
Complexity Limitations on Quantum Computation

Lance Fortnow∗ John Rogers†

Department of Computer Science School of CTI
University of Chicago DePaul University

Chicago, IL 60637 Chicago, IL 60604

Abstract

We use the powerful tools of counting complexity and generic oracles to help understand the lim-
itations of the complexity of quantum computation. We show several results for the probabilistic
quantum class BQP.

• BQP is low for PP, i.e., PPBQP = PP.

• There exists a relativized world where P = BQP and the polynomial-time hierarchy is infinite.

• There exists a relativized world where BQP does not have complete sets.

• There exists a relativized world where P = BQP but P 6= UP∩coUP and one-way functions
exist. This gives a relativized answer to an open question of Simon.

1 Introduction

We have seen a surge in interest in quantum computation over the past few years. This interest
comes from new and good theoretical models for quantum Turing machines [BV97] and surprising
algorithms for factoring [Sho97] and searching [Gro96].

Exactly how much can we accomplish with quantum computers? We bring two powerful tools
from computational complexity theory to bear on this question. First we use counting complexity,
in particular the GapP functions developed by Fenner, Fortnow and Kurtz [FFK94], to give us
new upper bounds on quantum complexity classes. Next we use generic oracles to show that
the existence of one-way functions does not necessarily imply that quantum computers are more
powerful than deterministic ones.

The power of a quantum Turing machine lies in its ability to have its superpositions “cancel”
each other. Fenner, Fortnow and Kurtz [FFK94] developed the notion of GapP functions, the clo-
sure of the #P functions under subtraction. The GapP functions have some powerful applications
based on a similar cancellation effect. We show, perhaps not too surprisingly, a close relationship
between GapP-definable counting classes and quantum computing. We can use this relationship
to obtain new limitations on the complexity of quantum computing.
∗Email: fortnow@cs.uchicago.edu. URL: http://www.cs.uchicago.edu/˜fortnow. Supported in part by NSF grant

CCR 92-53582. Some of this research occurred while the author was visiting the CWI in Amsterdam.
†Email: rogers@cs.depaul.edu. URL: http://www.depaul.edu/˜jrogers.

The usual notion of efficient computation is captured by the bounded probabilistic polynomial-
time Turing machine. Such a machine accepts an input x either with probability greater than or
equal to 2/3 or with probability less than or equal to 1/3. In the first case, we say that x is in the
language accepted by M and in the second that it is not. The class of languages accepted by these
machines is called BPP. Replacing the Turing machine with a quantum Turing machine yields the
class BQP.

We show that BQP is contained in the counting class AWPP. Based on previous results about
the class AWPP [Li93], we can show that BQP is low for PP and so improve the upper bound
given by Adleman, DeMarrais and Huang [ADH97]. We can also use oracle results about AWPP
to get a relativized world where P = BQP but the polynomial-time hierarchy is infinite. We also
use these techniques to give a relativized world where BQP does not have complete sets.

We know that BPP ⊆ BQP. An important open question is whether or not the containment is
strict. Showing the containment strict would require separating BPP and PSPACE, a presumably
difficult task. One approach is to investigate what kinds of conditions would cause a separation
between BPP and BQP. For example, Simon [Sim97] asked whether the existence of one-way
functions is sufficient to cause a separation. A one-way function is a one-to-one, honest, polynomial-
time computable function whose inverse is not polynomial-time computable.

Our result shows that there is a relativized world in which this implication fails. Although this
does not directly refute the implication, it does demonstrate that, if the implication is true, proving
it will require techniques that do not relativize.

2 Definitions

2.1 Preliminaries

As usual, Σ denotes the alphabet {0, 1} and Σ∗ the set of all finite length strings over Σ. A
language is a subset of Σ∗. The notation |x| denotes the length of string x. We will sometimes need
to compare strings and natural numbers. To do so, we will use the polynomial-time computable
isomorphism between the nonzero natural numbers and strings that maps a string x to the natural
number whose binary representation is 1 followed by x.

