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Abstract: We study the conditions under which, given a generic quantum system, com-
plexity metrics provide actual lower bounds to the circuit complexity associated to a set
of quantum gates. Inhomogeneous cost functions — many examples of which have been
recently proposed in the literature — are ruled out by our analysis. Such measures are
shown to be unrelated to circuit complexity in general and to produce severe violations of
Lloyd’s bound in simple situations. Among the metrics which do provide lower bounds,
the idea is to select those which produce the tightest possible ones. This establishes a hier-
archy of cost functions and considerably reduces the list of candidate complexity measures.
In particular, the criterion suggests a canonical way of dealing with penalties, consisting
in assigning infinite costs to directions not belonging to the gate set. We discuss how
this can be implemented through the use of Lagrange multipliers. We argue that one of
the surviving cost functions defines a particularly canonical notion in the sense that: i)
it straightforwardly follows from the standard Hermitian metric in Hilbert space; ii) its
associated complexity functional is closely related to Kirillov’s coadjoint orbit action, pro-
viding an explicit realization of the “complexity equals action” idea; iii) it arises from a
Hamilton-Jacobi analysis of the “quantum action” describing quantum dynamics in the
phase space canonically associated to every Hilbert space. Finally, we explain how these
structures provide a natural framework for characterizing chaos in classical and quantum
systems on an equal footing, find the minimal geodesic connecting two nearby trajectories,
and describe how complexity measures are sensitive to Lyapunov exponents.
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1 Introduction

Triggered by Susskind et al.’s observation that the “size”1 of black hole interiors grows
with time in a remarkably similar fashion to the computational complexity of discrete
quantum systems, and making crucial use of Nielsen et al.’s geometric approach [8–10],
numerous attempts at defining reasonable notions of complexity in the context of quantum
field theory (QFT) have been explored in recent times.

This task is challenging for various reasons. Roughly speaking — see below for a
more precise definition — the complexity of a given unitary transformation is defined as
the smallest number of “small” unitaries, or “gates”, belonging to certain universal set
required for implementing such transformation. This setup is particularly well-suited for
n-qubit systems. In that context, “big” unitaries correspond to generic n-site tensor prod-
ucts of single-qubit Pauli matrices and identities, and a canonical set of “small” gates is
given by 1- and 2-qubit gates, which suffice to generate any big unitary. The situation
is not as easy in the case of continuous systems, for which notions like “big unitaries” or
“gates” become considerably more obscure. An interesting development — which preceded
all existent literature on QFT complexity — was carried out by Nielsen and collabora-
tors [8–10], who showed that the complexity of n-qubit systems can be approximated by
the length of geodesics — associated to certain notions of distance — on the unitaries man-
ifold. In particular, they proved that, whenever such distance functionals satisfied certain
conditions, they were able to provide lower bounds on the circuit complexity.

This “continuous approach” appears to be suitable for quantum fields and has indeed
been at the root of most — albeit not all — proposals discussed so far in the literature.
One of the first involved fidelity susceptibility — a quantity which is equivalent to the
so-called quantum information metric — in the context of small perturbations of the ther-
mofield double state [11]. Subsequent ideas involved applying a Nielsen-inspired setup
to free QFTs [12, 13]. These and related proposals have been subsequently explored in
many papers — see e.g., [14–26]. Exploiting the power of restricting the gate set to a
Lie subgroup of the unitaries manifold, a proposal valid for generic (interacting) CFTs
was presented in [27], and further developed in [28], where it was connected with the field
of “coadjoint orbit actions” [29]. Somewhat related to this approach, Euler-Arnorld ac-
tions/equations have also been suggested as complexity measures [28, 30]. Fubini-Study
and fidelity susceptibility-like proposals were further explored in [31] for interacting CFTs.
Yet another approach, known as “path integral complexity”, was proposed in [32, 33]. This
relates complexity to the variation of the path integral measure under conformal transfor-
mations.2

1The most popular notions of “size” conjectured to be connected to quantum complexity are the “com-
plexity equals volume” and “complexity equals action” proposals. They conjecture, respectively, that the
complexity of the CFT state is related to the volume of the extremal codimension-one bulk region meeting
the boundary on the corresponding time slice [1–4] and that it is related to the gravitational action evalu-
ated on the domain of dependence of bulk Cauchy slices asymptotically approaching such boundary time
slice [5, 6]. See also [7] for an alternative proposal.

2This proposal was explored in the context of circuit complexity in [28]. See also [34].
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Of course, the existence of this zoo of proposals rises up many questions. In this paper
we focus on three obvious ones: i) how do we know a given proposal provides a reason-
able complexity measure?; ii) are there any guiding principles we can use to establish some
kind of hierarchy among the alternatives?; iii) what is the relation between complexity mea-
sures/actions and the actual physical actions describing the dynamics of a quantum system?

While it is tempting to use continuous notions directly as definitions for complexity,
Nielsen’s original observation that only certain notions provide lower bounds for that quan-
tity suggests in fact a way to address the first two questions. Given a complexity metric,
we have to make sure that for any discrete protocol, generated by a discrete set of quantum
gates, it is always possible to construct a continuous one such that its length, as computed
by the complexity metric, is smaller than (or equal to) the number of gates used in the dis-
crete protocol. Metrics satisfying this condition were called G-bounding in [8] in the context
of qubit systems. We will see that an analogous connection between G-bounding metrics
and lower bounds to complexity applies to generic quantum systems, providing a precise
criterion for determining whether a proposed measure is actually related to complexity.
Interestingly, this simple analysis already rules out inhomogeneous metrics, examples of
which have been proposed independently by several groups. Among all possible metrics
satisfying the G-bounding condition, those attributing greater distances to generic proto-
cols should be preferred over those attributing smaller distances. The philosophy is simple:
given a G-bounding metric, the tighter the lower bound it provides, the closer it gets to the
actual complexity of a given protocol. We will see how this principle constrains the zoo of
complexity metrics as well as the so-called penalty functions.

The outcome of the analysis reveals that the most natural tight bound is provided
by the standard metric induced by the usual Hermitian product in Hilbert space, plus
constraints implementing infinite penalties for directions falling outside the gate set. The
corresponding cost function is denoted F〈H2〉 throughout the text and it appears defined in
eq. (2.19) below. This standard metric in Hilbert space is associated to a canonical symplec-
tic structure which allows one to understand the usual quantum evolution as a (classical)
Hamiltonian evolution — see e.g., [35, 36] for standard references on this subject. This
fact, along with the Lie group structure of the unitaries manifold gives rise to a canonical
distance functional — the so-called “coadjoint orbit” or “geometric” action — on the space
of unitaries. Interestingly, such a notion is intimately related to the aforementioned com-
plexity measure F〈H2〉 — they are equal for systems of small quantum variance. Hence,
besides giving rise to tight lower bounds for circuit complexity, F〈H2〉 provides a realization
of the “complexity equals action” idea, where “action” stands here for the geometric action
canonically associated to the system.3

With regards to the third question, we use the canonical symplectic structure associ-
ated to any Hilbert space to construct a “quantum action” (given a quantum Hamiltonian),
whose classical dynamics is just the Schrödinger equation. This quantum action may be
viewed at the same level as the complexity actions, in the sense that it is a classical action

3For 2d CFTs, such action is equivalent to Poliakov’s two dimensional gravity when pulled back to the
coadjoint orbits of the Virasoro group [37]. This was realized in [28] from a quantum complexity perspective
using the cost F〈H2〉.
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defined on Hilbert space. The advantage is that we know this quantum action to be the
one controlling the exact quantum dynamics of the system (in a classical manner).4 Using
this quantum action, we show how the integrand of the geometric action arises from the
Hamilton-Jacobi equation associated to it, and in this precise sense it is related to the
actual dynamics of a given system.

Finally, the formulation of quantum mechanics as a classical system in the Hilbert
space also allows to clarify the relation between complexity and chaos. We study this in
the final section, where we propose to use the conventional classical definition of chaos,
but now in the quantum phase space — i.e., the Hilbert space. This definition has the
right pullback to any semiclassical phase space immersed within the Hilbert space, but
it is otherwise valid for the full quantum system. Using simple intuition from classical
physics, the minimal geodesic connecting two nearby trajectories can now be found, and
we can frame the chaotic process as a simple quantum circuit. In particular, we relate
the instantaneous Hamiltonian to the so-called Jacobian matrix controlling the linearized
classical dynamics, from which Lyapunov exponents can be computed. We discuss how
different measures are sensitive (or not) to the expected exponential growth.

The paper is organized as follows. In section 2 we show how Nielsen’s proof of the
connection between the G-bounding condition and lower bounds on complexity naturally
extends to any quantum system, including QFTs. We start with a review of the definition,
difficulties and technicalities associated to continuous protocols. We then review the zoo of
QFT complexity metrics, and study whether (or under what circumstances) they satisfy the
criteria for being valid complexity metrics. In section 3 we discriminate between complexity
metrics from different perspectives, the most important one being their hierarchy as lower
bounds. We also present conclusive arguments against the use of inhomogeneous costs
there. In section 4 we focus on the cost function F〈H2〉, discussing its relation to the
standard Hermitian metric in Hilbert space. We explain how the symplectic structure
associated to this metric connects it to coadjoint orbit actions as well as to the actual
quantum dynamics of the system. In section 5, we describe how the present formulation
allows to clarify the relation between complexity and chaos. We close in section 6. In
appendix A we present a collection of situations in which the instantaneous Hamiltonian
characterizing motion along general unitary trajectories can be computed explicitly. In
appendix B we comment on the mathematical structure of the unitaries group of a generic
quantum system when this is infinite-dimensional. Appendix C is a more or less self
contained account of the theory of coadjoint orbit actions.

2 Geometric lower bounds to computational complexity

Our starting point in the complexity discussion is the set of all unitary transformations
M of a given quantum system.5 If any unitary Uf ∈M, can be reached from the identity

4A further nice feature of this action is that it can be shown to reduce to the right classical actions in
semiclassical approximations.

5As explained in appendix B this can be consider either as a smooth Banach-Lie group or as a Fréchet-
Lie group depending on which shall be the most convenient choice. No further mention will be made to
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operator 1 by successive application of a certain number of operators of a given set G ⊂M,
such set is called “universal” in the complexity context. The elements of G are called “gates”
and a product of gates giving rise to Uf is called a “protocol”. Given a universal set of
gates G, the smallest number of elements of such a set required to achieve Uf from 1 is
called the “complexity” of the computation, which we denote CG(Uf ).

In general, there exist infinitely many different protocols producing 1
G→ Uf . A canon-

ical notion of “computational cost” can be associated to each of them. The cost of a given
protocol is nothing but the total number of gates it involves (repeated gates add one to the
cost every time they appear). Then, complexity can be thought of as the minimal total
cost required for achieving the computation 1

G→ Uf .
Observe that this definition of complexity can be extended in the obvious way to

situations in which the gate-set is not universal. In such scenarios, the complexity of
certain unitary — which can be actually reached using such non-universal set — is just
defined as the minimal number of gates from that set required to reach the unitary.

The question arises on how to find such optimal protocols or, at least, on how to
get good approximations to their associated complexity. An interesting approach to this
problem was put forward by Nielsen et al. [8–10]. The idea is to switch from discrete
to continuous protocols and associate computational costs to the latter in a way such
that their corresponding optima produce lower total costs than their discrete counterparts
— i.e., they provide lower bounds to the actual complexity of the protocol. Continuous
computational costs or “complexity metrics” satisfying this requirement — which depends
on the choice of gate set G — are said to be “G-bounding”.6 This notion was originally
conceived for spin systems [8] but, as we show here, it can be naturally extended to generic
quantum systems, including QFTs.

We start this section reviewing the role played by the so-called “instantaneous Hamil-
tonian”, which defines infinitesimal motion along a given curve on the unitaries manifold.
Then we turn to the problem of defining appropriate notions of cost measures, and we
review the different proposals presented in the literature so far, and the relations between
them. While discussing the differences between the different measures will be the sub-
ject of the following sections, we do comment here on how they deal with a certain gauge
ambiguity present in the definition of instantaneous Hamiltonians. Then, we explain the G-
bounding condition and how and under what conditions cost measures satisfying it provide
lower bounds to computational complexity.

2.1 Continuous protocols and instantaneous Hamiltonians

Pairs of elements of M, {U0, Uf} can be connected by infinitely many continuous paths.
Any of such paths can be parametrized by some affine parameter s so that U(s) is the
intermediate unitary along the curve corresponding to that value of the affine parameter,
and U(0) = U0, U(1) = Uf . From now on, we will always be considering paths inM which

this mathematical point and we will assume that all computations hold either in the Banach-Lie group
framework or in the Fréchet-Lie group one.

6In the holographic complexity literature, the subtle dependence of the complexity metric on the gate
set G has not been considered properly.

– 5 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
0

start at the identity operator, namely, U(0) = U0 = 1. Given some curve U(s) in M,
it is useful to introduce the “instantaneous Hamiltonian” as the Hermitian operator H(s)
such that

U(s+ ds) = e−iH(s)dsU(s) , (2.1)

namely, the one which generates infinitesimal motion along the curve parametrized by s.
From a more geometric point of view, we can identify −iH(s) with the Maurer-Cartan
form ofM evaluated at the velocity of U(s). Given a curve U(s) inM denote by:

U̇(s0) = lim
ε→0

U(s0 + ε)− U(s0)
ε

, (2.2)

the derivative of U(s) at s0, whenever it exists. Assuming it exists, the previous equation
is equivalent to:

− iH(s0) = U̇(s0)U(s0)−1 , (2.3)

upon using equation (2.1). The right hand side is nothing but the Maurer-Cartan form eval-
uated at U̇(s0) (and defined with respect to the right action ofM on itself). Instantaneous
Hamiltonians H(s) play a protagonist role in essentially any possible geometric approach
to complexity — one which has not been acknowledged very often in the literature.

Given some reference state |ψ(0)〉, we can define |ψ(s)〉 as the one resulting from
acting with U(s) on it, namely |ψ(s)〉 ≡ U(s) |ψ(0)〉. Then, H(s) moves us from |ψ(s)〉 to
|ψ(s+ ds)〉 through eq. (2.1). Expanding in both sides of eq. (2.1), it follows that

iU̇(s) = H(s)U(s) ⇔ i
d

ds
|ψ(s)〉 = H(s) |ψ(s)〉 , (2.4)

which is nothing but Schrödinger’s equation and, in principle, allows us to construct H(s)
once we know the curve U(s). Alternatively, we can express U(s) as a function of H(s) as
the path-ordered integral

U(s) = Pe−i
∫ s

0 H(s′)ds′ . (2.5)

These relations may look innocent at first sight, but they are not in general. Imagine we
can construct U(s) from some Hermitian operator O(s) as7

U(s) = e−iO(s) , (2.6)

where one would expect O(s) to be expandable in some basis of Hermitian operators,
schematically: O(s) =

∑
I θI(s)KI and O(s) =

∫
dkθk(s)K(k) in the discrete and continu-

ous cases respectively. Then, using eq. (2.1) and eq. (2.6) we can write

U(s+ ds) = e−i
[
O(s)+ dO(s)

ds

]
= e−iH(s)dse−iO(s) . (2.7)

7It is illustrative to compare the action of e−iO(s) on the initial state |ψ(0)〉 with the one of the instan-
taneous Hamiltonian. While e−iO(s) |ψ(0)〉 = |ψ(s)〉 for any finite s, we can only say that the action of
e−iH(0)ds, on the same state moves us to the infinitesimally nearby state |ψ(ds)〉.
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As previously observed [8, 27], the result for H(s) turns out to involve an infinite sum of
nested commutators, namely8

H(s) =
∞∑
j=0

(−i)j

(j + 1)! adjO(s)

[
dO(s)
ds

]
, where adjA [B] ≡ [A, [A, [A, [. . . , [A︸ ︷︷ ︸

j

, B]
]
. (2.9)

This is very difficult to deal with in general.9 In certain special situations, however, the
sum can be performed explicitly. We review some of this cases in appendix A. Essentially,
to the best of our knowledge, all protocols considered so far in the complexity literature
fall within one of the classes considered there (although in a sometimes obscurely presented
way). A new important example consisting of unitary curves generated by generalized free
fields is also included in that appendix.

In sum, given a “big” unitary U(s) written in terms of some Hermitian operator O(s)
as in eq. (2.6), the instantaneous Hamiltonian H(s) can be obtained (at least in principle)
from the infinite sum of nested commutators in eq. (2.9).

Having defined continuous protocols, we need now to associate computational costs to
them. This can be achieved by associating a cost density F (H(s)) to the instantaneous
Hamiltonians H(s) characterizing continuous paths onM. Integrated along a given curve,
this cost density would yield the total cost, namely

CF (Uf ) =
∫ 1

0
dsF [U(s), H(s)] , where U(0) ≡ 1 , U(1) ≡ Uf . (2.10)

Since, as remarked earlier, H(s) can be interpreted as the Maurer-Cartan form evaluated
at the tangent space of U(s), we will interpret F [U(s), H(s)] as being the evaluation at
U̇(s) of a continuous non-negative function defined on TM. More precisely, we set:

F [U(s), H(s)] ≡ F̂ [U(s), U̇(s)] , (2.11)

for an appropriately defined continuous function F̂ : TM→ [0,∞) on TM and for all U(s)
(for ease of notation we will drop the hat on F in the following). The hope is now that by
minimizing the cost functional for sensible notions of continuous non-negative functions F ,
we can estimate the complexity of the computation, in the sense of producing as good as
possible lower bounds on CG(Uf ) — see subsection 2.3.

Notice that irrespective of whether F provides actual lower bounds to quantum com-
plexity, there are a number of sensible generic assumptions one can make regarding its

8The first few terms read

H(s) = dO(s)
ds

− i

2!

[
O(s), dO(s)

ds

]
− 1

3!

[
O(s),

[
O(s), dO(s)

ds

]]
+ . . . (2.8)

9As mentioned above, we can expand O(s) in some basis of Hermitian operators KI or K(k), and
eq. (2.9) will ultimately give rise to an analogous sum/integral for the instantaneous Hamiltonian, H(s) =∑

I
Y I(s)KI or H(s) =

∫
dkYk(s)K(k). In that case, the challenge would reside in computing the Y I(s) or

the Yk(s) in the discrete and continuous cases, respectively. Naturally, any physically meaningful notion will
better be independent of the basis chosen. We postpone a discussion regarding this issue to the following
section.
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properties [8]: i) continuity; ii) positivity, F [U(s), H(s)] ≥ 0 with equality iff H(s) = 0;
iii) positive homogeneity, F [U(s), αH(s)] = αF [U(s), H(s)] ≥ 0 for any α ∈ R+ and any
H(s); iv) triangle inequality, F [U(s), H1(s)] + F [U(s), H2(s)] ≥ F [U(s), H1(s) +H2(s)];
v) the Hessian of F is positive definite. Assuming these conditions for F , the pair (M, F )
becomes a “Finsler manifold” with Finsler structure F .

