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Complexity Measures of Supervised
Classification Problems

Tin Kam Ho, Member, IEEE, and Mitra Basu, Senior Member, IEEE

Abstract—We studied a number of measures that characterize the difficulty of a classification problem, focusing on the geometrical
complexity of the class boundary. We compared a set of real-world problems to random labelings of points and found that real
problems contain structures in this measurement space that are significantly different from the random sets. Distributions of problems
in this space show that there exist at least two independent factors affecting a problem’s difficulty. We suggest using this space to
describe a classifier's domain of competence. This can guide static and dynamic selection of classifiers for specific problems as well as
subproblems formed by confinement, projection, and transformations of the feature vectors.

Index Terms—Classification, clustering, complexity, linear separability, mixture identifiability.

1 INTRODUCTION

THROUGHOUT the 1990s, studies on multiple classifier
systems have opened up many new opportunities for
improving recognition accuracy [10], [15]. But, the empiri-
cally observed behavior of individual classifiers or com-
bined system:s is still strongly data dependent. We believe a
better understanding of such data dependency is critical for
further advances.

Such an understanding is not available in traditional
theoretical studies that attempt to analyze classifier beha-
vior for all possible problems and result inevitably in very
weak performance bounds. Nor is it available from typical
empirical studies that conclude with a presentation of
accuracies on a small selection of problems, with little
analysis on the reasons behind the classifier’s success or
failure. Comparative analysis of classifiers that relate their
performances to data characteristics has received attention
only recently [21], [23]. In the project StatLog [21], a
metalearning attempt was made to predict the applicability
of a classifier based on certain data characteristics. Such
work focuses on the behavior of specific classifiers and the
reliability of the predictions is questionable. Typically, the
data measures are limited to statistical or information
theoretic descriptions, but in classification it is the geometry
that counts most.

Our study differs from such prior works in two critical
aspects. First, our emphasis is in the geometrical character-
istics of the class distributions. We choose measures that can
highlight the manner in which classes are separated or
interleaved, a factor most critical for classification accuracy.
The measures are expected to affect the performance of
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many classifiers that depend on the same kind of geome-
trical models. Second, previous studies use only a small
number of problems (about 20 typically), and there is no
additional knowledge about expected accuracies for each
problem other than those obtained from the tested
classifiers. Thus, the study is somewhat circular. We
overcome this by introducing synthetic data sets which,
by construction, carry a certain accuracy expectation.
Moreover, we use a well-established procedure to identify
problems that are linearly separable, i.e., considered easiest
in pattern recognition. Thus, we are able to show the
goodness of the measures themselves with respect to these
extreme cases. The scope of our study covers over 1,000 two-
class problems, thus we have a much larger sample of cases.

2 THE NATURE OF CLASSIFICATION DIFFICULTY

In reality, most practical classification problems arise from
nonchaotic processes, many of which can be described by
an underlying physical or behavioral model. Though the
models may contain a stochastic component, there should
still exist certain significant structure in the resulting class
distributions that distinguishes them from random label-
ings. We believe that an analysis of such differences will
provide us with a framework in which one can study the
behavior of specific classifiers.

Structured data differ from random labeling in the
difficulty of training a classifier to assign correct classes to
future data from the same source. A random labeling is
difficult since not much can be learned from the training
data about the unseen points. On the other hand, in
practical problems, such learning can usually be done with
various degrees of difficulty. In this paper, we attempt to
find a way to characterize this difficulty.

A problem can be difficult for different reasons. Certain
problems are known to have nonzero Bayes error [11].
There the classes are ambiguous either intrinsically or due
to inadequate feature measurements. This can be true
regardless of sample size or feature space dimensionality.
Others may have a complex decision boundary and/or
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subclass structures, so that no compact description of the
boundary is possible. Again, this is independent of sample
size and feature space dimensionality. Finally, small sample
size and dimensionality induced sparsity introduce another
layer of difficulty through a lack of constraints on the
generalization rules.

In real-world situations, often a problem becomes
difficult because of a mixture of these three effects.
Sampling density is more critical for an intrinsically
complex problem than an intrinsically simple problem
(e.g., a linearly separable problem with wide margins). If
the sample is too sparse, an intrinsically complex problem
may appear deceptively simple.

