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Abstract. The process of gene assembly in ciliates is a fascinating ex-
ample of programmed DNA manipulations in living cells. We describe in
this paper four measures of complexity for this process, based on: (a) the
types of operations used in the assembly, (b) the number of operations
used in the assembly, (c) the length of the molecular folds involved, and
(d) the length of the shortest possible parallel assembly for that gene.

“One of the oldest forms of life on Earth has been revealed as a natural
born computer programmer.”
BBC, September 10, 2001.

1 Introduction

Ciliates are very old eukaryotic unicellular organisms that have developed an
unusual way of organizing their genome. Each cell has two types of functionally
different nuclei - the macronucleus is the somatic nucleus, while the micronucleus
is the germline nucleus. Depending on the species each type of nuclei may be
present in many copies in each cell.

The macronuclear genes are very short molecules, ranging in the S.nova
organisms between 200bp and 3700bp, with an average of 2200 bp in length,
see [22], [19], [3], [4]. Incidentally, these are the shortest DNA molecules known
in Nature, see [20]! The micronuclear genome however is organized on very
long chromosomes (about 120 chromosomes, each with about 107 bp in S.nova,
see [19]), with coding sequences occupying as little as 2 - 5% of the genome,
see, e.g., [3]. During the process of sexual reproduction, ciliates destroy the old
macronuclei and transform a micronucleus into a new macronucleus. Ciliates thus
have to identify precisely the genetic material and splice it out from the chro-
mosomes. The complexity of the process is given by the fundamentally different
organization of the micronuclear and the macronuclear genomes. The structure
is particularly complex in a family of ciliates called Stichotrichs – we concentrate
in this paper on this family.



The macronuclear gene is a contiguous DNA sequence, with genes generally
placed on their own very short DNA molecules. The same gene in the micronu-
cleus is broken into pieces called MDSs (macronuclear destined sequences) that
are separated by noncoding blocks called IESs (internally eliminated sequences).
Moreover, the order of MDSs is shuffled, with some of the MDSs being inverted.
Here is where the challenge of gene assembly lies: ciliates have to identify cor-
rectly more than 100 000 MDSs in their genome, see [20], assemble them together
in the orthodox order, and eliminate all IESs. We refer to [12], [19], [23] for more
details on ciliates and gene assembly.

A hint on how ciliates achieve gene assembly is given by the structure of
MDSs. It turns out that ciliates organize their genomic data as linked lists in
the style used in computer science, see [19]. A short sequence in the end of each
MDS is repeated identically in the beginning of the MDS that should follow it in
the orthodox order, thus serving as a computer science-like pointer. Moreover,
the first MDS starts with a special beginning marker, while the last MDS ends
with a special ending marker. It is currently believed that ciliates splice together
their MDSs on the common pointers to assemble the gene. There are two main
models for gene assembly, see [16], [17] and [8], [21], that both agree on this
generic mechanism.

We concentrate in this paper on the intramolecular model of [8], [21]. The
model consists of three molecular operations: ld, hi, and dlad. In each of these op-
erations, the molecule folds on itself so that two or more pointers get aligned and
through recombination two or more MDSs get combined into a bigger composite
MDS. The process continues until all MDSs have been assembled.

First operation: ld . In the operation (loop, direct repeat)-excision, or ld for short,
a pair of pointers flanking an IES guides the excision of the IES as a circular
molecule, as illustrated in Fig. 1. The DNA molecule folds on itself so that the two
pointers can get aligned, after which the IES is excised through recombination.
As a result, two MDSs get joined and form a bigger coding block. It is crucial
to note that the excised molecule does not contain any coding blocks and so, it
is not required to participate anymore in the gene assembly process.

Second operation: hi . The operation (hairpin, inverted repeat)-excision/reinser-
tion, or hi for short, is applicable to a molecule containing a pair of pointers
where one pointer is the inversion of the other. This is illustrated in Fig. 2. The
molecule folds on itself forming a hairpin so that the two copies of the pointer can
get aligned with the same polarity, thus facilitating the recombination. Through
recombination, the sequence between the two occurrences of the pointer is in-
verted. One may also note that as a result of applying hi, two MDSs are joined
together into a bigger coding block, while two IESs are joined together into a
bigger noncoding block.

Third operation: dlad . The operation (double loop,alternating direct repeat)-
excision/reinsertion, or dlad for short applies to a DNA molecule containing
two pairs of pointers where the segments encompassed by the pairs of pointers
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Fig. 1. Illustration of the ld-rule.
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Fig. 2. Illustration of the hi-rule.

overlap with each other. This is illustrated in Fig. 3. The molecule folds into
two loops so that the two copies of the first pointer align with each other in one
loop, and the two copies of the second pointer align with each other in the other
loop. Thus, the molecule is in position for two recombinations. As a result of this
double recombination, two sequences are translocated; several MDSs are joined
together into bigger coding sequences, see [6] for details.

2 Definitions

We give in this section some basic notions concerning permutations, strings, and
graphs.

