponding to the geometry worked out
in [57] in the context of an evaporating black hole. The holographic complexity in this case
is then proportional to the volume of a two-dimensional maximal surface connecting the two
boundaries. From the viewpoint of evaporating black holes, the geometry of the PETS in
our study is effectively dual to a two-dimensional version of the entangled system consisted
of the black hole and the auxiliary radiation [57, 58]. And the holographic complexity
calculated here is the so-called unrestricted complexity for decoding the radiation [55].
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A K-complexity in the SYK model at early times

We will summarize the Wightman correlation function and the K-complexity at early times
(e.g. see appendix B in [29] for more details). Using the large-q approximation, the imagi-
nary time correlation function at temperature β is given by

2〈Tτψ(τ)ψ(0)〉 = 1 + 2
q

log α

J | cosα(τ − β/2)| , τ > 0, α = J cos αβ2 . (A.1)

So, the Wightman correlation function is

G(t) = 1 + 2
q

log 1
coshαt. (A.2)

where we have properly normalize it by G(0) = 1. And accordingly the wavefunction of a
simple Majorana fermion is [29]

φn(t) =


1 + 2

q
log 1

cosh(αt) , n = 0√
2
nq

tanhn αt, n ≥ 1.
(A.3)

This leads to the exponential growth of K-complexity at early time,

CK(t) =
∞∑
n=1

n|φn(t)|2 = 1
q

(cosh 2αt− 1), α = J cos αβ2 . (A.4)

We also generalize the analytical result of the K-complexity in the SYK model to non-
zero inserting angles θ 6= 0. For a nonvanishing θ 6= 0, the diagonal component of the
Liouvillian superoperator in Krylov basis is not zero,

Lmn = δn,m−1bn+1 + δn,m+1bn + anδn,m, an = 〈[H,On]|On〉. (A.5)

This change will lead to a slightly different Schrödinger equation for the wave function
O(t) =

∑
n i

nφn(t)On,

∂tφn = bnφn−1 − bn+1φn+1 + ianφn. (A.6)
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The Lanczos coefficient can be mapped to a Toda chain flow and solved by a coupled
differential equation [59]. A general solution is obtained in [59], and after comparing with
the correlation function from the SYK model, these coefficients read

an =


2α tan(vθ)/q, n = 0

2α tan(vθ)n, n ≥ 1
, bn =


α sec(vθ)

√
2/q, n = 1

α sec(vθ)
√
n(n− 1), n ≥ 2

, v = αβ

π
. (A.7)

It is directly to verify that the following wave function is the solution to the above
Schrödinger equation,

φn(t) =


1 + 2

q
log cos(vθ)

cos(iαt+ vθ) , n = 0,√
2
qn

( tanh(αt)
cos(vθ)− i sin(vθ) tanh(αt)

)n
, n ≥ 1.

(A.8)

It is suggective to include an angle dependent complexity to the definition of K-
complexity for the SYK model, namely,

CK =
∑
n

cos
(
θ

π
αβ

)
n|φn|2. (A.9)

With this modification, the K-complexity of the SYK model for nonzero θ is

CK = 1
q

sec
(
θ

π
αβ

)
(cosh 2αt− 1). (A.10)

At the conformal limit α→ π/β, the K-complexity becomes

CK ≈
1
q

(
cosh 2πt

β
− 1

)
, (A.11)

which agrees exactly with the computation from CV conjecture in JT gravity.

B Summary of coordinate systems

We summarize various coordinate systems used in the paper. We start with embedding
coordinate. AdS2 space can be embedded to

−Y 2
−1 − Y 2

0 + Y 2
1 = −1, ds2 = −dY 2

−1 − dY 2
0 + dY 2

1 . (B.1)

The global coordinate which we use to plot the perturbed AdS2 spacetime is given by

Y −1 = cos ν
sin σ , Y 0 = sin ν

sin σ , Y 1 = cotσ, ds2 = −dν
2 + dσ2

sin2 σ
. (B.2)

The Lorentzian coordinate system is related to the embedded coordinate by

Y −1 = z

2

[
1+ 1

z2 (1− t̃2)
]
, Y 0 = t̃

z
, Y 1 = z

2

[
1− 1

z2 (1+ t̃2)
]
, ds2 = −dt̃

2 + dz2

z2 . (B.3)

Furthermore, a possible Rindler coordinate is

Y −1 = cosh r, Y 0 = sinh r sinhϕ, Y 1 = sinh r coshϕ, ds2 = dr2 − sinh2 ρdϕ2.

(B.4)
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C Generating function for size at generic θ

The generating function of size can be obtained in the large-q limit. A simple generalization
of [8] gives the generating function of size operator at generic angle θ,

〈Oβ(ϕ)| eµn̂/δβ |Oβ(ϕ)〉
〈1β | eµn̂/δβ |1β〉

= eµ
(

2 sin2 γµ
− cos (2γµ + (π/2− θ)vµ) + eqµ cos ((π/2− θ)vµ) + (1− eqµ) cosh (uvµ)

)2/q
,

πvµ = βJ sin γµ,

eµq sin
(
πvµ
2

)
= sin

(
2γµ + πvµ

2

)
,

δβ = (α/J )2/q ,

α = J cosαβ/2,

ϕ = θ + iu. (C.1)

At infinite temperature β → 0, the generating function reduces to〈
eµn̂

〉
= eµ[

1 + (1− eqµ) sinh2 J t
]2/q , (C.2)

which agrees exactly with that of K-complexity in (2.37) if one renormalizes the size by a
factor of q since by each step the Liouvillian the size increases a constant amount q. Note
that the generating function works prior to the scrambling time since we implement the
large-q approximation.

D About the scrambling time

In this paper, the scrambling time is defined as the time of the crossover between the expo-
nential growth and the linearly growth of complexities. We will show that this scrambling
time also appears in the growth of the size, i.e. the decay of the OTOC, which should slow
down before saturation.

The Schwarizan theory (3.5) is able to capture the decay of OTOCs at both early
time and late time. In ref. [56], the OTOC

〈
Bl2(t̃1)Al1(t̃2)Bl2(t1)Al1(t2)

〉
corresponds to

the gravitational scattering between the outgoing matter A and the infalling matter B
near the horizon of the black hole with initial mass m = π/β. Semi-classically, assuming
that the change in the mass of the black hole due to the matter is much smaller than m,
and considering the small scaling dimensions l1, l2 ≈ 0, one find that the time shift of the
outgoing matter A is

t̃2 − t2 ≈
1
λL

ln
(
1 + 4αCeλL(t2−t1−tR)

)
, (D.1)
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where C = φr
8πGN = Q

ε = αSN
J , m + α is the mass of the black hole before the matter

A goes out, and tR = (2m)−1 ln(4mC). The exponential time shift slows down when
1 ∼ 4αCeλL(t2−t1−tR), namely at the scrambling time

t∗ ∼
1
λL

ln m
α
∼ 1
λL

ln N
q
, (D.2)

where we find the correspondence of α in the SYK model by matching the energies of PETS
on both sides, i.e. 4Cmα =

〈
ψ1
β

∣∣∣H ∣∣∣ψ1
β

〉
− 〈1β |H |1β〉 = 2J /q. The ln(N/q) dependence

in the scrambling time read from the OTOC agrees with the result of the complexities.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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