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1 Introduction

In the context of gauge/gravity duality the holographic entanglement entropy [1] has pro-

vided a geometric (classical) description of a quantum mechanical object. This correspon-

dence might indicate that there could be a deep relation between quantum gravity and

quantum information theory. If this is correct, one may expect for instance that the nature

of space time geometry could be understood from quantum information theory. It would

be, then, interesting to understand quantum information theory holographically, in the

sense that there could be a holographic dual for some quantum information theory objects.

Actually, the computational complexity could be thought of as an explicit example for

this general idea. Indeed based on earlier works of [2, 3], it was proposed that for a theory

with a gravitational dual, the complexity of a holographic boundary state can be identified

with the on-shell action evaluated on a certain subregion of the bulk space time. More

precisely, in this proposal which is known as the ‘complexity=action’ (CA), the quantum

computational complexity of a holographic state is given by the on-shell action evaluated

on a bulk region known as the ‘Wheeler-De Witt’ (WDW) patch [4, 5]1

C(Σ) =
IWDW

π~
. (1.1)

Here the WDW patch is defined as the domain of dependence of any Cauchy surface in the

bulk whose intersection with the asymptotic boundary is the time slice Σ.

One of the original evidences supporting the proposal is the linear growth of complexity

with respect to time that continues to grow even long after the system reaches thermal

equilibrium [2, 3]. On the other hand for a neutral black hole the growth is bounded by

twice of its mass which is sometimes interpreted as the Lloyd’s bound on complexity [11].

Moreover if the dual CFT is perturbed, the corresponding change of complexity matches

with holographic complexity in the presence of shockwaves [3].

To understand complexity and its holographic dual description, it is important to

explore different features of it from both holographic and field theoretic points of view. In

1Complexity may also be defined for a subregion [6–10].
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particular, it is interesting to investigate whether complexity obeys any constraint or any

bound such as the Lloyd’s bound or not.

Actually despite early observations, it was shown that holographic complexity for the

Schwarzschild black hole, which is dual to a thermofield double state, violates the bound [12]

(see also [13–15]). More precisely although in the late time regime it approaches a constant

value that is twice of the mass of the black hole, the constant is approached from above.

More recently the complexity growth for a system underlaying a global quench was also

studied in [16] where it was shown that the bound is respected during the growth.

The aim of this paper is to further explore Lloyd’s bound in a wider family of states

supporting both anisotropic and also hyperscaling violating exponents. Such models admit

a fixed point where the physics is invariant under an anisotropic scaling

r → ωr, t→ ωzt, x→ ωx, ds→ ω
θ
dds, (1.2)

where z and θ are anisotropic (Lifshitz) and hyperscaling violating exponents. Note that

with a non-zero θ, the distance is not invariant under the scaling which in the context of

AdS/CFT indicates violations of hyperscaling in the dual field theory. That means in such

theories the thermal entropy scales as Sth ∼ T
d−θ
z [17, 18]. Holographically the gravity

description of these models may be provided by an Einstein-Maxwell-Dilaton theory (see

for example [19, 20]).

In this paper we will compute the time dependence of holographic complexity for both

one and two sided black branes in these models using “complexity = action” proposal.2 We

note that the late time behavior of complexity of such models for two sided black branes

has been also studied in [21]. For a related study in Lifshitz geometry see [22].

The rest of the paper is organized as follows. In section 2 we present the results corre-

sponding to two sided black branes where we compute the full time behavior of holographic

complexity. In section 3 we will study one sided black branes. The last section is devoted

to concluding remarks and some related discussions.

2 Holographic complexity for black branes

In this section we will compute the on shell action in the WDW patch for black branes

with Lifshitz and hyperscaling violating exponents. The model that admits such a solution

may be given by a gravitational theory coupled to a gauge field and a scalar field. The

corresponding action is [19]

I =
1

16πGN

∫
dd+2x

√
−g
(
R− 1

2
(∂φ)2 + V0e

ξφ − 1

4
eηφF 2

)
. (2.1)

Of course the complete action should have certain Gibbons-Hawking terms defined at space-

like and time-like boundaries. Moreover to accommodate null boundaries it is also crucial

2There is also another proposal known as “complexity=volume” that we will not consider in this paper.