Signed strings For a finite alphabet Σ = {a1, . . . , an}, we denote by Σ∗ the
free monoid generated by Σ and call any element of Σ∗ a string. Let Σ =
{a1, . . . , an}, where Σ ∩ Σ = ∅. For p, q ∈ Σ ∪ Σ, we say that p, q have the
same signature if either p, q ∈ A, or p, q ∈ A and we say that they have different
signatures otherwise. For p ∈ Σ, we say that p is an unsigned letter, while for
p ∈ Σ, we say that p is a signed letter.
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Fig. 3. Illustration of the dlad-rule.

We denote Σz = (Σ ∪Σ)∗. For any u ∈ Σz, u = x1 . . . xk, with xi ∈ Σ ∪Σ,
for all 1 ≤ i ≤ k, we denote ‖u‖ = ‖x1‖ . . . ‖xk‖, where ‖a‖ = ‖a‖ = a, for all
a ∈ Σ. We also denote u = xk . . . x1, where a = a, for all a ∈ Σ.

We say that u ∈ Σz is a signed double occurrence string if for any p ∈ Σ, u
has either 0, or 2 occurrences from the set {p, p}. In case u has two occurrences
from the set {p, p}, we say that p is a positive letter in u if the two occurrences
have different signatures, and we say that is a negative letter in u if they have
the same signature.

Let u be a signed double occurrence string. We say that letters p and q, p 6= q,
overlap in u if u = u1pu2qu3pu4qu5, for some ui ∈ Σz, 1 ≤ i ≤ 5.

Signed permutations A permutation π over alphabet Σ is a bijection π : Σ → Σ.
Fixing the order relation (a1, a2, . . . , am) over Σ, we often denote π as the string
π(a1) . . . π(am) ∈ Σ∗. A signed permutation over Σ is a string ψ ∈ Σz, where
‖ψ‖ is a permutation over Σ.

Signed graphs A signed graph is a triple G = (V,E, φ), with V a finite set
of vertices, E ⊆ V × V the set of (undirected) edges, with the property that
(x, y) ∈ E if and only if (y, x) ∈ E, and φ : V → {+,−} the signature function.
We say that vertex p ∈ V is positive if φ(p) = + and it is negative otherwise.
For all p ∈ V , we denote by NG(p) the neighborhood of p in G.

For a signed graph G = (V,E, φ) and p ∈ V we denote by G \ {p} the
graph induced by the set of vertices V \ {p}. We also denote by locp(G) the local
complementation of G at p: locp(G) = (V,E′, φ′), where (x, y) ∈ E′ if and only if
(x, y) 6∈ E, for all x, y ∈ NG(p) and (x, y) ∈ E′ if and only if (x, y) ∈ E otherwise.
Also, φ′(x) = + if and only if φ(x) = −, for all x ∈ NG(p) and φ′(x) = φ(x),
otherwise.

We denote by C4 and D4 the graphs illustrated in Fig. 4.
For any signed double occurrence string u over alphabet Σ, we may associate

to u a signed graph Gu = (Vu, Eu, φu) in the following way: Vu = {p ∈ Σ |
p or p occurs in u}, Eu = {(p, q) | p and q overlap in u}, and φu(p) = + if and
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Fig. 4. (a) The square C4; (b) the diamond D4.

only if p is a positive letter in u. The graph Gu is also called the overlap graph
of u.

For k ≥ 2 we will use throughout the paper the alphabets Σk = {1, . . . , k}
and ∆k = {2, . . . , k}.

3 Three models for gene assembly

The intramolecular model for gene assembly, [8], [21], has been formalized on
several levels of abstraction. The structures of genes can be represented as: signed
permutations, MDS descriptors, signed double occurrence strings, or signed over-
lap graphs. Consequently, the process of gene assembly can be formalized on
strings, or reduction of graphs. As it turns out, all these levels of abstraction
are equivalent as far as the modeling of gene assembly is concerned, see [6] for
a detailed discussion on model forming. Nevertheless, different levels of abstrac-
tion prove more suitable (more elegant or technically simpler) than the others
depending on the subject of the investigation.

In this paper we consider issues dealing with formalization of the gene as-
sembly on the level of string permutation, signed double occurrence strings, and
signed graphs. We present briefly these three abstraction levels and we refer to
[6] for more details.

For any gene γ having k MDSs, k ≥ 1, we may associate a signed permutation
to γ in the following way: associate to the MDS Mi letter i, 1 ≤ i ≤ k, and its
inversion M i the signed letter ī. Thus the signed permutation associated to the
MDS sequence M3M1M2 is simply the signed permutation 31̄2.

We may also associate a signed double occurrence string to any gene (more
generally, to any sequence of MDSs), simply by writing its sequence of pointers.
Thus, for a sequence of k MDSs, we associate to each MDS Mi, 2 ≤ i ≤ k − 1,
the string consisting of its incoming and outgoing pointers: i(i + 1). To M i we
associate string i(i + 1). The first and the last MDS are special because they
contain some markers, that will ignore in our string-based representation. Thus,
to M1 we associate string 2 and M1 string 2̄. Similarly, to Mk we associate
string k and to Mk string k̄, Consequently, to the MDS sequence M3M1M2

we associate string 32̄23. Also, to the MDS sequence M2M̄4M1M3 we associate
string 234̄234.