2.2 Cost measures in quantum field theory

Many different classes of cost measures F have been considered in the literature so far.
They can be classified attending to different criteria: i) whether or not, in addition to
the instantaneous Hamiltonian H(s), they depend on the instantaneous state |ψ(s)〉; ii)
whether or not they are invariant under changes in the basis of Hermitian operators in
which we expand the instantaneous Hamiltonian; iii) whether they satisfy the positive
homogeneity property described above, or rather, they are homogenous of degree p 6= 1,
namely, F [U(s), αH(s)] = αpF [U(s), H(s)] for any α ∈ R+. We will refer to the latter as
“inhomogeneous” costs henceforth. In this subsection we present a summary of the different
costs presented so far, including a new one — see eq. (2.17) below. We are succinct here
regarding which cost functions are “better” than others. That issue will be the main
focus of the remainder of the paper. Nevertheless, we do make some comments regarding
basis-dependent costs and also, in section 2.2.3, about the different ways in which the
various costs deal with the gauge ambiguity inherent to the definition of the instantaneous
Hamiltonian.

Observe that all cost functions presented here can be modified by including weights
(penalty functions) which would discriminate certain directions onM. We will discuss the
role of those in section 3.3, including our proposal on how to deal with them on general
grounds.

2.2.1 State-independent measures

Let us consider first the case of cost functions which do not depend on the instantaneous
state |ψ(s)〉. As we mentioned earlier, when the dimensionality of the set of relevant Her-
mitian operators is finite — either because the system has a finite number of degrees of
freedom, or because we are restricting the allowed operations to a finite dimensional sub-
manifold ofM — the instantaneous Hamiltonian can be written in some basis of such op-
erators as H(s) =

∑
I Y

I(s)KI for certain coefficients Y I(s) to be computed from eq. (2.4)
(or equivalently, eq. (2.9)). In that context and for spin systems, Nielsen proposed the cost
functions [8]

F1 ≡
∑
I

|Y I(s)| , F2 ≡
√∑

I

(Y I(s))2 , (2.12)

which are both homogeneous of degree 1. An inhomogeneous proposal was suggested in [12]

Fκ ≡
∑
I

|Y I(s)|κ . (2.13)

The motivation for introducing the family Fκ with κ > 1 was to produce a qualitative
agreement between the orders of the leading UV divergences resulting from the holographic

– 8 –
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“complexity equals action” [5, 6] and “complexity equals volume” [1, 2] proposals and the
one resulting from the continuous limit of a lattice of coupled harmonic oscillators (the setup
in [12] involved Gaussian states as initial and target states and a particular choice for the
subset of Hermitian operators allowed to appear in H(s)). While the holographic result
had a ∼ V/δ(d−1) dependence [41], the free-scalar result turned out to be ∼

(
V/δ(d−1)

)1/2
.

In section 3 we explain the origin of this, and other previously found apparent mismatches,
and why using inhomogeneous costs in order to make both scalings agree is unjustified.
Naturally, another class of homogeneous measures constructed out from Fκ are simply
given by [Fκ]1/κ.

There is an obvious drawback inherent to all the above cost functions. This is the
fact that they depend on the basis of Hermitian operators in which one expands the in-
stantaneous Hamiltonian. In other words, they give an ambiguous answer for the cost
associated to a given instantaneous Hamiltonian: expanding H(s) =

∑
I Y

I(s)KI and
H(s) =

∑
I Ỹ

I(s)K̃I in two different basis, we would obtain two different answers for each
of the cost functions defined above, which does not seem acceptable.

In principle, one can declare that the Y I(s) appearing in the above cost functions are
the ones corresponding to some particular basis selected by certain criterion. A somewhat
canonical possibility would be to choose (whenever possible) a basis of unit-trace Hermitian
operators such that

Tr [KIKJ ] = δIJ , (2.14)

up to an overall constant which can be chosen to be the dimensionality of the Hilbert space.
Written in such a basis, some of the above cost functions equal certain basis-independent
costs defined directly in terms of the instantaneous Hamiltonian. For example,

FTrH2 ≡
√

Tr [H(s)2] =
√∑

I,J

Y I(s)Y J(s)Tr [KIKJ ] = F2 . (2.15)

Namely, the basis-independent cost function FTrH2 defined above agrees with F2 when the
latter is understood as being referred to a basis of Hermitian operators satisfying eq. (2.14).
This is for example what Nielsen does in [8] for n-qubit systems — and it seems to be a
more or less standard choice in that context. In particular, one chooses a basis of Hermitian
operators consisting of n-fold tensor products of single-qubit Pauli matrices and the identity
operator, with the exception of10 K = 1⊗n — see section 2.2.3 below. With this definition,
there are 4n − 1 generators, and they precisely satisfy eq. (2.14) up to an overall factor.
On general grounds, with the exception of those situations in which the chosen basis is
such that the resulting cost function is in fact basis-independent — like in the case just
described — notions of complexity relying on basis-dependent measures are ill-defined and
henceforth should not be considered.

Naturally, one can propose other basis-independent cost functions such as

F|TrH| ≡ |TrH| , FSch ≡
[
Tr
(
(H2)

p
2
)] 1

p , (2.16)

10For instance, for n = 3 examples of basis elements would be σx ⊗ 1⊗ σz or 1⊗ 1⊗ σy.
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the second of which is usually known as the Schatten norm and, in the context of QFT
complexity, it was precisely introduced in [16, 18] as an alternative basis-independent notion
to F1, F2 and Fκ.

A new state-independent cost can be constructed by considering the norm of the in-
stantaneous Hamiltonian, namely

F||H|| ≡ ||H(s)|| , where ||H(s)|| ≡ sup
|ψ〉∈H

√
〈ψ|H(s)2|ψ〉
〈ψ|ψ〉

. (2.17)

The cost associated to the instantaneous Hamiltonian would be given by its norm. We will
see later that F||H|| has some interesting properties. Before doing so, let us continue with
our catalog of cost functions. We turn now to state-dependent measures.

2.2.2 State-dependent measures

Observe that cost functions involving traces of powers of the instantaneous Hamiltonian
can be thought of as corresponding to expectation values of such operators on the totally
mixed state ρmixed = 1/dimH [27]. Both from a physical and an operational point of
view, it is only natural to replace ρmixed by the actual instantaneous state of the system
|ψ(s)〉 = U(s) |ψ(0)〉, which leads to the notion of state-dependent costs. In addition,
from a QFT perspective, state-dependent costs have the advantage of being finite, while
traces in QFT are generically divergent,11 and therefore force us to choose directly bounded
operators.12

To the best of our knowledge, the first example of state-dependent cost considered in
the complexity literature was the Fubini-Study metric [13]. This is defined in terms of the
instantaneous Hamiltonian as

FFS ≡
√
〈ψ(s)|H(s)2|ψ(s)〉 − 〈ψ(s)|H(s)|ψ(s)〉2 , (2.18)

which is nothing but the square root of its variance, FFS = σ|ψ(s)〉(H(s)). Two other
measures related to the former have also been proposed [27],

F〈H2〉 ≡
√
〈ψ(s)|H(s)2|ψ(s)〉 , F|〈H〉| ≡ | 〈ψ(s)|H(s)|ψ(s)〉 | . (2.19)

Observe that these two can be obtained from FTrH2 and F|TrH| by replacing ρmixed by the
instantaneous state of the system, as anticipated above. Note also that F 2

FS = F 2
〈H2〉−F

2
|〈H〉|.

In section 4.2, we will comment on the relevant geometric status of FFS and specially F〈H2〉.
The next member of this cost-measure catalog is given directly by the variance of the

instantaneous Hamiltonian, namely

Fσ2 ≡ 〈ψ(s)|H(s)2|ψ(s)〉 − 〈ψ(s)|H(s)|ψ(s)〉2 = F 2
FS . (2.20)

11Actually, in local and continuum QFT, as described by its algebraic formulation, the algebras involved
are of type-III, and traces do not even exist for them. This is because such algebras only contain projectors
of zero or infinite dimensionality [42].

12Here we would like to emphasize that in spite of the typically divergent cost associated to generic
protocols when using ρmixed in QFT, we expect that the fact that we will be minimizing over the possible
unitary paths will select contributions to the instantaneous Hamiltonian corresponding to bounded operators
with finite traces. We say more about this below.
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This inhomogeneous cost function was suggested in [31]. There, Fσ2 was presented pulled
back to a basis of holomorphic coherent states of the Hilbert space, but it can be of course
considered more generally. In [31], Fσ2 was proposed in order to reproduce the volume of
extremal slices in the bulk in some holographic examples. Just like for the Fκ introduced
above, we comment on the unsuitability of Fσ2 as a possible notion of complexity and on
the origin of the square-root scaling (apparently requiring the use of Fσ2 instead of FFS or
F〈H2〉) in section 3.13

Yet another state-dependent measure was recently presented in [43, 44]. The authors
of those papers suggest using a notion of complexity given by

C = −2 log | 〈ψf |ψ0〉 | , (2.21)

where |ψf 〉 = Uf |ψ0〉 is the final state. This notion only depends on the initial and final
states, but not on the path, so it does not correspond to a functional of the form eq. (2.10)
for any local metric F . While, by construction, eq. (2.21) typically becomes an on-shell
action in the semiclassical limit [43], which looks appealing, it does not seem to provide
a reasonable notion of complexity. This can be seen, e.g. by observing that eq. (2.21)
associates an infinite cost to any protocol connecting any pair of orthogonal states. This
is indeed discussed in [43]. We will see later on in section 4 that F〈H2〉 can also provide a
realization of the “complexity equals action” idea while providing a reasonable lower bound
for complexity.

Note that if we were to consider eq. (2.21) only infinitesimally — i.e., as a notion
of distance between nearby states — then it would be related to Fσ2 as defined above.
In order to see this, let |ψf 〉 = |ψ(s+ ds)〉 and |ψ0〉 = |ψ(s)〉, which are therefore taken
to be infinitesimally close to each other. Then, for some H(s), |ψf 〉 = e−iH(s)ds |ψ0〉 =[
1− iH(s)ds− 1

2H(s)2ds2 + . . .
]
|ψ0〉. It follows that

| 〈ψf |ψ0〉 | =
√

1− Fσ2ds2 ⇒ −2 log | 〈ψf |ψ0〉 | = Fσ2ds2 , (2.22)

which sort of gives an infinitesimal cost, but only sort of, because the arc length appears
squared and the corresponding quantity cannot be properly integrated unless one takes
the square-root of the whole expression. Note that the Fubini-Study cost function can be
similarly obtained from C = arccos| 〈ψf |ψ0〉 |, which infinitesimally gives C = FFSds —
and can be properly integrated as it is.

2.2.3 Gauge ambiguities in the instantaneous gate

Given a curve U(s) in the unitary manifoldM, the associated instantaneous Hamiltonian
is uniquely defined by equation (2.3). On the other hand, given a fixed curve U(s) and an

13In favor of these measures and in other situations, it has been argued that complexity measures need to
be “additive”. This is a confusion which is in fact explained in the original complexity geometry paper [8].
If we have two systems, and gates are not allowed to contain operators that are products of one system
with the other, then all measures we have been discussing are additive. If, on the other hand, we allow
such gates, there is no reason to expect additivity, because when adding such gates we are opening ways
for computation that might decrease the additive result, and that were not allowed before. Also, from a
physical perspective, interacting systems are those for which actions or energies are not additive.
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initial state |ψ0〉 ∈ H, we obtain a curve |ψ(s)〉 on H defined as |ψ(s)〉 = U(s) |ψ0〉 and
whose evolution is unitary. It is sometimes convenient to work with curves in H rather
than with curves in M. Notice that, while U(s) determines |ψ(s)〉, the opposite will not
be true in general due to the fact that |ψ(s)〉 will have non-trivial stabilizer for all values
of the protocol time.

In this context, it is natural to attempt to construct H(s) directly from a curve |ψ(s)〉
with unitary evolution. However, starting exclusively with |ψ(s)〉, its associated instan-
taneous Hamiltonian is ambiguously defined. One way to see this is noting that physical
states in quantum mechanics are rays in a Hilbert space: no experiment can distinguish
|ψ(s)〉 from |ψ̃(s)〉 = eiφ(s)|ψ(s)〉 so both of them represent the same state. Each of the
previous vectors has its own instantaneous gate, both of them related through

H̃(s) = H(s)− φ̇(s) . (2.23)

This can be easily seen by noting that

i
d

ds
|ψ̃(s)〉 = ieiφ(s)

[
iφ̇(s) + d

ds

]
|ψ(s)〉 =

[
H(s)− φ̇(s)

]
|ψ̃(s)〉 . (2.24)

Eq. (2.23) is a U(1) gauge symmetry, being H(s) its one-form gauge potential. Since
computational costs are functionals of H(s), one could worry about an important loophole
in the discussion. Luckily, this is not the case for any metric, albeit for different reasons,
which we discuss now.

The clearest case is the Fubini-Study metric (the same applies to Fσ2), which is exactly
constructed so as to avoid such ambiguities. Indeed, using eq. (2.18) one finds

F̃ 2
FS = 〈

[
H(s)− φ̇(s)

]2
〉 − 〈

[
H(s)− φ̇(s)

]
〉
2

= F 2
FS , (2.25)

where F̃FS means evaluation in the state |ψ̃(s)〉. This makes the Fubini-Study a natural
metric in projective space.

As it turns out, the other metrics are also insensitive to this ambiguity, since they all
give zero to the identity gate by definition. In other words, the cost of doing nothing is zero.
Practically, whenever we have an instantaneous gate H(s), we first need to extract from it
the term proportional to the identity, and then apply the appropriate cost measure. This
procedure — which, e.g. in the case of n-qubit systems means removing the contribution
proportional to K = 1⊗n — provides an answer which is obviously invariant under gauge
redefinitions.

It is important to remark that the way FFS and Fσ2 deal with the ambiguity is markedly
different from the rest. This is beacuse in forcing a zero answer to such gauge transforma-
tions, they also give zero cost to non-zero operators in certain cases. For example, if we
apply eiσz to | ↑〉, FFS and Fσ2 would give zero cost, even though we are actually doing
some effort in applying a transformation which is definitely not the identity. More gen-
erally, given a state at a given time, FFS and Fσ2 not only give zero cost to the identity
transformation, but to the full stabilizer group of the corresponding state. This implies
that such metrics do not allow us to distinguish between circuits doing different numbers
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of mistakes. In particular, we can construct increasingly long circuits, with any wanted
number of gates different from the identity, and still with fixed FFS and Fσ2 distances. This
obviously includes the cases of minimal geodesics. Therefore, minimizing the FFS and Fσ2

metrics is a strongly degenerate problem from the point of view of the unitary manifold
M, since there are infinitely many protocols driving us through the same set of states. We
will see later that this is related to the fact that FFS generically gives rise to worse lower
bounds on complexity than other choices such as F〈H2〉.

The comments in the previous paragraph do not apply to the rest of state-dependent
metrics reviewed before. Those can distinguish the identity operator from elements of the
stabilizer group of the state being transformed. For instance, a unitary transformation
of the form e−iH acting on an instantaneous state |E〉 which is an eigenstate of H with
eigenvalue E would have costs F〈H2〉 = F|〈H〉| = E. The minimization of some of those met-
rics provides unique optimal protocols and, generically, the computational costs assigned
to each protocol is bigger than their Fubini-Study counterparts, providing better lower
bounds for complexity. We will see this in various explicit situations below. Naturally,
the (basis-independent) state-independent metrics FTrH2 , F|TrH|, FSch, F||H|| — which by
definition do not depend on the instantaneous state — can naturally distinguish between
elements of the stabilizer group as well. For those, no particular simplification occurs for
the cost associated to unitaries belonging to the stabilizer group of the instantaneous state.

Note the previous discussion implicitly assumes that the norms discussed (more gen-
erally positive continuous functions) are defined on the tangent bundle TH of the Hilbert
space H. However, in section 2.1 we introduced norms in the context of the manifold of
unitary transformations M. This is not problematic when it comes to computing the as-
sociated cost functional. This is because, given a curve |ψ(s)〉 with unitary evolution, we
can in principle always compute its associated class of unitary curves U(s) and then it is to
be expected that the given norm F̂ on M does not depend on the representative chosen,
as it happens in the examples above.

Let us now see what all these cost functions have to do with complexity, understood as
the minimum number of gates, belonging to some universal set, required for implementing
a given unitary operation. That is the goal of the following subsection.

2.3 G-bounding condition

Given a set of universal gates G, the total cost of a given computation, dF (Uf ), defined as
the minimum of CF (Uf ) — see eq. (2.10) — for all possible unitary paths in eq. (2.10),
can be used to approximate the actual complexity of the computation whenever the corre-
sponding cost function F satisfies the so-called “G-bounding property”. A cost function F
is G-bounding if it satisfies

F [U, h] ≤ 1 , for all e−ih ∈ G , (2.26)

and for any U ∈M. In words, the G-bounding property requires the cost density associated
to every universal gate belonging to G to be bounded by 1. This notion was introduced by
Nielsen in [8] in the context of n-qubit circuits, for whichM = SU(2n), and we generalize
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it here to arbitrary quantum systems. We also notice that it generalizes to scenarios in
which G is not universal.

It follows that for any given G-bounding cost function,

dF (Uf ) ≤ CG(Uf ) , for any Uf ∈M . (2.27)

Namely, the distance between 1 and Uf associated to the notion of distance defined by F
is a lower bound for the actual number of gates required to produce the computation.

In order to prove eq. (2.27), we can start with the setup considered in section A.3.
Namely, we assume that Uf can be optimally constructed as in eq. (A.7) from a finite
sequence of unitaries belonging to some universal set, e−ihj ∈ G. If the optimal protocol
requires NG gates, the complexity of the computation is simply CG(Uf ) = NG . As we
explain in section A.3, we can define a curve U(s) connecting the gates involved through
eq. (A.8). The resulting curve, whose instantaneous Hamiltonian is given by H(s) = NGhj
for values of the affine parameter (j − 1)/NG < s < j/NG is not smooth, as it jumps when
sNG takes integer values. The idea is to regularize this curve by introducing a real-valued
smooth function r(s) such that [8]: i) r(s) = 0 for sNG ∈ N; ii) r(s) ≥ 0; iii) for any j ∈ N,∫ (j+1)/NG

j/NG
r(s) ds = 1

NG
. (2.28)

Then, we define a modified instantaneous Hamiltonian as H1(s) ≡ r(s)H(s) which now
corresponds to a different curve V (s) connecting 1 with Uf — for a given function r(s),
this can be obtained solving eq. (2.4). As opposed to the one associated to H(s), the new
curve is smooth, and its associated cost is given by

CF =
∫ 1

0
dsF [V (s), H1(s)] =

∫ 1

0
dsr(s)F [V (s), H(s)] ≤

∫ 1

0
dsr(s)NG = NG . (2.29)

The second equality makes use of the positive homogeneity of F described above; the
inequality uses the fact that e−iH(s)/NG ∈ G, the G-bounding property and again the positive
homogeneity of F ; and the last equality uses eq. (2.28). Since dF (Uf ) is the minimum of
all possible CF (Uf ), it is, in particular, smaller than the cost assigned to the curve V (t)
defined above, and hence eq. (2.27) holds.