Class ambiguity is a property of the specific problem and
chosen features, and is generally irrecoverable once the
samples are taken and the features are computed. Thus, our
study focuses on the difficulty of a discrimination problem
caused by the complexity of the decision boundary
minimizing Bayes error. We will refer to the simplest (of
minimum measure in the feature space) of such boundaries
as the class boundary. With a complete sample, the class
boundary can be characterized by its Kolmogorov complex-
ity [17], [19] or the minimum length of a computer program
needed to reproduce it (related concepts are also discussed
in [5], [8]). A problem is complex if it takes a long algorithm
(possibly including an enumeration of all the points and
their labels) to describe the class boundary. This aspect of
difficulty is due to the nature of the problem and is
unrelated to the sampling process. However, Kolmogorov
complexity is known to be algorithmically uncomputable
[20]. Thus, we resort to relative measures that depend on
the chosen descriptors. Specifically, we choose a number of
geometrical descriptors that we believe to be relevant in the
context of classification. The focus of this paper is on
effective ways for characterizing the geometrical complexity
of classification problems.

We assume that each problem is represented by a fixed
set of training data consisting of vectors in R? each
associated with a class label. Furthermore, we assume that
we have a sparse sample, i.e., there are unseen points from
the same source that follow the same distribution but are
unavailable during classifier design. The finite and sparse
samples limit our knowledge about the boundary complex-
ity, thus we are addressing only the apparent geometrical
complexity of a problem based on a given training set.

In this study, we discuss only two-class problems,
because most of the measures we use are defined only for
two-class discrimination. An n-class problem produces a
matrix of two-class values for each chosen measure. To
describe n-class problems, one needs a way to summarize
such matrices. There are many possible ways to do so,
especially if cost matrices are involved. This is a nontrivial
problem that should be pursued after the measures are
selected.

3 MEASURES OF PROBLEM COMPLEXITY

One practical measure of problem difficulty is the error rate
of a chosen classifier. However, since our eventual goal is to
the study behavior of classifiers, we want to find other
measures that are independent of such choices. Early

explorations led us to the idea that a single descriptor
may not suffice. Instead, we need to consider a number of
different descriptors. In essence, we want to choose a
feature space in which each classification problem can be
represented as a point. Our study explores the distribution
of real-world problems in this space. If the points distribute
in a meaningful continuum, then a problem’s difficulty can
be described by its position in this continuum. The same
space may also be used to describe a classifier’s domain of
competence.

We investigate a number of measures from the literature
of both supervised and unsupervised learning, as we
believe that cluster structures can be essential character-
istics for a discrimination problem. A few other measures
are defined by us. All these measures are normalized as far
as possible for comparability across problems. The mea-
sures we investigated can be divided into several categories.

3.1 Measures of Overlap of Individual

Feature Values

3.1.1 Fisher’s Discriminant Ratio (F1)
Fisher’s discriminant ratio is a classic in this category:

2
. (1 — pa)
0-12 + 0-22 ’

where p1, o, 012, 022 are the means and variances of the two
classes, respectively.

f as defined above is specific to one feature dimension.
For a multidimensional problem, not necessarily all features
have to contribute to class discrimination. As long as there
exists one discriminating feature, the problem is easy.
Therefore, we use the maximum f over all the feature
dimensions to describe a problem. The measure is referred
to as F1.

3.1.2 Volume of Overlap Region (F2)

A similar measure is the overlap of the tails of the two class-
conditional distributions. We can measure this by finding,
for each feature, the maximum and the minimum values of
each class, and then calculating the length of the overlap
region normalized by the the range of values spanned by
both classes. We multiply the ratio thus obtained from each
feature dimension to obtain a measure of the volume of the
overlap region (normalized by the size of the feature space).
Formally, let the maximum and minimum values of each
feature f; in class ¢; be maz(f;, ¢;) and min(f;,c;), then the
overlap measure F2 is defined to be

F2 = MIN (maz(f; .1 )maz(f;.cg)) = MAX (min(fj ¢ ) min(f; c9))
- MAX (maz(f;.cy).maz(f;.9))~ MIN(min(J; | )amin(f; ¢))

7

where i =1,...,d for a d-dimensional problem. Note that
the volume is zero as long as there is at least one dimension
in which value ranges of the two classes do not overlap.