On a higher level of abstraction, we may associate a graph to a sequence of
MDS in the following way. If Uγ is the string associated to gene γ, then Gγ is the
signed overlap graph of Uγ , as defined in Section 2. Thus, the graph associated to
the MDS sequence M3M1M2 consists of positive vertex 2, adjacent to negative
vertex 3.

The molecular operation ld, hi, dlad are modeled as string rewriting rules as
follows (without risk of confusion we use the notation ld, hi, dlad also for the
string rules).

Let u be a signed double occurrence string over alphabet ∆k.

1. For all p ∈ ∆k ∪∆k, ldp is defined as follows:

ldp(uppv) = uv,

where u, v ∈ ∆z

k .
2. For all p ∈ ∆k ∪∆k, hip is defined as follows:

hip(upvp̄w) = uv̄w,

where u, v ∈ ∆z
k .

3. For all p ∈ ∆k ∪∆k, dladp,q is defined as follows:

dladp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where ui ∈ ∆z

k , for all 1 ≤ i ≤ 5.

We say that a composition φ of ld, hi, and dlad operations is a reduction
strategy for string u if φ(u) = Λ.

Example 1. Let u = 35̄2654736724̄88, then ld8 is applicable to u: ld8(u) =
35̄2654736724̄. Also, hi4 and dlad5,6 are applicable to u: hi4(u) = 35̄2652̄7̄6̄3̄7̄88,
and dlad3,2(u) = 6765465̄4̄88.

The corresponding operations for signed graphs are defined as follows. Let
G = (V,E) be a signed graph.

1. For all p ∈ V , ldp is applicable to G if and only if p is an isolated negative
vertex in G. In this case, ldp(G) = G \ {p}.

2. For all p ∈ V , hip 4 is applicable to G if and only if p is an positive vertex in
G. In this case, hip(G) = locp(G) \ {p}.

3. For all p, q ∈ V , dladp,q is applicable to G if and only if p and q are adjacent
negative vertices in G. Then dladp,q(G) = (V \ {p, q}, E′), where E′ is ob-
tained from E by complementing the edges that join vertices in NG(p) with
vertices in NG(q). This means that (x, y) ∈ (E′ \E)∪ (E \E′) if and only if

x ∈ NG(p) \NG(q) and y ∈ NG(q), or

x ∈ NG(q) ∪NG(q) and y ∈ (NG(p) \NG(q)) ∪ (NG(q) \NG(p)), or

x ∈ NG(q) \NG(p) and y ∈ NG(p).
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Fig. 5. (a) The graph Gu in Example 1; (b) hi4(Gu); (c) dlad2,3(Gu)

We say that a composition ψ of ld, hi, and dlad operations is a reduction
strategy for graph G if ψ(G) = ∅.

Example 2. The signed overlap graph associated to string u in Example 1 is
illustrated in Fig. 5

Without risk of confusion, we denote both for the string rules and for the
graph rules: Ld = {ldp | p ≥ 2}, Hi = {hip | p ≥ 2}, Dlad = {dladp,q | p, q ≥ 2, p 6=
q}.

Note that the process of gene assembly, and all its formalizations, as sorting
permutations, reducing strings, or reducing graphs, is non-deterministic. We
illustrate this in the following example.

Example 3. Let u = 562324573467 be a double occurrence string. The u has at
least two reduction strategies: φ1 = ld7 ◦ ld4 ◦ dlad5,6 ◦ dlad2,3 and φ2 = ld5 ◦ ld6 ◦
dlad2,3 ◦ dlad4,7. Indeed,

φ1(u) = (ld7 ◦ ld4 ◦ dlad5,6)(56457467) = (ld7 ◦ ld4)(7447) = ld7(77) = Λ,

φ2(u) = (ld5 ◦ ld6 ◦ dlad2,3)(56232635) = (ld5 ◦ ld6)(5665) = ld5(55) = Λ.

Note that the two strategies have the same number of ld operations, albeit ap-
plied on different pointers.

The following result, adapted from [6] provides an invariant for all sorting
strategies of a given string.

Theorem 1 ([6]). Let u be a signed double occurrence string and φ1, φ2 two
reduction strategies for u. Then φ1 and in φ2 contain the same number of ld

operations.

4 First complexity measure: the minimal subset of

operations sufficient for gene assembly

We introduce in this section our first measure of gene complexity in terms of the
smallest set of (types of) operations that are capable to assemble the given gene.



Our formalism in this section will be that of signed double occurrence strings.
Note that a similar presentation may also be done in terms of signed graphs,
see[5].

The concept of (gene) complexity here is the following. For a given string
x, consider assembly strategies ϕ for x, and take the set Sϕ ⊆ {Ld,Hi,Dlad} of
those types of operations that are used in ϕ. We say that Sϕ is an assembly set
for x.

Example 4. Note that a string may have several assembly sets. For instance,
if u = 23̄2̄434, then ϕ1(u) = dlad3,4 ◦ hi2 is an assembly strategy for u: ϕ1 =
dlad3,4(3434) = Λ. Thus, {Hi,Dlad} is an assembly set for u. However, {Hi} is
also an assembly set for u. Indeed, ϕ2 = hi2 ◦ hi4 ◦ hi3 is an assembly strategy
for u: ϕ2(u) = (hi2 ◦ hi4)(24̄24) = hi2(22̄) = Λ.