This proof is very similar to the one presented by Nielsen in [8] for M = SU(2n),
but note that it holds on general grounds as long as the hypothesis introduced above are
satisfied. The key aspect is that, given a set of universal gates G, the candidate cost
function satisfies the G-bounding property eq. (2.26).

In applications to QFT, we typically do not know how to construct a universal gate
set. But this problem is not really related to whether we use a continuum geometric
approach or rather a discrete gate one. Imagine we start with a non-universal gate set.
This gate set is capable of producing a set of unitaries which is not the whole unitary
manifold. As described above, there is an obvious generalization of circuit complexity to
this case, namely we just take the same definition but for the unitaries that can be reached
with the non-universal gate set. Using now the continuum approach, we observe that the
previous proof of the G-bounding condition only requieres the use of the gates in the original
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set. Therefore, even for non-universal gate sets, the geometric approach lower bounds the
discrete approach whenever the G-bounding condition holds.

Let us now analyze under what conditions the cost functions introduced above provide
actual lower bounds for the complexity of a given computation. In order for this to be the
case, given a set of gates (universal or not) e−ih(j) ∈ G, each cost is required to satisfy the
G-bounding property in eq. (2.26). There seem to be two different approaches.

1. Given a fixed cost function F , find the possible sets of gates G such that F satisfies
the G-bounding property eq. (2.26). F will provide a lower bound for complexity
only with respect to those sets satisfying eq. (2.26). If we adopt this perspective, the
G-bounding condition should not be understood as a condition on the cost function,
but as a constraint on the possible families of gates with respect to which a given
cost defines a lower bound of complexity. In the case of homogeneous state-dependent
costs, a reasonable criterion would be to consider gates such that ||h(j)|| ≤ 1 — as
defined in eq. (2.17) — for all j. Then, for QFTs, all possible gates would be given
by bounded operators (and properly normalized).

2. A second possibility is trying to define cost functions F̃ such that they satisfy the
G-bounding property with respect to any reasonable choice of gate set G. The most
obvious way of constructing such cost functions seems to be including an overall factor
which divides a given F by the maximum value taken by this cost when evaluated
on the given set of gates, namely,

F̃ [U,H] ≡ F [U,H]
Fsup[h] , where Fsup[h] ≡ sup

e
−ih(j)∈G

F [U, h(j)] . (2.30)

In the case of state-dependent measures, the cost function explicitly depends on the
value of U , so Fsup[h] would need to be maximized also over the possible values of
U .14 Another natural possibility is to normalize F by the norm of the h(j) whose
norm is maximal, namely15

Fsup[h] ≡ sup
e
−ih(j)∈G

||h(j)|| . (2.31)

Note that with these definitions, F̃ actually depends on G, which is the price to pay
for defining it in a way such that it is G-bounding for any G. Again, in the QFT
context, the gates in G must always correspond to bounded operators, otherwise we
would have Fsup =∞.

An important issue which seems to have been deliberately ignored in the literature
concerns the definition of reasonable universal gate sets beyond qubit systems. In that

14One could also consider that the maximization occurs only with respect to the values of U(s) along the
minimal curve, i.e., we would choose the maximum value taken by F [U(s), h(j)] understood as a function
of j and the affine parameter s along the minimum trajectory. However, this prescription would produce
different cost functions for different protocols, which does not seem ideal.

15This would work for homogeneous costs. For inhomogeneous costs, one could in principle consider a
straightforward modification of eq. (2.31).
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context, the set of single- and two-qubit gates is universal, providing natural notions of
“simple” or “small” unitaries which can be used to build arbitrary “big” n-qubit unitaries.
From our more general perspective here, G is a subset ofM and the universality condition
can be though of as asking G to be such that by multiplication of its elements we can reach a
dense subset of the full unitaries manifoldM.16 However, the problem of finding examples
of universal sets becomes quite challenging as soon as we move from the case of discrete
degrees of freedom. Regarding this issue, we would like to stress again the following. The
G-bounding condition still makes sense when we restrict the analysis to a subset of M —
namely, to the one really generated by the corresponding G. We can still define notions
of G-bounding metrics which provide lower bounds to the circuit complexity, understood
now as a quantity computable only for unitaries reachable by G (and with respect to gates
exclusively belonging to G). We believe this is enough for the problems appearing in recent
applications to QFT.

While we will not pursue the construction of explicit universal sets G for continuous
systems here, we think this would be a relevant and interesting problem. Quantum har-
monic oscillators on a circle or free fermions on a lattice look like reasonable systems where
one could try to start tackling this problem.

3 Discriminating cost functions

In the previous section we introduced a plethora of possible cost functions and we exam-
ined the G-bounding conditions under which they provide trustable lower bounds to the
quantum complexity associated to different sets of gates. In this section we establish a
hierarchy among the different cost functions. The working principle consists in identifying
those metrics which provide the tightest possible lower bounds. In particular, we show
that inhomogeneous costs such as Fκ or Fσ2 must be discarded as candidate complexity
measures: on the one hand, they do not provide lower bounds for complexity; on the other,
they significantly violate Lloyd’s bound in simple situations. In this regard, we argue that
previous attempts at utilizing this kind of costs were based on confussions regarding when
to expect volumetric scalings for complexity and when, on the other hand, it is natural to
expect O(V 1/2) scalings. Among the possible metrics introduced in the previous section,
our analysis will select F〈H2〉, F||H|| and perhaps FTrH2 as the most reasonable candidates.
Finally, in section 3.3 we will deal with the issue of penalty factors. We will argue that our
criterion of finding the tightest possible cost measures naturally leads to assigning infinite
costs to all directions not belonging to the universal gate set (regardless of the choice of
cost function) and how this can be implemented through the use of Lagrange multipliers.

3.1 A no-go argument for inhomogeneous costs

Let us analyze in more detail the condition imposed by eq. (2.28). As we saw above,
fixing the integral of r(s) in each interval to 1/NG was required in order for eq. (2.29) to
go through, implying a lower bound for complexity for the corresponding cost function.

16One could also relax this condition slightly by introducing some finite tolerance on the precision we ask
from G.
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We can understand this choice from a different perspective, as follows. In the smoothed
protocol considered above — defined by the instantaneous Hamiltonian H1(s) ≡ r(s)H(s)
where H(s) = NGhj for (j−1)/NG < s < j/NG — we can write our smooth piecewise path
explicitly as

V (s) = e
−ir(s)NG

(
s− j−1

NG

)
h(j)

e−ih(j−1) · · · e−ih(1)1 for j − 1
NG

< s <
j

NG
. (3.1)

Since in each interval the instantaneous Hamiltonian is given by r(s)NGh(j), we can alter-
natively use eq. (2.5) to write the evolution from the beginning of some interval to its final
point as a path-ordered integral of the form

V (b) = Pe−i
∫ b

a
r(s)NGh(j)dsV (a) (3.2)

= Pe−i
∫ b

a
r(s)NGh(j)dse−ih(j−1) · · · e−ih(1)1 ,

where we used the notation a ≡ (j − 1)/NG and b ≡ j/NG . But now, since h(j) commutes
with itself, we can simply write

V (b) = e−ih(j)NG
∫ b

a
r(s)dse−ih(j−1) · · · e−ih(1)1 . (3.3)

Naturally, when s reaches the end of the interval, s = b, we need the gate e−ih(j) to have
been fully implemented, in other words,

V (j/NG) = e−ih(j)e−ih(j−1) · · · e−ih(1)1 . (3.4)

Comparing this expression with eq. (3.3), it immediately follows that condition (2.28) needs
to be imposed. Otherwise, the unitary we would be considering would not correspond to
the one resulting from the product of the gates.

Bearing this in mind, we can revisit the proof of the lower bound in the previous
subsection in the case of a cost function F which is not positive homogeneous of degree
one, but rather of degree p, namely,

F [U(s), αH(s)] = αpF [U(s), H(s)] for any α ∈ R+ , (3.5)

and any H(s). This is the case of Fκ and Fσ2 introduced above, for which p = κ and p = 2
respectively. The analogous version of eq. (2.29) for inhomogeneous costs of degree p reads

CF =
∫ 1

0
dsF [V (s), H1(s)] =

∫ 1

0
r(s)pF [V (s), H(s)]ds ≤ Np

G

∫ 1

0
r(s)pds . (3.6)

What can we say about the last integral? On the one hand, eq. (2.28) imposes
∫ 1

0 r(s)ds = 1,
which does not depend on NG . Hence, the result for the above integral will be given by∫ 1

0
r(s)pds = f(p) , (3.7)

for some function f(p) which does not depend on NG either. This is somewhat natural:
the integral of r(s) over the full path should not depend on how many gates we are using
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in our circuit, but only on the specific form of the chosen function. Hence, for this kind of
cost functions we find

dF (Uf ) ≤ Np
G f(p) . (3.8)

If we wanted the geodesic distance associated to the cost F to generically provide a lower
bound for the minimum number of gates, NG , we would need f(p) ∼ N1−p

G . However, as
we said above, f(p) has no scaling with NG , so this is not possible. The inhomogeneous
costs Fκ and Fσ2 were attempts to increase the power of the scaling with volume of the
computational costs in different contexts. By choosing, say, p = 2, the corresponding
calculations of dF (Uf ) give a bound on the square of complexity, but say nothing about
the complexity itself and, in particular, they can exceed it arbitrarily. Indeed, we will see
in a moment that the use of inhomogeneous costs would also give rise to crude violations
of Lloyd-like bounds [45]. The outcome of this discussion is that inhomogeneous costs are
generally unable to provide reasonable bounds for complexity, and therefore should not be
considered as such.

3.2 Metric hierarchies in the gate set G

Previously we have analyzed which complexity metrics provide real lower bounds. Although
this analysis has ruled out some possibilities, there is still a large zoo of complexity metrics
at our disposal. We would like a principle which helps us to choose among them. In
this regard, our proposal is the following. Since the minimal geodesics of all properly
constructed local metrics are lower bounds to the circuit complexity, we need to select the
one which provides the tightest lower bound, i.e., the maximal one. To achieve this, we just
order local metrics according to the distances they assign to equal protocols, establishing
a hierarchical structure. The greater the distance, the tighter the bound.

How do we construct the tightest G-bounding measure? The answer is divided into
two parts, regarding the behavior of the local metric when evaluated on elements of the
gate set G, and on elements outside it. In this section we comment on the hierarchy with
respect to the behavior on the gate set.

Among the basis-independent and homogeneous costs, it is possible to establish the
following hierarchy chain:

F||H|| > F〈H2〉 > FFS . (3.9)
Notice that this is possible because the overall normalization in all three metrics can be
chosen to be same, namely, the inverse of the maximum norm over the full gate set — see
eq. (2.31) above. Apart from that observations, the first inequality is obvious, since ||H||
is defined as the maximum over all possible brackets 〈H2〉. The second inequality is also
obvious, since

F 2
FS = F 2

〈H2〉 − 〈H〉
2 ≤ F 2

〈H2〉 , (3.10)
where we have omitted the overall normalization.

Extending the arguments of [28], we can estimate the differences between FFS and
F〈H2〉 in different physical situations. Consider for instance a system with a large mean
energy E. In such scenario, statistical mechanics expectations are:

〈H2〉 ' E2 , (3.11)
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while
〈H2〉 − 〈H〉2 ' TE , (3.12)

where T is the temperature of the system, which is an intensive quantity. Therefore, the
cost function F〈H2〉 gives a much tighter lower bound than the Fubini-Study metric, and
indeed one that scales differently with the size of the system, since the energy will typically
scale as the volume.17 Indeed, the origin of these inequivalent scalings can be simply
described in a situation in which the instantaneous Hamiltonian of an n-party system is
constant and given by a sum of tensor products of the form

H = H1 ⊗ 1⊗ · · · ⊗ 1 + 1⊗H2 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗Hn . (3.13)

For an initially factorized state |ψ(0)〉 ≡ |0〉1 ⊗ · · · ⊗ |0〉n one then finds

〈ψ(s)|H(s)|ψ(s)〉 =
n∑
i

〈ψi(s)|Hi|ψi(s)〉 , (3.14)

〈ψ(s)|H(s)2|ψ(s)〉 =
n∑
i

〈ψi(s)|H2
i |ψi(s)〉+

n∑
i 6=j
〈ψi(s)|Hi|ψi(s)〉 〈ψi(s)|Hj |ψi(s)〉 .

We observe that the energy is proportional to n, namely, 〈H〉 ∼ n, whereas 〈H2〉 ∼ n2

because of the second term in eq. (3.14). Both features occur as long as 〈ψi(s)|Hi|ψi(s)〉 6=
0. On the other hand, we have

〈H2〉 − 〈H〉2 =
∑
i

[
〈ψi(s)|H2

i |ψi(s)〉 − 〈ψi(s)|Hi|ψi(s)〉2
]
∼ n . (3.15)

Therefore, we observe that while F〈H2〉 =
√
〈H2〉 ∼ n ∼ E, the Fubini-Study one yields

FFS =
√
〈H2〉 − 〈H〉2 ∼

√
n ∼

√
E. An explicit realization of this phenomenon, in a

context of direct physical importance, was found in [28] for Virasoro protocols in two-
dimensional CFTs. In that case, F〈H2〉 scales with the central charge c whereas FFS ∼

√
c.

We review this below in section 3.2.1.
A similar phenomenon to the one just explained occurs when one considers the basis-

dependent cost F2 and the trace cost FTrH2 . The reason is as follows. We showed in
eq. (2.15) that FTrH2 actually agrees with F2 whenever the basis of Hermitian operators
in which we expand the instantaneous Hamiltonians satisfies Tr[KIKJ ] = δIJ . As we have
said, FTrH2 is nothing but F〈H2〉 in a particular state (the maximally mixed one), so one
could naively think that using F2 (or F1) one should get the same scalings as those expected
for F〈H2〉 rather than the ones expected for FFS. This is not the case, however. The reason
is that if the basis of Hermitian operators contains I = 1, . . . ,M generators, Tr[KIKJ ] will
be a M ×M matrix, and generically

FTrH2 =
√∑

I,J

Y I(s)Y J(s)Tr[KIKJ ] ∼
√
M2 ∼M , (3.16)

17We discuss this in more detail below, and include also examples in which such scaling is different.
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whereas
F2 =

√∑
I

(Y I(s))2 ∼
√
M , (3.17)

namely, the scaling will be different in general. This will change in the case that Tr[KIKJ ] =
δIJ , which effectively reduces the M ×M matrix to the M elements of its diagonal. Saying
it differently, whenever we have an orthonormal basis we have Tr[KI ] = 0, since one of the
generators is the identity. Only in these cases, FTrH2 = F2 ∼

√
M . This illustrates the

fact that using the basis-dependent cost functions F2 (or equivalently to F1) is in general
inequivalent to using FTrH2 . In a certain sense, F2 is a “Fubini-Study-like” version of FTrH2 ,
and therefore provides worse lower bounds to the circuit complexity in general. The fact
that using the homogeneous costs F2 and FFS one is led to lower bounds on complexity
which scale with the square root of the volume instead of the volume itself — as observed
in different contexts e.g., [12, 13, 16, 18, 31] — has the simple origin just described.

3.2.1 Inhomogeneous metrics violate Lloyd’s bound

In many contexts in which an apparently incorrect scaling was found, inhomogeneous
definitions of complexity were proposed to deal with this issue. From our perspective, such
notions are not only ad hoc, but actually fail to provide lower bounds to the quantum
complexity. In addition to this, inhomogeneous metrics can be seen to violate Lloyd’s
bound [45] in several situations, as we show here. By the “Lloyd bound” here we mean the
expectation that a sensible complexity measure can scale at most with a linear power of
Et. This follows from standard extensivity and thermodynamic arguments and has been
used in an attempt to justify/motivate a considerable amount of research e.g. within the
holographic complexity context — see for instance [5, 46].18

The reason of the violation is simple. As it has been argued above, generically, Fubini-
Study and related choices scale as FFS ∝

√
E. Squaring and integrating over a trajectory

provides a cost that “saturates” Lloyd’s bound Cσ2 ∼
∫
F 2

FSdt =
∫
Fσ2dt ∝ Et. Parametri-

cally, the regime when this occurs is characterized by 〈E2〉 ' 〈E〉2. The problem happens
then in the opposite regime, whenever we have a situation in which 〈E2〉 � 〈E〉2. In these
cases we have:

F〈H2〉 ' FFS , and thus Fσ2 = F 2
FS ' F 2

〈H2〉 . (3.18)

But in these cases, the typical energies involved in the process are of order E ∼
√
σ2
H =

FFS ' F〈H2〉. Therefore, squaring Fubini-Study to get nice results in the typical high

18In [47] it has been argued that Lloyd’s bound should not be taken seriously in the holographic context.
In this regard we have some comments. The first is that the analysis and results of [47] assume the
holographic complexity proposals, and they are valid only in the presence of black holes. The observations
here are more general, e.g. they are valid when considering small perturbations near the vacuum as well. In
the language of [47], they are valid when considering “non-simple” gates, which are available in holographic
scenarios, the simplest ones being generated by exponentiating some primary field in the CFT. Indeed, the
problems we observe here appear naturally near the vacuum. The second is that, without entering in such
discussions, it is just the case that several existing proposals violate the bound in CFT. Then, in view of
the use it has been given as an heuristic motivator of proposals in the literature, we think it is important
to point out the cases in which it is (more or less flagrantly) violated.
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energy regimes will destroy the consistency of the approach in other regimes by violating
Lloyd’s bound.

But if one cannot square the cost, how are bulk volumes obtained in the holographic
context? This was explained within the Path-integral complexity proposal [33], and goes
as follows. In Poincaré coordinates, a constant time slice of the bulk metric is given by

ds2 = dz2 + dx2
⊥

z2 . (3.19)

Following the usual ideology of the AdS/MERA correspondence [48], we should see this
metric as a circuit in the z-coordinate that generates the vacuum at the boundary. This
circuit is necessarily time-dependent, where “time” is now the radial z-coordinate itself.
Within the Path-Integral proposal, this “time” is basically the Euclidean time in the Liou-
ville action, and the solutions corresponding to AdS are obviously z-dependent. In turn,
this non-trivial z-dependence is required to obtain the right scaling with the volume.