Actually although in this proposal we have linear complexity growth at late times there is no a universal

bound for “CV” complexity. Since our main interest is to explore the Lloyd’s bound in this paper we will

only consider “CA”.
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to add the corresponding Gibbons-Hawking terms as well as certain joint actions at points

of intersection of these null boundaries with any other boundary [23, 24]. Taking all terms

into account the action one should consider in the WDW patch is3

I =
1

16πGN

∫
dd+2x

√
−g
(
R− 1

2
(∂φ)2 + V0e

ξφ − 1

4
eηφF 2

)
+

1

8πGN

∫
Σd+1
t

Kt dΣt

± 1

8πGN

∫
Σd+1
s

Ks dΣs ±
1

8πGN

∫
Σd+1
n

Kn dSdλ±
1

8πGN

∫
Jd
a dS . (2.2)

Here the time-like, space-like, and null boundaries and also joint points are denoted by

Σd+1
t ,Σd+1

s ,Σd+1
n and Jd, respectively. The extrinsic curvature of the corresponding bound-

aries are given by Kt,Ks and Kn. The function a at the intersection of the boundaries

is given by the logarithm of the inner product of the corresponding normal vectors. λ

parameterizes the null generator of the null boundary which in this paper we use Affine

parameterization for the null direction. The sign of different terms depends on the relative

position of the boundaries and the bulk region of interest (see [24] for more details).

In what follows we would like to compute the on shell action for black branes with

Lifshitz and hyperscaling violating exponents given by

ds2 =
L2

r
2 θ
d

f

1

r2 d−θ
d

(
− f(r)

r2(z−1)
dt2 +

dr2

f(r)
+ d~x2

)
, At =

L

r
θ
d
f

√
2(z − 1)

d+ z − θ
1

rd+z−θ , e−φ = rq

(2.3)

where L is the radius of the geometry, rf is a dynamical scale where the metric may not

be a good description for a UV complete theory above it [26], q =
√

2(d− θ)(z − 1− θ
d)

and the parameters of the model are given by

η =
2θ(d− 1)− 2d2

qd
, ξ =

2θ

qd
, V0 = (d+ z − θ − 1)(d+ z − θ)

r
2 θ
d

f

L2
. (2.4)

The function f(r) is also given by

f(r) = 1−
(
r

rh

)d+z−θ
. (2.5)

It is worth mentioning that from null energy condition one has [19, 26]

(z − 1)(d+ z − θ) ≥ 0, (d− θ)(d(z − 1)− θ) ≥ 0. (2.6)

Although from these expressions one could have the possibility of θ > d, it was shown that

for this case the solution is unstable [26]. Therefore in what follows we consider d > θ

which in turn results to z ≥ 1.

3Note that the gauge field is needed to generate an anisotropy for the metric and therefore there is no

charge associated to the gauge field. Moreover there is not boundary term for the gauge field. See for

example [25].
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r h

r
=
δ

Figure 1. WDW patch of a two sided black brane, moving forward in time assuming tR = tL .

It is useful to define an effective dimension de = d−θ, an effective hyperscaling violating

exponent θe = θ
d and also an effective scale Le = L

r
θ/d
f

. Of course in what follows we set

Le = 1. In this notation using the trace of Einstein equation

R− 1

2
(∂φ)2 = −d+ 2

d
V (φ) +

d− 2

4d
eηφF 2, (2.7)

it is straightforward to see that the action density for the above solution is

√
−g
(
R− 1

2
(∂φ)2 + V0e

ξφ − 1

4
eηφF 2

)
= −2(1− θe)(de + z)

1

rde+z+1
. (2.8)

The null boundaries of the right hand side of the WDW patches (see figure 1) we are

interested in are given by

t = tR + r∗(0)− r∗(r), t = tR − r∗(0) + r∗(r). (2.9)

Actually we should admit that computations of the holographic complexity we will be

presenting below are very similar to that of Schwarzschild black hole [12]. In particular

due to the symmetry of the model the growth rate of complexity is a function of tL+tR and

thus for simplicity in what follows we will set tL = tR = t
2 . Moreover as it was shown [5]

(see also [12] ) there is a critical time tc > 0 below which the growth rate of complexity is

zero. Therefore in what follows we well just present the results for t > tc.