3.1.3 Feature Efficiency (F3)

With a high-dimensional problem, we are concerned about
how the discriminatory information is distributed across
the features. Here, we consider a measure of efficiency of
individual features that describe how much each feature
contributes to the separation of the two classes [12].
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We consider a local continuity heuristic which assumes,
for each feature, points of the same class may have values
anywhere in between the maximum and minimum of that
class. If there is an overlap in the feature values of two
classes, we consider the classes ambiguous in that region
along that dimension. Given that, a problem is easy (i.e.,
linearly separable) if there exists one feature dimension
where the ranges of values spanned by each class do not
overlap. For other problems that are globally unambiguous,
one may progressively remove the ambiguity between the
two classes by separating only those points that lie outside
the overlapping region in each chosen dimension [12]. In
each pass, the features can be ordered by how many
remaining points there are in the respective nonoverlapping
regions. The efficiency of each feature is defined as the
fraction of all remaining points separable by that feature. To
represent the contribution of the feature most useful in this
sense, we use the maximum feature efficiency (calculated with
the entire training set) as a measure (F3).

In this procedure, we consider only separating hyper-
planes perpendicular to the feature axes. Therefore, even for
a linearly separable problem, F3 may be less than 1 if the
optimal separating hyperplane happens to be oblique. In
other words, the joint effects of the features are not
accounted for by this measure.

3.2 Measures of Separability of Classes

3.2.1 Linear Separability (L1, L2)

Linear separability was intensively discussed in the early
literature. Many algorithms were proposed to determine
linear separability, most of which can only arrive at positive
conclusions and may iterate indefinitely for negative cases.
In a recent study, we found that linear programming
methods far outperform the adaptive methods in terms of
definiteness and correctness of decisions and time efficiency
[1]. To handle both separable and nonseparable cases, we
use a formulation proposed by Smith [24] that minimizes an
error function:

minimize a’t
subject to Z'w+t>Db
t >0,

where a, b are arbitrary constant vectors (both chosen to be
1), w is the weight vector, t is an error vector, and Z is a
matrix where each column z is defined on an input vector x
(augmented by adding one dimension with a constant value
1) and its class ¢ (with value ¢; or ¢,) as follows:

zZ = +X
{ zZ = —X
The value of the objective function in this formulation is
used as a measure (L1). It is zero for a linearly separable
problem. Notice that this measure can be heavily affected
by outliers that happen to be on the wrong side of the
optimal hyperplane. We normalize this measure by the
number of points in the problem and also by the length of
the diagonal of the hyperrectangular region enclosing all
such points in the feature space. We also include the error
rate of such a linear classifier on the original training set as a
measure (L2).

fe=¢
if ¢ = cs.

670\6 /\'

Fig. 1. A minimum spanning tree connecting points of two classes. The
thicker edges connect two classes.

3.2.2 Mixture Identifiability (N1, N2, N3)

Friedman and Rafsky [7] proposed a test on whether two
samples are from the same distribution. It is thus useful for
deciding if the points labeled as two classes form separable
distributions. The method relies on computing a minimum
spanning tree (MST) that connects all the points regardless
of class. Then, the number of points connected to the
opposite class by an edge in this MST are counted. These
are considered to be the points lying next to the class
boundary (Fig. 1). The fraction of such points over all points
in the data set is used as a measure (N1).

Understandably for heavily interleaved or randomly
labeled data, a majority of points will appear next to the
class boundary. However, the same can be true for a
linearly separable problem with margins narrower than the
distance between points of the same class.

A closely related measure is defined as follows: We first
compute the Euclidean distance from each point to its
nearest neighbor within or outside the class. We then take
the average of all the distances to intraclass nearest
neighbors, and the average of all the distances to interclass
nearest neighbors. The ratio of the two averages is used as a
measure (N2). This measure compares the dispersion
within the classes to the gap between the classes. While
the MST-based measure is sensitive to which (intra or inter
class) neighbor is closer to a point, this measure takes into
account the magnitudes of the differences.