So if we are to obtain bulk volumes (and geometry) from conformal transformations,
we should find the (Euclidean) time-dependent transformations, such that the geometry at
each z is (3.19). Falling beyond the scope of the present paper, we leave specific calculations
for future work, but it is still illustrative to see how the different 2d-CFT complexity metrics
behave in “time-dependent” scenarios. Let us then regard the radial coordinate z as a
protocol time s. We want a circuit that generates at time s a conformal transformation (a
diffeomorphism) [f(s, x+), f(s, x−)] such that the metric at time s is given by (3.19). This
circuit is built up from infinitesimal diffeomorphisms ε(s, x+) and ε(s, x−) which, when
composed all together, generate [f(s, x+), f(s, x−)].19 Since conformal transformations are
represented in the Hilbert space by unitaries and infinitesimal conformal transformations
are generated by the stress tensor, the circuit would read20

Uf(s,x+) = Pe−i
∫ s

0 (
∫
ε(s′,x+)T++(x+)dx+)ds′ . (3.20)

As usual, we first need to relate the instantaneous Hamiltonian — in this case parametrized
by ε(s, x+) — to the finite conformal transformation f(s, x+) — see appendix A. For the
present purposes, we only need to notice that such instantaneous Hamiltonian H(s) =∫
ε(s, x+)T++(x+)dx+ will be time dependent, in order to generate the z dependent met-

ric (3.19). The initial state |ψ(0)〉 can be the vacuum or any other state, depending on the
situation. In any case, the state at time s is a conformal transformation of the initial one
|ψ(s)〉 = Uf(s,x+)|ψ(0)〉. Before computing F〈H2〉 or FFS, let us start with

〈ψ(s)|H(s)|ψ(s)〉 = 〈ψ(0)|U †f(s,x+)

(∫
ε(s, x+)T++(s, x+)dx+

)
Uf(s,x+)|ψ(0)〉 . (3.21)

Crucially, this can be obtained using the known behavior of the stress tensor under con-
formal transformations,

U †f(s,x+)T++(s, x+)Uf(s,x+) = f ′(s, x+)−2
(
T++(s, x+)− c

12{f(s, x+), x+}
)
, (3.22)

19See appendix A and [] for a more detailed discussion of conformal circuits.
20We only consider left movers. The discussion extends trivially to x−.
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where {f(s, x+), x+} is the Schwarzian derivative. One simply obtains

〈ψ(s)|H(s)|ψ(s)〉 =
∫

ε(s, x+)
f ′(s, x+)2

(
〈T++(s, x+)〉 − c

12{f(s, x+), x+}
)
dx+ . (3.23)

Hence, if 〈ψ(s)|H(s)|ψ(s)〉 is to beO(c) —and thereforeO(V ) in applications to holography
— we have two possibilities. Either we start with a state with scaling dimension of order
O(c), so that the first term in the parenthesis is of that order, or we consider a conformal
transformation so that the Schwarzian term becomes effective. In the second case, in the
limit c→∞ — which is the one interesting for holographic applications — we have

〈ψ(s)|H(s)|ψ(s)〉 −−−→
c→∞

−
∫

ε(s, x+)
f ′(s, x+)2

c

12{f(s, x+), x+}dx+ . (3.24)

Moreover, in the same limit it is simple to observe that

F〈H2〉 −−−→c→∞
|
∫

ε(s, x+)
f ′(s, x+)2

c

12{f(s, x+), x+}dx+| . (3.25)

The conformal transformation Uf(s,x+) required to have the “time-dependent” metric (3.19)
is such that the Schwarzian term contributes21 (it is even dominant near the vacuum), and
F〈H2〉 is forced to be O(c), and will be sensitive to the bulk volume. This is exactly
what happens within the Path-integral complexity proposal [33], where we just insert the
solution (3.19) into the Liouville action, which in turn can be written as the Schwarzian ac-
tion [28, 37]. On the other hand, the Fubini-Study choice is not sensitive to the Schwarzian,
since this is a constant which disappears when subtracting the one-point function in the def-
inition of the Fubini-Study metric. Fubini-Study is then O(

√
c). For a precise computation

of the Fubini-Study metric for Virasoro circuits see [28].
Summarizing, F〈H2〉 is a true lower bound to complexity. It also shows the right scaling

in the appropriate cases. On the other hand, Fubini-Study provides suboptimal scalings
in simple scenarios. Finally, the “squaring” solution is not a lower bound, and although
it might get the right scaling at high energies, it typically does not do so at low energies,
where it violates Lloyd’s bound [45].

Finally, let us also comment on FTrH2 . As we have mentioned, this can be thought of
as F〈H2〉 where the instantaneous state |ψ(s)〉 〈ψ(s)| has been replaced by the maximally
mixed one, ρmixed = 1/dimH. This is nothing but a thermal state at infinite temperature,
ρmixed = e−βH/dimH with β = 0, so FTrH2 ∼ E at high (order of the cutoff) energies. Since
by definition FTrH2 does not depend on the actual state of the system, this suggests that
this measure could potentially give rise to violations of the Lloyd bound at low energies.
To fix this issue, one can consider such metric in appropriate microcanonical scenarios.
This can be implemented through the use of Lagrange multipliers, constraining the energy
to be fixed to some specific value — see e.g., [49]. We discuss these constraints in greater
generality in the next section. At any rate, in such situation, FTrH2 would become a state
dependent metric, very much alike F〈H2〉. Similar comments apply to the state-independent
measure F||H||.

21This is because the conformal transformation cannot be part of the global subgroup of the conformal
group, since such subgroup is precisely the one that leaves invariant the vacuum.
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3.3 Metric hierarchies outside G: penalties as constraints

So far we have said nothing about the possibility of penalizing gates (or directions in M)
which may be “more expensive” than others. A priori, a general discussion about penalties
might seem slightly arbitrary, and this has indeed been the case in recent literature —
see e.g., [8, 27, 50] for several approaches. The goal of this subsection is to argue that
the previous discussion about the tightest bound suggests a somewhat canonical way of
approaching this problem. Just like when discussing cost-function hierarchies within the
gate set G, the guiding principle outside the gate set G is to ensure that the resulting
metrics provide the tightest possible lower bounds. Let us describe how to achieve this
feature.

Consider a gate-set G composed of unitaries UI = e−iKI . We can expand a generic
instantaneous Hamiltonian as

H(s) =
∑

e−iKI∈G

YI(s)KI +
∑

e−iK̃I 6∈G

ỸI(s)K̃I . (3.26)

The conditions for a metric F to be a lower bound are the G-bounding ones appearing in
eq. (2.26), namely,

F (e−iKI ∈ G) ≤ 1 . (3.27)

To find the metrics providing the tightest lower bounds we should maximize over the space
of metrics satisfying the G-bounding constraint. Then, if possible, we should choose costs
saturating the G-bounding constraint for e−iKI ∈ G, namely, metrics such that

F (e−iKI ∈ G) = 1 . (3.28)

Examples of cost functions satisfying this property in the context of n-qubit systems are
FTrH2 , F〈H2〉 and F||H||. For those, one has

FTrH2(σ ∈ G) = 1 , F〈H2〉(σ ∈ G) =
√
〈ψ(τ)|σ2|ψ(τ)〉 = 1 , F||H||(σ ∈ G) = 1 , (3.29)

which follows from the fact that the generalized spin operators built from tensor products
of Pauli matrices and the identity — an example being σ = σx ⊗ σy ⊗ 1 ⊗ · · · ⊗ σx —
can be normalized so that they satisfy Tr(σIσJ) = δIJ or σ2

I = 1. Note that in that
context, eq. (3.28) would not be compatible e.g. with the Fubini-Study cost, since such
metric typically does not give cost one to the σI .

Now, since the G-bounding conditions do not constrain gates e−iK̃I 6∈ G, we should
assign as high as possible costs to those. In fact, we should actually assign infinite costs to
them in order to maximize the distance of any possible circuit in the complexity geometry.
We emphasize that this does not imply that distances between points go to infinity, since
if G is a universal gate set, we can always find trajectories from any point to any other
with finite distance. Trajectories would just need to be constructed from gates involving
arbitrary superpositions of e−iKI ∈ G. In fact, as shown in [9] in the case of n-qubit
systems — where G contains 1- and 2-qubit operators — including sufficiently high penalties
associated to the directions not belonging to G is basically the same as including infinite
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penalties, the error scaling with the inverse of the penalty size. It is natural to expect
this equivalence to hold in general. Giving infinite cost to non-G directions is a natural
consequence of looking for the tightest lower bound.

The question now is how to implement this condition. We have two possibilities. The
first is to work with metrics including penalties. For example, Nielsen proposed [8]

F1p ≡
∑
σ

p(wt(σ)) |cσ| , F2q ≡
√∑

σ

q(wt(σ)) (cσ)2 , (3.30)

as generalizations of F1 and F2, where p(wt(σ)) and q(wt(σ)) are the penalty functions
associated to the gate σ and wt(σ) is the number of single-site Pauli matrices (not identities)
appearing in the tensor product of σ. Then, one would solve the geodesic equation in the
limit in which penalties go to infinity. This seems a bit cumbersome in general. Notice
that in such a limit, the solutions to the geodesic equation U(s) are such that

iU−1(s)U̇(s) =
∑

e−iKI∈G

YI(s)KI , (3.31)

with no contributions from gates outside the universal set. So another way to implement
the condition is to choose a metric satisfying eq. (3.28) for the whole complexity geometry,
and solve the geodesic equation with eq. (3.31) imposed as a constraint. This can be
done using Lagrange multipliers λ̃I . The final geometric-complexity functional would be
given by

CF =
∫ 1

0
ds

[
F [U(s), H(s)] +

∑
e−iK̃I 6∈G

λ̃ITr
[
K̃IH(s)

] ]
. (3.32)

This seems to be, in particular, the most efficient way of imposing k-locality, which is the
statement that we can only use generalized Pauli matrices with weight w(σ) ≤ k. In such
scenario, our gate set G is chosen to contain all generalized Pauli matrices with weight
w(σ) ≤ k and taking the limit of infinite penalties amounts to constrain the space of
trajectories to those satisfying k-locality. Observe that in this derivation we have used the
possibility of imposing eq. (3.28), which relied on the orthogonality of the basis operators.
More generally, constraints will be specific functionals of the instantaneous gate, so that

CF =
∫ 1

0
ds

[
F [U(s), H(s)] +

∑
i

λIfi(H(s))
]
. (3.33)

In the QFT context it is generally less clear how to choose G and therefore which
directions should be assigned infinite costs. For CFTs, it was argued in [27] that the
quantity playing the role of wt(σ) should be the scaling dimension ∆ of the associated
field. The reason is transparent for large-N theories, where such scaling dimension is
additive with respect to multiplication of field operators, as happens with wt(σ) for spin
systems. Another reason appears when thinking about the operator product expansion of
fields, which raises two observations. First, it is clear that the “weight” is not an intrinsic
property of the operator, since the OPE ensures that it is enough to consider local operators
as quantum gates, as long as we consider all of them. Second, it is clear that multiplying
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many low-dimension operators increases the number of high-dimension operators in the
OPE. It is thus natural to penalize operators with high scaling dimension. This is exactly
what we expect in the black hole context, where black-hole-creating operators should be
strongly penalized. Then, in the CFT context, it is natural to impose the condition that
we can only use fields with scaling dimension ∆ ≤ ∆c.22 In this context, the string of
Lagrange multipliers would be associated to fields with dimensions ∆ > ∆c.

On the other hand, as we mentioned above, the gate sets G usually considered in
the QFT context are not really universal. Rather, they generate only a subgroup of the
unitary group M. In this context, looking for the tightest bound, one is again led to
set infinite costs to any instantaneous Hamiltonian with support outside G. This is then
directly achieved by using the same functional associated to the smaller group G, without
constraints,

CF =
∫
M
ds [F [U(s), H(s)] + Constraints] =

∫
G
dsF [U(s), H(s)] . (3.34)

We already mentioned an important example of this situation above, which is the case of
gate-sets corresponding to generators of a certain Lie algebra — see appendix A.4. Another
example occurs when one considers the so-called generalized coherent groups [51]. These
generate the set of generalized coherent states of the theory, and it can be proven that
generic quantum dynamics localizes in such subspace in the semiclassical limit [52].23

Yet another interesting example, of great importance in the holographic context, is that
of generalized free fields. By definition, generalized free fields are those satisfying Wick’s
factorization, which in turn can be shown to correspond to low dimension operators in
the CFT.24 Generalized free fields generate an approximate algebra, only truly valid in the
large-N limit. In this limit, if we assign infinite costs to operators of high scaling dimension,
the complexity functionals would be given by eq. (3.34) with G = GGFF generated by the
generalized free fields.25 This then shows that the quantum complexity of the dual CFT can
be computed using the free bulk dynamics, using the known one-to-one matching between
low dimension operators at the boundary and fields in the bulk.

Before closing, let us mention that the idea of imposing constraints in the form of
Lagrange multipliers for 3- or higher-site qubit operators was previously entertained in
various papers — see e.g., [49, 54, 55]. The perspective in those works is very similar in
technical terms to Nielsen’s approach, in the sense of considering continuous circuits and
extremizing over several proposed classical actions in such space. From our perspective,
Nielsen’s approach naturally leads to such time-optimal control proposals, when we realize
we should maximize over the zoo of G-bounding complexity metrics in order to obtain the
best lower bound.

22Notice that, strictly speaking, this condition implies strict local gates in the CFT, since any non-local
interaction would generically contain in its OPE operators of any desired dimension. But it is also the
condition that ensures k-locality in the internal color space when the CFT is a large-N gauge theory.

23Such structure has been used also in the context of large-N theories to prove several aspects about
entanglement entropy [53].

24Operators with scaling dimensions of O(c), with c the central charge, are expected to interact strongly
with the family of the energy momentum tensor, and are not expected to satisfy large-N factorization.

25We compute the instantaneous Hamiltonian associated to generalized free fields in appendix A.
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4 Complexity equals (geometric) action

Our search for cost functions providing the tightest possible lower bounds for complexity has
led us to a few candidates, namely, F〈H2〉, F|〈H〉|, F||H|| and perhaps FTrH2 , suitably defined
in QFT in microcanonical sectors. F〈H2〉 and F|〈H〉| were previously proposed in [27, 28] in
the context of symmetry groups — and more generically for coherent states — but they
were not properly justified from a quantum computational of view. The outcome of our
discussion here is that, once Lagrange multipliers are included, these cost functions provide
a good and tight lower bound for complexity.

In this section we want to expand on the properties of F〈H2〉 and F|〈H〉|. The reason
is that these cost measures turn out to satisfy a series of additional properties which make
them, to some extent, canonical choices. On the one hand, F〈H2〉 turns out to correspond
to the canonical Hermitian metric defined on any Hilbert space. This metric is compatible
with a complex structure and a symplectic form, which defines a natural Kähler structure
in any Hilbert space H. The existence of this Kähler structure, along with the fact that the
unitaries manifold of H posseses a Lie group structure, allows one to define a somewhat
canonical distance functional inM known as “coadjoint orbit action” or “geometric action”,
which is basically given by F|〈H〉|. F〈H2〉 also reduces to the geometric action for systems
of small quantum variance — in particular, in semiclassical limits.

Finally, the interpretation of H as a phase space, along with the fact that quantum
evolution can be understood as Hamiltonian evolution for expectation values, suggests a
canonical notion of quantum action associated to any quantum Hamiltonian, simply given
by the integral of the Lagrangian associated to 〈H〉. The equations of motions associated
to this quantum action are by construction equivalent to the Schrödinger equation. This
quantum action may be then used as a “gauge” of complexity measures. In particular, we
discuss its intimate relation with the geometric action.26

4.1 F〈H2〉 from the canonical metric in Hilbert space

Any complex Hilbert space H can be considered as a real vector space HR equipped with
an almost complex structure J , which consists on a linear isomorphism of HR satisfying
J2 = −1. From this perspective, it is natural to split the Hilbert metric on H into its real
and imaginary parts:

〈φ|ψ〉 = g(φ, ψ) + iΩ(φ, ψ) , (4.1)

where:
g(φ, ψ) ≡ 1

2(〈φ|ψ〉+ 〈ψ|φ〉) , Ω(φ, ψ) ≡ − i2 [〈φ|ψ〉 − 〈ψ|φ〉] . (4.2)

It can be shown that g and Ω define, respectively, a real and positive-definite inner product
and a symplectic form on HR compatible with J , in the sense that:

g(φ, ψ) = Ω(φ, Jψ) , ∀ φ, ψ ∈ HR . (4.3)

26The geometric actions construction is reviewed in appendix C. The rest of the section is more or less
self contained.
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The triple (HR, J,Ω) (note that (J,Ω) uniquely determine g) canonically becomes a complex
Kähler manifold, whose Kähler structure we denote again by (J,Ω) for ease of notation.
Therefore, every Hilbert space comes equipped with a canonical Kähler structure associated
to it.27 In particular, in this formulation the Schrödinger equation for a ket |ψ〉 reads:

∂s |ψ〉 = −JH |ψ〉 . (4.4)

Given some reference state |ψ〉 the inner product corresponding to two infinitesimally
evolved states −JH1ψ and −JH2ψ is given by

g(−JH1ψ,−JH2ψ) = 〈ψ|{H1, H2}|ψ〉 , (4.5)

where {, } is the usual anticommutator and we used the self-adjointness of H1 and H2.
Similarly, one finds

Ω(−JH1ψ,−JH2ψ) = −i 〈ψ|[H1, H2]|ψ〉 . (4.6)

Therefore, the symplectic form and the metric respectively yield the expectation values of
the commutator and anticommutator of the evolution generators. In our context, “evolu-
tion” along different paths in the Hilbert space is generated by the corresponding instan-
taneous Hamiltonian H(s), and it follows from eq. (4.5) that

1
2g(ψ̇(s), ψ̇(s)) = 〈ψ(s)|H(s)2|ψ(s)〉 , (4.7)

which is nothing but the square of the cost function F〈H2〉 defined in eq. (2.19). Hence,
in addition to the previously discussed features, F〈H2〉 is also associated to the canonical
Hermitian metric defined in every Hilbert space H.

Both g and Ω can be related to analogous canonical structures in the projective Hilbert
space P associated to H. Related to H we consider two infinite-dimensional Hilbert man-
ifolds: i) The infinite-dimensional Hilbert sphere S∞ ≡ {|ψ〉 ∈ H\ {0} | 〈ψ|ψ〉 = 1}. ii)
The infinite-dimensional complex projective space CP∞ = H\{0} /C∗, where C∗ acts on
H through its standard diagonal action. Associated to these manifolds we have canoni-
cal maps

ι : S∞ ↪→ H\{0} , π : H\{0} → CP∞ , (4.8)

corresponding to the canonical embedding of S∞ and the canonical projection onto CP∞,
respectively. Furthermore, composing π and ι we obtain a smooth submersion

π ◦ ι : S∞ → CP∞ , (4.9)

which defines a U(1) bundle over CP∞, the infinite-dimensional version of the Hopf fi-
bration. The metric g on HR defines by pull-back a non-degenerate metric on S∞ which
we denote by ι∗g and which, proceeding by analogy with the finite-dimensional case, cor-
responds with the round metric on S∞. Given this metric on S∞, there exists a unique
metric on CP∞ making π ◦ ι : S∞ → CP∞ into a Riemannian submersion. This metric can
be shown to be the Fubini-Study metric gFS. Alternatively, the Fubini-Study metric on

27This is a standard discussion in the geometric quantum mechanics literature, see e.g., [35, 36].
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CP∞ can be defined through the C∗-invariant metric on H\{0} determined by the following
global Kähler potential:

KFS(|ψ〉) ≡ log(〈ψ|ψ〉) , |ψ〉 ∈ H . (4.10)

For comparison, note that the Kähler potential of the standard “flat” metric on H is given
by 〈ψ|ψ〉. A quick computation shows that the associated metric on H\{0} is given by:

g0
FS||ψ〉(|δψ〉 , |δψ〉)) = 〈δψ|δψ〉

〈ψ|ψ〉
− 〈ψ|δψ〉 〈δψ|ψ〉

〈ψ|ψ〉2
, (4.11)

where |δψ〉 ∈ T|ψ〉(H\{0}) is an element of the tangent space of H\{0} at |ψ〉. The met-
ric g0

FS is clearly C∗ invariant, whence it descends to the quotient, yielding the standard
Fubini-Study metric on CP∞. It is easy to verify that choosing local holomorphic coor-
dinates g0

FS and gFS both reduce to the familiar expression for the Fubini-Study metric.28

This metric, together with the canonical complex structure on CP∞ — making π into a
holomorphic submersion — give rise to a symplectic form ω corresponding to the standar
Kähler structure on CP∞. Restricted to a smooth curve |ψ(s)〉 of normalized states g0

FS
becomes

g0
FS||ψ(s)〉(|δψ〉 , |δψ〉)) = F 2

FS =
[
〈ψ(s)|H(s)2|ψ(s)〉 − 〈ψ(s)|H(s)|ψ(s)〉2

]
. (4.14)

where have used equation eq. (2.4) to characterize the tangent vectors |δψ〉 to curves |ψ(s)〉
satisfying the Schrödinger equation.