We say that a set S ⊆ {Ld,Hi,Dlad} is a minimal assembly set for X , if for
any T ⊆ S, where T is an assembly set for X, we have T = S.

As we will observe at the end of this section, a string X has a unique minimal
assembly set. Anticipating this result, the following notion of complexity is well
defined.

Definition 1. The complexity C1(X) ⊆ {Ld,Hi,Dlad} of a signed double occur-
rence string X is the minimal assembly set of X.

To prove the result announced above, we need to consider for every S ⊆
{Ld,Hi,Dlad}, what are the strings with S as an assembly set. The first complete
characterization was given in [5] in the case of realistic strings. The results were
then extended to signed double occurrence strings in [1]; the characterizations
in [1] are based in part on a notion of break point graphs. For simplicity, we only
consider here the case of elementary strings and the approach in [5].

Theorem 2 ([5]). Let u be an elementary string.

(i) {Ld} is an assembly set for u if and only if u has no overlap and no signed
letters.

(ii) {Ld,Hi} is an assembly set for u if and only if |u| ≤ 2 or u contains at least
one positive pointer.

(iii) {Ld,Dlad} is an assembly set for u if and only if u has no signed letters.
(iv) {Ld,Hi,Dlad} is an assembly set for any signed double occurrence string.

We omit in this paper the characterization of the strings with {Hi}, {Dlad},
or {Hi,Dlad} as assembly sets. Somewhat technical characterization have been
given for those case in[5].

Example 5. (a) The R1 gene of S.nova is described by the MDS sequence
M1M2M3M4M5M6. Its associated string 2233445566 has {Ld} as an assem-
bly set.

(b) String 2323 has {Dlad} as an assembly set.
(c) String 232̄3 has {Hi} as an assembly set.



(d) String 23̄2̄3 has two assembly strategies: ld3 ◦ hi2 and ld2 ◦ hi3. Thus, it has
{Ld,Hi} as an assembly set.

(e) The α-TP gene of S.nova is described by the MDS sequence M1M3M5M9

M11M2M4M6M8M10M12M13M14. Its associated string 2345691011122345
678910111213131414 has {Ld,Dlad} as an assembly set.

(f) The actin I gene of S.nova is described by the MDS sequence M3M4M6M5

M7M9M2M1M8. Its associated string 344567567893̄2̄289 has {Ld,Hi,Dlad}
as an assembly set.

We can now prove the following result.

Theorem 3. Let u 6= Λ be an elementary string and S1, S2 two minimal as-
sembly sets for u. Then S1 = S2.

Proof. Assume that there is an elementary string u 6= Λ with two different
minimal assembly sets S1, S2. Clearly, S1 6⊆ S2 and S2 6⊆ S1. We then have the
following cases:

(i) S1 = {Ld}, S2 = {Hi};
(ii) S1 = {Ld}, S2 = {Dlad};
(iii) S1 = {Ld}, S2 = {Hi,Dlad};
(iv) S1 = {LdHi}, S2 = {Dlad};
(v) S1 = {Ld,Hi}, S2 = {Ld,Dlad};
(vi) S1 = {Ld,Hi}, S2 = {Hi,Dlad};
(vii) S1 = {Ld,Dlad}, S2 = {Hi};
(viii) S1 = {Ld,Dlad}, S2 = {Hi.Dlad};
(ix) S1 = {Hi}, S2 = {Dlad}.

In cases (i) -(iv) we obtain that u has two reduction strategy: one containing
at least one Ld- operations, another containing none. This is a contradiction by
Theorem 1. Using a similar argument, in case (vi)-(viii) it follows that S1 is not
a minimal assembly set for u, again a contradiction.

Finally, in case (v) and (ix) we obtain that u = Λ. Indeed, since S1 ⊇ {Hi} ,
u should have at least one signed letter. On the other hand, since S2 6⊇ {Hi}, u
can not have any signed letter.

Corollary 1. The complexity measure C1 is well defined.

5 Second complexity measure: weights associated to the

assembly operations

The concept of our second measure of complexity is straightforward: a gene is
more “complex” than another if it requires more “effort” to be assembled. The
simplest way to measure the “effort” required to assemble a given gene is through
counting the number of operations required in the assembly.



Definition 2. Let u be a signed double occurrence string and ϕ an assembly

strategy for u. We denote by C
(1)
2 (ϕ) the number of ld, hi, and dlad operations

in ϕ. Then the complexity C
(1)
2 (u) is defined as:

C
(1)
2 (u) = min{C

(1)
2 (ϕ) | ϕ is an assembly strategy for u}.

Example 6. Consider u = 23̄2̄434 and ϕ1, ϕ2 are assembly strategies for u as

in Example 4. Then C
(1)
2 (ϕ1) = 2, while C

(1)
2 (ϕ2) = 3. It is easy to see that

C
(1)
2 (u) = 2.

Clearly, to find the complexity C
(1)
2 (u) for a given string u, one needs to

find the length of an assembly strategy ϕ for u using maximum number of dlad

operations. Indeed, note that ld and hi operations reduce the length of the string
by two, while dlad operations reduce the length of the string by four.

