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Abstract. We present a comparative network-theoretic analysis of the two largest global transportation
networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We
show that both networks exhibit surprising statistical similarities despite significant differences in topology
and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which
implies that these networks naturally segregate into two different classes of nodes and links. We introduce
a technique based on effective distances, shortest paths and shortest path trees for strongly weighted
symmetric networks and show that in a shortest path tree representation the most significant features
of both networks can be readily seen. We show that effective shortest path distance, unlike conventional
geographic distance measures, strongly correlates with node centrality measures. Using the new technique
we show that network resilience can be investigated more precisely than with contemporary techniques
that are based on percolation theory. We extract a functional relationship between node characteristics
and resilience to network disruption. Finally we discuss the results, their implications and conclude that
dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.

1 Introduction

Large-scale human transportation networks are essential
for global travel, international trade, the facilitation of in-
ternational partnerships and relations, and the advance-
ment of science and commerce. The worldwide air trans-
portation network supports the traffic of over three billion
passengers travelling between more than 4000 airports on
more than 50 million flights in a year [1]. The global cargo-
ship network accounts for up to 90% of the international
exchange of goods; approximately 60 000 cargo-ships are
connecting more than 5000 ports worldwide with about a
million ship movements every year [2,3]. These two net-
works constitute the operational backbone of our global-
ized economy and society.

Although they are immensely important for facili-
tating exchange between geographically distant regions,
the ever-increasing amount of traffic over such complex,
densely-connected transportation networks introduces se-
rious problems. Rising energy costs, pollution, and global
warming are obvious concerns, but globalized traffic also
plays a key role in the worldwide dissemination of infec-
tious diseases and invasive species [4–19]. The first decade
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of the 21st century has witnessed the emergence and
worldwide spread of two major global epidemics: the se-
vere acute respiratory syndrome (SARS) in 2003 [20–23],
and the recent H1N1 pandemic of 2009 [24,25]. Both dis-
eases rapidly spread across the globe in a matter of weeks
to months, a process linked directly to long-distance traffic
routes over which infected individuals dispersed infectious
agents. In combination with increasing worldwide popu-
lation size, which is expected to pass the 7 billion thresh-
old within the next decade, and the concentration of the
majority of the world’s population in mega-cities and ur-
ban areas [26], the impact of global pandemic events is
expected to become one of the most challenging prob-
lems of the 21st century. The spread of invasive species
into new habitats and ecosystems presents a similar and
equally-significant problem [17,27–29]. The largest vector
of marine bioinvasion is assumed to be global shipping [30].
Human-mediated bioinvasion has become one of the key
factors in the global biodiversity crisis [31,32] and may
affect the stability of ecosystems, survival of species, and
human health [11,27]. The introduction of invasive species
to foreign ecosystems has generated annual costs of over
$120 billion in the United States alone [33].
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In addition to introducing environmental problems,
the complex transportation web itself is subject to ex-
ternal disruptions. For instance, the unexpected eruption
of the Icelandic volcano Eyjafjallajökull in 2010 and sub-
sequent closure of major European airports led to a major
disruption in global traffic and significant economic stress
over a period of several days. Other influences, such as me-
teorological events like hurricanes, the recent rise in acts of
piracy in Somalia, or the financial crisis of 2007 also make
flexibility in global cargo traffic necessary and underline
the vulnerabilty of international trade and transportation
systems. It is therefore of fundamental importance to un-
derstand the resilience of these networks in response to
regional and large-scale failure of parts of the network,
and to identify “sensitive” regions of the network. This
point becomes even more important in light of malicious
terrorist activities.

A deep understanding of the structure of human trans-
portation networks will lead to new insights into the geo-
graphical spread of diseases and invasive species, allow the
development of new computational models for their time
courses, and eventually allow us to predict their impact on
our environment and society. Computational techniques
for investigating the resilience of these networks in the face
of partial failure will play a fundamental part in achieving
this understanding; complex network theory [34] already
provides a powerful theoretical tool in this respect. But, al-
though both the worldwide air transportation network and
the global cargo-ship network have already been subjected
to a number of network-theoretic analyses [6,9,21,35,36],
it is still unclear whether the observed properties of these
networks are unique to a specific context, or are universal
and generic. A lack of comparative studies in this direc-
tion, and indeed a lack of data, has lead to a scarcity of
universal theories of the structure of transportation net-
works.