To summarize, we see that both F〈H2〉 and FFS are related to canonical metrics in H
and P respectively, which are in turn related to each other as we have just explained. While
the physical space of states is P rather than H, which would suggest the use of FFS above
F〈H2〉, we have argued above that F〈H2〉 always provides better bounds for complexity. This
is precisely related to the fact that FFS, being the canonical metric in P, assigns vanishing
costs to many operations which are different from the identity (all those which move the
state within its ray).

4.2 F〈H2〉 and geometric actions

Coadjoint orbit actions are reviewed in fair generality in appendix C, which should be
consulted for further references and definitions. Very briefly, the idea is the following.

28For this, choose first holomorphic homogeneous coordinates on H\{0} such that

|ψ〉 = (ẑ1, . . . , ẑi, . . . , ẑ∞) , 〈ψ|ψ〉 =
∞∑
1

|ẑi|2 . (4.12)

Choosing now the open set defined by ẑ1 6= 0 we obtain local holomorphic coordinates on CP∞ as follows,

(z1, . . . , zi, . . . , z∞) =
(
ẑ2

ẑ1 , . . . ,
ẑi

ẑ1 , . . . ,
ẑ∞

ẑ1

)
. (4.13)

Implementing this coordinates in g0
FS we obtain the familiar coordinate-expression for the Fubini-Study

metric.
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Any Lie group G acts naturally on the dual of its Lie algebra, g∗, through the coadjoint
representation. As explained in more detail in appendix C, Kirillov proved that the orbits of
the coadjoint action of G on g∗ are symplectic submanifolds with respect to a canonically
defined and invariant symplectic structure. Hence, each such orbit can in principle be
considered as a “classical phase space” and, from this point of view, it is natural to consider
trajectories ψ(s) ∈ g∗ satisfying physical equations. The integral along the affine parameter
of the pairing of ψ(s) with the Lie algebra element which produces infinitesimal motion
along the trajectory — which plays the role of instantaneous Hamiltonian in the language
utilized throughout the paper — defines the so-called “geometric action” or “coadjoint
orbit action” [29].

Now, every quantum-mechanical system has an associated Hilbert space H and a
continuous group of unitaries M which acts on it. As explained in section B, using the
exponential in the norm topology we can identify the Lie algebra of M as u(H), that is,
the Lie algebra of all skew-Hermitian operators on H. Hence, we can canonically apply
the coadjoint orbits method to any quantum system. For any such system, G =M will be
manipulated as if it was a matrix group, so that the adjoint transformation Ad, which is
the natural action of the group on the Lie algebra, is just

AdU (O) = UOU−1 , (4.15)

for U ∈M and O ∈ u(H). The dual space u(H)∗ of the Lie algebra u(H) can be identified
with the set of states, which we generically denote by ρ. The pairing 〈ρ,O〉 defined by the
Killing form between the dual space and the Lie algebra is the usual expectation value,
namely,29

〈ρ,O〉 = Tr(ρO) . (4.16)

The coadjoint transformation Ad∗U is the natural action of the group on the dual space,
and it is defined such that the previous pairing is left invariant.30 This implies

Ad∗U (ρ) = UρU−1 . (4.17)

For this unitary group G, the definition of the Maurer-Cartan form (C.16) is equivalent to
the definition of the instantaneous gate (2.4) in the complexity discussion,

H(s) = iU̇(s)U−1(s) . (4.18)

Then, the geometric action associated to the unitary group is given by the integral along
the affine parameter of the pairing of ρ(s) with H(s), namely

IGeometric =
∫
dsTr [ρ(s)H(s)] =

∫
ds 〈ψ(s)|H(s)|ψ(s)〉 , (4.19)

29For visual simplicity, in what follows we define the expectation value of an operator O in the state ρ as
Tr(ρO). Of course, this notation is not correct in QFT, where there are no proper traces, and one should
write ρ(O). This is a notational subtlety, but the comments in this section apply to any quantum system,
including QFT.

30In the present notation, if we evolve the state forward in time, we need to evolve the operators backwards
for the same amount of time so as to keep the expectation value fixed.
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where ρ(s) = U(s)ρ0U(s)−1 and where the second equality holds for pure initial states. In-
terestingly, this geometric action is intimately related to the complexity measures

∫
dsF|〈H〉|

and
∫
dsF〈H2〉 defined in eq. (2.19). It is exactly equal to the first up to the absolute value

appearing in F|〈H〉|, and it agrees with the second whenever the variance for the instan-
taneous gate is small, namely, whenever 〈H2〉 ' 〈H〉2. This happens in many physical
applications, in particular in large-N theories and other semiclassical scenarios in which
variances are suppressed with respect to averages.31

We thus reach the conclusion that the symplectic structure associated to any quantum
system gives rise — through the coadjoint orbits construction — to a canonical notion
of action/distance on the space of unitaries of the system. Such a notion is intimately
related to the previously proposed complexity measures F|〈H〉| and F〈H2〉. In this sense,
besides satisfying all requirements explained in the rest of the paper and giving rise to
tight lower bounds for circuit complexity, these measures provide — at least for systems
of small quantum variance — a realization of the “complexity equals action” idea, where
“action” stands here for the geometric action canonically associated to the quantum system.
Interestingly, in 2d CFTs, when doing the pullback to the coadjoint orbits of the Virasoro
group, such action is equivalent to Poliakov’s two dimensional gravity [37], as rederived
in [28] from a quantum complexity perspective using F〈H2〉.

Let us also mention that the symplectic form defined in each orbit of g∗ — which is
usually called “Kirillov-Kostant form” and appears explained in detailed in appendix C —
simply becomes the expectation value of the usual matrix commutator, namely, it exactly
agrees with the canonical symplectic form Ω defined above — see eq. (4.6).

As we have mentioned before, in most approaches to QFT complexity, the gate set
G is chosen so that it generates a subgroup of M. In this minisuperspace-like setup, the
only elements of M which can be reached using products of gates are those belonging to
such subgroup. In that case, the geometric action functional subject to the appropriate
constraints behaves in exactly the same manner as the geometric action of the subgroup
generated by the gate set G without constraints — i.e., as in eq. (3.34).

4.3 Quantum action, Hamilton-Jacobi and the semiclassical limit

As we have seen, the Hilbert space of a quantum system has the structure of a phase
space, that is, it is canonically endowed with a symplectic structure. Not only that, as
shown e.g. in [36], Heinseberg’s (or Schrödinger’s) quantum evolution corresponds with
the Hamiltonian flow with respect to its canonical symplectic structure and the “classical”
Hamiltonian, given by H(ψ) = 〈ψ|H|ψ〉 at every point |ψ〉 ∈ H of the phase space (omitting
any potential issues regarding the possibility of H being unbounded). As for the Poisson
bracket, it is just defined in the conventional way from the canonical symplectic structure.

In more detail, the situation is as follows. Consider a fixed quantum system with
associated HamiltonianH and Hilbert spaceH, which we consider as an infinite dimensional
Kähler manifold (HR, J,Ω). The existence of a symplectic form on HR allows to define the

31In spite of their similarities, they are different functionals and the extremization procedure will lead to
different results in certain scenarios. We thank an anonymous referee for stressing this fact.
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notion of “Hamiltonian vector field”. More precisely, a vector field X ∈ X(HR) is said to
be Hamiltonian if there exists a function f ∈ C∞(HR) such that

ιXΩ = df . (4.20)

If this is the case, we write Xf = X. Such function is unique modulo additive constants.
Furthermore, the symplectic structure allows to define the notion of “Poisson bracket” on
C∞(HR), which endows C∞ with the structure of an infinite dimensional Poisson algebra.
The Poisson bracket {·, ·} evaluated in two functions f1, f2 ∈ C∞(HR) reads:

{f1, f2} ≡ Ω(Xf1 , Xf1) . (4.21)

Using the given Hamiltonian H, we can define a smooth real function FH on HR:32

FH : HR → R , |ψ〉 7→ 〈ψ|H |ψ〉 . (4.22)

Associated to FH we consider its Hamiltonian vector field, which we denote by XH . The
Picard - Lindelöf’s theorem states that, given a state |ψ0〉 ∈ HR, there exists an interval I
with 0 ∈ I and a smooth curve |ψ(s)〉 ⊂ HR such that |ψ(0)〉 = |ψ0〉 and:

d

ds
|ψ(s)〉 |s0 = XH(|ψ(s0)〉) , (4.23)

which defines the flow associated to H or the “Hamiltonian flow” of FH . Now, as shown
in [36], the quantum evolution of the quantum system as prescribed by Schrödinger’s
equation corresponds with the Hamiltonian flow of FH as defined above. Therefore, as
it happens with any other phase space, we can find local Darboux coordinates (qi, pi) for
which the symplectic form adopts its standard form. In these coordinates, the equations
defining the flow of XH are the Hamilton equations of motion in their canonical form. As
an example, we can consider H = Cn to be a finite dimensional complex Hilbert space
equipped with its standard Hermitian metric∑

i

dzi ⊗ dz̄i , (4.24)

in canonical complex coordinates
{
zi
}
. Define now the real coordinates

qi ≡ 1
2(zi + z̄i) , pi ≡

1
2i(z

i − z̄i) , (4.25)

in terms of which the Riemannian metric g and the symplectic form Ω read

Ω =
∑
i

dqi ⊗ dqi +
∑
i

dpi ⊗ dpi , Ω =
∑
i

dpi ∧ dqi . (4.26)

Hence, as defined above, (qi, pi) are indeed Darboux coordinates. Given any smooth func-
tion H on Cn with Hamiltonian vector field XH we can write

XH = Xi
H

∂

∂qi
+XHi

∂

∂pi
, (4.27)

32Or, if H is unbounded, on a dense subspace of HR. We will not be concerned about this possibility
here.
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where Xi
H and XHi are local functions depending on both qi and pi. From the previous

equation we obtain
ιXH

Ω = XHidq
i −Xi

Hdpi , (4.28)

whence equation ιXΩ = dH is locally equivalent to:

XHi = ∂H

∂qi
, X i

H = −∂H
∂pi

. (4.29)

From the previous equation it follows now directly that the local flow of XH in the Darboux
coordinates (qi, pi) yields the standard Hamilton equations.

Given this universally valid construction we want to take some initial steps in order
to relate previous complexity measures with physical actions. Using Darboux coordinates
(qi, pi), an explicit action principle can be formulated for each Hamiltonian H on H, with
some intriguing potential applications. The generalized action would take the usual form

SQuantum =
tf∫
ti

dt

[∑
i∈H

piq̇i −H(p, q)
]
, (4.30)

which is just constructed so as to obtain the Heisenberg equations of motion. In other
words, once we know the instantaneous Hamiltonian and its expectation value (the in-
tegrand of the geometric action), the previous equation allows us relate it to the actual
action.

This structure has a direct pullback into the appropriate semiclassical phase space of
the problem. Calling Hclass to such subspace, this is just

SQuantum =
tf∫
ti

dt

 ∑
i∈Hclass

piq̇i −H(p, q)

 . (4.31)

From this formulation it is simple to understand how complexity measures are related to
actions. In particular, the geometric action arises by stating that the computational cost is
equal to the infinitesimal change in action that arises by a change of the final time, given by

∂SQuantum/∂tf = −H , (4.32)

which is nothing but the Hamilton-Jacobi equation in (not so much) disguise. More gener-
ically, one might define a cost as the absolute value of the infinitesimal change in action
that arises by a change of the endpoint in all possible directions, including time. This
leads to33

dSQuantum =
∑
i∈H

pidqi −Hdt = Ldt . (4.33)

We thus see that the difference lies in choosing Lagrangians versus Hamiltonians in the
definition of the costs. Albeit this “Hamilton-Jacobi cost” (Lagrangian) might be more

33This is similar in spirit to the analysis recently performed in [56]. It would be interesting to clarify the
connection between our approach here and the one in that paper. Note however that an inhomogeneous
cost function is used in [56].
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convenient to relate complexity to classical actions, we stress that the geometric action one
(the Hamiltonian) is also directly related to the classical action through (4.32), but at the
same time is more directly connected to the canonical metric in Hilbert space. Besides, we
suspect that minimizing the geometric action may be equivalent to minimizing the action
whose cost is given by the quantum action integrand (what we just called “Hamilton-Jacobi
cost”), although we do not have conclusive evidence to support this claim.

Hopefully, this formulation will help in making the connection between complexity
and actions more transparent. The only non-trivial aspects are the constraints that come
from establishing that some tangent vectors of the quantum phase space (the possible
Hamiltonians) are allowed while others are not. Apart from that, once we know that
a certain Hamiltonian produces a geodesic over a certain time,34 the previous equations
provide potential bridges connecting actions and costs through the expectation value of the
instantaneous Hamiltonian. Also, from this formulation it seems clear to us that Fubini-
Study-related choices do not play a role in the connection between actions (functionals that
actually describe the dynamics of the system) and complexity. Only the geometric action
and the “Hamilton-Jacobi cost” will do.

5 Complexity and chaos

The relation between complexity and chaos has attracted some attention re-
cently [27, 44, 50, 58–60].35 From our perspective, an important motivation is to provide
a complementary, and perhaps more intuitive, approach to quantum chaos and Lyapunov
exponents than the one arising from out-of-time-ordered correlators [61]. In particular, it
would be interesting to have a definition of quantum chaos and Lyapunov exponents which
reduces to the classical one in the appropriate limits. The objective of this section is to
develop a specific proposal in this regard.

Let us start with the most basic and intuitive understanding of chaos, that of extreme
sensitivity to initial conditions. In the classical context, it is natural to frame the discussion
in phase space. Any point x in a phase spaceM is a good initial condition for the classical
equations of motion, and in fact there is only one classical trajectory γx(t) going through
such a point. Chaotic behavior is said to exist around one point x and along a certain
direction y whenever the distance between γx(t) and γx+δyx(t) — whose starting point
x+δyx is a slight perturbation of x along the direction y — grows exponentially with time.

There is a small technical problem with this intuitive definition. At a formal level,
it is not clear what we mean by “distance between nearby trajectories”. Phase spaces
have a canonical symplectic structure built in. However, in general, they do not possess a
canonical metric. So there might be some ambiguities in statements regarding distance be-
tween trajectories. These ambiguities are reminiscent of those encountered when discussing
notions of quantum complexity.

34See [57] for recent results in this direction.
35Our approach is very similar to the one in [58]. But here, we are interested in defining chaos as it is

conventionally done in classical scenarios, i.e., by comparing the evolution of nearby states with the same
Hamiltonian. In [58], however, the states that were compared were evolved with different Hamiltonians.
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Let us consider the simplest example, consisting of an inverted harmonic oscillator.36

This turns out to be mathematically analogous to the case of an infalling particle whose
momentum has been perturbed [27], as the solutions to the equations of motions are just
boosts, i.e., rotations by an imaginary angle. Also, for true chaotic systems, and locally
in phase space, this model controls the effective chaotic dynamics near unstable stationary
points, as one can observe by expanding the potential around such a point in phase space.
The Hamiltonian is given by

H = p2

2 −
x2

2 . (5.1)

The solutions to the equations of motion can be written as

q(t) = q0 cosh(t) + p0 sinh(t) , p(t) = p0 cosh(t) + q0 sinh(t) . (5.2)

Perturbations of the initial conditions (x0, p0)→ (x0 + δx0, p0 + δp0) grow similarly as

δq(t) = δq0 cosh(t) + δp0 sinh(t) , δp(t) = δp0 cosh(t) + δq0 sinh(t) . (5.3)

At late times, the two nearby trajectories “separate exponentially” in both their position
and momentum. But observe that this separation is a coordinate-dependent statement.
As we commented above, a more rigorous invariant statement in terms of a metric in the
tangent space to the phase space would be most welcome.

Before that, let us discuss the quantum mechanical case. Although the system is
unbounded and does not have a ground state, the time evolution of operators and states
is well defined. Indeed, the solution to Heisenberg’s equation reads

q̂(t) = q̂0 cosh(t) + p̂0 sinh(t) , p̂(t) = p̂0 cosh(t) + q̂0 sinh(t) . (5.4)

Let us go back now to the chaotic situation depicted in figure 1, where the initial point
in phase space is now a generic quantum state |ψ〉 — i.e., a point in the quantum phase
space. Small perturbations are driven by linear combinations of p̂, q̂, and powers of them.
Let us consider the simplest of such perturbations

ei∆0 = ei(p̂δq0−q̂δp0) . (5.5)

The time evolution of the perturbed state |ψ∆
t 〉 is given by

|ψ∆
t 〉 = e−iHtei∆0 |ψ0〉 = ei∆(−t)|ψt〉 , (5.6)

where ∆(−t) = e−iHt∆0e
iHt = p̂(−t)δq0 − q̂(−t)δp0 is the Heinseberg operator evolved

backwards in time. Notice that we can massage such expression so as to obtain

∆(−t) = p̂δq(t)− q̂δp(t) . (5.7)

36This example has also been considered recently in [60] with similar motivations.
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Figure 1. An initial point in the quantum phase space, |ψ0〉, and a nearby perturbed version of
it, ei∆0 |ψ0〉, evolve with physical time t to states |ψt〉 and |ψ∆

t 〉 respectively. For each t, the com-
plexity between both states measured by some continuous metric F is given, for a sufficiently small
perturbation, by F (∆(−t)), where ∆(−t) = e−iHt∆0e

iHt. The dark gray arrow above corresponds
to the straight-line geodesic connecting both states. The pale dashed one corresponds to the one
directly connecting |ψ0〉 with |ψ∆

t 〉 — see discussion around eq. (5.13).

