
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006 

 
Vol. 5, No. 1, January-February 2006 

 
 
 
 

Cite this column as follows: John McGregor: “Complexity, its in the mind of the beholder”, in 
Journal of Object Technology, vol. 5, no. 1, January - February 2006, pp. 31-37, 
http://www.jot.fm/issues/issue_2006_01/column03  

Complexity, its in the mind of the 
beholder 

John D. McGregor, Clemson University and Luminary Software LLC, U.S.A. 

Abstract 
Complexity is a much analyzed, much debated, much measured property of software-
intensive products. From a strategic point of view, complexity has implications for the 
development and evolution of software-intensive products. In this issue of Strategic 
Software Engineering I will consider multiple views of complexity, sources of complexity 
and actions that manage complexity. 

1 INTRODUCTION 

When my wife looks into my home office she sees a complex mass of interlocking towers 
of paper. When I look at it, I see the pile related to a consulting project and the pile 
related to a course I am teaching, and sometimes papers that relate to both. What is 
complex to her is not complex to me because I understand the structure. This is similar to 
the amateur chess player and the grand master. The grand master perceives large chunks 
of the board than the amateur who only sees a mass of individual pieces. The game is the 
same but it is perceived as more complex by the anateur. 

The impetus for this column came from a discussion with a colleague. He believes 
that software engineering techniques are only needed for “large” projects. I believe that it 
depends upon the context in which the project is sited: how many people, how much 
time, and how much code to be produced.  

My hypothesis is that “large” is relative just as is complexity. If I have to write a 
program that is estimated at 5000 LOC and I have a year to write it, I will perceive it to 
be much less complex than if I only have three days to complete the task. Similarly, if I 
must write the program by myself I will perceive it to be more complex than if I have two 
collaborators. There is less opportunity to analyze and understand the fundamental 
structures. 

With time I can mitigate the effect of complexity by exploring the structure of the 
problem or solution. How much time is required to do this seems to be related to the size 
of the problem. Does this mean that my perception changes the complexity of the 

http://www.jot.fm
http://www.jot.fm/issues/issue_2006_01/column03


 
COMPLEXITY, ITS IN THE MIND OF THE BEHOLDER  

 
 
 
 

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 5 NO. 1 

software or just that devices that alter my perception allow me to work in a more efficient 
way? 

While that conversation was rattling around in my head I came across the following 
quote. “The complexity of software is an essential property, not an accidental one. Hence, 
descriptions of a software entity that abstract away its complexity often abstract away its 
essence.”[Brooks 95] Does this mean that efforts to apply abstraction to reduce 
complexity must lose valuable information? 

Brooks is referring to an often used classification of complexity: accidental and 
essential. Essential compexity arises from the nature of the problem and how deep a skill 
set is needed to understand the problem. In some software development projects we really 
are dealing with rocket science. Accidental complexity is the result of poor attempts to 
solve the problem and may be equivalent to what some are calling complication. 
Applying the wrong design pattern or selecting an inappropriate data structure add 
accidental complexity to a problem. 

Another classification of complexity defines the categories of psychological and 
structural complexity. The psychological complexity of software refers to those 
characteristics of software that make it difficult to understand [Curtis 79]. Structural 
complexity is partially described by Boydston, “Complexity of programming increases as 
the lines of code per module and the number of modules to interface increase.” [Boydston 
84] These definitions point out two very different perspectives on complexity.  

I spend a lot of time with clients taking unnecessarily complicated views of the world 
and simplifying them. Often I do this by “teasing apart” closely related but different 
concepts. I want to do this with “complexity” and “complicated” before addressing 
strategic issues related to complexity.  

2 COMPLEX VS COMPLICATED 

“This is a complex system that has been made needlessly complicated,” says the 
reviewer. A complex system is one that comprises many parts and whose parts interact 
with one another. It is desirable that the parts encapsulate portions of the system and 
often the parts will hide the complexity of the encapsulated functionality. Design rules 
drive us toward modularity and complex systems, i.e. lots of pieces. Some design rules 
even direct us to consider interactions as a primary focus for interface design. A complex 
system takes time to understand because of the many interfaces but has a rational 
structure that, given time, can be understood and exploited.  

A complicated system is difficult to understand and analyze. The system may or may 
not be complex. A complicated system often has no architectural coherence so studying 
the system’s structure may not lead to any greater understanding of how it works. A 
complicated system may be more efficient than a complex one. That is, the seemingly 
incoherent structure may have been established by the piecemeal effort to engineer 
performance into a system after the fact.  