Here we address this issue using a comparative ap-
proach. We analyse and compare the structure of the
worldwide air-transportation and global cargo-ship net-
works (WAN and GCSN in the following) and show that
a surprising number of properties are shared by both net-
works despite their different use, economic context, scale,
and connectivity structures. The analysis suggests that
the same fundamental principles guide the growth of both
networks. Most importantly, it suggests that dynamic pro-
cesses that evolve on these networks will exhibit similar
dynamic features, an important insight since it implies
that processes as different as emergent human infectious
diseases and human-mediated bioinvasion can be investi-
gated along the same line of research.

The dynamics of processes on networks are guided not
only by the topology of the network, but also by the inter-
action strengths between pairs of nodes. One of the char-
acteristic features of transportation networks is a strongly
heterogeneous distribution of interaction strength. Among
other things, this implies that the shortest topological
path between two nodes may not be the path of strongest
interaction, and we account for such effects by using the
idea of effective shortest paths. These are analogous to

the well-known topological shortest paths, except that the
length of an edge is taken to be the reciprocal of the weight
of that edge, and the effective shortest path is then the
path that minimizes the total effective distance. This ap-
proach also reveals surprising similarities between the two
networks.

The paper is structured as follows: In Sections 2 and 3
we introduce the WAN and GCSN and discuss their sta-
tistical properties and similarities. In Section 4 we ap-
ply a recently developed technique based on shortest path
trees to compute structural properties of these networks.
In Section 5 we use the measures introduced to investi-
gate and compare resilience of these networks in response
to targeted attacks and random failure. We discuss the
implications of our results in Section 6.

2 The worldwide air transportation
and cargo-ship networks

The WAN and GCSN are infrastructure systems on which
we travel and transport commodities on a worldwide scale.
Complex network theory [34,37,38] provides the most
plausible quantitative description of these systems: pairs
of nodes i and j are connected by links with non-negative
weights wij > 0 if transport occurs directly between these
nodes, and wij = 0 if they are not directly connected. It
is generally possible in transportation networks to begin
at any node and locate a path to any other node, but
the wij measure only direct connections and quantify the
magnitude of traffic between pairs of nodes. In the WAN
nodes represent airports and the weight matrix could be
defined as the total number of passengers per unit time,
the number of passenger planes or the number of sched-
uled flights. In the GCSN nodes represent ports, and wij

could quantify the number of cargo-ships or the net ton-
nage of cargo per unit time. For a comparative analysis
we choose wij to represent the number of carrier vehicles
(passenger planes or cargo-ships) that travel from node
j to i per unit time. For the WAN, wij is the average
number of scheduled commercial flights per year between
airports in the three-year period 2004–2006, as reported
by OAG Worldwide Ltd. [1]. The GCSN was established
from data of worldwide ship movements provided by IHS
Fairplay [3]. This information was used to reconstruct the
journey of 15,415 ships travelling around the globe dur-
ing 2007 [9]. The GCSN is restricted to vessels bigger than
10000 gross tonnages which accounts for 86% of the world
fleet. For both WAN and GCSN, the resulting weight ma-
trix W is virtually symmetric, i.e. wij ≈ wji for all pairs
ij. In order to guarantee strict symmetry we symmetrized
the matrix according to wij → (wij + wji)/2. This differs
from the definition that was used in [9], where the number
of directed links was reported.

Both networks are depicted in Figure 1. Despite their
global coverage and structural similarity, these networks
exhibit distinct features. The WAN comprises approxi-
mately five times as many nodes but almost the same
number of links, yielding a less-densely-connected network
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Fig. 1. (Color online) Global transportation and mobility: the top panel illustrates the worldwide air-transportation network
(WAN) consisting of 4069 airports connected by 25 453 links that represent the number of passenger planes travelling between
nodes per unit time. The bottom panel depicts the global cargo-ship network (GCSN) that connects 951 international ports
along 25 819 routes. In both panels, the saturation of the lines indicates the total flux along a route with darker lines carrying
more flux.

Table 1. Network characteristics of WAN and GCSN. Number of nodes N , number of links L, network connectivity σ ≈
2L/N2, network diameters φ and dT, network clustering coefficient c and network length scale 〈r〉 (in units km), total traffic C
(vehicles/yr.) reflect global properties of the network. The table also lists the mean link weights 〈w〉, traffic per node (flux) 〈F 〉
(both in units of vehicles/yr.) and node degree 〈k〉 and corresponding coefficients of variation.

N L σ φ dT c 〈r〉 C 〈w〉 〈F 〉 〈k〉 CV(w) CV(F ) CV(k)

WAN 4069 25 453 3.07 × 10−3 29.11 4.16 0.55 1109 5.68 × 107 1116.49 1.39 × 104 12.51 2.03 3.60 2.15

GCSN 951 25 819 5.72 × 10−2 13.57 2.34 0.57 1857 9.87 × 105 19.11 1.04 × 103 54.30 7.27 2.34 1.22

(σWAN = 3.07×10−3 as compared to σGCSN = 5.72×10−2,
see Tab. 1). As the the GCSN is restricted to large vessels,
the number of seaports in the world may be an order of
magnitude higher.