To proceed, using the notation depicted in figure 1, for a state at tR = tL = t
2 >

tc
2

one has4

Ibulk
I = −2× Vd

8πGN
(1− θe)(de + z)

∫ rmax

rh

dr

rde+z+1

(
t

2
+ r∗(0)− r∗(r)

)
,

Ibulk
II = −2× Vd

4πGN
(1− θe)(de + z)

∫ rh

δ

dr

rde+z+1
(r∗(0)− r∗(r)) ,

Ibulk
III = −2× Vd

8πGN
(1− θe)(de + z)

∫ rm

rh

dr

rde+z+1

(
− t

2
+ r∗(0)− r∗(r)

)
, (2.10)

4The factor of “2” is a symmetric factor due to the symmetry of the WDW patch.
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so that

Ibulk = − Vd
2πGN

(1− θe)(de + z)

∫ rmax

δ

dr

rde+z+1
(r∗(0)− r∗(r))

− Vd
4πGN

(1− θe)(de + z)

∫ rmax

rm

dr

rde+z+1

(
t

2
− r∗(0) + r∗(r)

)
, (2.11)

where Vd is the volume of d dimensional subspace of the space time parametrized by

xi, i = 1, · · · d. Also note that rm can be found from t = 2(r∗(0) − r∗(rm)). Note that at

the critical time one has rm = rmax, so that tc = 2(r∗(0)−r∗(rmax)). It is worth mentioning

that the time-independent divergent term of the bulk action is

Ibulk
δ = − Vd

2πGN

(1− θe)(de + z)

zdeδde
. (2.12)

There are also several joint actions from which the only one at r = rm has non-zero

contribution to the time dependence of complexity. Taking into account the normal vectors

of the corresponding null boundaries

ka1 = α

(
r2(z−θe)

f
(∂t)

a + rz−2θe+1(∂r)
a

)
, ka2 = β

(
−r

2(z−θe)

f
(∂t)

a + rz−2θe+1(∂r)
a

)
,

(2.13)

the joint action

I joint =
1

8πGN

∫
ddx
√
γ log

∣∣∣∣k1 · k2

2

∣∣∣∣ , (2.14)

reads

I joint =
Vd

8πGN

1

rdem

(
(z − θe) log r2

m − log |f(rm)|
)

+
Vd

8πGN

logαβ

rdem
, (2.15)

where α and β are two constants appearing due to the ambiguity of the normalization of

normal vectors of null boundaries. On the other hand from joint points at the surface cut

off one gets the following time-independent divergent term

I joint
δ = − Vd

4πGN

logαβδ2(z−θe)

δde
(2.16)

There are also several boundaries that could contribute to the time dependence of

the action. We note, however, that the one at the time-like cutoff boundary and the null

boundaries do not contribute to the complexity growth rate. The only non-zero contribu-

tion comes from the Gibbons-Hawking term at the future singularity at r = rmax

Isurf = −2× 1

8πGN

∫
ddx dt

√
hKs

∣∣∣
r=rmax

. (2.17)

By making use of the fact that

√
hKs = −

√
grr∂r

√
h = −1

2

1

rde+z−1

(
∂rf(r)− 2(de + z − θe)

r
f(r)

)
, (2.18)
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one finds

Isurf =
Vd

8πGN

1

rde+z−1

(
∂rf(r)− 2(de + z − θe)

r
f(r)

)(
t

2
+ r∗(0)− r∗(r)

)
|r=rmax

=
Vd

8πGNr
de+z
h

(de + z − 2θe)

(
t

2
+ r∗(0)− r∗(rmax)

)
. (2.19)

Since we have used the Affine parametrization for null direction the corresponding boundary

term is zero, while form the time like boundary we get the following divergent term

Isurf
δ =

Vd
2πGN

de + z − θe
zδde

. (2.20)

It is also important to note that due to time like boundary there are certain counter terms

that needed to make on shell action finite (see e.g. [28]). In the present case these terms

lead to the following divergent term [29]

Îct = − Vd
2πGN

de + z − 1

zδde
. (2.21)

Although this term does not directly contribute to the complexity growth, it is crucial to

consider it in order to fully understand the structure of counter terms of the model.

Before evaluating the rate of growth of complexity, we should add proper counter terms

to the action in order to remove the ambiguity caused by the normalization of null vectors.