The notation 〈m,n〉 denotes the Rogers [Rog87] pairing function, that is, a polynomial-time
computable function that maps the pair of natural numbers m and n one-to-one and onto the
natural numbers. Note that, given 〈m,n〉, we can extract both m and n in polynomial time.
Employing the isomorphism defined above allows us to to apply this pairing function to strings:
〈x, y〉 denotes a pairing of strings from which we can easily extract x and y.

2.2 Models of computation

Our models of computation are the (classical) Turing machine and the quantum Turing machine.
Unless otherwise stated, we assume that all machines are polynomial-time bounded. See Hopcroft
and Ullman [HU79] for definitions regarding classical Turing machines.

We allow the machines to have oracle access, which means that they are allowed to make
membership queries to a language A, called the oracle, and to receive a correct response in constant
time. Such machines have a separate query tape and three extra states: a query state, a yes state,
and a no state. When a machine is computing relative to an oracle A, it can query whether a string
x is in A by writing x on the query tape and entering the query state. If x ∈ A, the computation’s
next state is the yes state, otherwise it is the no state.

2

A language L is in the complexity class BPP if there is a classical machine M such that, for
every x ∈ L, at least 2/3 of the paths in the computation M(x) are accepting paths and, for every
x /∈ L, no more than 1/3 of the paths are accepting paths.

2.3 Quantum Computation

We will use a simplified model of quantum computation due to Bernstein and Vazirani [BV97].
While simple, this model captures all of the power of quantum computation. See the paper by
Bernstein and Vazirani [BV97] for a discussion of this model and the physics underlying it. For a
general introduction to quantum computation see the survey by Berthiaume [Ber97].

Consider the transition function of a Turing machine that maps current state and contents
under the tape heads to a new state, new values to write under the tape heads and a direction to
move the heads. A deterministic Turing machine’s transition function has a single output. A prob-
abilistic Turing machine’s transition function maps to a distribution on outputs with nonnegative
probabilities that add up to one.

A quantum Turing machine’s transition function maps to a superposition of the outputs where
each output gets an amplitude which may be a complex value. In the case of BQP as defined
below, Adleman, DeMarrais and Huang [ADH97] and Solovay and Yao [SY96] show that we can
assume these amplitudes take one of the values in {−1,−4

5 ,−
3
5 , 0,

3
5 ,

4
5 , 1}. Bennett, Bernstein,

Brassard and Vazirani [BBBV97] show that we can assume the quantum Turing machine has a
single accepting configuration.

The quantum Turing machines we consider here all run in polynomial time and thus have an
exponential number of possible configurations.

Suppose that before a transition each configuration Ci has a real amplitude αi. Consider the
L2 norm of the amplitudes √∑

i

α2
i

A quantum Turing machine is required to preserve this L2 norm. This is equivalent to the transition
matrix U of the configurations being unitary. For real U , U is unitary if the transpose of U is the
inverse of U .

To compute the probability of acceptance consider an initial configuration amplitude vector
~α where α0 = 1 for the initial configuration C0 and αi = 0 for every other configuration. Let
~β = U t · ~α where t is the running time of the Turing machine. The probability of acceptance is β2

i

where Ci is the accepting configuration.
We can now define BQP similar to the definition of BPP.

Definition 2.1 A language L is in BQP if there is a quantum Turing machine M such that for
all x in Σ∗,

• If x is in L then M(x) accepts with probability at least two-thirds.

• If x is not in L then M(x) accepts with probability at most one-third.

Similar to BPP, though with nontrivial proofs, we can assume the error is exponentially small
and that BQP machines can simulate deterministic Turing machines and other BQP machines as
subroutines (see [BV97]).

The class EQP (sometimes called QP) has the same definition as BQP except that we re-
quire zero error. It is analogous to P in that every computation path halts in polynomial time.
Surprisingly, this class appears to be stronger than deterministic polynomial time (see [BV97]).