The proximity of points in opposite classes obviously
affects the error rate of a nearest-neighbor classifier. Thus,
we include a leave-one-out estimate of the nearest-neighbor
error rate as another measure (N3).

3.3 Measures of Geometry, Topology,
and Density of Manifolds

Some measures are intended to describe the geometry of the
manifolds spanned by each class. These include various
estimators of intrinsic dimensionality of the data set. Others
attempt to describe the shapes of the manifolds, the
existence of isolated submanifolds, or variation in the point
densities within the manifolds, such as methods and tests
suggested in [4], [25], [27], [28] for the data distribution
against hypotheses of uniformity or normality. We inves-
tigate two measures of this category.

3.3.1 Nonlinearity (L3, N4)

Hoekstra and Duin [14] proposed a measure for the
nonlinearity of a classifier with regard to a given data set.
Given a training set, the method first creates a test set by
linear interpolation (with random coefficients) between
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Fig. 2. Retained adherence subsets for two classes near the boundary.

randomly drawn pairs of points from the same class. Then,
the error rate of the classifier (trained by the same training
set) on this test set is measured. This measure is sensitive to
the smoothness of the classifier’s decision boundary as well
as the intrusion of the convex hull of each class into that of
the other. We consider the nonlinearity of the linear
classifier defined in Section 3.2.1 (L3) and that of a
nearest-neighbor classifier (N4).

3.3.2 Space Covering by e-Neighborhoods (T1)

The local clustering properties of a point set can be
described by an e-neighborhood pretopology [18]. Here, we
consider a reflexive and symmetric binary relation R of two
points = and y in a set F. R is defined by 2Ry < d(z,y) < ¢,
where d(z,y) is a given metric and ¢ is a given nonzero
constant. Define I'(z) = {y € F|yRz}, an adherence map-
ping ad from the power set P(F) to P(F') is such that

ad(¢) = ¢
ad({z}) = {z}Ul(2)
ad(A) = Uyeqad({z}) VYACF.

Adherence subsets can be grown from a singleton

{a} + {a} = ad’({z}),
ad({z}) = ad' ({z}),...,
ad(ad"({z})) = ad""' ({z}),

where j is called the adhesion order in ad’({x}). From a point
of each class, one can grow successive adherence subsets to
the highest order n such that ad"({z}) includes only points
of the same class but ad"™({z}) includes points of the
opposite class.

To represent a class, we eliminate any adherence subsets
that are strictly included in another one. For each point,
only the highest order n adherence subset is kept such that
all elements of ad"({z}) are within the class of z. Using the
e-neighborhoods with Euclidean distance as R, each retained
adherence subset associated with a point is the largest
hypersphere that contains it and no points from the other
class, in units of the chosen ¢ (Fig. 2). We use a value of ¢
that is 0.558, where 6 is the distance between two closest
points of opposite classes. The value is chosen such that the
lowest adhesion order is always zero, occurring at the
points lying closest to the class boundary.

A list of such e-neighborhoods needed to cover the two
classes is a composite description of the shape of the classes.

This is an interior description rather than a boundary
description as given by the MST-based measures. The
number and order of the retained adherence subsets
indicate how much the points tend to be clustered in
hyperspheres or distributed in thinner structures. In a
problem where each point is closer to points of the other
class than points of its own class, each adherence subset is
retained and is of a low order. We normalize the count of
the retained adherence subsets by the total number of
points. The normalized count is referred to as measure T1.

3.3.3 Others (T2)

The relevance of other measures is less obvious. For
example, it is not clear what can be inferred from the
intrinsic dimensionality of a problem without differentia-
tion by class. A problem can be very complex even if
embedded in a low-dimensional space (e.g., randomly
labeled points along a one-dimensional space have a
complex class boundary). Also, variation in density within
a manifold seems irrelevant as long as the manifolds can be
easily separated. Similarly, existences of submanifolds of
one class surrounding those of the other (e.g., consider two
classes black and white on a checkerboard) may make a
problem difficult for, say, a linear classifier, but may not
affect a nearest-neighbor classifier by much. Nevertheless,
in discussions on curse of dimensionality, the number of
samples is often compared to the number of feature
dimensions. To relate to such discussions, we include the
average number of samples per dimension as another
measure (T2).

