
Complexity metrics for quality assessment

of object-oriented design

T.P. Hopkins

Computer Science Department, University of

Manchester, Oxford Road, Manchester, Ml3 9PL,

ABSTRACT

This paper considers the use of interface complexity metrics for the quantitative

analysis of the quality of software design performed using object-oriented de-

velopment methods. The techniques considered can be applied before coding is

started, as part of the design review process, or when coding is complete. The

use of complexity metrics for reusability assessment is also considered.

INTRODUCTION

Object-oriented analysis and design is relatively new, and many organisations

are now attempting to introduce this style of development. Introducing a new

development approach is fraught with risk, especially if the organisation or the

individual developers have little experience with the new approach. One way

of reducing this risk is to use design guidelines and metrics to assess the newly

created designs. This paper considers the use of interface complexity measures

for the assessment of the quality of object-oriented designs.

Why Quality Metrics

What we are really trying to do is get a measure of the difficulty a human has

with understanding a particular software structure- this is a psychological ques-

tion. The human may have to understand the software design for many reasons:

to modify it, to implement it in a programming language, to devise tests, to

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

468 Software Quality Management

find and fix bugs, or even to reuse the resulting design and code. In practice,

however, we make these measurements in several steps: first we take a system

design, program code, or something similar; also we devise some measures to be

applied to our design or code. Clearly, these measures are based on our experi-

ence and intuitive understanding of what goes on, both in the resulting programs

themselves and also in the whole program development process. Nevertheless,

it should be stressed from the start that these measures mack a proper scientific

basis. The measures can be very simple, such as counting the number of lines

of code, or they might be more sophisticated models separately assessing many

aspects.

We also must ascribe a 'meaning' to the measures - 'complexity', perhaps,

or 'reusability'. We then compute these measures for the design or code to hand,

and interpret the resulting numbers as some measure of 'quality': the likelyhood

of bugs or design errors and the ease with which they might be expected to

be found and fixed, the ease of reuse of some software, or even some abstract

'goodness of design'. Of course, we must attempt to verify our metrics, by (for

example) comparing the predicted bug count with that actually found in practice;

note that this is not possible in some cases. Despite any post-hoc verification,

however, the lack of a physical (i.e. scientific) model of cause and effect means

that the process lacks rigour. Nevertheless, there is ample evidence that such

metrics can be useful, and therefore we should look to them for guidance in our

software development process.

By software quality, we mean many related things. For example, high qual-

ity designs are easy to implement, and provide all the features required by the

users. They are also robust in the face of changes in users' requirements, as

well as changes in the underlying hardware, operating system, and even the pro-

gramming language. High quality programs are bug-free, and when errors are

discovered, they can be located and fixed readily without the introduction of fur-

ther bugs. They are also robust in the face of design changes, and facilitate the

introduction of new features. The object-oriented approach to software develop-

ment is widely regarded as being sympathetic to more effective software reuse,

so metrics which equate 'quality' with 'robustness' are of particular interest. We

will discuss metrics for reusability measures later.

Kinds of Quality Metric

We can identify (at least) two useful kinds of quality metrics: design metrics,

which allow a design's quality to be estimated before any code is produced;

and code metrics which give an indication of the quality of the implementation.

We might expect design metrics to allow us to estimate the design quality, in

a very general sense, and to guide designers towards better designs. Having a

framework in which to be able to compare alternative designs, and decide on

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 469

the best of these, is useful, particularly when working in a style (such as the

object-oriented approach) which might be unfamiliar. It is desirable to be able

to identify complex parts of design, so that we can concentrate our design, coding

and testing effort appropriately. Indeed, being able to identify areas which are

under- (or perhaps over-) designed, or even under- or over-analysed, is helpful

in allocating resources, and in deciding whether a design really is good enough,

or stable enough, to be implemented. Thus, we can see that design metrics can

assist the management control of development progress during the analysis and

design phases, an area which is notoriously hard to control, and can allow quality

assessment before any code is available.

Similarly, we might expect code metrics to allow use to perform some quality

assessments. We can measure some aspects of coding practices; for example, in

the object-oriented approach, we can mark down implementations which make

extensive use of 'case analysis' but mark up implementations which have many

polymorphic methods. We can also estimate the testing requirements, and such

metrics might assist us in devising a testing strategy. We might also be able to

assess how reusable the code is.

However, with object-oriented methods, there is often much less distinc-

tion between the traditionally separate areas of 'analysis', 'design' and 'code'.

Some writers (e.g. [1]) are now advocating more iterative development pro-

cesses, with 'cyclic' or 'spiral' development models replacing the traditional

'waterfall' model. Since the principles of good (and bad) object-oriented design

are very directly reflected in the resulting code, many of the metrics which have

been suggested are difficult to classify as either 'design' or 'code'. Some work

ostensibly on design quality metrics [2] suggest measures which require detailed

information which is unlikely to be available until an implementation is near

completion.