3

2.4 Counting Classes

A function f from strings to the natural numbers is in the counting class #P if there is a non-
deterministic polynomial-time machine M such that f(x) = m iff the computation M(x) has m
accepting paths. In order to understand better the complexity of counting classes like #P, Fenner,
Fortnow and Kurtz [FFK94] defined the GapP functions consisting of the closure under subtraction
of the set of #P functions (and so a GapP function’s domain is the integers). Equivalently, GapP
consists of functions f(x) such that for some nondeterministic polynomial-time Turing machine M ,
f(x) is the difference between the number of accepting and the number of rejecting paths of M(x).

The power of GapP functions lie in their closure properties: GapP functions are closed under
negation, subtraction, exponential addition and polynomial multiplication.

Theorem 2.2 (Fenner-Fortnow-Kurtz) Let f be a GapP function and q a polynomial. Then
the following are GapP functions:

1. −f(x),

2.
∑
|y|≤q(|x|) f(〈x, y〉), and

3.
∏

0≤y≤q(|x|) f(〈x, y〉).

For the rest of the paper, we will assume that the pairing function is implicitly used whenever
we have a function of two or more arguments.

We can also define many interesting counting classes using GapP functions. For this paper we
consider the following classes.

Definition 2.3 The class PP consists of those languages L such that for some GapP function f
and all x in Σ∗,

• If x is in L then f(x) > 0.

• If x is not in L then f(x) < 0.

The class PP was first defined by Gill [Gil77] as probabilistic polynomial time with unbounded error.
Definition 2.3, first given by Fenner, Fortnow, and Kurtz [FFK94], makes the class considerably
easier to work with.

Definition 2.4 The class LWPP consists of those languages L such that for some GapP function
f , and some polynomial-time computable positive function g, and for all x in Σ∗:

• If x is in L then f(x) = g(1|x|).

• If x is not in L then f(x) = 0.

Definition 2.5 The class AWPP consists of those languages L such that for all polynomials q,
there is a GapP function f and a polynomial-time computable function g such that for all strings
x in Σ∗ and m ≥ |x|, 0 < f(x, 1m) < g(1m) and

• If x is in L then f(x, 1m) ≥ (1− 2−q(m))g(1m).

• If x is not in L then f(x, 1m) ≤ 2−q(m)g(1m).

The classes LWPP and AWPP were first defined by Fenner, Fortnow and Kurtz [FFK94] and
Fenner, Fortnow, Kurtz and Li [FFKL93]. Though artificial, these classes have some nice properties
that we will use to help classify quantum complexity.

4

2.5 One-way functions

A language L is in the class UP if there is a classical machine M that, for every x ∈ L, has exactly
one accepting path and has no accepting paths if x /∈ L.

A polynomial-time computable function f from strings to strings is one-way if it is one-to-one,
honest, and not invertible in polynomial time. Being honest means that there is a polynomial p
such that p(|f(x)|) > |x|; in other words, honest functions do not map long input strings to short
output strings. Grollmann and Selman [GS88] showed that one-way functions exist if and only if
P 6= UP. Note that these one-way functions may not be suitable for cryptographic purposes which
require average-case hardness against nonuniform inverters.

2.6 Generic oracles

In trying to show that there is an oracle relative to which a particular proposition P holds, we
often begin by defining an infinite set of requirements, which are statements about relativized
computations. An oracle X satisfies (or forces) a requirement if the statement of the requirement
is true when the computations are performed relative to X. We define the requirements so that,
if each is satisfied, the proposition P is true. For example, to make PX 6= NPX , we specify an
enumeration of all polynomial-time bounded, deterministic oracle Turing machines: {Mi}i∈ω. We
then define a nondeterministic machine N and an infinite set of requirements R = {Ri}i∈ω, where
Ri is the statement: “L(MX

i) 6= L(NX).” If we construct an oracle X satisfying every Ri then
PX 6= NPX .