Node flux and degree are key characteristics, defined
according to

Fi =
∑

j

wij and ki =
∑

j

aij , (1)

where aij are elements of the adjacency matrix, that is
aij = 1 if nodes i and j are connected and aij = 0
otherwise. On average a node in the WAN dispatches
〈F 〉WAN = 1.39 × 104 vehicles per year. The average
number of cargo-ships leaving a port in the GCSN is
〈F 〉GCSN = 1.03 × 104. Higher connectivity of the GCSN
is also reflected in the mean degree, 〈k〉WAN = 12.51 and
〈k〉GCSN = 54.30.
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Fig. 2. (Color online) Statistical properties of WAN (blue) and GCSN (red): panels a, b, c depict the probability density
functions of node degree k, node flux F and link weight w. Dashed lines are power laws with exponents 1.5 (panel a) and 2
(panel c). The abscissal scaling factors k0, F0, w0 are given by the mean in each distribution. Despite differences in p(k) both
networks’ degrees are broadly distributed, the WAN more closely resembling a power law than the GCSN. The flux distributions
p(F ) are almost identical with deviations in the small flux regime. The weight distributions range over 3.8 and and 3.5 orders
of magnitude and for intermediate values exhibit approximately the same decay.

The typical traffic per link is given by the mean link
weight 〈w〉, and although in the WAN it exceeds the
GCSN by two orders of magnitude, the variability re-
flected in the coefficient of variation is significantly higher
in the GCSN. The clustering coefficient c indicates the
abundance of triangular motifs in the network, and in spite
of the GCSN’s higher connectivity the clustering coeffi-
cient is nearly identical in both networks. This indicates
that both networks can be considered sparse and satura-
tion effects are not significant.

A typical length scale of the network can be defined
by

〈r〉 =
∑

j,i

pjirji (2)

where pji = wji/Fj and rji the geographical distance be-
tween nodes j and i. The quantity pji is the relative frac-
tion of traffic from i to j with respect to the entire traffic
through node j. Thus 〈r〉 represents the mean distance
traveled by a carrier in the network. According to this
definition the typical length scale of the GCSN is over one
and a half times the typical length scale of the WAN (see
Tab. 1). Related to the geographic distance are topolog-
ical distance measures defined by the connectivity of the
networks. The diameter of a network can be defined as the
average shortest path length that connects a pair of nodes,
dT. For WAN and GCSN dT = 4.16 and 2.34, respectively
(in a fully connected network dT = 1).

3 Universal statistics in large-scale
transportation networks

A key feature that many large-scale technological net-
works share is their strong structural heterogeneity in
terms of link and node statistics and centrality measures.
These networks typically contain a small fraction of hubs
characterized by strong connectivity and high centrality
scores complemented by a large number of smaller nodes
that connect to the hubs. This structural property is cap-
tures in several models with scale-free distributions of cen-
trality measures [36,39].

Figure 2 shows that w, k, and F have qualitatively the
same distribution in both networks, ranging over many
orders magnitude and differing only by a scaling factor.
Their surprisingly similar shape, in particular in p(F ),
supports the claim that these networks have evolved ac-
cording to similar fundamental processes. It has been
pointed out [35,38,40,41] that degree, flux, and weight ap-
proximately follow power laws in many networks. How-
ever, in spite of the similarity of these distributions and
the suggestive scaling behavior, we do not find a reason-
able power-law fit over more than one decade, suggesting
that simple models for generating scale-free statistics are
not sufficient to describe these empirical networks.

3.1 Weighted betweenness centrality of links
and nodes

Another commonly investigated measure for link and node
centrality is betweenness centrality. The betweenness b
of a link (or a node) is the fraction of shortest paths in
the entire network of which the link (or node) is part of.
Betweenness requires the definition of length of a path
which in turn requires the definition of length of a link.
In weighted networks a plausible choice for the effective
length of a link connecting nodes i and j is given by the
proximity λij defined by

λij =
〈w〉
wij

. (3)