Finding the complexity C
(1)
2 (u) is easy if C1(u) 6= {Hi,Dlad}. Indeed, based

on Theorem 1, it is easy to see that in this case, for any two assembly strategy ϕ

and ψ for u, we have C
(1)
2 (ϕ) = C

(1)
2 (ψ). It is currently unknown how to compute

C
(1)
2 (u) if C1(u) = {Hi,Dlad}.

Considering the molecular model of the dlad operations, with a double fold
and two simultaneous recombination, it may sometimes not be desirable to max-

imize the number of dlad operations as done when computing C
(1)
2 (u). A different

idea is to associate weights to each ld, hi and dlad operation and consequently, to
any assembly strategy. Associating weights to the operations may be done in at
least two ways: either by introducing a (fixed) weight for each type of operation,
or through variable weights depending on the type of operation and the string
to which the operation applies. We illustrate both ideas in the following.

Definition 3. For any operation f ∈ Ld∪Hi∪Dlad, we define C
(2)
2 (f) as follows:

C
(2)
2 (f) = c1, if f ∈ Ld; C

(2)
2 (f) = c2, if f ∈ Hi; and C

(2)
2 (f) = c3, if f ∈ Dlad,

where c1, c2, c3 ≥ 0. Then for a composition ϕ = fk ◦ · · · ◦ f1, fi ∈ Ld∪Hi∪Dlad,

we let C
(2)
2 (ϕ) =

∑k
i=1 C

(2)
2 (fi).

For a signed double occurrence string u, the complexity C
(2)
2 (u) is defined as

C
(2)
2 (u) = min{C

(2)
2 (ϕ) | ϕ is an assembly strategy for u}.

Example 7. Let u = 23̄2̄434 and ϕ1, ϕ2 are assembly strategies for u as in

Examples 4 and 6. If we define C
(2)
2 (f) = 1, for any f ∈ Ld ∪ Hi ∪ Dlad, then

C
(2)
2 = C

(1)
2 : we only count the number of operations in each strategy. Consider

now that C
(2)
2 (f) = 0 if f ∈ Ld, and C

(2)
2 (f) = 1 if f ∈ Hi, and C

(2)
2 (f) = 3 if

f ∈ Dlad, then C
(2)
2 (ϕ1) = 4 and C

(2)
2 (ϕ2) = 3.

A more refined measure of complexity may be introduced depending on the
length of the strings “manipulated” by each operation: the length of the string
inverted by hip, and the length of the strings translocated by dladp,q. In the case
of ldp, the excised string is always the same, pp and so, for simplicity, we may



associate it complexity zero. We formally define this complexity measure in the
following.

Definition 4. Let u be a signed double occurrence string.

(i) For any operation ldp applicable to u, we let C
(3)
2 (ldp, u) = 0.

(ii) For any operation hip applicable to u, we let C
(3)
2 (hip, u) = |u2|, where

u = u1pu2pu3, for some strings u1, u2, u3.

(iii)For any operation dladp,q applicable to u, we let C
(3)
2 (dladp,q, u) = |u2|+|u4|,

where u = u1pu2qu3pu4qu5, for some strings u1, u2, u3, u4, u5.

For an assembly strategy ϕ = fk ◦ · · · ◦ f1 for u, fi ∈ Ld ∪ Hi ∪ Dlad, we

let: C
(3)
2 (ϕ, u) =

∑k

i=1 C
(3)
2 (fi, (fi−1 ◦ · · · f1)(u)). Then we define the complexity

C
(3)
2 (u) as

C
(3)
2 (u) = min{C

(3)
2 (ϕ, u) | ϕ is an assembly strategy for u}.

Example 8. Let u = 344567567893̄2̄289 be the string associated to the gene
actin I in S.nova. Then ϕ1 = ld6 ◦ dlad7,5 ◦ ld4 ◦ hi2 ◦ hi8 ◦ hi9 ◦ hi3 is an assembly
strategy for u:

u1 = hi3(u) = 9̄8̄7̄6̄5̄7̄6̄5̄4̄4̄2̄289,

u2 = hi9(u1) = 8̄2̄2445675678,

u3 = hi8(u2) = 7̄6̄5̄7̄6̄5̄4̄4̄2̄2,

u4 = hi2(u3) = 7̄6̄5̄7̄6̄5̄4̄4̄,

u5 = ld4(u4) = 7̄6̄5̄7̄6̄5̄,

u6 = dlad7,5(u5) = 6̄6̄,

u7 = ld6(u6) = Λ.

Then C
(3)
2 (ϕ1, u) = C

(3)
2 (hi3, u) + C

(3)
2 (hi9, u1) + C

(3)
2 (hi8, u2) + C

(3)
2 (hi2, u3) +

C
(3)
2 (ld4, u4)+C

(3)
2 (dlad7,5, u5)+C

(3)
2 (ld6, u6) = 10+12+10+0+0+2+0 = 34.

Note that ϕ2 = hi3 ◦ hi2 ◦ dlad8,9 ◦ ld7 ◦ dlad5,6 ◦ ld4 is also an assembly strat-
egy for u:

v1 = ld4(u) = 3567567893̄2̄289,

v2 = dlad5,6(v1) = 377893̄2̄289,

v3 = ld7(v2) = 3893̄2̄289,

v4 = dlad8,9(v3) = 33̄2̄2,

v5 = hi2(v4) = 33̄,

v6 = hi3(v5) = Λ.