Defining the requirements is often quite straightforward. The difficulties usually arise when
trying to construct the oracle. We avoid some of the difficulties by employing generic oracles.

A condition is a partial function from Σ∗ to {0, 1}. A condition σ extends another condition τ
if, for all x ∈ dom(τ), σ(x) = τ(x). An oracle A extends a condition σ if A’s characteristic function
extends σ. Two conditions σ and τ are compatible if, for all x ∈ dom(σ) ∩ dom(τ), σ(x) = τ(x).
They conflict otherwise. We will always assume that if a condition is defined on any string of some
length then it is defined on all strings of that length.

A condition σ satisfies a requirement if any oracle extending σ satisfies it.
A set of conditions S is dense if, for every condition τ , there is a condition σ ∈ S that extends

τ . It is definable if the set {σ : σ ∈ S} belongs to Π1
1 (see [Rog87]).

Restrictions can be set on conditions to achieve a desired separation. In this paper, we impose
the restriction that all conditions have finite domains. In section 4, we will employ UP ∩ coUP-
conditions, which have the following further restrictions: a condition takes on the value 0 for
every string not at an acceptable length and it takes on the value 1 for exactly one string at each
acceptable length. An acceptable length is an integer in the range of the tower function, which has
the recursive definition: tower(0) = 2, tower(n+ 1) = 2tower(n). That is, tower(n) is a tower of 2’s
with height n+ 1.

An oracle A meets a set of conditions S if there is some σ in S that is extended by A. A generic
oracle is one that meets every dense definable set of conditions. A UP ∩ coUP-generic oracle is
one that meets every dense definable set of UP ∩ coUP-conditions. UP ∩ coUP-generics were
first developed by Fortnow and Rogers [FR94] to study the relationship between separability and
one-way functions. More background about these oracles and a variety of other generic oracles can
be found in that earlier paper and in papers by Blum and Impagliazzo [BI87] and Fenner, Fortnow,
and Kurtz [FFK94].

5

3 Counting Complexity

In this section we show a close connection between counting complexity and quantum computing.

Theorem 3.1
BQP ⊆ AWPP

Theorem 3.1 follows from the following lemma.

Lemma 3.2 For any quantum Turing machine M running in time bounded by a polynomial t(n),
there is a GapP function f such that for all inputs x,

Pr(M(x) accepts) =
f(x)

52t(|x|) .

Proof of Theorem 3.1. Fix a language L in BQP and a polynomial q. Let M be a polynomial-
time quantum Turing machine that on input (x, 1m) accepts for x in L with probability at least
1− 2−q(m) and accepts for x not in L with probability at most 2−q(m).

Fix x and m with m ≥ |x|. Then there is a polynomial t(m) that bounds the running time of
M(x, 1m). By Lemma 3.2 there is a GapP function f such that f(x, 1m)/52t(m) is the acceptance
probability of M(x, 1m). We can thus fulfill the requirements of Definition 2.5 by letting g(1m) =
52t(m).

Proof of Lemma 3.2. We can assume that M has at most 2t configurations. Let U be the
transition matrix of M . By the discussion in Section 2.3 we can assume the entries of U are of
the form w/5 for w an integer between −5 and 5. By the nature of a transition matrix, we can
compute the (i, j) entry of U in time polynomial in |x|.

Let V = 5U so V has only integral entries. Let ~α be the initial configuration amplitude vector
as described in Section 2.3. Let ~β = V t · ~α. Note that each βi, a component of ~β corresponding
to configuration Ci, is an exponential sum of a polynomial product of polynomial-time computable
entries of V . By Theorem 2.2, we have that each βi is a GapP function.

Let f(x) be β2
i where Ci is the accepting configuration of M(x). Again by Theorem 2.2 we have

f(x) is a GapP function. We have that f(x,m)/5t(|x|)
2

is the acceptance probability of M(x).

We can now use properties of AWPP to better understand the complexity of BQP. Lide
Li [Li93] gave an upper bound on the complexity of AWPP.