This definition accounts for the notion that strongly con-
nected nodes are effectively more proximate than nodes
that are weakly coupled. The numerator 〈w〉 sets the typ-
ical distance scale λ0 = 1/〈w〉 and λij is defined relative
to it. Based on this effective proximity one can define the
length of a path P (i0, . . . , ik) that starts at node i0 and
terminates at node ik connecting a sequence of intermedi-
ate nodes in, n = 1, . . . , k − 1 along direct connections of
weights winin+1 by summing of the proximities of each leg
in the path. This integrated distance l(i0, . . . ik) is given
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Fig. 3. (Color online) Structure of betweenness centrality of WAN (blue) and GCSN (red): panels a and b depict the distributions
p(b) of betweenness of links and nodes, respectively. Link betweenness exhibits two scaling regimes with exponents γ2 ≈ 1.2
(b & b0) and γ2 ≈ 2.0 (b ' b0). Node betweenness also exhibits two distinct regimes but they are characterized by the same
scaling exponent γ1 ≈ 1.6. The abscissal scaling factors b0 are given by the mean in each distribution.
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Fig. 4. (Color online) Correlation structure of centrality measures. (a) The conditional mean degree 〈k|F 〉 as a function of flux F .
The dashed line represents sub-linear scaling with exponent 0.75. Neither networks exhibit a clear scaling, the WAN approaches
the scaling line for large arguments whereas the GSCN for small arguments. The overall behavior can be roughly described
by an algebraic scaling relation indicated by the dashed line. (b) Conditional mean node betweenness 〈b|F 〉 as a function of
F with dashed line with scaling exponent of 0.9. Despite deviation for small and large arguments the data for both networks
are reasonably well described by the indicated scaling for intermediate arguments accross approx. 2 orders of magnitute. (c)
Conditional weight betweenness 〈b|w〉 as a function of w . The WAN exhibits sub-linear scaling contrary to the GCSN for which
super-linear scaling is observed (roughly following dashed lines with scaling exponent 0.75 and 1.15 respectively)

by the sum

l(i0, . . . ik) =
k−1∑

n=0

λinin+1 =
k−1∑

n=0

〈w〉
winin+1

. (4)

For a given pair of nodes i0 and ik, many paths exists
that connect these nodes along intermediate nodes in =
1, . . . , k−1. Using the definition of length of a path above,
the shortest path between two nodes is defined as one with
minimal l:

d(i0, ik) = min
in=1,...k−1

l(i0, . . . , ik). (5)

We define the effective distance dij between nodes i and
j as this effective length of the shortest path connecting
them, i.e. dij = d(i, j), and denote the unique path as-
sociated with it by Ps(i, j). Based on this definition we
define the diameter φ of the network as the mean shortest
path length over the ensemble of all pairs of nodes. Ac-
cording to this definition the WAN’s diameter is slightly
more than twice the diameter of the GCSN (see Tab. 1).
The reasons for this will be discussed in more detail in
Section 4.

We computed betweenness centrality b for both links
and nodes based on the set of all shortest paths P (i, j).
Figure 3 depicts the distributions p(b) for both networks.
Unlike the centrality measures of degree and flux for nodes
and weights for links, the distribution of betweenness ex-
hibits a well-pronounced discontinuity in both networks.
Note that this discontinuity is absent from p(b) if the
network are assumed to have uniform weights as for in-
stance in reference [42].This indicates that in the WAN
and GCSN links and nodes segregate into two distinct
functional groups. In fact the point bc at which the dis-
continuity occurs can be employed to separate links and
nodes that belong to the operational backbone of the net-
work [43]. Both networks exhibit similar scaling behavior
in the two betweenness regimes.

3.2 Correlations in centrality measures

Degree, flux and betweenness typically exhibit posi-
tive correlations and scaling relationships with one an-
other. For instance, recently-investigated mobility net-
works [9,35,41] exhibit a sub-linear scaling relation k ∼ F η

with exponent η ≈ 0.58 and η ≈ 0.7. Figure 4 compiles
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scaling relationships we observe in the WAN and GCSN.
To extract the scaling relationship we computed the mean
of one centrality measure x conditioned on a second cen-
trality measure y, that is,

〈x|y〉 =
∫

dxx p(x, y)∫
dx p(x, y)

(6)

where p(x, y) is the combined distribution of both. Our
analysis shows that both networks exhibit a sub-linear
correlation of degree with flux

〈k|F 〉 ∼ F η (7)

with approximately identical exponent η = 0.75 for both
networks and across four orders of magnitude of F . This is
consistent with previous findings and the intuitive notion
that node connectivity increases with traffic. A sub-linear
scaling of degree with flux implies that the typical weight
〈w|F 〉 of links connected to nodes of size F scales accord-
ing to

〈w|F 〉 ∼ F/ 〈k|F 〉 ∼ F 1−η. (8)

Since η < 1 this implies that high flux nodes typically
connect to other nodes with stronger links, as expected for
transportation networks. The fact that η is almost iden-
tical in both networks is additional evidence that similar
universal mechanism are responsible for shaping the topo-
logical structure of both the WAN and GCSN. Similarly,
node betweenness scales as