4 EXPERIMENTAL SETUP

Table 1 summarizes the measures we include in the study.
These measures define a 12-dimensional measurement
space, and every classification problem is represented by
a point in this space. We study the distribution of some real-
world problems in this space as well as some artificial
problems where we have control over data generation.

We consider two collections of problems. The first
collection comes from the UC-Irvine Machine Learning
Depository [3]. We selected 14 of the data sets that contain
at least 500 points and no missing values: abalone, car,
german, kr-vs-kp, letter, Irs, nursery, pima, segmentation, splice,
tic-tac-toe, vehicle, wdbc, and yeast. The problems we consider
contain discrimination between all pairs of classes in these
14 data sets. For those sets containing categorical features,
the values are numerically coded. In total, there are 844 two-
class discrimination problems. These problems originated
from a variety of physical and behavioral processes.

The second set consists of 100 artificial two-class
problems each having 1,000 points per class. Problem 1
has one feature dimension, problem 2 has two etc., and the
last problem contains 100 features. Each feature is a
uniformly distributed pseudorandom number in [0, 1]. The
points are randomly labeled as one of the two classes.
Therefore, these are intrinsically complex problems, and
they should delimit one end of an complexity spectrum. We
created these for comparison and contrast with real-world
data, and will refer to them as the random noise sets.
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TABLE 1
List of Investigates Measures

F2 | volume of overlap region

F1 | maximum Fisher’s discriminant ratio

F3 | maximum (individual) featurc efficicncy

L1 | minimized error by lincar programming (LP)

L2 | error rate of linear classifier by LP

L3 | nonlincarity of lincar classifier by LP

N1 | fraction of points on boundary (MST method)

N2 | ratio of average intra/inter class NN distance

N3 | error rate of INN classifier

N4 | nonlincarity of INN classifier

T1 | fraction of points with associated adherence subsets retained
T2 | average number of points per dimension

5 RESULTS AND DISCUSSIONS

We implemented algorithms for calculating each measure
and applied them to each of the 944 problems (844 real and
100 artificial). Then, we examined the distribution of these
944 points in this space by the density plots and pairwise
scatter plots (log-scaled if necessary) for interesting struc-
tures. Of the 844 problems, 452 are found to be linearly
separable by a linear programming procedure [1]. The class
boundary (if only the training set is concerned) of these
problems can be described by the coefficients of the
separating hyperplane, so by Kolmogorov’s notion these
are simple problems. Thus, we expect these to delimit the
other end of any complexity spectrum. In order to compare
the distributions of these three types of problems (linearly
separable, nonseparable, and random noise), we mark them
differently in each plot. We also add a small constant to the
zero values so that those points can be included in a
logarithmic scale.

5.1 General Observations
Fig. 3 shows the distributions of the three types of problems
over the values of each measure. From the univariate
distributions, we observe that several measures (F1, F2, F3,
L2, L3) are especially effective in assigning the linearly
separable problems and random noise sets to opposite ends
of the ranges. The measures N1, N2, N3 have this effect too
except for a curious peak at the far right for some linearly
separable problems. Close examination of the values reveals
that those are extreme cases where there are only two or
three points in the training set. These problems are linearly
separable but the nearest neighbors are always in the wrong
class. Measures L1, N4, T2 are uninteresting on their own
since the distributions of the three types of problems
overlap heavily. With measure T1, the three types of
problems overlap but they have different dispersions.
Random noise sets are highly concentrated at an extreme
and the easier problems are more dispersed. This may be
useful for ruling out certain possibilities for a new problem.
None of the measures can cleanly separate all three
types of problems. For example, with F1 the random noise
sets overlap heavily with the linearly nonseparable
problems, and with measures F2, F3, L2, L3, N1, N2, N3,
no clear distinction exists between the linearly separable
and nonseparable problems. However, given that the

distributions overlap in different ways with different
measures, it is possible that some separation can be seen
in the bivariate or multivariate distributions.