Actually the corresponding counter term that does the work has the following form [24]5

1

8πGN

∫
dλddx

√
γΘ log

Θ

de
, (2.22)

were γ is the determinant of the induced metric on the joint point where two null surfaces

intersect, and

Θ =
1
√
γ

∂
√
γ

∂λ
, (2.23)

with λ is an affine parameter for the null surface and in the present case and for the null

vector k1 it is given by
∂r

∂λ
= αrz−2θe+1. (2.24)

For the null surface associated with the null vector k1 one finds Θ = −αderz−2θe and thus

Ict
1 = − 1

8πGN

∫
dλddx

√
γΘ log

Θ

de
=

Vdde
8πGN

∫ rm

δ

dr

rde+1
logαrz−2θe

= − Vd
8πGN

(
logαrz−2θe

m

rdem
+
z − 2θe

der
de
m

)
+

Vd
8πGN

(
logαδz−2θe

δde
+
z − 2θe
deδde

)
, (2.25)

5It is important to note that there is an ambiguity for this equation due to a length scale appearing

in the logarithm. Of course since we have already sent the scale to one, there is no a dimensionful scale

in this expression, though there is still an ambiguity that we fixed it by the factor of de in the logarithm.

Although we have fixed the factor by hand there is a way to argue how to do that [29].
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Similarly for the null surface associated with k2 one finds

Ict
2 = − Vd

8πGN

(
log βrz−2θe

m

rdem
+
z − 2θe

der
de
m

)
+

Vd
8πGN

(
log βδz−2θe

δde
+
z − 2θe
deδde

)
. (2.26)

Therefore altogether one gets

Ict = − Vd
8πGN

logαβ

rdem
− Vd

4πGN

log rz−2θe
m

rdem
− Vd

4πGN

z − 2θe

der
de
m

+
Vd

8πGN

(
logαβδ2(z−2θe)

δde
+

2(z − 2θe)

deδde

)
. (2.27)

Note that there are also other counter terms (from null boundaries extended all the way

from cut off surface δ to rmax) that result to the following divergent term

Ĩct =
Vd

8πGN

(
logαβδ2(z−2θe)

δde
+

2(z − 2θe)

deδde

)
. (2.28)

It is then evident that the ambiguous term drops from the on shell action and we would

also get new time dependent terms contributing to the on shell action. Of course it is not

the only counter term that could make the on shell action finite. Actually one can see that

there are more counter terms needed to make complexity UV finite.6 Interestingly enough

these new counter terms will also lead to new time dependent terms that have contribution

to the complexity growth [29]. To explore the situation let us summarize the terms we

have found so far

Itotal = Ibulk + I joint + Isurf + Îct + Ict + Ĩct (2.29)

= − Vdθe
2πGN

(
log δ

δde
+

1

deδde

)
+

Vd
2πGN

z − 1

deδde
+

Vd
4πGN

(
log rθem

rdem
− z − 2θe

der
de
m

)
− Vd

8πGN

log |f(rm)|
rdem

+
Vd

8πGNr
de+z
h

(de + z − 2θe)

(
t

2
+ r∗(0)− r∗(rmax)

)
− Vd

4πGN
(1− θe)(de + z)

∫ rmax

rm

dr

rde+z+1

(
t

2
− r∗(0) + r∗(r)

)
+finite time independent term .

Therefore one needs further counter terms to remove the remaining divergences. Indeed

one can see that there are certain counter terms that could remove these divergences and

have non-trivial contributions as follows [29]7

− Vd
4πGN

(
log rθem

rdem
+

θe

der
de
m

)
+

Vd
4πGN

z − 1

der
de
m

. (2.30)

6We would like to thank the referee for his/her comment that encouraged us to fully address the divergent

terms of the model.
7Possible counter terms could be [29]

1

8πGN

∫
dλddΣ

√
γΘ

(
1

2
ξφ+

z − 1

de

)
.
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Taking these terms into account one arrives at

Itotal = − Vd
4πGN

1− θe
der

de
m

− Vd
8πGN

log |f(rm)|
rdem

+
Vd

8πGNr
de+z
h

(de + z − 2θe)

(
t

2
+ r∗(0)− r∗(rmax)

)
− Vd

4πGN
(1− θe)(de + z)