〈b|F 〉 ∼ F ζ (9)

with an exponent ζ ≈ 1 in both networks. A linear rela-
tionship between node flux and betweenness can be ex-
plained by the heuristic argument that typical between-
ness values of a node increase linearly with its degree k.
Likewise, since shortest paths are computed based on link
weights, it is reasonable to assume that node betweenness
scales linearly with the typical link weight of a node and
thus

〈b|F 〉 ∼ 〈k|F 〉 〈w|F 〉 ∼ F ηF 1−η = F (10)

and hence one expects ζ ≈ 1 as observed. Conditional
mean of link betweenness as a function of link weight 〈b|w〉
exhibit approximate scaling. Figure 4c suggests sub-linear
scaling for the WAN as opposed to super-linear scaling for
the GCSN. This difference in scaling in both networks is
the first marked difference that we observe in the statis-
tics of centrality measures. Possible explanations are the
differences in overall connectivity σ in both networks (see
Tab. 1) and that there is a statistically-significant differ-
ence in the way that weights are distributed among the
nodes.

4 Network shortest path trees

Global properties of strongly heterogeneous, multi-scale
networks, such as connectivity, average clustering coeffi-
cient, and diameter, as well as statistical distributions of

centrality measures, provide important insight and may
serve as quantitative classifiers for networks. However,
they cannot resolve properties and structures on a lo-
cal scale. On the other hand, local measures such as a
node’s individual degree or mean link weight of its connec-
tions provide local information only and cannot capture
global properties. Transportation networks exhibit impor-
tant structure on intermediate scales, so it is vital to un-
derstand structural properties that are neither local nor
global in these networks. One way to approach this is to
analyse and investigate the structure of the entire net-
work from the perspective of a chosen node. Clearly, geo-
graphic distance is an important parameter in this context
as operation costs typically scale with geographic distance.
However, in complex multi-scale transportation networks
such as the WAN and the GCSN, geographic distance is
rarely a good indicator of the effective distance of con-
nected nodes. High-flux hubs in each network are typically
connected by strong traffic bonds even across very large
geographic distances while smaller-flux nodes can be con-
nected by weak links although they may be geographically
close. A spatial representation as depicted in Figure 1 is
therefore a misleading way to convey effective distances in
these networks.

An alternative representation can be obtained based
on the notion of proximity defined by equation (3) and ef-
fective shortest paths, equation (4). Based on this notion
we compute the shortest paths of a chosen root node i to
all other nodes j. The collection of links contributing to
these paths form a shortest path tree Ti rooted at i. Spa-
tial representations of such trees are depicted in Figure 5
for each network and two different root nodes. The radial
distance in these figures represents the effective, shortest
path distance dij . The lines represent the connections of
Ti. Note that, although the trees differ in both networks
and for different root nodes, high-centrality nodes tend to
exhibit the smallest effective (shortest path) distance to
the root node. Note also that the geometry of the net-
works exhibits significant structural differences in both
networks: in the WAN the spatial distribution in the new
representation is less regular and the scatter in effective
distance is larger than in the GCSN where nodes reside in
a well defined annular region.

In order to understand these qualitative differences
and similarities we investigate the distribution of the
shortest path distances conditioned on the type of root
node (Fig. 6). Conditioned on the flux of the root node, we
compute the distribution of shortest path distance, that
is, p(d|F ). Based on this distribution we determine the ex-
pected distance of the network from a node with specified
flux as

µd(F ) = 〈d|F 〉 (11)

as well as the conditional coefficient of variation:

cvd(F ) =

√
〈d2|F 〉 − 〈d|F 〉2

〈d|F 〉 .

The quantity µd(F ) measures the typical distance from
a root node with flux F to the rest of the network. The
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Fig. 5. (Color online) Shortest path tree structures and effective distances in WAN and GCSN. Left: the panels depict the
shortest path trees of airports ATL (Atlanta) and PVG (Shanghai). The radial distance of the remaining airports with respect to
these root nodes represent the logarithm of the shortest path distance to the reference node. Right: the panels depict the GCSN
shortest path tree for ports Wilhelmshaven, Germany and Shanghai. Note that the overall structure of both representations is
different, yet both networks share the feature of circular arrangement according to node flux, encoded by color (blue represents
large flux nodes and orange small node flux). Note that irrespective of the chosen root node, the closest nodes in terms of
effective distance are always high flux nodes and small flux nodes are always peripheral in this representation.
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Fig. 6. (Color online) Shortest path distance statistics. (a) Conditional mean shortest path (Eq. (11)) as a function of node
flux as well as the conditional coefficient of variation in shortest paths. (b) The conditional distributions of shortest paths for
four subtypes of root nodes (WAN) ranked according to flux, where red markers denote high flux and light blue denote low flux.
(c) Same as in (b) for the GCSN. Dashed grey lines are scale free with exponents 0.75 (a), 1.5 (b) or 1.25 (c).