Several bivariate plots show good separation between
the three types of problems (Fig. 4a), while some others
show more blurred boundaries (Fig. 4b). We also observe
that the points span a fan-like structure in many plots, with
random noise sets and the linearly separable problems
clustered near opposite ends (e.g., Fig. 5a). This leads us to
believe that a problem’s complexity can be decomposed
into at least two independent aspects. In some other plots,
the distribution is close to one-dimensional, which means
that the two measures are highly correlated (Fig. 5b).

In several plots, we see the random noise sets appearing
on the boundary of the problem distribution, and they stay
far from the real problems due to their exaggerated
difficulty (e.g., Fig. 6a). This suggests that real-world
problems often contain structures that are significantly
different from random labelings. Interestingly, there exist
large differences between various random noise sets. By
examining their appearances in the plots involving other
measures, we find that such differences are due to the
apparent simplicity caused by sparsity of samples in the
higher-dimensional problems (Fig. 6b). A simple classifier
obtained with these training sets will turn out to perform
very badly on unseen points from the same problem.

5.2 Groups of Measures

The observed patterns in the 12-dimensional measurement
space reveal the multifaceted nature of a problem’s
complexity. Alternatively, this says that though most of
our chosen measures may be biased toward some particular
characteristics of a problem, not all of them are measuring
the same thing. For example, consider the linear program-
ming method for determining linear separability. The
amount of error produced by the LP method (the
minimized objective function, measure L1) is a measure of
the nonlinearity of a given problem. However, we know
that a problem that is highly nonlinear can sometimes be
easily classified by a nearest-neighbor classifier. So, such
measures are classifier dependent and, thus, cannot provide
an absolute scale. In order to gain insight into such biases,
we group the measures by the similarity of their definitions:
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e Linear classifier based—L1, L2, L3, information that can be extracted from the bivariate
e Nearest-neighbor based—N1, N2, N3, N4, and distributions that involve two measures of the same or
e Geometry or topology based—F1, F2, F3, T1, T2 different groups. We expect that combining measures from

The first two groups are classifier dependent, whereas the different groups delivers more information about a pro-
last one is not. In the next few paragraphs, we analyze the blem. It is our hope that a judicious combination of such
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measures may bring out most, if not all, aspects of the
problem complexity.

5.3 Linearity vs. Proximity

Consider the measures in the first two groups. Measures of
the same group are highly correlated (e.g., L2, L3 in Fig. 5b,
N1, N3 in Fig. 7a), whereas measures of different groups are
uncorrelated (e.g., L3, N4 in Fig. 4a, L2, N3 in Fig. 7b). It can be
observed from Fig. 7b that the error rate of an NN classifier is
unrelated to that of the LP-based linear classifier. This is not
totally unexpected since the two classifiers operate by
different principles. The linear classifier is sensitive to the
location of misplaced points (i.e., points that belong to one
class appear inside the other class), whereas the NN classifier
is sensitive to the number of misplaced points. That is, one is
more geometry-sensitive and the other is density-sensitive.
So, if a problem has high values for both measures, then one
concludes that many samples from one class appear at critical
locations inside the other class. Such problems are indeed
very complex, and we observe that the random noise sets
have this property. With other problems, the uncorrelated
error rates manifest the difficulty of defining problem
complexity on accuracies of specific classifiers.

Among the linearly separable problems, no ordering can
be derived with any measure from the first group, though
such measures are informative for other problems. However,
measure L1 differs from others in that the random noise sets
are not at or close to the extreme values. So while it tells
something about the existences and locations of outliers in a
problem, and it correlates well with a few other measures
(e.g., L2, L3, N1) for linearly nonseparable problems, its does
not serve well as an independent complexity scale.

5.4 Geometry and Topology

Measures in the third group describe the geometrical or
topological properties of a problem without a specific
classifier model. Consider the plots involving Fisher’s
discriminant ratio, F1. Nonlinear problems have a lower
value for this measure than the linear problems. When it is
combined with the volume of overlap measure F2 (Fig. 8a),

nonlinear problems tend to appear at the lower right corner
and the linear problems at the upper left corner. There is a
region in the graph where both types of problems appear. A
linear problem belonging to this region may have an oblique
separating hyperplane so that projections of the points to the
axes show nonzero overlap. A characteristic like this may
have implications for certain classifier designs. We notice
similar groupings when F1 is combined with N1, N2, and N3.