∫ rmax

rm

dr

rde+z+1

(
t

2
− r∗(0) + r∗(r)

)
+finite time independent term . (2.31)

Having found all terms contributing to the on shell action, it is then straightforward to

compute the growth rate of complexity. Indeed by making use of the fact that drm
dt = f(rm(t))

2rz−1
m (t)

one finds

d

dt
C =

1

π

d

dt
IWDW =

2E

π

(
1 +

de
2(de + z − 1)

f̃(rm(t)) log |f(rm(t))|
)
. (2.32)

Here

f̃(rm(t)) =

(
rde+zh

rde+zm (t)
− 1

)
, E =

Vd
16πGN

de + z − 1

rde+zh

, (2.33)

where E, at which the complexity approaches at late times, is a parameter that is propor-

tional to the mass of the black brane (see e.g. [27])

M =
de

de + z − 1
E. (2.34)

Thus E reduces to M in the isotropic (z = 1) case. For θ = 0 the result should be compared

with that of [22].8 It is interesting to note that despite the fact that the solution depends

on z and θ exponents, qualitatively the rate of complexity growth behaves the same as

that of Schwarzschild black brane [12]. In particular it exhibits a logarithmic divergence

at times just after the critical time where rm ∼ rmax

d

dt
C ∼ 2E

π

(
1− de(de + z)

2(de + z − 1)
log

rmax

rh

)
, (2.35)

that survives the θ = 0 limit.

On the other hand this result shows that Lloyd’s bound (defined in terms of the mass

of black brane) is always violated for non-trivial anisotropic and hyperscaling violating

exponents. This is simply because that the value of E, at which the rate of complexity

growth saturates to, is always greater than (or equal to) the mass of the black brane

M ,9 which naturally appears on the right hand side of Lloyd’s inequality. Of course one

may wonder that due to non-trivial scaling of the time coordinate, the Lloyd’s bound gets

8We note, however, that the authors [22] have not considered the counter terms that remove the ambi-

guity and divergences and therefore their rate of complexity growth has unusual behavior for large z. See

figure 4 of [22].
9Note that from equation (2.6) and with the assumption of d > θ one has z ≥ 1.
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Figure 2. Rate of the complexity growth in a WDW patch for two sided black brane. Left (right)

panel shows different values of dynamical exponent for de = 1(de = 2). For each curve on both

panels the Lloyd’s bound is violated at some time before the curve reaches unity on the vertical axes.

modified from 2M to a “would be” bound 2E. We note, however, that even this “would

be” bound is also violated in the present case simply because the rate of complexity growth

approaches the bound given by 2E from above (note that rm(t) ≥ rh). More precisely at

late times where rm approaches the radius of horizon rh one gets

d

dt
C ∼ 2E

π

(
1 +

de(de + z)

2(de + z − 1)

(
1− rm(t)

rh

)
log(de + z)|1− rm(t)

rh
|
)
. (2.36)

The behavior of the rate of complexity growth is depicted in figure 2 for different values of

z and θ.

It is worth noting that whatever the bound is (2M or 2E) it is evident from the

expression (2.32) that the rate of growth of complexity reaches the bound at a finite time

which is of order of rh. Of course after this time the complexity still evolves with time till

it reaches the bound once again at late times.

By making use of the equation (2.32) one can find the point at which the bound

is being saturated. This can be done by setting the time dependent part of the equa-

tion (2.32) to zero

f̃(rm) log |f(rm)| = 0, (2.37)

that solves for rm = 2
1

de+z rh. Note that it also approaches zero for rm → rh that occurs

at late times. It is also worth noting that from the explicit form of the blacking function

f(r) one gets

t =
2rzm
z

2F1

(
1,

z

de + z
, 1 +

z

de + z
,

(
rm
rh

)de+z)
, (2.38)

that may be used to read the corresponding time of the special points. In particular for

rm → rh one has t→∞ (late times) and for rm = 0 one gets t = 0. Moreover the critical

time tc where rm →∞ is also given by

tc ∼
1

4 sin zπ
de+z

1

T
, (2.39)

where T is the Hawking temperature of the black hole.
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t = 0

t

P

v
=
0

r
=
r h

r
=

δ

r = rmax

A

B

Figure 3. WDW patch of a one sided black brane, i.e., Vaidya geometry. The orange line is the

in-falling collapsing null shell located at v = 0.