Theorem 3.3 (Li) AWPP is low for PP, i.e., PPAWPP = PP.

For completeness we sketch the proof of Theorem 3.3.
Proof Sketch. Suppose L is in PPA for some A in AWPP. By Definition 2.3, there is some

h ∈ GapPA such that for x ∈ L, h(x) ≥ 1 and h(x) ≤ −1 otherwise. Let MA be a relativized
nondeterministic polynomial-time Turing machine such that h(x) is the difference of the number
of accepting and rejecting computations of MA(x). We assume without loss of generality that for
every A and x each computation path of MA(x) makes the same number of queries.

Pick a polynomial q(n) such that for strings of length n, MA has less than 2q(n)/2 computation
paths. Let f and g be GapP and polynomial-time computable functions defined for A and q as in
Definition 2.5. Let N be a nondeterministic polynomial-time Turing machine such that f(x, 1m) is
the difference of the number of accepting and rejecting paths of N(x, 1m).

6

Create a new nondeterministic polynomial-time Turing machine M ′ as follows. On input x,
simulate MA(x). Every time M makes a query y to A, simulate N(y, 1|x|). If N accepts then
continue the computation of M assuming y is in A. If N rejects then continue the computation of
M assuming y is not in A.

By the choice of q, the mistakes made by the wrong simulation, even totaled over every compu-
tation path of MA(x), are not enough to affect the sign of the difference of the number of accepting
and rejecting paths of M ′.

From Theorem 3.3 we get the same result for BQP.

Corollary 3.4 BQP is low for PP.

This improves and simplifies the bound given by Adleman, DeMarrais and Huang [ADH97].

Corollary 3.5 (Adleman-DeMarrais-Huang)

BQP ⊆ PP ⊆ P#P ⊆ PSPACE

We also have a class containing BQP that is not known to contain NP as Beigel [Bei94] has a
relativized world where NP is not low for PP.

Fenner, Fortnow, Kurtz and Li [FFKL93] give an interesting collapse for AWPP relative to
generic oracles. Their proof builds on a connection between decision tree complexity and low-degree
polynomials developed by Nisan and Szegedy [NS94].

Theorem 3.6 (FFKL,NS) If P = PSPACE (unrelativized) then PG = AWPPG for any
generic G.

We can create an oracle H by starting with an oracle making P = PSPACE and joining a
generic G to that. Because the polynomial-time hierarchy is infinite relative to generic oracles and
because Theorem 3.1 relativizes, we can get some interesting relativized worlds.

Corollary 3.7 There exists a relativized world where P = BQP and the polynomial-time hierarchy
is infinite.

This greatly strengthens the result of Bennett, Bernstein, Brassard and Vazirani [BBBV97]
giving a relativized world where NP is not in BQP.

Using a proof similar to that of Theorem 3.1 we get a stronger upper bound for EQP.

Theorem 3.8
EQP ⊆ LWPP

Whether Graph Isomorphism can be solved quickly by quantum computers remains an inter-
esting open question. This possibility is consistent with Theorem 3.8 as Köbler, Schöning and
Torán [KST92] have show that Graph Isomorphism sits in LWPP.

7

3.1 Extensions

The techniques in our paper can also be used to show bounds on the decision tree complexity
of quantum computers. Here we consider the situation where we wish to compute a function
f : {0, 1}N → {0, 1} where access to input bits are only via oracle questions. We typically do not
care about running time in this model, only the maximum number of queries on any computation
path.

Grover [Gro96] shows how to get a nontrivial advantage with quantum computers: He shows
that computing the OR function needs only O(

√
N) queries although deterministically all N input

bits are needed in the worst case.
Bernstein and Vazirani [BV97] give a superpolynomial gap and Simon [Sim97] gives an expo-

nential gap. However, both of these gaps require that there are particular subsets of the inputs to
which f is restricted.

Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+98] notice that a limitation on the decision
tree complexity of quantum computation follows from the techniques of the proof of Theorem 3.6.

Corollary 3.9 If there is a quantum algorithm computing a function f defined on all of {0, 1}N
and using t queries then there exists a deterministic algorithm computing f using O(t8) queries.

Using other techniques, Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+98] improve Corol-
lary 3.9 to O(t6) queries and show better bounds for specific functions.

Vereshchagin [Ver94] gives the following useful lemma for proving a relativized lack of complete
sets for some classes.

Lemma 3.10 (Vereshchagin) Under some weak restrictions on complexity classes A and B, if

• the class of boolean functions computed by polylogarithmic depth decision trees of type A
coincides with the class of functions computed by deterministic polylogarithmic depth decision
trees and

• there exists a promise problem solved by polylogarithmic depth decision trees of of type B but
not by deterministic polylogarithmic depth decision trees

then there is an oracle where A does not have sets polynomial-time Turing hard for B.

The following result then follows from Corollary 3.9 and Lemma 3.10.

Corollary 3.11 There exists a relativized world where BQP has no hards sets for BPP. In
particular, BQP has no complete sets in this world.

Lemma 3.2 shows how to compute the probability acceptance of a quantum Turing machine
with a GapP function. Fenner, Green, Homer and Pruim [FGHP98] give a result in the other
direction.

Theorem 3.12 (FGHP) For any GapP function f there exists a polynomial-time quantum Tur-
ing machine M and a polynomial p such that for all x,

Pr(M(x) accepts) =
f(x)
2p(|x|)

.

8

Theorem 3.12 creates a quantum machine with amplitudes contained in {0,−1,− 1√
2
, 1√

2
, 1}. Fenner,

Green, Homer and Pruim [FGHP98] note that our Lemma 3.2 holds where amplitudes may be any
positive or negative square roots of rational numbers (the value “5” in the statement of Lemma 3.2
may have to be replaced with a different positive integer).

¿From Lemma 3.2 and Theorem 3.12 we immediately get a new characterization of the class
C=P. The class C=P consists of the languages L for which there exists a GapP function f such
that x is in L exactly when f(x) = 0.

Corollary 3.13 A language L is in C=P if and only if there exists a polynomial-time quantum
Turing machine M such that x is in L exactly when the probability that M(x) accepts is zero.

Watrous [Wat98] proves similar results for space-bounded quantum Turing machines.

4 One-Way Functions

We show that one-way functions are not sufficient to guarantee the hardness of BQP.

Theorem 4.1 There is an oracle C relative to which one-way functions exist and PC = BQPC .

Thus, to demonstrate that the existence of one-way functions implies a separation between
BPP and BQP will require nonrelativizing techniques.

We actually prove a stronger result from which Theorem 4.1 follows.

Theorem 4.2 There is an oracle C relative to which PC = BPPC = BQPC 6= UPC ∩ coUPC .

To prove Theorem 4.2, we need the following theorem due to Bennett, Bernstein, Brassard and
Vazirani [BBBV97].

Theorem 4.3 (BBBV) Let M be an oracle BQP machine that runs in time p(n) and let O be
an oracle and x an n-bit input. There is a set S such that for all oracles O′, if O′ differs from O
only on a single string and that string is not in S then |P [MO′ accepts x]− P [MO accepts x]| ≤ ε,
where |S| ≤ 4p2(n)/ε2.

This theorem states that for an oracle BQP Turing machine M and an input x whose length
is n, there is a polynomial (in n) sized set S such that, if a string y is not in S, we can change the
oracle’s answer on y and the probability that M accepts x is still bounded away from 1/2.

Proof of Theorem 4.2. Let H be an oracle relative to which P = PSPACE (H can be any
PSPACE-complete language). Let G be a UP∩coUP-generic oracle, which must have exactly one
string at lengths that are exponentially far apart. Let C = H⊕G = {0x|x ∈ H}∪{1y|y ∈ G}. The
oracle C represents a relativization that identifies P and PSPACE (and so P = BPP = BQP)
and a re-relativization that, we will show, separates P and UP ∩ coUP but that still leaves
P = BPP = BQP.