From this it follows that if we considered a coherent state, |ψt〉 = |p(t), q(t)〉, then the
evolution of the perturbed state would read37

|ψ∆
t 〉 = ei(p̂δq(t)−q̂δp(t))|p(t), q(t)〉 = |p(t) + δp(t), q(t) + δq(t)〉 . (5.8)

Now, since the unitary ei∆(−t) mediates the transition between the time-evolved unper-
turbed state |ψt〉 and the perturbed one |ψ∆

t 〉, its complexity is the relative complexity
between both states. So can we compute the complexity of ei∆(−t)? The answer is surpris-
ingly simple.38 As usual, we need to find the shortest geodesic between the identity and
ei∆(−t) for each t. We claim that it is given simply by

Ugeodesic(s) = ei∆(−t)s , s ∈ [0, 1] . (5.9)

This trajectory satisfies the required conditions, namely, it starts at the identity and ends up
at the target unitary. Moreover, it is a minimal geodesic because constant Hamiltonians (in
the protocol time s) draw minimal geodesics over sufficiently small distances and ∆(−t) =
p̂(−t)δq0− q̂(−t)δp0 can be made arbitrarily small by letting δq0 and δp0 go to zero. This is
indeed the conventional double scaling limit used when defining chaos in classical theories.39

Basically, the leading Lyapunov contribution is isolated by taking the limit of infinite time.
But, before doing so, one has to take the size of the initial perturbation to zero, so that
the linear approximation is valid. We conclude that the “relative complexity” between

37In this relation, the attentive reader will miss a phase in the right hand side of the equation, coming from
the non-commutative behavior of q and p. We do not include it because it is proportional to the commutator
of the two operators, and so it comes at second order in the infinitesimal perturbation δq(t), δp(t). In any
case, this phase does not modify the state as a ray.

38This was not noticed in [27], where the real time t was confused with the protocol “time”, here denoted
by s.

39See for example ref. [62].
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the evolved state and the perturbed one is given, in the limit of sufficiently small initial
perturbation, by

C|ψt〉→|ψ∆
t 〉

= F (∆(−t)) , (5.10)

where F is the complexity measure we choose to use. Interestingly, for all state-dependent
costs defined in section 2.2.2 it is easy to show that

F (∆(−t)) = F (∆0) , (5.11)

so they are insensitive to the “separation” of nearby trajectories.
In fact, it is interesting to notice that such state dependent norms define distances for

the classical theory as well, just by the natural pull-back of the appropriate metric to the
semiclasical phase space. The fact that “distance” does not increase in the classical system
either, is rooted in the following equation

Hclassical = p(t)δq(t)− q(t)δp(t) = p0δq0 − q0δp0 , (5.12)

i.e., although both pairs, q(t), p(t) and δq(t), δp(t), show exponential behavior, the previous
combination is time independent. But such combination can be used to define distances,
such the geometric action one. This neatly shows the sometimes unnoticed dependence of
the chaotic analysis in the distance chosen.

This of course does not mean that Lyapunov growth cannot be seen using state depen-
dent measures. The Lyapunov growth just arises by computing the geometric complexity
growth from any given fixed point |ψ0〉 towards the evolution of the perturbed state |ψ∆

t 〉
— this would correspond to the pale dashed arrow in figure 1. In equations,

C|ψ0〉→|ψ∆
t 〉

= p0δq(t)− q0δp(t) , (5.13)

which does grow exponentially fast with a rate given by the Lyapunov exponent, and it
is indeed the classical definition of chaos. This was used in [27] to obtain the connection
with the chaotic behavior in black-hole physics. At any rate, having the instantaneous
Hamiltonian ∆(−t) it is very simple to device norms in phase space that are sensititve to
the Lyapunov growht of the infinitesimal perturbations.

To generalize these observations, let us first review the definition of chaos in classical
systems. In phase space M — whose points we generically denote by x — we have a
Hamiltonian flow which can be written as

ẋi(t) = fi(x(t)) . (5.14)

We can expand such equation around any given point x∗ obtaining

ẋi(t) = f(x∗) +
∑
j

∂fi(x)
∂xj

|x∗∆xj(t) . (5.15)

Doing the same thing for a nearby trajectory y(t) = x(t) + δx(t) we get a linear equation
for the difference

δẋi(t) =
∑
j

∂fi(x)
∂xj

|x∗δxj(t) ≡
∑
j

Lijδxj . (5.16)
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Of course, this linear approximation breaks down after some time. Since to isolate the
Lyapunov growth we need to wait a sufficient amount of time, we need to take the limit
of very small perturbation before, as commented earlier. The matrix Lij = ∂fi(x)

∂xj
|x∗ is

called the Jacobian matrix, and it determines the stability properties of stationary points
in phase space. The linear equation for the deviation is solved by standard methods and
we might get oscillatory versus non-oscillatory behavior and dilatation versus contraction
behavior — see [62].

The quantum complexity story repeats itself in this general scenario. Locally in phase
space we can always choose a coordinate chart in which we have n position operators q̂i and
n conjugate momentum operators p̂i. A generic small perturbation can be parametrized by

∆0 =
∑
i

p̂iδq
0
i − q̂iδp0

i . (5.17)

The unitary transforming |ψt〉 into |ψ∆
t 〉 = e−iHtei∆|ψ〉 is given by ei∆(−t). Most impor-

tantly, we again claim that the complexity geodesic for such unitary is

Ugeodesic(s) = ei∆(−t)s = e
i(
∑

i

p̂i(−t)δq0
i−q̂i(−t)δp0

i )s
= e

i(
∑

i

p̂iδqi(t)−q̂iδpi(t))s
, (5.18)

for s ∈ [0, 1], and where δqi(t) and δpi(t) are the solutions to the linearized equations of
motion (5.16). Such linearized equations can refer to some semiclassical phase space or
to a bigger quantum phase space. The reason that (5.18) is a minimal geodesic is the
same as before. For the linearized equations to be valid — so that a stability analysis
and computation of Lyapunov exponents can be performed — we must take the initial
perturbation to zero. Therefore, even if it grows with time, it remains as small as we wish.
Since constant Hamiltonians are minimal geodesics for sufficiently small perturbations, the
statement follows. Given that we have found the instantaneous Hamiltonian as a function of
the Jacobian matrix (from which the Lyapunov spectrum can be computed), the connection
between complexity and chaos is transparent.

Summarizing, we have made the following generic observations: i) The standard defi-
nition of chaos in classical systems relies only on the existence of a symplectic manifold and
a Hamiltonian flow on it. Since quantum evolution can be seen as classical dynamics on
quantum phase space, we can study quantum chaos using the classical definition on quan-
tum phase space. This approach has the right semiclassical limit by construction. ii) The
instantaneous Hamiltonian can be found in terms of the Jacobian matrix and Lyapunov
exponents of the chaotic process. Since we can make the initial perturbation as small
as we want, this instantaneous Hamiltonian actually defines a minimal geodesic, whose
associated computational cost can be easily found for a given complexity measure. iii)
State dependent costs are insensitive to the Lyapunov growth. But this feature happens
both for quantum and classical dynamics! This is a reflection of the fact that Lyapunov
growth is a coordinate/metric-dependent statement, as explained for example in [62] . In
any case, we remark that the instantaneous Hamiltonian is determined by the solutions to
the linearized stability equation, and clearly contains all the information associated to the
Lyapunov spectrum.
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6 Discussion

There has been much discussion concerning possible QFT complexity measures. The sit-
uation is a bit chaotic, sometimes with even more than one proposal per research group.
This discussion was partially ignited by arguments [50] claiming that canonical metrics40

are not good enough for complexity purposes, as those would prevent the existence of large
distances in the complexity manifold.

Perhaps the main lesson of the present paper is that canonical metrics can still be used
— and indeed they seem to be the best candidates — provided one includes constraints
in the geodesic action. This conclusion is naturally reached by considering the condition
which determines whether or not a given measure indeed provides a lower bound to the
quantum complexity of a given set of gates. This analysis, apart from ruling out some
possibilities, still leaves us with a huge zoo of putative complexity metrics. It turns out
to be convenient to characterize those cost functions by: i) the way the treat gates in the
gate set; ii) the way they treat gates outside the gate set. A natural principle to choose
within this zoo has been put forward above. Since the characterizing criterion is that
valid measures give rise to lower bounds to quantum complexity, we should choose the
one providing the tightest lower bound, i.e., the one providing the largest distances. This
maximization can be accomplished by assigning infinite costs to gates outside the gate
set, and by establishing a hierarchy of costs within the gate set. Such infinite penalties
can be modeled by constraints in a canonical complexity geometry (which does not assign
arbitrary penalties to arbitrary gates).

Regarding the hierarchies that arise by comparing metrics within the gate set, the
strongest candidate seems to correspond to the norm of the instantaneous Hamiltonian,
F||H|| which, on the other hand, is quite challenging from a technical perspective and
somewhat disfavored from a physical one. The second to best metrics are the ones induced
by the canonical metrics in Hilbert space and the unitaries manifold, respectively, F〈H2〉
(or F|〈H〉|) and FTrH2 . These cannot be directly compared, but in order to make sense of
the second, one is forced to include a constraint on the total energy of the process in order
to prevent violations of Lloyd’s bound, while F〈H2〉 has the constraint built in.

Including additional arguments into the discussion, the best choice seems to be F〈H2〉.
This measure arises from the usual Hermitian metric in Hilbert space which, along with
the associated symplectic form — given by the expectation value of commutators — equip
every quantum Hilbert space with a Kähler structure [35, 36]. In a completely natural
fashion, this symplectic form can be understood as the Kirillov-Kostant form associated to
the group of unitary transformations acting on such Hilbert space, which makes transparent
the connection between the cost function F〈H2〉, and the so-called “coadjoint (or geometric)
actions” [29] . At least for systems of small quantum variance, F〈H2〉 provides a canonical
realization of the “complexity equals action” idea — as previously observed in [28] in the
particular context of Virasoro circuits and generalized coherent states.

40Here the word “canonical” refers to a mathematical perspective. As discussed earlier, in Hilbert space it
would correspond to the inner product, in projective space it would correspond to the Fubini-Study metric,
for a finite system, in the unitary manifold it would be given by the trace, etcetera.
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Exploiting the phase-space structure of Hilbert space, we also explored the possibility
of defining a classical action controlling the quantum dynamics. The purpose of such a
formulation — apart from its inherent interest — resides in comparing such action with
the complexity functionals, elucidating what measures are favored. This “quantum action”
has the right pullbacks to classical actions on the appropriate semiclassical phase spaces.
Using such redefinition of a quantum mechanical system, we have seen how the geometric
action cost arises and, along the way, we found an alternative “Lagrangian” cost function,
whose integral over time is by construction the action.

Finally, having laid out these arguments and structures, we have used them
to analyze a particular physical problem — which has attracted some attention re-
cently [27, 44, 50, 58–60] — concerning the relation between chaos and complexity. The
fact that the symplectic structure extends beyond semiclassical approximations to the full
Hilbert space, suggests defining quantum chaos using the conventional classical definition
applied to the quantum phase space. This is slightly different from the out-of-time-ordered
correlators approach [61]. The challenge lies here in obtaining the instantaneous Hamilto-
nian connecting two nearby trajectories as a function of time. This can be accomplished
as a function of the usual incidence or stability matrix, whose eigenvalues are basically the
Lyapunov exponents. Moreover, such Hamiltonian, in the double limit appropriate for the
definition of chaos (long times but infinitesimal perturbations), draws a minimal geodesic.
With such input, it is easy to study complexity using the zoo of complexity metrics.

Acknowledgments

We thank Pawel Caputa, Horacio Casini, Rob Myers, Diego Pontello and Joan Simon for
useful discussions. The work of PB and JMM was supported by the Simons foundation
through the It From Qubit Simons collaboration. The work of CSS was supported by the
Humboldt Research Fellowship ESP 1186058 HFST-P from the Alexander Von Humboldt
Foundation. CSS would like to thank the members of the theory group at Centro Atómico
Bariloche for their warm hospitality.

A Physical examples of instantaneous Hamiltonians

There are some situations in which eq. (2.9) can be solved explicitly. The simplest ones
correspond to unitary transformations for which the instantaneous Hamiltonian is constant
along the path. In that case, U(s) = e−iHs, and H(s) = H. But there are more inter-
esting examples which can be worked out as well. These include the cases of: commuting
generators, piecewise linear paths, protocols generated by symmetry groups — including
the case of Virasoro protocols in d = 2 CFTs, which we review separately — and protocols
generated by Generalized free fields.
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A.1 Commuting generators

A simple situation in which eq. (2.9) can be summed corresponds to the case in which O(s)
is a linear combination of mutually commuting operators, namely

O(s) =
∑
I

θI(s)KI , where [KI ,KJ ] = 0 , ∀ I, J . (A.1)

In that case, the instantaneous Hamiltonian is simply given by

H(s) = dO(s)
ds

=
∑
I

θ̇I(s)KI . (A.2)

As we said before, it is in general possible that the set of generators is continuous instead
of discrete. In that case, we would have something like

O(s) =
∫
dk θk(s)K(k) , where [K(k),K(k′)] = 0 , ∀k, k′ . (A.3)

Similarly to the discrete case, the instantaneous Hamiltonian reads then

H(s) = dO(s)
ds

=
∫
dk θ̇k(s)K(k) . (A.4)

Examples of instantaneous Hamiltonians of this kind have appear in the complexity liter-
ature e.g. in [13] in the context of free scalar fields, and in [27] connecting boost transfor-
mations, chaos and black holes.

A.2 Infinitesimal paths

A very similar situation to the one just described occurs when the unitary U(s) is generated
by an infinitesimal Hermitian operator, namely, when

U(s) = e−iO(s) , where O(s) = ε h(s) ε� 1 . (A.5)

Examples of such infinitesimal paths have been consider e.g. in [31] in the context of
conformal deformations of the vacuum state in two-dimensional CFTs. In this case, all
commutators in eq. (2.9) are order ε2 or higher. Hence, at leading order in ε the situation
is identical to the one considered in the previous subsection, and we trivially have

H(s) = ε
dh(s)
ds

+O(ε2) . (A.6)

A.3 Piecewise linear paths

Imagine now that we can construct Uf as a finite sequence of “small unitaries” of the form

Uf = e−ih(N)e−ih(N−1) · · · e−ih(1)1 . (A.7)

This is the usual setup in quantum computation problems. In that context, the small
unitaries would correspond to the gates of the circuit. From the point of view of the
unitaries manifoldM, eq. (A.7) defines a discrete sequence of points: U0 ≡ 1, U1 ≡ e−ih(1)1,
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U2 ≡ e−ih(2)e−ih(1)1, and so on. We can likewise define a curve U(s) consisting of straight
lines inM connecting consecutive intermediate unitaries for that sequence. For values of
the affine parameter in the range (j − 1)/N < s < j/N , (j ∈ N), we have

U(s) = e−iN(s− j−1
N )h(j)e−ih(j−1) · · · e−ih(1)1 . (A.8)

After applying the unitary e−iNsh(1) , which approaches e−ih(1) as s→ 1/N on 1, we intro-
duce a new unitary which acts on e−ih(1)1 and approaches e−ih(2) as s→ 2/N , and so on.
With this definition, U(s) is a continuous curve which is not differentiable in general at the
points s = j/N . It is not difficult to see that the instantaneous Hamiltonian is given by41

H(s) = Nh(j) for (j − 1)/N < s < j/N . (A.9)

The s-dependence only appears through sudden jumps in H(s) as Ns takes integer values.
Piecewise protocols play an important role in Nielsen’s original proposal for approximating
complexity by the length of continuous paths onM [8]. We use this setup in section 2.

A.4 Symmetry transformations

Naturally, the nontriviality of eq. (2.9) also disappears when the sequence of nested com-
mutators can be performed explicitly, and the series resummed. A prototypical case occurs
when the path in the unitaries manifold can be thought of as parametrizing a continuous set
of elements of some symmetry group G. This has been emphasized in several papers which
try to provide notions of complexity valid for quantum field theories [16, 18, 20, 27, 28],
and it has been more or less implicitly exploited in many other related works — see
e.g. [12, 14, 15, 17, 21, 63–66].

In this context, a finite sequence of gates of the form eq. (A.7) would read

Uf = UgNUgN−1 · · ·Ug11 = UgNgN−1···g1 , (A.10)

where gi ∈ G ∀i = 1, . . . , N , and Ugj is some representation of G acting on the Hilbert space
of the system. In the continuous case, U(g(s)) represents a path in G, and the instantaneous
Hamiltonian is represented by some element of the Lie algebra g. In particular, eq. (2.1)
can now be written in terms of the group elements as42

g(s+ ds) = eQ(s)ds ◦ g(s) , (A.11)

where ◦ stands for the group multiplication, and Q(s) ∈ g plays the role of the instanta-
neous Hamiltonian. Then, the solution to the group-theoretical version of the Schrödinger
equation eq. (2.4) reads

Q(s) = d

ds′
(g(s′) ◦ g−1(s))

∣∣∣∣
s′=s

, (A.12)

41Consider for example the infinitesimal evolution from s = (j−1)/N to s = (j−1)/N+ds. Then, we have
from the definition of instantaneous Hamiltonian eq. (2.7): U((j−1)/N+ds) = e−iH((j−1)/N)dsU((j−1)/N).
Comparing with eq. (A.8), it follows that H(s) = Nh(j) in that interval.

42Observe that while we write generic unitary operators as U = e−iO, i.e., with an explicit factor of (−i),
whenever U is the representation of a symmetry group, we follow the more standard mathematical notation
and consider the exponential map g = eO without such factor. Then, one must remove the (−i)j factor
from eq. (2.9) when computing Q(s) in that case.
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which is the adjoint transformation of the Maurer-Cartan form — see section 4 below.
Equivalently, Q(s) can be also computed using the infinite sum of nested commutators in
eq. (2.9) by writing the unitary representations of the group as exponentials of elements
of the Lie algebra, i.e., U(g(s)) = eO(s), with O(s) = θa(s)Ta, where the θa(s), are certain
functions of the affine parameter, and Ta are the generators of g.

Consider for example the case of the Heisenberg group. We can parametrize a generic
element of the Lie algebra as O(s) = x(s)X+y(s)Y +z(s)Z, where the only non-vanishing
commutator reads [X,Y ] = Z. Then, using eq. (2.9), we are left with Q(s) = ẋ(s)X +
ẏ(s)Y + ż(s)Z + 1

2! [O(s), Ȯ(s)] plus higher order commutators. It is straightforward to
obtain [O(s), Ȯ(s)] = (x(s)ẏ(s) − ẋ(s)y(s))Z, and since Z belongs to the center of g, all
such commutators vanish. Therefore, we are left with

Q(s) = ẋ(s)X + ẏ(s)Y +
[
ż(s) + 1

2(x(s)ẏ(s)− ẋ(s)y(s))
]
Z . (A.13)

Alternatively, we can start from an element of the group and apply eq. (A.12). The
appropriate parametrization of g(s) reads

U(g(s)) =

1 x(s) z(s) + 1
2x(s)y(s)

0 1 y(s)
0 0 1

 , (A.14)

where the nonvanishing components of the Lie algebra generators read X12 =Y23 =Z13 =1.
Then, applying Q(s) = dg(s)/ds ◦ g−1(s) we are left precisely with eq. (A.13).

A.5 Virasoro protocols

Another particularly relevant example belonging to the class described in the previous
subsection corresponds, in the context of conformal field theories, to Hermitian operators
O(s) constructed from the energy-momentum tensor. In [28], these were proposed to play
a crucial role in the connection between complexity and gravity. While eq. (2.9) cannot be
resummed for generic CFTs, the situation changes in two dimensions, where such operators
generate the Virasoro algebra.