3 Holographic complexity for Vaidya metric

In this section we will consider holographic complexity for Vaidya geometries with Lifshitz

and hyperscaling violating exponents. The model could provide a gravity description for a

global quench in a field theory with anisotropic scaling and hyperscaling violation. Adding

an infalling null shell matter to the action (2.1), the resultant model admits the following

Vaidya metric [30]

ds2 =
1

r2(1−θe)

(
− f(r, v)

r2(z−1)
dv2 − 2

rz−1
drdv + d~x2

)
, Av =

√
2(z − 1)

de + z

1

rde+z
, e−φ = rβ ,

(3.1)

where

f(r, v) =


1 v < 0,

1−
(
r

rh

)de+z
≡ f(r) v > 0,

. (3.2)

All parameters of the solution are exactly the same as the black brane solution presented

in the previous section.

The aim of this section is to compute complexity for the boundary state at time equal

to t. To do so, one needs to compute the on shell action in the corresponding WDW patch

depicted in figure 3. Following [16] we decompose the patch into two parts: v > 0 and

v < 0 parts (see figure 3).

v > 0 part. For v > 0 we have five boundaries, one at the future singularity and three

null boundaries given by v = 0, v = t and

t− v = 2

∫ rp(v,t)

0
dr
rz−1

f(r)
, (3.3)
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and a time like boundary at r = δ. Using the explicit expression for f(v, r) one finds

t− v = 2
rzp
z

2F1

(
1,

z

de + z
, 1 +

z

de + z
,

(
rp
rh

)de+z)
. (3.4)

Using the notation of [16] the coordinates of the points A, B and P are determined as

follows10

A : vA = t, rA = δ,

B : vB = t− 2
δz

z
, rB = δ,

P : vP = 0, rP = rp(0, t). (3.5)

It is then easy to compute the bulk action in this part. Indeed by making use of equa-

tion (2.8) one has

Ibulk
v>0 =− 1

8πGN
(1− θe)(de + z)

∫
ddx

(∫ vB

0
dv

∫ ∞
r(v,t)

dr

rde+z+1
+

∫ t

vB

dv

∫ ∞
δ

dr

rde+z+1

)
=− Vd

8πGN
(1− θe)

(
2

zδde
+

∫ t− 2
z
δz

0

dv

rde+z(v, t)

)
. (3.6)

The v > 0 part of the WDW has five boundaries three of which are null and their contri-

butions to the on shell action vanish using affine parametrization for the null directions.

There is also a time-like boundary at the cutoff surface and one needs to consider the

corresponding Gibbons-Hawking term for this boundary. We note, however, that since

our ultimate goal is to compute the time dependence of complexity, this term does not

contribute to the complexity growth. On the other hand the space-like boundary at the

future singularity does indeed contribute to the complexity growth and therefore we will

compute the corresponding Gibbons-Hawking term given by

Imax
v>0 = − 1

8πGN

∫
Σd+1
s

Ks dΣs = − 1

8πGN

∫
ddx

∫ t

0
dv
√
γKs . (3.7)

From the explicit form of the normal vector to the space-like boundary at the future

singularity

na = −
r
de+z

2
h

r
de+z

2
+θe

max

(∂v)
a − r

de+z
2

+1−θe
max

r
de+z

2
h

(∂r)
a, (3.8)

the above Gibbons-Hawking term reads

Imax
v>0 =

Vd
16πGN

de + z − 2θe

rde+zh

t . (3.9)

10Note that in order to fix vB we expand (3.4) at rp ∼ δ → 0

t− vB = 2
δz

z
2F1

(
1,

z

de + z
, 1 +

z

de + z
,

(
δ

rh

)de+z)
∼ 2

δz

z
.
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Finally we need to compute the contributions of the joint points where a null boundary

intersects with another boundary (that could also be a null one). The corresponding term

is given by the logarithm of the inner product of two intersecting boundaries. To compute

such terms one needs to find the normal vectors to the null and time-like boundaries that

are given by

At v = 0, t ka1 = −α rz+1−2θe(∂r)
a,

At BP ka2 = β

(
2

f(r)
r2(z−θe)(∂v)

a − rz+1−2θe(∂r)
a

)
,

At r = δ, ka3 = rz−θe(∂v)
a − r1−θe(∂r)

a . (3.10)

It is straightforward to see that the joint terms at r = δ (at points A and B) do not

contribute to the time dependence of the on shell action11 while the one at point P does.