Then C
(3)
2 (ϕ2, u) = C

(3)
2 (ld4, u)+C

(3)
2 (dlad5,6, v1)+C

(3)
2 (ld7, v2)+C

(3)
2 (dlad8,9,

v3) + C
(3)
2 (hi2, v4) + C

(3)
2 (hi3, v5) = 0.



A natural question here is: what are the strings with minimal C
(3)
2 (u) com-

plexity? We give a complete answer for realistic strings in the next section, where
we discuss simple operations for gene assembly.

6 Third complexity measure: simple operations

As discussed also above, one way to introduce a complexity measure for gene
assembly is by considering the length of the molecular folds involved in every
step of the assembly. We consider in this section simple versions of ld, hi, and
dlad where the operations can only be applied on the shortest possible folds.
It is known that Ld ∪ Hi ∪ Dlad is a complete model, in the sense that any
gene (alternatively: signed permutation, string, or graph) may be assembled in
this model, see [7]. It turns out that the simple operations are not complete:
there are certain patterns that cannot be assembled through simple operations.
Remarkably though, all known micronuclear gene sequences, see [2], can indeed
be assembled through simple operations.

The molecular model for simple ld, hi, and dlad was introduced in [11]. Due
to lack of space, we only give here a short intuitive presentation, followed by
their formalization as rewriting rules for signed permutations.

The simple operations were modeled in [11] on the level of MDS descriptors,
signed permutations, and signed double occurrence strings. We choose here the
level of signed permutations, where several results are easiest and most elegant
to present.

As observed in Section 3, ld must always be simple – the excised sequences!!!
may never contain coding blocks for the assembly to succeed. In simple hi, one
only inverts sequences containing at most one MDS. Similarly, in simple dlad, the
two sequences that are translocated may contain altogether at most one MDS.
We refer to [11] for details.

As noted in Section 3, when working on signed permutations, we ignore the ld

operation and model gene assembly as a process of sorting a signed permutation
rather than as a process of pointer elimination. Simple hi and dlad are modeled
through the following operations for signed permutations.

1. For each p ≥ 1, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . p) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y, z are signed strings over Σn. We denote Sh =
{shi | 1 ≤ i ≤ n}.

2. For each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p − 1) (p + i + 1) z) = xy(p− 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p − 1)(p + i + 1)yp . . . (p + i)z) = x(p − 1)p . . . (p + i)(p + i + 1)yz,



where i ≥ 0 and x, y, z are signed strings over Σn. We also define sdp as
follows:

sdp(x(p + i + 1)(p − 1)y(p + i) . . . pz) = x (p + i + 1)(p + i) . . . p(p − 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p − 1)z) = xy(p + i + 1)(p + i) . . . p(p − 1)z,

where i ≥ 0 and x, y, z are signed strings over Σn. We denote Sd = {sdi, sdi |
1 ≤ i ≤ n}.

We say that a signed permutation π over the set of integers {i, i+1, . . . , i+ l}
is sortable if there are operations φ1, . . . , φk ∈ Sh∪Sd such that (φk ◦ . . .◦φ1)(π)
is a sorted permutation. We say that π is blocked if neither an sh operation, nor
an sd operation is applicable to π and π is not sorted.

Let φ = φ1 ◦ . . . ◦ φk, φi ∈ Sh∪Sd, for all 1 ≤ i ≤ k. We say that φ is a
strategy for π if φ(π) is either sorted, or blocked. In the former case we say that
φ is a sorting strategy, while in the latter case we say that φ is a unsuccessful
strategy for π.

Example 9. Let π = 2 4 3 1 be a signed permutation. Then (sh1 ◦ sd3)(π) =
sh1(2 3 4 1) = 4 3 2 1, a sorted permutation.

One may introduce “elementary” versions of sh and sd, where only one letter
is rewritten in every step, rather than strings as in sh and sd. We consider them
as well and draw a comparison between the two models.

3. For each p ≥ 1, ehp is defined as follows:

ehp(x p(p+ 1) y) = x p (p+ 1) y, ehp(x (p+ 1) p y) = x (p+ 1) p y,
ehp(x p (p+ 1) y) = x p (p+ 1) y, ehp(x (p+ 1) p y) = x (p+ 1) p y,

where x, y are signed strings over Σn. We denote Eh = {shp | 1 ≤ p ≤ n}.
4. For each p ≥ 1, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(x p y (p− 1) (p+ 1) z) = x y (p− 1) p (p+ 1) z,

edp(x (p− 1) (p+ 1) y p z) = x (p− 1) p (p+ 1) y z,

edp(x (p+ 1) (p− 1) y p z) = x (p+ 1) p (p− 1) y z,

edp(x p y (p+ 1) (p− 1) z) = x y (p+ 1) p (p− 1) z,

where x, y, z are signed strings over Σn. We denote Ed = {sdp | 1 ≤ p ≤ n}.

Example 10. (a) Let π = 3 45 6 12. Then (eh1 ◦ eh6 ◦ eh4 ◦ eh3)(π) = 3 4 5 6 1 2 is
a sorted permutation.
(b) Let π′ = 3 4 5 6 12. Then π′ is not Eh∪Ed-sortable. Indeed, no eh or ed

operation is applicable to π′.