First we show that PC 6= UPC ∩ coUPC . Let LX = {0n|(∃x)|x| = n− 1 & x0 ∈ X}. It’s easy
to see that LG ∈ UPG ∩ coUPG and so is in UPC ∩ coUPC . A simple diagonalization argument
demonstrates that LG /∈ PG. Because G is generic with respect to H, LC /∈ PC .

Next we show that PC = BQPC . Let M be a BQPC machine that runs in time p(n). Since
G is generic we can assume that M is categorically a BQP machine, i.e., for any oracle A and
input x, MA(x) accepts with probability greater than or equal to 2/3 or less than or equal to 1/3
(see [BI87]).

9

Let x be an input of length n. We need to show that there is a deterministic polynomial-time
machine N that, relative to C, determines for an input x whether MC(x) accepts. Because M runs
in polynomial time, there are a polynomial number of lengths for strings that M can query in an
oracle. Because G has exactly one string at every acceptable length, there are polynomially many
strings in G that could affect M ’s computation on x. Because the strings in G are exponentially
far apart, all but at most one are at lengths that are so short that N on input x can query G on
every string at those lengths and so find all of them.

So the only string that N needs to worry about is one at a length ` that is so large that N
would have to query exponentially many strings to be certain of finding it. Call this string y. Even
though N cannot find y by searching, it can use its access to H to figure out what M would do on
input x under the assumption that there are no strings of length ` in G.

Let us say that, under this assumption, M(x) accepts. However, we know there is a string of
length ` in G that could cause M to change its computation and reject x. But Theorem 4.3 says
that there is a set of strings S whose cardinality is bounded by 4p2(n)/ε2 such that, if y is not in
S, the probability that M changes its computation is less than or equal to ε.

Set ε to a value strictly less than 1/6 and say that we know that y (if it exists) is not in S. By
Theorem 4.3, the probability that M accepts x is still strictly greater than 1/2. In other words, x is
still in the language accepted M relative to G. So if N knows that y is not in S, it can simply run
the simulation of M(x) under the assumption that there is no string of length ` in G and output
the correct answer.

So how does N determine whether y is in S? It asks for an explicit enumeration of S. That
is, it asks the question: “What is the set S of strings of length ` such that, if one of those strings
is in the oracle, M rejects x?” S has size at most 4c2p2(n), where c > 6. This question can be
answered in PSPACE without querying G. N can use its access to H to find S in polynomial
time. It then queries G for each of those strings. If none of those strings are in G then N accepts
input x because that is what M would do. If N finds one of those strings in G, it would then be
able to simulate the computation of M(x) with full knowledge of all of the strings in G that could
possibly affect that computation.

4.1 Cryptographic One-Way Functions

The assumption P 6= UP does not necessarily imply the existence of cryptographic one-way func-
tions, i.e., functions not invertible on a large fraction of inputs with nonuniform polynomial-size
circuits. Whether there exists a relativized world where BPP = BQP and cryptographic one-way
functions exist remains an interesting open question.

One possible approach would look at whether P = BQP relative to a random oracle since
relative to a random oracle cryptographic one-way functions exist (see [IR89]). Showing this would
imply that factoring is in BQP = BPP and thus factoring is efficiently computable on probabilistic
machines [Sho97].

Theorem 4.4 If P = BQP relative to random oracle then BQP = BPP (unrelativized).

Proof. Let L be in BQP, then for every oracle R, L is in BQPR. Thus by assumption L is in
PR for most oracles R. Bennett and Gill [BG81] show that every language with this property sits
in BPP.

10

However, we could possibly prove P = BQP for random oracles under some assumption like
P = PSPACE. If this were true with a relativizable proof, we could start with an oracle relativize
to which P = PSPACE and join a random oracle to it. This would yield a relativized world where
P = BQP and cryptographic one-way functions exist.