Measure F2, volume of overlap region, correlates well with
F1 and F3 from the same group and jointly they provide better
separation between the three types of problems roughly
along the diagonal. (Fig. 8a and Fig. 8b). However, it does not
describe the shape of the class boundary, as observed from
plots F2, L3 and F2, T1 (Fig. 8c and Fig. 8d) where nonrandom
problems with the same degree of class overlap can have any
amount of nonlinearity or adherence subsets. However,
problems that are closer to the random noise sets show
smaller variation in these several measures. F3 is similar to F2
in such combinations..

Measure T1, as indicated earlier, is an interior description
of the classes. With T1, random noise sets tend to concentrate
on one end butno perceptible separation is observed between
the linearly separable and nonseparable problems. The type-
dependent variations in dispersion of the problem distribu-
tions create a fan-like structure when T1 is combined with
other measures that separates the problem types (e.g., F3, T1
in Fig. 9a). The plots involving this measure enforce our belief
that problem complexity depends more on the shape of the
class boundary than on the shape of the classes away from the
boundary. Measure T2, which is the average number of points
per dimension, is useful only when combined with others.
Note thatit spreads out an order among the linearly separable
problems when combined with measures N1, N2, N3, N4
(Fig. 9b), see also Fig. 6b).

6 PRINCIPAL COMPONENT ANALYSIS

As discussed above, some measures are highly correlated.
A challenge for the future is to determine the intrinsic
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as the problems approach the random noise sets.

dimensionality of the problem distributions in this space
and identify the independent factors. As a first step, we
perform a principal component analysis on the distribution
of the 944 problems in the 12-dimensional space. To bring
the values to a comparable scale, we first standardize each
measure by subtracting the mean and dividing by the
standard deviation. Then, the principal components are
estimated using the S-plus software.

The results show that there are six components each
explaining more than 5 percent of the variance (Table 2). The
first component, explaining over 50 percent of the variance,
has almost even contributions from measures F2, L2, L3, N1,
N2, N3. It describes the joint effect of linearity of class
boundaries and proximity of opposite class neighbors.
Measures T1, T2 contribute strongly (and negatively) to the
second component, but their effects are opposite to those of
F1,F3,N1, and N3 which have positive weights. This appears
to be the balance between effects of 1) sampling density and
within-class scatter and 2) between-class proximity. Mea-
sures L1, N4 dominate the third component and both are
measures of intrusion of samples into the wrong class. Their

effects are offset by F2 which is also a measure of overlap, but
is calculated from ranges of projections of points onto the
feature axes. Thus, this component appears to relate to the
concentration and orientation of the intrusion in the feature
space. F1 and T1 dominate the fourth component and both are
affected by within-class scatter. The projections of the
problem distribution onto the first four components are
shown in Fig. 10a and Fig. 10b. The separations between the
three types of problems are visible in Fig. 10a, but are more
obvious in Fig. 10b.

7 CASE STUDIES

How does a new problem compare to those appearing in
the study? We select two sets of problems to illustrate
this use of the measures. The first set consists of the three
two-class problems in the well-studied Iris data set [6].
The data set contains three classes ({Iris-setosa, Iris-
versicolor, Iris-virginica} among which only the pair
{Iris-versicolor, Iris-virginica} is linearly nonseparable.
Each class contains 50 points in a 4-dimensional space.
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We compute the complexity measures for all the three
problems and show their positions in the principal
component projections in Fig. 1la and Fig. 11b which
have the same scales as Fig. 10a and Fig. 10b. Different
symbols are used for the linearly separable and non-
separable cases to highlight their difference.

The second set consists of 100 two-class problems. Each
problem has 100 points per class and resides in a one-
dimensional feature space. The points are normally distrib-
uted around mean +m; for the positive class and —m; for the
negative class, where m; = i for the ith problem (i = 0,...99),
with standard deviation e fixed at 30. Thus, the two classes in
the first problem overlap completely and separability
increases progressively for the other problems. We compute
the complexity measures to see the trajectory these problems
follow in the measurement space. Again, we show their
positions in the principal component projection (Fig. 11a and
Fig. 11b). Notice that the Oth problem (with m = 0) is not
included in the plots because of an infinity in the averaged

intra/inter class distances. The next most difficult problem
(with m = 1) is highlighted with a different symbol. An
interesting observation is that these problems follow a
different “trajectory of difficulty” from that of the random
noise sets, since they include both linearly separable and
nonseparable cases.