In the framework described in the previous section, the group G is the group of dif-
feomorphisms of the circle f(σ), with the group product given by composition of functions
(f ◦ g)(σ) = f(g(σ)). An infinitesimal group transformation is now an infinitesimal diffeo-
morphism, which can be written as σ → σ + ε(σ). Therefore, in abstract group terms, the
global and complexity frames are related as:

f(s+ ds, σ) = e−iH(s) ◦ f(s, σ) ,

where
H(s) ≡ i

∫ 2π

0

dσ

2π ε(s, σ)T (σ) = i
∑
n∈Z

εn(s)
(
L−n −

c

24δn,0
)
, (A.15)

is an element of the Virasoro algebra, Ln its generators, and we have the usual expansions
on the cylinder of size 2π

T (σ) =
∑
n∈Z

(
Ln −

c

24δn,0
)
e−inσ , ε(τ, σ) =

∑
n∈Z

εn(τ)e−inσ . (A.16)
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We can invert the previous relations to obtain

Ln =
∫ 2π

0

dσ

2πT (σ)einσ + c

24δn,0, εn(τ) =
∫ 2π

0

dσ

2π ε(τ, σ)einσ . (A.17)

In this context, the instantaneous gate equation can be solved. By expanding the infinites-
imal gate near the identity we get

f(s+ ds, σ) = (1 + ε(s, σ)ds) ◦ f(s, σ)

Composing the diffeomorphisms in the r.h.s. and expanding the l.h.s. we arrive to:

∂sf(s, σ)ds = ε(s, σ) ◦ f(s, σ)ds = ε(s, f(s, σ))ds

or equivalently
ε(s, σ) = ∂sf(s, F (s, σ)) = − ∂sF (s, σ)

∂σF (s, σ)
where we introduced the inverse function F (s, f(s, σ)) = σ.

So, given a time dependent conformal transformation f(s, σ) (the output of this set
of protocols), we can find the instantaneous Hamiltonian at time s, defined by ε(s, σ). As
in the previous section, we just need to represent such unitary in the appropriate Hilbert
space and we would be done. We refer to [28] for more details on this setup as well as for
holographic applications.

A.6 Generalized free fields

Another interesting case, which has not been considered in the literature before — cor-
responds to the so-called Generalized free fields [67]. A free field is often defined as one
obeying a linear equation of motion — e.g. the Klein-Gordon equation for a free scalar.
In such scenario, new solutions of the equations of motion can be constructed as super-
positions of others, and one can arrive at a non-interacting freely-generated Fock space of
excitations.

One may wonder if both statements are equivalent, namely, if the fact that the field
obeys a linear equation of motion and the fact that it displays a non-interacting freely-
generated Fock space of excitations imply one another. This is not the case. A Fock space
of excitations can be obtained whenever correlation functions factorize into products of two
point functions, i.e., when

Tr(ρO(x1) · · · O(x2n)) = 1
2n
∑
π

Tr(ρO(xπ1)O(xπ2)) · · ·Tr(ρO(xπ2n−1)O(xπ2n)) , (A.18)

where ρ is a generic state. Fields satisfying this property but not obeying any linear
equation of motion are called Generalized free fields, and play a prominent role in the
holographic context — see e.g., [68].

For us, what is important is the implication of the previous relation on the structure
of commutators. In particular, it is easy to see that the previous factorization implies

Tr(ρO(x1) · · · O(x2n)[O(x),O(y)]) = Tr(ρO(x1) · · · O(x2n))Tr(ρ [O(x),O(y)]) , (A.19)
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and in fact it does not depend on the position of the commutator in the string. One
concludes that — at least when inserted into correlation functions — the commutator of
two operators of this kind is proportional to the identity:

[O(x),O(y)]ρ = Tr(ρ [O(x),O(y)])1 . (A.20)

The proportionality factor is state-dependent, but otherwise the commutator is a c-number.
Indeed, this is another equivalent way of defining a Generalized free field.

This feature can be used to compute the instantaneous gate, at least for computational
costs defined in terms of expectation values — see section 2. Indeed, since the commutator
is proportional to the identity, the sum (2.9) colapses to the first two terms, so that:

HGFF(s) = dO(s)
ds

− i

2

[
O(s), dO(s)

ds

]
. (A.21)

B The Banach-Lie group of unitaries

The set of all unitary transformations of a given quantum system, which we denote M
throughout the paper, plays a crucial role in the complexity discussion. The goal of this
appendix is to take a closer look into the mathematical structure ofM when it is infinite-
dimensional (the finite-dimensional case is classical in the standard theory of Lie groups).
The appendix is more or less self contained and written in an informal — yet rigorous —
mathematical language.

Ideally, we would like to endowM with the structure of a “smooth infinite dimensional
Lie group”, in order to be able to do Riemannian geometry onM and define the notions of
smooth Riemannian metric, Levi-Civita connection and piece-wise smooth geodesic. How-
ever, introducing such smooth Lie structure onM may or may not be possible depending
on the precise meaning we want to grant to the terms “smooth” and “Lie structure” in
an infinite-dimensional context. Since this issue is generally overlooked in the physics lit-
erature, we will discuss it here in some detail by endowing M with successive layers of
topological and geometric structure. The goal will be to justify, at least formally, the
various mathematical manipulations we perform throughout the rest of the manuscript.

Let H be the Hilbert space associated to the quantum system under consideration.
Its group of unitary operators is set-theoretically defined as the set of all unitary transfor-
mations of the quantum system, with group operation given by composition. As observed
in [35], many of the observables of interest in quantum mechanics, notably the Hamilto-
nian itself, correspond to unbounded operators, and must therefore be defined on dense
subspaces of physical states of H. Due to this fact, [35] considers a fixed dense subspace
D ⊂ H which is assumed to be common to all the observables of the system. With these
provisos in mind, the set of all unitary transformations of the quantum system is identi-
fied with the set of all unitary operators of D with product rule given by composition. A
moment of thought reveals that every unitary transformation of D extends to a unique
unitary operator on H and vice-versa, every unitary operator on H restricts to a unitary
transformation on D. Hence, we can equivalently define the unitary group of a quantum
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system simply as the group of all linear and continuous unitary transformations of H. This
defines M as an abstract group, which we need to endow now with a topology. There
is a large body of literature treating the different topologies that can be defined on M,
exploring in detail their advantages and drawbacks — see e.g., [38, 39]. Here we will focus
on the two main natural choices: the norm topology and the strong topology.43 We discuss
the norm topology first.

In order to define the norm topology, the first piece of data we need to introduce is the
vector space L(H) of all linear endomorphisms of H, that is, the vector space of all linear
maps from H to itself. Denote by B(H) ⊂ L(H) the vector space of all bounded linear
operators

B(H) ≡ {T ∈ L(H) : ∃ c > 0 | ∀ ψ ∈ H |T (ψ)|H ≤ c|ψ|H} , (B.1)

where | · |H is the norm of H. The “unitary group”M as defined above is then realized as
the subgroup of the unit group of B(H) which preserves the Hilbert structure of H. Equip
B(H) now with the “operator norm” | · |B, which is defined as follows (see also eq. (2.17))

|T |B ≡ supψ∈S∞⊂H|T (ψ)|H . (B.2)

Endowed with this norm, B(H) becomes a Banach space, of which the subspace u(H) ⊂
B(H) of skew-Hermitian linear and bounded operators is a Banach subspace when endowed
with the induced norm. Furthermore, equipped with the standard Lie bracket defined
in terms of composition, u(H) becomes a Banach-Lie algebra, which is a Banach space
equipped with a bilinear and smooth skew-symmetric bracket satisfying the Jacobi identity.
The norm topology onM⊂ B(H) is defined as the subspace topology with respect to the
topology on B(H) induced by | · |B. Equipped with this topology,M is a contractible and
metrizable topological group which we will momentarily denote by Mn. Furthermore, it
can be shown that the exponential map

Exp: u(H)→M , T →
∞∑
n=0

Tn

n! , (B.3)

is a local homeomorphism when appropriately restricted to an open neighborhood of zero
in the Banach space u(H) and, in addition, it can be used to endowM with the structure
of a Banach-Lie group. That is, M is a Banach manifold locally modeled on u(H), with
local charts given by the exponential, and such that the composition of unitary operators
is smooth. Not only that, M becomes a parallelizable, contractible, smooth Banach-Lie
group. The Banach-Lie group structure is one of the nicest structures we can expect to
construct on an infinite-dimensional group, and allows to intuitively transport toM many
results and manipulations which hold for finite-dimensional Lie groups. In particular, we
can unambiguously talk about smooth metrics, connections, smooth curves and geodesics
on M. Endowing M with this smooth Lie-group structure can be used to justify most
of the formal manipulations occurring in the rest of the paper. Despite these convenient
features, the norm topology has not been favored in the mathematical quantum physics

43The compact-open topology and the weak operator topology onM are equivalent to the strong topology
and hence we do not need to consider them separately.

– 45 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
0

literature, the main reason being its pathological behavior with respect to representations
of Lie groups. More precisely, suppose that

Φ: G×H → H , (g, ψ) 7→ Φg(ψ) , (B.4)

is a continuous unitary representation of a finite-dimensional Lie group G. Then, if M
is equipped with the norm topology, the associated homomorphism G → Mn given by
g 7→ Φg may not be continuous even if the representation is (it is continuous if and only
if G is discrete). Furthermore, by Stone’s theorem if {Ut}t∈R is a group-family of unitary
operators (strongly) continuous inMn, then it is generated by a bounded skew-Hermitian
operator, that is,

Ut = Exp(tT ) , (B.5)

with T ∈ u(H) bounded. This rules out the possibility of having continuous families of
unitary operators generated by unbounded operators such as the position operator, which is
clearly inconvenient for quantum mechanics applications. In conclusion, the norm topology
is too fine to do representation theory. These and other reasons traditionally favored the
use of the strong topology onM instead.

One of the simplest ways to define the strong topology is by specifying which sequences
are convergent in this topology. From this point of view, a sequence {Tk} on B(H) is
convergent to T ∈ B(H) in the strong topology if and only if

lim
k→∞

Tk(ψ) = T (ψ) , ∀ ψ ∈ H . (B.6)

The strong topology on M is the subspace topology induced by B(H) equipped with the
strong topology as defined above. We will momentarily denote byMs the unitary groupM
equipped with the strong topology. Equipped with this topology,Ms can be shown to be a
metrizable, contractible — if H is infinite dimensional — topological group for which con-
tinuous unitary representations correspond with continuous homeomorphisms G → Ms.
In particular, continuous families of unitary operators in Ms can be generated with un-
bounded operators. However, the exponential map in this case, although continuous, fails
to be a local homeomorphism. Moreover it can be shown thatMs cannot be a Banach-Lie
group modeled on u(H). The best we can do is to endow Ms with the structure of a
Fréchet-Lie group. That is, with this structureMs would be locally modeled on open sets
on a Fréchet space [40], which is a particular type of topological vector space generalizing
the notion of Banach space (a Fréchet space is not necessarily equipped with a norm).
However, in contrast to Banach spaces, the standard notion of differentiability occurring in
Rn does not extend naturally to Fréchet spaces. Still, a notion of “directional derivative”,
called in the literature “Gateaux derivative” [40], can be defined, and we believe this is
enough for some of the manipulations that we need, such as taking the velocity of a curve
inMs, to hold. However, it is unclear to us whether the framework of Fréchet-Lie groups
allows for the type of Riemannian geometry onMs necessary for the continuous approach
to complexity we deal with through the rest of the paper.

Summarizing the previous discussion, we conclude the following: i) The norm topology
onM offers a convenient framework in whichMn becomes a contractible and metrizable
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Banach-Lie group. We can do Riemannian geometry on Mn intuitively, as in the finite-
dimensional case. However, Mn does not behave well with respect to continuous unitary
representations and in particular, due to Stone’s theorem, with respect to one-parameter
families of unitary maps associated to unbounded generators. ii) The strong topology on
M offers a convenient framework for unitary representations, in which every continuous
unitary representation of a finite dimensional Lie group corresponds to a continuous map
G → Ms. However, Ms is not a Banach-Lie group modeled on skew-adjoint endomor-
phisms of H and, in particular, the exponential map is not a local homeomorphism. It is
not clear if the (contractible and metrizable) Fréchet-Lie group structure existing on Ms

is enough for the requirements of the complexity theory. It is important to remark that
(strongly) continuous one-parameter families of unitary operators U(s) in the norm topol-
ogy are always given by the exponential of bounded operators. Hence, if we have a physical
argument to consider exclusively bounded observables, then the norm topology is as good
as the strong topology with regards to their behavior with respect to continuous families of
unitary operators. It is beyond the scope of this paper to determine in a mathematically
rigorous way which of the topologies is the appropriate one for the continuous complexity
approach (if any). We leave the question open for debate for the moment.

C Geometric actions

The concept of geometric action was developed by Kirillov [29]. It emerged as a byproduct
of the development of a new framework to find and classify irreducible representations
in group theory. This new framework was called the “coadjoint orbit method”, since its
key ingredient is a generic orbit of the coadjoint representation of the given group G. A
nice review on the subject, with lots of physics applications, can be found in [69]. The
present appendix intends to be a small self-contained review. We will not worry about any
potential issues associated with G being infinite dimensional.

Given a Lie group G we denote by g its Lie algebra. The adjoint action of G on g is
defined in the usual way as follows

Adg(Q) = d

ds
(g ◦ esQ ◦ g−1)|s=0 , (C.1)

and yields a homomorphism Ad : G→ Aut(g) given by g 7→ Adg. We will denote by Q ∈ g

the elements of the Lie Algebra, since they generically correspond to charges in physical
applications. Also, above and in the following, we denote by ◦ the group product. Notice
that, in general, we cannot directly introduce the derivative in the parenthesis without
evaluating the group product first. This can only be done when G is a matrix group, which
is not the case in general.

Denote by g∗ the vector space dual to g, that is, g∗ the vector space of linear maps
from g to R. We will denote elements of g∗ by ψ, since they will typically correspond to
quantum states in physical applications. The pairing between the dual space and the Lie
algebra will be denoted by 〈ψ,Q〉. Using such pairing we can introduce a representation
of G on g∗ canonically induced by adjoint representation of G on g. This representation is
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usually called the “coadjoint representation”, denoted by Ad∗ : G → g∗, and it is defined
as follows,

〈Ad∗g(ψ), Q〉 ≡ 〈ψ,Adg−1(Q)〉 . (C.2)

for every g ∈ G and Q ∈ g. Note that the adjoint and coadjoint representations are
inequivalent in general. They are equivalent if and only if there exists an equivariant map
from the Lie algebra g to its dual g∗, which is in turn equivalent to the existence of a
non-degenerate an adjoint-invariant bilinear form on g. The coadjoint action of g ∈ G on
an element of g∗ paired with some Q ∈ g is therefore defined as the pairing of that element
with the element of g resulting from the application of the adjoint action of g−1 on Q. We
denote as follows:

Oψ ≡ {ψ′ ∈ g∗ | ∃ g ∈ G→ Ad∗g(ψ) = ψ′} , (C.3)

the orbit of the coadjoint action on g∗ passing through ψ. This is defined as the set of all
elements of g∗ which can be reached from ψ by applying the coadjoint action of the group.

The remarkable result proved by Kirillov and Konstant is that every such coajoint
orbit can be equipped with a canonical and invariant symplectic form. In order to define
this symplectic form on Oψ, we recall that Oψ # g∗ is not an abstract manifold but
an immersed submanifold of g∗. Furthermore, from the very definition of orbit, G acts
transitively on Oψ and hence we have a well-defined smooth submersion,

Θψ : G→ Oψ , g 7→ Ad∗g(ψ) . (C.4)

Its differential at the identity element yields a linear map of vector spaces,

dIdΘψ : g→ TψOψ . (C.5)

In particular, TψOψ = Im(dIdΘψ). Note that dIdΘψ may have kernel, which is given by
the Lie algebra gψ of the stabilizer of ψ in G. In particular:

TψOψ = g/gψ . (C.6)

With these provisos in mind, Kirillov’s symplectic form ω on Oψ at ψ is defined as follows

ωψ(x1, x2) ≡ 〈ψ, [Q1, Q2]〉 , (C.7)

where Q1, Q2 ∈ g satisfy dIdΘψ(Qa) = xa, a = 1, 2. Clearly, Q1 and Q2 will not be unique
in general, whence we need to verify that the definition does not depend on the pre-images
of x1 and x2 chosen. Any other pre-image Q′ can be written as follows:

Q′a = Qa + qa , (C.8)

where qa ∈ gψ. A direct computation shows that:

0 = d

dt
〈Ad∗e−tqψ,Q〉|t=0 = d

dt
〈ψ,AdetqQ〉|t=0 = 〈ψ, [q,Q]〉 = ωψ(q,Q) , (C.9)

for every q ∈ gψ and Q ∈ g. Hence:

〈ψ, [Q1+q1, Q2+q2]〉=〈ψ, [Q1, Q2]〉+〈ψ, [q1, Q2]〉+〈ψ, [Q1, q2]〉+〈ψ, [q1, q2]〉=〈ψ, [Q1, Q2]〉 ,
(C.10)
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whence ω is indeed well-defined. The fact that ω is closed follows from carefully applying
the standard formula for the exterior derivative in terms of the Lie bracket and from using
the Jacobi identity and the fact that G acts transitively on Oψ. To prove now that ω is
non-degenerate, we need to show that, for every non-zero x ∈ TΨOψ there exists another
element x′ ∈ TΨOψ such that:

ωψ(x, x′) = 〈ψ, [Q,Q′]〉 6= 0 . (C.11)

In order to see that this is the case, we proceed by contradiction. Assume that such x′

does not exist. Then:
〈ψ, [Q,Q′]〉 = 0 , ∀ Q′ ∈ g . (C.12)

This implies:

0 = 〈ψ, [Q,Q′]〉 = − d

dt
〈ψ,AdetQQ′〉|t=0 = − d

dt
〈Ad∗e−tQψ,Q′〉|t=0 = 0 , ∀ Q′ ∈ g . (C.13)

Hence:
Ad∗e−tQψ = 0 , (C.14)

implying Q ∈ gψ, in contradiction with the fact that x 6= 0 by assumption. To summarize:
every orbit of the coadjoint action of G admits a canonical symplectic form, which in
addition can be shown to be invariant under the action of G on the orbit. Hence, every
such orbit equipped with its canonical symplectic form can be understood as the phase
space of a physical system. In these symplectic manifolds we can explore two avenues:

1. Define and study classical systems in such phase spaces. This has the advantage
that such systems will feature the G group as a global symmetry, and the group H
as a gauge symmetry, a fact that we can use to simplify the corresponding physical
system, for example by exploiting the associated conserved currents in the case G
acts through Hamiltonian symplectomorphisms.