 
 
 
 
 
 

VOL. 5 NO. 1 JOURNAL OF OBJECT TECHNOLOGY 33 

A former collaborator of mine used to get a big smile after several refactorings of a 
problem and say “We are almost finished, its getting much simpler.” Most of us have 
experienced solving a problem that at first glance appeared to be simple but as we 
attacked it, the problem appeared more complicated as we discovered many different 
cases. After much work, the solution suddenly appeared to get simpler. Actually, we had 
reached the point at which we had a sufficiently complex solution that we understand 
sufficiently well to allow us to remove unnecessary complications. This refinement 
process looks something like Figure 1. Notice that the origin of both axes is “simple.” 

 

complex 
simple 

complicated 

 
Figure 1 complexity vs complication 

3 TOO MUCH OF A GOOD THING? 

Being complicated is seldom a good thing, even in real time systems. Being complex may 
be necessary in order to achieve other qualities. Lets tease apart three more terms: 
encapsulation, information hiding, and modularity. A system is modular when there are 
pieces that can be removed and replaced with other pieces without disturbing th erest 
should be the rest of the system. Encapsulation is a technique for enclosing functionality 
within a construct that makes the functionality portable. For example, encapsulated pieces 
are structured so that their removal from a system involves only a single element. The 
package and class constructs are examples. Information hiding is a technique that limits 
access to the encapsulated functionality from outside the encapsulated bundle. Making 
only certain elements of a package or class public hides the rest. 

Both encapsulation and information hiding do much to support modularity, but the 
design must still meet the needs of the product. Design is a process of trade-offs between 
qualities such as efficient performance and ease of maintenance. This is a balancing act. 
Conte et al. point out that “Over-modularization is as undesirable as under-
modularization.” [Conte 86] Over-modularization leads to too many relationships to 
manage while under-modularization results in difficult maintenance of large pieces. 
Finding the right abstraction helps determine the optimum number and content of 
modules. 



 
COMPLEXITY, ITS IN THE MIND OF THE BEHOLDER  

 
 
 
 

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 5 NO. 1 

4 BUILDING COMPLEX, UNCOMPLICATED PRODUCTS 

My original hypothesis was that the degree to which a problem is perceived to be 
complex is a function of the context in which it is to be solved. The number of people 
involved in the solution, their background and experience, and the time they are given to 
arrive at a solution affect their perception of the complexity of the problem.  

Some problems are more complex than others to solve. Business problems are often 
complicated because of poor requirements analysis but seldom are very complex. 
Satellite communications systems may be complicated and usually are fairly complex. 
What techniques can we use to remove complications and manage the complexity? 

Analysis 

A thorough analysis of the problem, including a model of both the exact problem and the 
domain in which the problem is sited, provides a much less complicated path to a 
solution. The analysis allows us to understand the structure of the problem which often is 
a natural starting point for the structure of the solution. That is not to say that the 
requirements model has to be complete before other actions are taken nor does it 
prescribe a particular modeling approach. Test-first development uses test cases as the 
model of the problem.  

As a professor I see students’ answers on discussion questions on an exam that are 
long and rambling. They did not have an solution when they started and they wrote until 
they arrived at an answer. Attempting to implement the solution to a problem before the 
problem is understood usually results in an unnecessarily complicated solution. 
Refactoring can help with this provided there is sufficient time to do so. Refactoring 
requirements models as well as designs is essential to removing unnecessary 
complications. 

Structure 

A well-organized, clearly communicated software architecture, which achieves the 
desired qualities, is a first step toward a sufficiently simple structure for the product. The 
“clearly communicated” means that a rationale for each decision in the architecture has 
been provided. The deliberate structuring usually means that the architecture may be 
complex but not unnecessarily complicated.  

The architecture is created by decomposing the monolithic solution into logical - 
using some definition of logical - pieces. This increases the complexity of the solution but 
can reduce unnecessary complication resulting in a solution that developers will be more 
able to understand.  

Abstraction 

Chose appropriate abstractions. Abstraction removes details from a view of the system 
but not from the system. As Brooks points out this approach can remove some of the 



 
 
 
 
 
 

VOL. 5 NO. 1 JOURNAL OF OBJECT TECHNOLOGY 35 

essence of the design. However, modern design techniques advocate using multiple views 
of a design, thereby preventing the loss of the “essence” of the design. 