596 The European Physical Journal B

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

d / d
0

〈F
|d

〉 /
 F

0
a

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

d / d
0

〈b
|d

〉 /
 b

0

b

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

d / d
0

〈c
|d

〉

c
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Node flux. (b) Weighted node betweenness. (c) The local clustering coefficient c. The dashed lines illustrate scaling exponents
ωF = 1.5 (a) and ωb = 1.1 (b).

coefficient of variation measures the statistical variability
in d. Figure 6 depicts both quantities for the WAN and
GCSN. Note that µd(F ) is remarkably similar for both
networks and can be described by

µd(F ) − µd(∞) ∼ (F/F0)−τ (12)

with τ ≈ 0.75. Note that this relation indicates the exis-
tence of a lower limit to the typical effective distance for
increasing node flux µd(∞) > 0 which implies that even
extremely large hubs exhibit a least distance to the rest of
the network. Equation (12) implies that mean effective dis-
tance decreases in a systematic way with node centrality
and according to the same relation in both networks. How-
ever, the coefficient of variation increases monotonically
with F , which implies that the variability in effective dis-
tance increases with the centrality of the root node. This
can also be observed in Figures 6b and 6c, which depicts
the entire distribution p(d|F ) for four categories of root
nodes of different centrality. For most central nodes p(d|F )
increases steeply for small values of d and exhibits an al-
gebraic decay for large distance. As F decreases, p(d|F )
attains a sharper peak as small distances disappear from
the distribution. This qualitative behavior is observed in
both networks. The asymptotic behavior for large effective
distances is approximately

p(d|F ) ∼ d−θ

with θ ≈ 1.5 for the WAN and θ ≈ 1.25 for the GCSN.
A characteristic property of the network representa-

tion in Figure 5 is that regardless of the properties of
the root node, the rest of the nodes tend to sort in con-
centric circles (effective distances) according to centrality
measures. A key question is then how effective distance
correlates with centrality measures. If there is a strong
correlation between effective distance and node centrality
measures, this implies that centrality measures dominate
the placement of a node in a network.

In order to determine the relationship between ef-
fective distance and centrality measures, we select three
groups of nodes, the top 2.5% ranked according to de-
gree, flux and betweenness, and combine them into a sin-
gle high-centrality subset of nodes Ω, which accounts for
5% of the entire network. The remaining 95% of the nodes

are denoted by Ω̄. Based on this subset we determine the
distribution p(x, d|Ω), the probability of finding a node in
Ω̄ with centrality measure x (degree, flux, betweenness)
and effective distance d to the root nodes in Ω. From this
we compute the conditional mean

〈x|d〉 =
∫

x p(x|d,Ω) =
∫

x p(x, d|Ω)/p(d|Ω). (13)

Figure 7 depicts 〈F |d〉 and 〈b|d〉 for both networks. Despite
their difference, WAN and GCSN exhibit almost identical
scaling relations

〈F |d,Ω〉 ∼ d−ωF and 〈b|d,Ω〉 ∼ d−ωb (14)

with ωF ≈ 1.5 and ωb ≈ 1.1, consistent with the intuitive
notion that centrality decreases with increasing effective
distance from central root nodes. Figure 7 also shows that
the local clustering coefficient as a function of d approxi-
mately scales according to

〈c|d,Ω〉 ∼ log(d/d0). (15)

The logarithmic increase of the clustering coefficient im-
plies that in their peripheral regions the WAN and GCSN
become less tree-like. Although nodes in the two networks
are subject to different geographic constraints and cluster-
ing may therefore have different geographic structure, they
nonetheless organize themselves in a surprisingly similar
fashion when effective distance is considered. Nodes from
Ω̄ that are connected to the root nodes in Ω do not ex-
hibit large fractions of connections among one another,
which indicates that high-centrality root nodes function
as “feed-in” hubs to low centrality nodes.