2. We can try to geometrically quantize the phase space by implementing the different
recipes developed in geometric quantization. If successful, this would realize the
Hilbert space of the associated quantum system as certain subspace of the space of
section of a Hermitian line bundle over the orbit, on which the group G acts through
unitary transformations, obtaining thus a unitary representation of the group.

For the complexity discussion, the interesting avenue is the first one, since in general
we will work with cases for which we know already the appropriate Hilbert space repre-
sentation. Therefore, what kind of actions can we define naturally within this framework?
The most natural way to proceed is to consider a particle moving on a configuration space
with associated symplectic phase space given by an orbit of the coadjoint action equipped
with its Kirillov-Konstant symplectic form. Each point ψ in the orbit represents a state,
and time evolution draws a trajectory ψ(s) in this phase space. Before establishing what
kind of action will control ψ(s), let us see how to parametrize such trajectory. To such
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end, consider ψ0 as the initial point. Since the group G acts transitively on the orbit, we
can parametrize the trajectory ψ(s) with a path g(s) in the group G, by means of:

ψ(s) = Ad∗g(s)(ψ0) . (C.15)

Due to the fact that ψ0 may have a non-trivial stabilizer the path g(s) is not unique. This
will not cause any problems, since we just have to choose one. One can call such coordinate
frame g(s) the “physical frame”. There is another coordinate frame, which completely
defines the trajectory as well. It provides the Lie algebra element Q(s) implementing the
transition from s to s + ds. This is the instantaneous gate in this framework and it is
defined group theoretically as:

Q(s) = d

dτ
(g(τ) ◦ g−1(τ))|τ=s . (C.16)

We will denote this as the “complexity frame”, since it is the one that enters directly in
the definition of the metric, as we will see below.

Just as a remark, an important cousin of Q(s) is its adjoint transformation under g(s).
This is called the Maurer-Cartan form:

Q̃(s) = d

dτ
(g−1(τ) ◦ g(τ))|τ=s . (C.17)

We are now ready to define the geometric action. Given the trajectory ψ(t), parametrized
in such two different ways, its geometric action is:

IGeometric =
∫
ds 〈Ad∗g(s)(ψ0), Q(s)〉 =

∫
ds 〈ψ0, Q̃(s)〉 . (C.18)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)
24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

[2] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90
(2014) 126007 [arXiv:1406.2678] [INSPIRE].

[3] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823
[INSPIRE].

[4] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690]
[INSPIRE].

[5] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity
Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[6] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action, and
black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

– 50 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/prop.201500092
https://doi.org/10.1002/prop.201500092
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.5695
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2678
https://arxiv.org/abs/1408.2823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.2823
https://doi.org/10.1002/prop.201500095
https://arxiv.org/abs/1411.0690
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.0690
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.04993


J
H
E
P
0
9
(
2
0
2
1
)
2
0
0

[7] J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume, and complexity,
JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].

[8] M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070
[INSPIRE].

[9] M.A. Nielsen, M.R. Dowling, M. Gu and A.C. Doherty, Quantum Computation as Geometry,
Science 311 (2006) 1133 [quant-ph/0603161] [INSPIRE].

[10] M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, quant-ph/0701004
[INSPIRE].

[11] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between
Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett. 115 (2015) 261602
[arXiv:1507.07555] [INSPIRE].

[12] R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017)
107 [arXiv:1707.08570] [INSPIRE].

[13] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of
Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602
[arXiv:1707.08582] [INSPIRE].

[14] R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield
double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].

[15] R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys.
Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].

[16] L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139
[arXiv:1803.10638] [INSPIRE].

[17] H.A. Camargo, P. Caputa, D. Das, M.P. Heller and R. Jefferson, Complexity as a novel probe
of quantum quenches: universal scalings and purifications, Phys. Rev. Lett. 122 (2019)
081601 [arXiv:1807.07075] [INSPIRE].

[18] M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit Complexity for Coherent States,
JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].

[19] A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG
flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].

[20] S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys.
6 (2019) 034 [arXiv:1810.05151] [INSPIRE].

[21] J. Jiang and X. Liu, Circuit Complexity for Fermionic Thermofield Double states, Phys. Rev.
D 99 (2019) 026011 [arXiv:1812.00193] [INSPIRE].

[22] J. Jiang, J. Shan and J. Yang, Circuit complexity for free Fermion with a mass quench, Nucl.
Phys. B 954 (2020) 114988 [arXiv:1810.00537] [INSPIRE].

[23] I. Akal, Weighting gates in circuit complexity and holography, arXiv:1903.06156 [INSPIRE].

[24] A. Bhattacharyya, P. Nandy and A. Sinha, Renormalized Circuit Complexity, Phys. Rev.
Lett. 124 (2020) 101602 [arXiv:1907.08223] [INSPIRE].

[25] F. Liu et al., Circuit complexity across a topological phase transition, Phys. Rev. Res. 2
(2020) 013323 [arXiv:1902.10720] [INSPIRE].

– 51 –

https://doi.org/10.1007/JHEP03(2017)119
https://arxiv.org/abs/1610.02038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02038
https://arxiv.org/abs/quant-ph/0502070
https://inspirehep.net/search?p=find+EPRINT%2Bquant-ph%2F0502070
http://dx.doi.org/10.1126/science.1121541
https://arxiv.org/abs/quant-ph/0603161
https://inspirehep.net/search?p=find+EPRINT%2Bquant-ph%2F0603161
https://arxiv.org/abs/quant-ph/0701004
https://inspirehep.net/search?p=find+EPRINT%2Bquant-ph%2F0701004
https://doi.org/10.1103/PhysRevLett.115.261602
https://arxiv.org/abs/1507.07555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.07555
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1007/JHEP10(2017)107
https://arxiv.org/abs/1707.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08570
https://doi.org/10.1103/PhysRevLett.120.121602
https://arxiv.org/abs/1707.08582
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08582
https://doi.org/10.1103/PhysRevD.97.066004
https://arxiv.org/abs/1709.00921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.00921
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1103/PhysRevD.98.126001
https://arxiv.org/abs/1801.07620
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.07620
https://doi.org/10.1007/JHEP07(2018)139
https://arxiv.org/abs/1803.10638
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10638
https://doi.org/10.1103/PhysRevLett.122.081601
https://doi.org/10.1103/PhysRevLett.122.081601
https://arxiv.org/abs/1807.07075
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07075
https://doi.org/10.1007/JHEP10(2018)011
https://arxiv.org/abs/1807.07677
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07677
https://doi.org/10.1007/JHEP10(2018)140
https://arxiv.org/abs/1808.03105
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03105
https://doi.org/10.21468/SciPostPhys.6.3.034
https://doi.org/10.21468/SciPostPhys.6.3.034
https://arxiv.org/abs/1810.05151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05151
https://doi.org/10.1103/PhysRevD.99.026011
https://doi.org/10.1103/PhysRevD.99.026011
https://arxiv.org/abs/1812.00193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.00193
https://doi.org/10.1016/j.nuclphysb.2020.114988
https://doi.org/10.1016/j.nuclphysb.2020.114988
https://arxiv.org/abs/1810.00537
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.00537
https://arxiv.org/abs/1903.06156
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06156
https://doi.org/10.1103/PhysRevLett.124.101602
https://doi.org/10.1103/PhysRevLett.124.101602
https://arxiv.org/abs/1907.08223
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.08223
https://doi.org/10.1103/PhysRevResearch.2.013323
https://doi.org/10.1103/PhysRevResearch.2.013323
https://arxiv.org/abs/1902.10720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.10720


J
H
E
P
0
9
(
2
0
2
1
)
2
0
0

[26] G. Camilo, D. Melnikov, F. Novaes and A. Prudenziati, Circuit Complexity of Knot States in
Chern-Simons theory, JHEP 07 (2019) 163 [arXiv:1903.10609] [INSPIRE].

[27] J.M. Magán, Black holes, complexity and quantum chaos, JHEP 09 (2018) 043
[arXiv:1805.05839] [INSPIRE].

[28] P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett. 122 (2019)
231302 [arXiv:1807.04422] [INSPIRE].

[29] A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics, AMS Press,
Providence U.S.A. (2004).

[30] V. Balasubramanian, M. DeCross, A. Kar and O. Parrikar, Binding Complexity and
Multiparty Entanglement, JHEP 02 (2019) 069 [arXiv:1811.04085] [INSPIRE].

[31] A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time
story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

[32] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space
from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119
(2017) 071602 [arXiv:1703.00456] [INSPIRE].

[33] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as
Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11 (2017)
097 [arXiv:1706.07056] [INSPIRE].

[34] H.A. Camargo, M.P. Heller, R. Jefferson and J. Knaute, Path integral optimization as circuit
complexity, Phys. Rev. Lett. 123 (2019) 011601 [arXiv:1904.02713] [INSPIRE].

[35] T.W.B. Kibble, Geometrization of Quantum Mechanics, Commun. Math. Phys. 65 (1979)
189 [INSPIRE].

[36] A. Ashtekar and T.A. Schilling, Geometrical formulation of quantum mechanics,
gr-qc/9706069 [INSPIRE].

[37] A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the
Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].

[38] M. Reed and B. Simon, Functional analysis, Academic Press, New York U.S.A. (1981).

[39] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin Germany (2002).

[40] K.-H. Neeb, Infinite-dimensional Lie groups, 3rd cycle, Monastir Tunisia (2005).

[41] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017)
118 [arXiv:1612.00433] [INSPIRE].

[42] R. Haag, Local quantum physics: Fields, particles, algebras, Springer-Verlag, Heidelberg
Germany (1992).

[43] R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, To be unitary-invariant or not?:
a simple but non-trivial proposal for the complexity between states in quantum
mechanics/field theory, arXiv:1906.02063 [INSPIRE].

[44] R.-Q. Yang and K.-Y. Kim, Time evolution of the complexity in chaotic systems: a concrete
example, JHEP 05 (2020) 045 [arXiv:1906.02052] [INSPIRE].

[45] S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047
[quant-ph/9908043].

– 52 –

https://doi.org/10.1007/JHEP07(2019)163
https://arxiv.org/abs/1903.10609
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1907%2C163%22%20and%20year%3D2019
https://doi.org/10.1007/JHEP09(2018)043
https://arxiv.org/abs/1805.05839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.05839
https://doi.org/10.1103/PhysRevLett.122.231302
https://doi.org/10.1103/PhysRevLett.122.231302
https://arxiv.org/abs/1807.04422
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04422
https://doi.org/10.1007/JHEP02(2019)069
https://arxiv.org/abs/1811.04085
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.04085
https://doi.org/10.1007/JHEP03(2019)044
https://arxiv.org/abs/1811.03097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.03097
https://doi.org/10.1103/PhysRevLett.119.071602
https://doi.org/10.1103/PhysRevLett.119.071602
https://arxiv.org/abs/1703.00456
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00456
https://doi.org/10.1007/JHEP11(2017)097
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1711%2C097%22%20and%20year%3D2017
https://doi.org/10.1103/PhysRevLett.123.011601
https://arxiv.org/abs/1904.02713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.02713
https://doi.org/10.1007/BF01225149
https://doi.org/10.1007/BF01225149
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C65%2C189%22
https://arxiv.org/abs/gr-qc/9706069
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9706069
https://doi.org/10.1016/0550-3213(89)90130-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB323%2C719%22
https://doi.org/10.1007/JHEP03(2017)118
https://doi.org/10.1007/JHEP03(2017)118
https://arxiv.org/abs/1612.00433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00433
https://arxiv.org/abs/1906.02063
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02063
https://doi.org/10.1007/JHEP05(2020)045
https://arxiv.org/abs/1906.02052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02052
http://dx.doi.org/10.1038/35023282
https://arxiv.org/abs/quant-ph/9908043


J
H
E
P
0
9
(
2
0
2
1
)
2
0
0

[46] D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time
Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].

[47] W. Cottrell and M. Montero, Complexity is simple!, JHEP 02 (2018) 039
[arXiv:1710.01175] [INSPIRE].

[48] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007
[arXiv:0905.1317] [INSPIRE].

[49] X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo and M. Mohseni, Quantum
Brachistochrone Curves as Geodesics: Obtaining Accurate Minimum-Time Protocols for the
Control of Quantum Systems, Phys. Rev. Lett. 114 (2015) 170501 [arXiv:1408.2465]
[INSPIRE].

[50] A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018)
086015 [arXiv:1701.01107] [INSPIRE].

[51] A.M. Perelomov, Coherent states for arbitrary lie groups, Commun. Math. Phys. 26 (1972)
222 [INSPIRE].

[52] L.G. Yaffe, Large N Limits as Classical Mechanics, Rev. Mod. Phys. 54 (1982) 407 [INSPIRE].

[53] J.M. Magan, De Finetti theorems and entanglement in large-N theories and gravity, Phys.
Rev. D 96 (2017) 086002 [arXiv:1705.03048] [INSPIRE].

[54] A. Carlini, A. Hosoya, T. Koike and Y. Okudaira, Time-Optimal Quantum Evolution, Phys.
Rev. Lett. 96 (2006) 060503 [quant-ph/0511039] [INSPIRE].

[55] A. Carlini, A. Hosoya, T. Koike and Y. Okudaira, Time-optimal unitary operations, Phys.
Rev. A 75 (2007) 042308 [quant-ph/0608039] [INSPIRE].

[56] A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan and J. Simón, First Law of
Holographic Complexity, Phys. Rev. Lett. 123 (2019) 081601 [arXiv:1903.04511] [INSPIRE].

[57] V. Balasubramanian, M. Decross, A. Kar and O. Parrikar, Quantum Complexity of Time
Evolution with Chaotic Hamiltonians, JHEP 01 (2020) 134 [arXiv:1905.05765] [INSPIRE].

[58] M. Miyaji, Butterflies from Information Metric, JHEP 09 (2016) 002 [arXiv:1607.01467]
[INSPIRE].

[59] A.Y. Yosifov and L.G. Filipov, Quantum Complexity and Chaos in Young Black Holes,
Universe 5 (2019) 93 [arXiv:1904.09767] [INSPIRE].

[60] T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim, N. Moynihan and J. Murugan, Chaos and
Complexity in Quantum Mechanics, Phys. Rev. D 101 (2020) 026021 [arXiv:1905.13534]
[INSPIRE].

[61] A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity,
Sov. J. Exp. Theor. Phys. 28 (1969) 1200.

[62] P. Cvitanović, R. Artuso and G. Vattay, Chaos: Classical and Quantum,
http://ChaosBook.org, Niels Bohr Institute, Copenhagen Denmark (2016).

[63] R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field
theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082
[arXiv:1710.00600] [INSPIRE].

[64] K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge
theories, Phys. Rev. D 96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].

– 53 –

https://doi.org/10.1007/JHEP11(2017)188
https://arxiv.org/abs/1709.10184
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.10184
https://doi.org/10.1007/JHEP02(2018)039
https://arxiv.org/abs/1710.01175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01175
https://doi.org/10.1103/PhysRevD.86.065007
https://arxiv.org/abs/0905.1317
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevD.86.065007%22
http://dx.doi.org/10.1103/PhysRevLett.114.170501
https://arxiv.org/abs/1408.2465
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevLett.114.170501%22
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.1103/PhysRevD.97.086015
https://arxiv.org/abs/1701.01107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.01107
https://doi.org/10.1007/BF01645091
https://doi.org/10.1007/BF01645091
https://inspirehep.net/search?p=find+J%20%22Comm.Math.Phys.%2C26%2C222%22
https://doi.org/10.1103/RevModPhys.54.407
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FRevModPhys.54.407%22
https://doi.org/10.1103/PhysRevD.96.086002
https://doi.org/10.1103/PhysRevD.96.086002
https://arxiv.org/abs/1705.03048
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.03048
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevLett.96.060503
https://arxiv.org/abs/quant-ph/0511039
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevLett.96.060503%22
http://dx.doi.org/10.1103/PhysRevA.75.042308
http://dx.doi.org/10.1103/PhysRevA.75.042308
https://arxiv.org/abs/quant-ph/0608039
https://inspirehep.net/search?p=find+doi%20%2210.1103%2FPhysRevA75.042308%22
https://doi.org/10.1103/PhysRevLett.123.081601
https://arxiv.org/abs/1903.04511
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.04511
https://doi.org/10.1007/JHEP01(2020)134
https://arxiv.org/abs/1905.05765
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.05765
https://doi.org/10.1007/JHEP09(2016)002
https://arxiv.org/abs/1607.01467
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.01467
https://doi.org/10.3390/universe5040093
https://arxiv.org/abs/1904.09767
https://inspirehep.net/search?p=find+doi%20%2210.3390%2Funiverse5040093%22
https://doi.org/10.1103/PhysRevD.101.026021
https://arxiv.org/abs/1905.13534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.13534
http://ChaosBook.org
https://doi.org/10.1007/JHEP02(2018)082
https://arxiv.org/abs/1710.00600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.00600
https://doi.org/10.1103/PhysRevD.96.126001
https://arxiv.org/abs/1707.03840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.03840


J
H
E
P
0
9
(
2
0
2
1
)
2
0
0

[65] D.W.F. Alves and G. Camilo, Evolution of complexity following a quantum quench in free
field theory, JHEP 06 (2018) 029 [arXiv:1804.00107] [INSPIRE].

[66] D. Ge and G. Policastro, Circuit Complexity and 2D Bosonisation, JHEP 10 (2019) 276
[arXiv:1904.03003] [INSPIRE].

[67] S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10
(2012) 106 [arXiv:1101.4163] [INSPIRE].

[68] K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212
[arXiv:1211.6767] [INSPIRE].

[69] B. Oblak, BMS Particles in Three Dimensions, Ph.D. Thesis, Brussels University, Brussels
Belgium (2016) [arXiv:1610.08526] [INSPIRE].

– 54 –

https://doi.org/10.1007/JHEP06(2018)029
https://arxiv.org/abs/1804.00107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00107
https://doi.org/10.1007/JHEP10(2019)276
https://arxiv.org/abs/1904.03003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.03003
https://doi.org/10.1007/JHEP10(2012)106
https://doi.org/10.1007/JHEP10(2012)106
https://arxiv.org/abs/1101.4163
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.4163
https://doi.org/10.1007/JHEP10(2013)212
https://arxiv.org/abs/1211.6767
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.6767
https://arxiv.org/abs/1610.08526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.08526

	Introduction
	Geometric lower bounds to computational complexity
	Continuous protocols and instantaneous Hamiltonians
	Cost measures in quantum field theory
	State-independent measures
	State-dependent measures
	Gauge ambiguities in the instantaneous gate

	G-bounding condition

	Discriminating cost functions
	A no-go argument for inhomogeneous costs
	Metric hierarchies in the gate set G
	Inhomogeneous metrics violate Lloyd's bound

	Metric hierarchies outside G: penalties as constraints

	Complexity equals (geometric) action
	F(H2) from the canonical metric in Hilbert space
	F(H2) and geometric actions
	Quantum action, Hamilton-Jacobi and the semiclassical limit

	Complexity and chaos
	Discussion
	Physical examples of instantaneous Hamiltonians
	Commuting generators
	Infinitesimal paths
	Piecewise linear paths
	Symmetry transformations
	Virasoro protocols
	Generalized free fields

	The Banach-Lie group of unitaries
	Geometric actions