Lemma 1. For any signed permutation π, if ehp(edp, resp.) is applicable to π,
for some p, then shp(sdp, resp.) is also applicable to π and ehp(π) = shp(π)
(edp(π) = sdp(π), resp.)



Note that Lemma 1 does not hold in the reverse direction: if π = 1 4 2 3, then
sd2(π) = 1 2 3 4, while ed2 is not applicable to π.

As illustrated by the next example, it turns out that the Eh∪Ed-model is
nondeterministic.

Example 11. Let π = 1 3 5 2 4. Note that π has both sorting and non-sorting
strategies in the elementary model. Indeed, (ed2 ◦ ed4)(π) = 1 2 3 4 5, a sorted
permutation. On the other hand, π′ = ed3(π) = 1 5 2 3 4 is not sorted and no eh

or ed operation is applicable to π′.

Due to nondeterminism, deciding whether a given permutation is Eh-, Ed-,
or Eh∪Ed-sortable is difficult. A complete answer may be found in [10], based
on an involved notion of dependency graph.

The simple model however is different. A permutation may indeed have sev-
eral different strategies, but they are either all sorting, or all non-sorting. More-
over, [13] also defines a notion of structure of a permutation and notes that the
results obtained after applying these strategies, though different, have the same
structure. In this way, deciding whether or not a given permutation π is Sh-,
Sd-, or Sh∪Sd-sortable is easy: simply apply operations from the desired set in
an arbitrary order; if the final blocked permutation is sorted, then the answer is
‘yes’, otherwise the answer is ‘no’: there are no sorting strategies for π.

Example 12. (a) The permutation π1 = 4671235 has several sorting strategies.
Some of them are shown below.

π
(1)
1 = sd5 ◦ sh6 ◦ sh1(π1) = 4567123,

π
(2)
1 = sd5 ◦ sh6 ◦ sh2(π1) = 4567123,

π
(3)
1 = sd4 ◦ sh6 ◦ sh2(π1) = 6712345,

π
(4)
1 = sh6 ◦ sh1 ◦ sd4(π1) = 6712345.

(b) The permutation π2 = 13685724 has several unsuccessful strategies. Some
of them are shown below.

π
(1)
2 = sd2 ◦ sd7(π2) = 12367854,

π
(2)
2 = sd2 ◦ sd6(π2) = 12385674,

π
(3)
2 = sd3 ◦ sd7(π2) = 18567234,

π
(4)
2 = sd3 ◦ sd6(π2) = 18567234.

7 Fourth complexity measure: parallelism

The previous three measures of complexity all dealt with sequential compositions
of operations leading to the assembly of a given gene. We introduce in this section
a fourth measure of complexity dealing with more general parallel assemblies of
genes.



A systematic study of parallelism for gene assembly has been initiated in [15].
We only consider in this paper a graph-based presentation of parallelism, al-
though a string-based study is also possible, see [15].

Intuitively, a set of operations can be applied in parallel to a gene pattern
if only if each operation’s applicability is independent of the other’s. In other
words, a number of operations can be applied in parallel to a gene pattern if
they can be (sequentially) applied in any order to that gene pattern. Note that
this is consistent with how parallelism and concurrency are defined in Computer
Science.

E.g., the C2 gene of S.nova described by the MDS sequence M1M2M3M4

requires three Ld operations. The three Lds can be applied independently of
each other and so, they can be applied in parallel. Also, the micronuclear gene
R1 of S.nova described by the MDS sequence M1M2M3M4M5M6, requires five
Ld operations, and all of them can be applied at once. Consequently, its parallel
complexity is one, the same as gene C2.

Parallelism can be defined in terms of signed graphs as follows.

Definition 5 ([15]). Let S ⊆ Ld ∪ Hi ∪ Dlad be a set of k rules and let G =
(V,E, σ) be a signed graph. We say that the rules in S can be applied in parallel
to G if for any ordering ϕ1, ϕ2, . . . , ϕk of S, the composition ϕk ◦ · · · ◦ ϕ1 is
applicable to G.

The following result provides a simple criterium for two rules to be applicable
in parallel.

Lemma 2 ([15]). Let G = (V,E, σ) be a signed graph and let ϕ, ψ ∈ Ld ∪ Hi ∪
Dlad be two rules applicable to G with dom(ϕ) ∩ dom(ψ) = ∅.

(i) If ϕ ∈ Ld, then ϕ and ψ can be applied in parallel to G.
(ii) If ϕ = hip with p ∈ V , then ϕ and ψ can be applied in parallel to G if and

only if NG(p) ∩ dom(ψ) = ∅.
(iii) If ϕ, ψ ∈ Dlad, then ϕ and ψ can applied in parallel to G if and only if the

subgraph of G induced by dom(ϕ) ∪ dom(ψ) is not isomorphic to C4 or D4. define C4 and D4

According to the definition, if a set of rules is applicable in parallel to a
signed graph, then any composition of these rules is applicable to that graph.
This definition does not require that the result of applying different compositions
of rules must be the same. However, it can be proved that this is indeed the case.