5 Network resilience

A key question in the context of large-scale technological
and infrastructural networks concerns their response to lo-
cal failure and resilience to partial accidental breakdown
or anticipated attacks. Both the WAN and GCSN are sub-
ject to unpredictable, recurrent, and extreme weather con-
ditions that lead to repetitive and regionally-localized fail-
ure that must be compensated for by re-routing traffic or
re-planning schedules.
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Random failures and targeted attacks are typically
investigated using the framework of percolation the-
ory [44,45]. A random (failure) or selected (attack)
fraction q of nodes is removed from the network and struc-
tural responses of the network are investigated as a func-
tion of q. Important insight was gained in studies that
investigated random or selected node removal in random
networks [44–47]. One of the most important findings of
these studies was that scale-free networks with power-law
degree distributions respond strikingly differently in sce-
narios that reflect random failures as opposed to selected
removal of central nodes. For instance, scale-free networks
are relatively immune to random removal of nodes and
extremely sensitive to targeted removal of high centrality
nodes. Since centrality measures such as degree, between-
ness, and flux typically correlate in these networks, this
effectively amounts to removal of nodes that function as
hubs. One of the essential questions in this context ad-
dresses the critical fraction q of removed nodes that are
required to disintegrate the global connectivity of the net-
work. This critical value is the percolation threshold qc: for
q < qc the size of the giant component (the largest subset
of nodes that are connected by paths) is typically the size
of the entire network. Beyond the percolation threshold
(q > qc) the networks falls apart into a family of discon-
nected, fragmented sub-networks.

The resilience properties of the WAN and GCSN to se-
quential node removal are depicted in Figure 8. For each
centrality measure (degree, betweenness, and flux), we re-
move fractions q of nodes randomly and also in order of
descending rank with respect to k, b, and F , respectively.
We compare two different removal protocols. Since both
networks are strongly inhomogeneous, removing a fraction
of nodes is not equivalent to removing a fraction of traf-
fic (see Fig. 8a). For example 1% of the most connected
nodes account for 29.7% of the entire traffic in the WAN
and 17.6% in the GCSN, and removal of 10% of nodes
with highest flux is equivalent to reducing the total traffic
in the WAN by 76.9% and in the GCSN by 64.5%. Be-
cause of this pronounced nonlinear relationship, we com-
pare resilience of the network as a function of the fraction
of removed nodes qN as well as the fraction of removed
traffic qF .

Figure 8b depicts the relative size of the giant com-
ponent S as a function of qN . Both networks are resilient
to random failures (we find that the giant component de-
creases lineary with the fraction of nodes removed, i.e.
S ≈ 1 − qN ), although the WAN is taking some excess
damage from random failures. Furthermore, we observe
a percolation threshold for the targeted attacks in both
networks. The WAN exhibits a percolation threshold at
qc
N = 13.8%, 17.2% and 9.4%, for node removal according
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to degree, flux and betweenness. The thresholds are sig-
nificantly larger for the GCSN at qc

N = 44.3%, 49.0%
and 39.5%. In each network the threshold depends only
weakly on the choice of centrality measure because of
the strong correlation among different centrality measures.
Note however that both networks are most susceptible to
removal according to betweenness rank, followed by de-
gree and node flux. The overall higher threshold in the
GCSN is caused by the greater connectivity σ and mean
degree 〈k〉 of the network (see Tab. 1).

Figure 8c depicts S as a function of qF . The random
failures appear to be more effective here because they re-
move more nodes for a given fraction of removed traffic
than the targeted attacks, since not only high-centrality
nodes are selected. However, due to the strong nonlinear
relationship between qN and qF it is evident that both
networks are strongly resilient to targeted attacks. Even
substantial traffic reduction has virtually no impact on
the relative size of the giant component, for instance when
50% of the entire traffic is reduced in both networks, the
giant component is still larger than 90% of the original
network and no percolation threshold is observed in the
range up to 80% of traffic reduction. These percolation
thresholds are rarely reached in real networks. Another
approach that has been applied [46,48] is based on the
topological diameter of the network and its response to
network disruption. Typically when high-centrality nodes
are removed from the network, the diameter of the net-
work increases as the shortest paths connecting two arbi-
trary nodes lengthen due to the increasing lack of hubs
that can serve as connecting junctions. Figure 8d shows
that this inflation of the network in response to node re-
moval is observed in both networks. This effect is relatively
independent of the choice of centrality measure used in the
removal protocol. Furthermore, the GCSN is more robust
to node reduction, which we believe to be a consequence
of the high connectivity of the network.

Naive percolation analysis and network inflation have
only limited applicability in real world scenarios. Many
refinements to percolation have been introduced [38,49]
which are more sensitive to the heterogeneous distribu-
tion of traffic in the network but like inflation, they only
address changes in the global structure of the network.