Abstraction is a useful technique for reducing the complexity of a design as perceived 
by the human viewing the design. It reduces complexity, not by reducing the number of 
elements, but by reducing the number of elements the human has to consider at any given 
moment. 

The correct abstraction makes for a simpler design and uncomplicates the design. The 
wrong abstraction makes the design more complicated. In fact the wrong abstraction adds 
accidental complexity. 

Interaction 

Limit components in a complex system to local interactions. Complex systems are 
characterized by the interactions among system pieces. When these interactions begin to 
have global effects the system becomes unnecessarily complicated. The global effects are 
eliminated by the information hiding discussed in the previous section and by a high-
quality software architecture discussed in the previous subsection. 

The local interactions may result in emergent behavior. That is, in a complex system 
the totality of the system behavior is greater than the behaviors of the individual pieces. 
The well-defined architecture provides a basis for reasoning about the pieces and about 
how they interact.  

Automation 

Developers should operate on the appropriate representation. Automated generation of 
code from models usually results in complicated code and in many cases in a complex 
solution. The product users are unaware that the product is a more complicated solution 
than necessary, but the developers and maintainers will be acutely aware if they attempt 
to manipulate the generated code. This will not be a major concern if the evolution of 
automatically generated systems is carried out on the “source code”, which in the case of 
automatic generation is the model from which a program is generated. Hacking the 
generated code is a tempting shortcut that has long-term negative impact. The 
maintenance personnel do not have to understand the structure of the generated code. In 
particular, if the solution is complex, modifying the pieces and their local interactions 
should be the major actions.  

5 STRATEGIC IMPLICATIONS 

Most pieces and systems are understandable and usable to the persons who constructed 
them. However, in today’s development climate competitive advantage belongs to the 
group that can use pieces in multiple products and that can maintain products easily for a 
long time. This usually requires that many different people touch any given piece of a 
product. 



 
COMPLEXITY, ITS IN THE MIND OF THE BEHOLDER  

 
 
 
 

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 5 NO. 1 

This becomes a critical issue for a software product line. Core asset developers create 
many types of assets including code. These assets are then used by product builders to 
assemble products. The levels of reuse are very high. Each asset will be used by many 
product builders. No matter how complex the problem, the solution must not be 
unnecessarily complicated. 

6 CONCLUSION 

I have pulled apart the concepts of complicated and complex that are often lumped 
together. By considering these concepts in more detail we can identify techniques that 
enhance the design rather than degrade it. I have described some techniques that can be 
used to mitigate the effects of complexity on software development efforts. By producing 
designs that are more evolvable we achieve a competitive advantage over those who build 
products one stovepipe at a time. 

REFERENCES 

[Banker 93] Rajiv D. Banker, Srikani M. Datar Chris F. Kemerer and Dani Zweig. 
Software Complexity and Maintenance Costs, Communications of the ACM, 
v 36, n 11, Nov 1993.  

[Boydston 84] Boydston, R.E. Programming cost estimate: Is it reasonable? In 
Proceedings of the Seventh International Conference on Software 
Engineering (1984), pp. 153 – 159. 

[Brooks 95] Brooks, Fredrick P. The Mythical Man Month: Essays on Software 
Engineering, Addison-Wesley, 1995. 

[Conte 86] Conte, S.D., Dunsmore, H.E., and Shen, V.Y. Software Engineering Metrics 
and Models. Benjamin-Cummings, Reading, Mass., 1986. 

[Curtis 79] Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., and Love, T. Measuring 
the psychological complexity of software maintenance tasks with the 
Halstead and McCabe metrics. IEEE Transactions on Software Engineering, 
SE-5, 2(1979), 96 – 104. 

[UnivChicago 02] Univeristy of Chicago Magazine. The Complexity Complex. V95, no. 
2, December 2002. 

[Weissman 74] Larry Weissman. Psychological Complexity of Computer Programs: An 
Experimental Methodology, Software Engineering  



 
 
 
 
 
 

VOL. 5 NO. 1 JOURNAL OF OBJECT TECHNOLOGY 37 

About the author 
Dr. John D. McGregor is an associate professor of computer science at Clemson 
University and a partner in Luminary Software, a software engineering consulting firm. 
His research interests include software product lines and component-base software 
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software 
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com. 

mailto:johnmc@lumsoft.com