Lemma 3 ([15]). If ϕ, ψ ∈ Ld∪Hi∪Dlad are applicable in parallel to the signed
graph G, then ϕ(ψ(G)) = ψ(ϕ(G)).

The general case follows now easily from Lemma 3.

Theorem 4 ([15]). Let G be a signed graph and let S ⊆ Ld∪Hi∪Dlad be a set
of rules applicable in parallel to G. Then for any two compositions ϕ,ϕ′ of the
rules in S, ϕ(G) = ϕ′(G).

Based on Theorem 4 we can now define the notion of parallel complexity.



Definition 6. Let G be a signed graph. If S ⊆ Ld ∪ Hi ∪ Dlad is a set of rules
applicable in parallel to G, then we say that S is applicable to G and we denote by
S(G) the graph obtained as a result of applying to G any sequential composition
of the rules in S.

If S1, S2, . . . , Sk ⊆ Ld ∪ Hi ∪ Dlad are disjoint sets of rules, Si ∩ Sj = ∅,
for i 6= j, we say that Sk ◦ . . . ◦ S1 is applicable to G if Si is applicable to
(Si−1 ◦ . . . ◦ S1)(G), for all 1 ≤ i ≤ k. If (Sk ◦ . . . ◦ S1)(G) = ∅, then we say
that Sk ◦ . . . ◦ S1 is a parallel reduction strategy for G. We say that the parallel
complexity of S = Sk ◦ . . . ◦ S1 is C4(S) = k.

We define the parallel complexity C4(G) of G as follows:

C4(G) = min{C4(S) | S is a parallel reduction strategy for G}.

Example 13. (a) Any discrete graph can be reduced in one parallel step.
(b) The smallest graph with parallel complexity two is shown in Fig. 6(a).
(c) The smallest graph that can be reduced in 3 parallel steps, see Fig. 6(b).

(a) (b)

Fig. 6. (a) A graph with parallel complexity two; (b) A graph with parallel complexity
three.

Example 14. Let G be the signed overlap graph associated to actin I gene in S.
nova, illustrated in Fig. 7. There are only 6 different maximal parallel strategies
to reduce G:

S1 = {ld7, hi3} ◦ {hi2, ld4, dlad5,6, dlad8,9};
S2 = {ld6, hi8, hi9} ◦ {hi2, hi3, ld4, dlad5,7};
S3 = {ld6, hi3} ◦ {hi2, ld4, dlad5,7, dlad8,9};
S4 = {ld7, hi8, hi9} ◦ {hi2, hi3, ld4, dlad5,6};
S5 = {ld5, hi3} ◦ {hi2, ld4, dlad6,7, dlad8,9};
S6 = {ld5, hi8, hi9} ◦ {hi2, hi3, ld4, dlad6,7}.
Note that there are 3060 sequential strategies to reduce this graph (and as-

semble the gene), see [6] – the reason for this difference is that many sequential
strategies coincide modulo commutation of some rules. Those rules may be ap-
plied in parallel.

The following problem seems to be difficult: check whether or not a given set
of rules can be applied in parallel to a given signed graph. In the next theorem
we give a simple criterium in the case when at most two dlad rules are to be



Fig. 7. The signed overlap graph associated to string 3 4 4 5 6 7 5 6 7 8 9 3 2 2 8 9, both
representing the structure of the micronuclear gene actin I in S.nova.

applied. Giving a general answer, for an arbitrary number of dlad rules, remains
an open problem.

Theorem 5. Let G be a signed graph and S ⊆ Ld ∪ Hi ∪ Dlad a set of rules
containing at most two dlad’s. Let P be the union of domains of rules in S with
P+ = {p ∈ P | σ(p) = +}, and P− = P \P+. Then the rules in S can be applied
in parallel to G if and only if the following conditions are satisfied:

(i) The subgraph induced by P+ is discrete. Moreover, there is no edge between
vertices in P+ and vertices in P−.

(ii) The subgraph induced by P− does not contain induced squares C4 or dia-
monds D4.

Fig. 8. A negative graph with parallel complexity three.

Two conjectures were given in [15] regarding the parallel complexity of graphs.
The authors proposed that any negative graph may be reduced in at most two
parallel steps and that any graph may be reduced in at most four parallel steps.
Revisiting these conjectures and based on a newly available gene assembly simu-
lator, see [18], we give in the following counterexamples to both these conjectures.
It is currently unknown if the parallel complexity of arbitrary graphs is bounded.
Several classes of graphs are shown to have bounded parallel complexity in [9].



Fig. 9. A graph with parallel complexity five.

Example 15. (a) The negative graph G3 illustrated in Fig. 8 has parallel com-
plexity three. (As a matter of fact, an automated search shows that this the
smallest such graph in terms of number of vertices.) Indeed, one three-step
parallel strategy for G3 is {ld6} ◦ {dlad5,7} ◦ {dlad1,2, dlad3,4}. Some straight-
forward analysis shows that no two-step or one-step strategy for G3 exists.

(b) The graph G5 illustrated in Fig. 9 has parallel complexity 5. One 5-step
parallel reduction for G5 is the following: {ld8, ld12} ◦ {ld6, ld10, hi7, hi11} ◦
{hi5, hi9} ◦ {hi2, hi4} ◦ {hi1, hi3}.
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