5 Conclusions

We give results in this paper indicating severe restrictions on the complexity of quantum computing.
We conjecture that BQP actually contains no interesting complexity classes outside of BPP.

Still we believe that quantum computing remains a potentially powerful model of computation.
Quantum computers can quickly solve some problems not known complete such as factoring [Sho97]
and the potential to solve problems such as graph isomorphism and finding a short vector in a lattice.
Also quantum computing can give a large increase in speed, for example a quadratic improvement
in NP-like search problems [Gro96].

Acknowledgments

We would like to thank André Berthiaume, Harry Buhrman, Richard Cleve, Ronald de Wolf, Wim
van Dam and John Watrous for a number of illuminating conversations on quantum computation.
Also, thanks to Ronald de Wolf for the corrected statement of Theorem 4.3.

References

[ADH97] L. Adleman, J. DeMarrais, and M. Huang. Quantum computability. SIAM Journal on
Computing, 26(5):1524–1540, 1997.

[BBBV97] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of
quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.

[BBC+98] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. In Proceedings of the 39th IEEE Symposium on Foundations of Computer
Science, New York, 1998. IEEE. To appear.

[Bei94] R. Beigel. Perceptrons, PP and the polynomial hierarchy. Computational Complexity,
4:314–324, 1994.

[Ber97] A. Berthiaume. Quantum computation. In A. Selman and L. Hemaspaandra, editors,
Complexity Theory Retrospective II, pages 23–51. Springer, 1997.

[BG81] C. Bennett and J. Gill. Relative to a random oracle, PA 6= NPA 6= co − NPA with
probability one. SIAM Journal on Computing, 10:96–113, 1981.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the
28th IEEE Symposium on Foundations of Computer Science, pages 118–126. IEEE, New
York, 1987.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Comput-
ing, 26(5):1411–1473, 1997.

11

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Com-
puter and System Sciences, 48(1):116–148, 1994.

[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In Proceedings of
the 8th IEEE Structure in Complexity Theory Conference, pages 120–131. IEEE, New
York, 1993.

[FGHP98] S. Fenner, F. Green, S. Homer, and R. Pruim. Determining acceptance possibility for
a quantum computation is hard for PH. Technical Report 98-008, Computer Science
Department, Boston University, 1998.

[FR94] L. Fortnow and J. Rogers. Separability and one-way functions. In Proceedings of the
5th Annual International Symposium on Algorithms and Computation, volume 834 of
Lecture Notes in Computer Science, pages 396–404. Springer, Berlin, 1994.

[Gil77] J. Gill. Computational complexity of probabilistic complexity classes. SIAM Journal
on Computing, 6:675–695, 1977.

[Gro96] L. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the 28th ACM Symposium on the Theory of Computing, pages 212–219. ACM, New
York, 1996.

[GS88] J. Grollmann and A Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17:309–355, 1988.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, Reading, Mass., 1979.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Proceedings of the 21st ACM Symposium on the Theory of Computing, pages
44–61. ACM, New York, 1989.

[KST92] J. Köbler, U. Schöning, and J. Torán. Graph isomorphism is low for PP. Computational
Complexity, 2(4):301–330, 1992.

[Li93] L. Li. On the counting functions. PhD thesis, University of Chicago, 1993. Department
of Computer Science TR 93-12.

[NS94] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, 1994.

[Rog87] H. Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, Massachusetts, 1987.

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[Sim97] D. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997.

[SY96] R. Solovay and A. Yao, 1996. Manuscript.

12

[Ver94] N. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms. Russian Academy of Sciences Izvestiya Mathematics, 42(2):261–298, 1994.

[Wat98] J. Watrous. Relationships between quantum and classical space-bounded complexity
classes. In Proceedings of the 13th IEEE Conference on Computational Complexity,
pages 210–227. IEEE, New York, 1998.

13