Therefore in what follows we only consider the joint term at pint P where two null bound-

aries intersect. Indeed by making use of these normal vectors one can find the contribution

of the joint point at P as follows

I joint
v>0 =

1

8πGN

∫
p

√
γ ddx log |k1 · k2

2
|

=
Vd

8πGN

1

rdep (t)

(
(z − θe) log r2

p(t)− log f(rp(t))
)

+
Vd

8πGN

logαβ

rdep (t)
. (3.11)

Putting all results together one gets

Iv>0 =
Vd

8πGN
(1− θe)

(
log δ

δde
− 2

zδde
−
∫ t− 2

z
δz

0

dv

rde+z(v, t)

)
+

Vd
16πGN

de + z − 2θe

rde+zh

t

+
Vd

8πGN

1

rdep (t)

(
(z − θe) log r2

p(t)− log f(rp(t))
)

+
Vd

8πGN

logαβ

rdep (t)
. (3.12)

v < 0 part. In this part the function f(v, t) = 1 and we have four boundaries two of

which are given by the past and future horizon and two null boundaries located at v = 0 and

rz = rzp(t)−
z

2
v. (3.13)

It is then straightforward to compute the bulk action in this region

Ibulk
v<0 = − 1

8πGN
(1− θe)(de + z)

∫
ddx

∫ 0

−∞
dv

∫ ∞
(rzp(t)− z

2
v)1/z

dr

rde+z+1

= − Vd
4πGN

1− θe
de

1

rdep (t)
. (3.14)

11The corresponding contribution is

S =
Vd

8πGN

(
log δ

δde
− 1

δde

)
.
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The contribution of joint point at P is

I joint
v<0 = − 1

8πGN

∫
p

√
γ ddx log |k1 · k2

2
|, (3.15)

where

ka1 = −α rz+1−2θe∂r, ka2 = β
(

2r2(z−θe)∂v − rz+1−2θe∂r

)
. (3.16)

Therefore one finds

I joint
v<0 = − Vd

8πGN

z − θe
rdep (t)

log r2
p(t)−

Vd
8πGN

logαβ

rdep (t)
. (3.17)

Since the null boundaries do not contribute to the on shell action, taking both bulk and

joint contributions into account one arrives at

Iv<0 = − Vd
8πGN

1

rdep (t)

(
2(1− θe)

de
+ (z − θe) log r2

p(t)

)
− Vd

8πGN

logαβ

rdep (t)
. (3.18)

On shell action and complexity growth. Now we have all ingredients to write the

on shell action on the WDW patch for our Vaidya geometry. Indeed one has

I = Iv>0 + Iv<0 = − Vd
8πGN

(1− θe)
∫ t− 2

z
δz

0

dv

rde+z(v, t)
+

Vd
16πGN

de + z − 2θe

rde+zh

t

− Vd
4πGN

1

rdep (t)

(
1− θe
de

+
1

2
log f(rp(t))

)
+(t−independent divergent terms) . (3.19)

Note that the whole on shell action is independent of α and β. This is due to the fact that

we have used the same free parameters for null vectors for both v > 0 and v < 0 regions.

Of course one could have considered different parameters, but it can be shown that the

result will not change by adding proper counter terms, as that of previous section.

By making use of the differential equation
drp(t)
dt =

f(rp(t))

2rz−1
p (t)

and the fact that the

divergent terms are time independent, one can compute the time derivative of the above

expression and arrive at

d

dt
C =

1

π

d

dt
IWDW =

2E

π

(
1 +

1

2

de
de + z − 1

f̃(rp(t)) log f(rp(t))

)
, (3.20)

where

f̃(rp(t)) =
rde+zh

rde+zp (t)
− 1, E =

Vd
16πGN

de + z − 1

rde+zh

, (3.21)

with E being the value at which the complexity growth saturates at late times. It is worth

noting that for z = 1 the above result reduces to that in [16] with effective dimension

de. As we mentioned before the energy of the final black brane, i.e., M , is related to E

by (2.34). It is then evident that for z 6= 1 the Lloyd’s bound given by 2M is again violated

and the rate of complexity growth saturates at rp = rh to 2E. Of course unlike the two
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Figure 4. Rate of the complexity growth in a WDW patch for Vaidya geometry with de = 1 (left)

and de = 2 (right).

sided black brane considered in the previous section the “would be” bound 2E is respected

in this case. Note that for z = 1 when the system is isotropic the growth saturates the

Lloyd’s bound. Also note that for z 6= 1 the growth reaches the Lloyd’s bound 2M at a

finite time which is of order of rh.