5.1 Resilience and shortest paths

The concept of shortest path trees can be used to study
network pertubations in a more refined framework and
well below the percolation threshold, on a node by node
basis [50]. In response to removal of a fraction qN of most
central nodes or the equivalent fraction of traffic qF in the
entire network, we can compute the impact by investigat-
ing the change of shortest path trees Ti for each root node
i, that is, we can quantify the impact of the network dis-
ruption from the perspective of every node. To this end
we define a node’s impact factor as

ξi =
∆d̄i

d̄i
(16)

where d̄i is the median shortest path distance from refer-
ence node i to all other nodes j, and ∆d̄i the change of
this median in response to the network disruption. This
impact factor is different for every node and the distri-
bution p(ξ) gives insight into the variability of how indi-
vidual nodes are affected by the network disruption [50].
Figure 9a illustrates p(ξ) for scenarios in which the entire
traffic was reduced by 30% through the removal of high-
centrality nodes. The distribution p(ξ) is independent of
the measure of centrality and also identical in both net-
works. Below a typical impact of ξ0 the distribution of
impact factors p(ξ) is uniform and for ξ > ξ0 it decreases
slowly, ranging over many orders of magnitude. A ques-
tion that immediately arises is what nodes in the network
experience the largest impact. Figures 9b, 9c depict the
mean 〈ξ〉 and median ξ1/2 conditioned on the flux F and
degree k. Both the WAN and GCSN exhibit the same de-
pendence, with increasing centrality, the median impact
increases monotonically and reaches the typical asymp-
totic value ξ0. However, the mean 〈ξ〉 as a function of F
exhibits strong fluctuations, most markedly for intermedi-
ate ranges of F . Low-flux nodes experience a small impact
because in the unperturbed network they exhibit large d̄
and changes under the perturbation will typically be small
compared to this original d̄. In contrast, nodes of interme-
diate centrality have some strong connections to hubs; for
them d̄ is initially of intermediate size, and upon removal
of the hubs, they experience a relatively larger increase in
median effective distance due to the loss of these central
connections. A similar effect is seen in the behavior of 〈ξ〉
as a function of degree k.

6 Discussion

The comparative analysis of the worldwide air-
transportation network and the global cargo-ship
network presented here is a first step towards a bet-
ter understanding of the organizational structure, the
evolution and management of large scale infrastructural
networks in general. The statistical analysis of node and
link centrality measures and their correlations revealed a
surprising degree of similarity of both networks despite
their different purpose, scale and connectivity. We believe
that this is evidence for common underlying principles
that govern the growth and evolution of infrastructural
networks. This is also supported by the variety of simple,
approximate algebraic scaling relations that we extracted
from both networks.

Our analysis revealed an unusual discontinuity in the
distribution of both link and node betweenness. This sug-
gests that strongly heterogeneous transportation and mo-
bility networks exhibit a natural functional separation of
links and nodes into two distinct groups. Interestingly, this
discontinuity is localized at the same relative betweenness
value and has approximately the same magnitude in both
networks. We conclude that this natural separation into
different classes of nodes and links might well be a univer-
sal feature of these transportation networks as well and
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could be a starting point for further investigations along
these lines.

The analysis of network resilience showed that be-
cause of their dense connectivity, naive percolation anal-
ysis or network diameter inflation do not yield much in-
formation. The percolation threshold for both networks
lies well beyond many significant real-world network per-
turbations. The alternative approach based on effective
distance, shortest paths, and shortest path trees allows a
better, more intuitive representation of networks and re-
silience analysis, taking into account the fact that nodes
that are connected by strong traffic are effectively closer
than nodes that are connected by weak links and investi-
gating network perturbations from the viewpoint of cho-
sen reference nodes. Furthermore, the shortest path tree
representation revealed an interesting correlation of effec-
tive shortest path distance and node centrality measures
such as flux, degree, and betweenness and an interesting
symmetry in both networks: on average, any node in the
network is closest to the subset of nodes with high cen-
trality. This has fundamental implications for spreading
phenomena on these types of networks. Where global dis-
ease dynamics, for example, are characterized by highly
complex spatio-temporal patterns when visualized in con-
ventional geographical coordinates, we expect these pat-
terns become simpler and thus better understood when
shortest path tree representations are employed. Since the
shortest path tree representations are structurally similar
in both networks one might expect a strong dynamic sim-
ilarity of otherwise unrelated spreading phenomena that
occur in these networks, for example the global spread
of emergent human infectious diseases on the worldwide
air-transportation network and human mediated bioin-
vasion processes on the global cargo-ship network. We
conclude that our results can serve as a starting point
for both the development of theories for the evolution of
large scale transportation networks and dynamical pro-
cesses that evolve on them.

The authors wish to acknowledge support from the Volkswagen
Foundation.
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