In practice, comparison of problems in this way can lead
to more realistic expectations of classification accuracy.
There are also other uses of these measures. Already we see
that different classifiers (say, linear classifiers and nearest
neighbors) have different domains of competence, and
studies of other classifiers” domains in this space would be
interesting. For instance, in [9] a study is reported where the
measures are related to the comparative advantages of two
methods to construct decision forests. Moreover, it is
conceivable that new algorithms may be constructed using
results of this study. Systematic procedures may be found
to transform a given problem to a space where the problem
complexity (as characterized in this study) is reduced.

TABLE 2
Proportion and Cumulative Proportion of Variance Explained
by the First Six Principal Components and Their Loadings on the Measures

Component, C1 C2 C3 C4 Cs C6
Prop. of Var. | 0.5033 | 0.1162 | 0.1064 | 0.0859 | 0.0761 | 0.0521
Cum. Prop. 0.5033 | 0.6195 | 0.7259 | 0.8118 | 0.8879 | 0.9400
Loadings

F1 0.01 0.26 0.03 0.86 -0.26 | -0.33
F2 0.33 0.08 -0.43 -0.12 -0.09 | -0.20
F3 -0.29 0.42 0.03 -0.11 -0.32 0.29
L1 0.17 0.08 0.68 -0.15 0.00 | -0.36
L2 0.38 0.04 -0.15 -0.14 -0.10 -0.24
L3 0.38 0.05 -0.16 -0.14 -0.12 -0.23
N1 0.36 0.30 0.04 0.01 -0.04 0.36
N2 0.37 | -0.02 0.02 0.03 0.12 -0.03
N3 0.32 0.36 0.00 0.11 -0.03 0.49
N4 0.24 | -0.20 0.52 -0.04 -0.35 0.16
T1 0.23 -0.32 0.07 0.37 0.57 0.28
T2 0.08 -0.61 -0.15 0.13 -0.58 0.22

The loadings are the coefficients of the projections associated with each p.c.
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Certain existing methods, such as stochastic discrimination
[16] and support vector machines [26], pursue this
implicitly. It is hoped that our study will encourage studies
of more explicit forms of such procedures.

8 CONCLUSIONS

We studied several measures for characterizing the complex-
ity of supervised classification problems. We found that there
exist rich structures in such a measurement space that reveal
the intricate relationships among the factors affecting the
difficulty of a problem. The distribution of real-world
problems is significantly different from that of random noise,

which suggests that many classification tasks arising natu-
rally from real-life processes do contain learnable structures.
Here, we examined the structure of only the given

training set of a problem. Difficulty of real problems also
lies in generalizing the classification to unseen points. To
what extent a training set represents a test set should be
discussed in the context of generalization ability of
classifiers. For this, we refer readers to Kleinberg’s argu-
ments on M-representativeness [16], Berlind’s hierarchy of
indiscernibility [2], Vapnik’s VC-dimension theory and his
analysis on small sample effects [26], and observations and
discussions about several classifiers by Raudys and Jain
[22]. An interesting question for further investigation is the
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consistency of our chosen measures on bootstrap samples of
the training set.

It should be noted that our analysis of the training data can
also be applied to their subsets or transformations, that is,
data confined in selected regions, projected onto selected
subspaces, or transformed to another space. Corresponding
choices of classifiers can be made for these altered data sets as
well. This can lead to a way of designing static or dynamic
classifier selection schemes, e.g., to choose different classifiers
for data falling into different branches of a decision tree.

Finally, we have looked into only a tiny set of problems
among all those possible, and any extrapolation of results
must be done with extreme caution. Many open questions
remain to be answered. Will the empty regions in the chosen
measurement space be filled with some new problems? Or do
they represent some constraints of geometry and topology?
How should sampling density be involved, so that proper
qualifications can be made on characterizations of extreme
cases like two-point training sets? Nevertheless, we hope this
study will open a potentially fruitful path into a better
understanding of classification problems and classifier
behavior.
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