On the other hand at early time where rp ∼ δ one finds

d

dt
C ∼ 2E

π

(
1− 1

2

de
de + z − 1

+
(z/2)1/z

4

de
de + z − 1

t1+ de
z

rde+zh

)
. (3.22)

Therefore at early time complexity grows as t1+de/z. The behavior of rate of the complexity

growth is depicted in figure 4 which is consistent with the above time dependence growth.

In particular for large z complexity grows linearly with time in the early time regime.

4 Conclusions

In this paper we have studied complexity growth, using “complexity=action” proposal for

a gravitational theory admitting anisotropic black brane solution with non-trivial Lifshitz

and hyperscaling violating exponents. We have considered both one and two sided black

brane solutions. The two sided black brane would provide a gravitational description for

an anisotropic thermofiled double state with hyperscaling violation, while the one sided

black brane provides a gravitational description for a global quench in a hyperscaling

violating theory.

We have seen that in both cases the Lloyd’s bound is violated given the fact that at

late times the rate of complexity growth approaches a constant value which is greater than

twice the mass of the corresponding black brane. Based on this observation we defined a

“would be” bound which is the same as Lloyd’s bound but the bound is replaced by the

new saturation value. It is however important to note that in the late time regime in one

sided black branes this “would be” bound is approached from below, though for that of two

sided black branes it is approached from above. This, in turns, means that two sided black

brane violates even this “would be” bound. It is also worth noting that for the isotropic

case (z = 1) the “would be” bound reduces to Lloyd’s bound given by twice of the mass.
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As far as the divergent terms are concerned the complexity we have obtained has the

following form

πC = I = − Vd
2πGN

(
logαβδ2(z−θe)

2δde
+

1− θe
deδde

)
+ finite terms, (4.1)

which for θ = 0, z = 1 reduces to the complicity associated with an AdSd+2 geometry [31].

It is worth noting that from the above volume behavior of the complexity, it looks as the

theory lives in an effective dimension de. This is of course consistent with the holographic

entanglement entropy of the theory where we have S ∼ Area
δde−1 (see for example [32]).

In order to remove the ambiguity associated with the normalization of null vectors one

needs to add certain counter terms whose divergent terms are given by

Ict =
Vd

2πGN

(
logαβδ2(z−2θe)

2δde
+
z − 2θe
deδde

)
. (4.2)

Of course these counter terms are not enough to make the complexity finite. We have seen

that there are other counter terms whose divergent terms are

Ĩct =
Vd

2πGN

(
log δ2θe

2δde
+
θe − z + 1

deδde

)
. (4.3)

It is then clear that all divergences will be dropped resulting to a finite complexity. It

is, however, important to note that adding the corresponding counter terms could also

have contributions to the finite part of complexity. In particular we have seen that this

contribution smooths the early time behavior for large z in two sided black branes. This

in turns indicates the importance of the counter terms needed to make the action finite. It

would be interesting to explore this point more precisely [29].

We have also seen that the rate of complexity growth reaches the bound at a finite

time that is of order of rh. We have also evaluated the spatial point rm associated with

this time. In particular setting θ = 0, z = 1, one gets

rm = 2
1
d+1 rh. (4.4)

Interestingly enough it is the maximal surface that an extremal co-dimension one hyper-

surface inside the black brane could reach at late times [12].

This means that complexity growth could reach the Lloyd’s bound at some time scale

comparable to thermalization time of a system, but keep evolving non-trivially after that

and finally saturate to the bound in late times. It would be very interesting to explore

this behavior more precisely both from gravity and field theory points of view. For recent

progress of field theory aspects of complexity see [14, 33–35].
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