A poor object-oriented design may actually manifest itself as bad coding

practices (such as case analysis). Some papers on design quality [3] activity en-

courage the identification of design flaws by inspecting the code. Indeed, some

work on 'programming style' (e.g. [4, 5]) contain much advice which is arguably

about good and bad design. Another difference from traditional software devel-

opment is that, with object-oriented methods, there is often more effort in the

analysis and design phases, and less in the coding phase - this is another reason

why metrics to assist measurement of the progress of a design are important.

With increased generality in design, and emphasis on both design and code re-

use, the development process of object-oriented systems often simultaneously

leads to more functionality and less code as the design quality is improved. Fi-

nally, the development of design frameworks [6] (also called design cliches)

and the possible development of a marketplace in reusable object-oriented soft-

ware components [7] may also make it increasingly commonplace to evaluate

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

470 Software Quality Management

the design quality by assessing an actual implementation.

Object-oriented Design

The basic tenet of object-oriented design is that systems are defined and imple-

mented as groups of cooperating, communicating objects. Each of these objects

is an instance of a class, which describes the data which that object can hold,

and the functions it can perform. Note that each individual object has a private

data area, but shares a single version of the code. The private data, referenced

by instance variables (also called 'attributes', 'data members' or 'slots'), are

usually either simple types (string, integer and so on), or references (pointers)

to other objects. Objects are usually regarded as encapsulating the data stored

within them, not allowing access to internal data items from outside.

New objects can be created and destroyed at any time, and the relationships

(maintained by references from instance variables) can change over time, as the

system runs. Typically, we can view one part of object-oriented development

as the (dynamic) construction of complex objects from less complex ones, in a

'compositional' or 'LEGO-block' programming style; this is one way of getting

software reuse in an object-oriented system.

Classes define methods (also known as 'member functions', 'actions' or

'routines'), which are called or activated using 'messages' sent by other objects.

Obviously, in order to call a method defined by the class of some object, a ref-

erence (often retained by an instance variable) to that object is required. Since,

in many cases, an instance variable can refer to objects of different classes at

different times, there is no static relationship between the name used when the

member function is called and the body of code so activated: different classes

can define a method of the same name but with different (but compatible) beha-

viour. This dynamic polymorphic behaviour allows object-oriented systems to

be very flexible and general, and paves the way for more effective reuse.

Classes can also be related by inheritance, where a new class (a subclass or

'derived class') can inherit some of the behaviour of one or more other classes

(superclasses or 'base classes'). Some classes will abstract (or 'deferred'),

which cannot be instantiated and provide only common general behaviour, while

concrete classes can be instantiated and refine or specialise the inherited beha-

viour. With careful use, this inheritance mechanism allows for common func-

tionality to be put in one place, rather than being needlessly duplicated throughout

the system, and provides another very powerful mechanism for software reuse.

Note that class inheritance and object composition are complementary mechan-

isms, and some important design decisions are involved in deciding which to use

in a particular case.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 471

Classes are used in two different ways: firstly, as 'templates' for the instanti-

ation of objects which are then parameterised (by setting attributes) and 'connec-

ted up' in relationships with other objects, and secondly as the basis for defining

new classes by inheritance. Classes therefore have two different interfaces, cor-

responding to these different uses: the public (or 'client' or 'use') interface, for

general use, and the protected (or 'subclass' or 'inheritance') interface, for use

only in subclasses. Also, we will expect to find some code in 'private' methods,

as well as ordinary procedures and functions, which are not accessible through

either of the interfaces. Some methods may be in both the public and protected

interfaces. Note that the distinction between these different interfaces is sim-

ilar to that embodied in some languages, notably C++ [8]. Also, note that the

instance variables may, or may not, be visible in either of these interfaces; one

common situation is that instance variables are not directly visible through the

public interface, but can be accessed through the protected interface.

Already, a great many different object-oriented analysis and design meth-

ods have been espoused. This plethora of approaches do have a fair amount

in common (which is to be expected, since they are all supposed to be 'object-

oriented'); here, we are only interested in the outcome of the design method. In

this paper, we will assume that certain information is available from the results

of object-oriented analysis and design, regardless of the exact approach used;

for example, Booch [9] advocates the use of class and method templates which

capture much of the information required.

The outcome of a design process will include descriptions of classes, out-

lining their functionality, describing their instance variables, and defining the

methods in both the public and protected interfaces. Also, there will be a defini-

tion of the inter-class relationships, especially inheritance, but might also include

other kinds of 'use' information. There will also be some description of inter-

object relationships, especially the part-whole and cooperative object structures

which will be formed. Ideally, the design information should be captured in

some form of machine representation (e.g. a CASE tool), so that (amongst other

reasons) the design metric computations can be done automatically.

Eventually, the design will be coding in some programming language, ideally

an object-oriented language. The resulting source code should be accessible by

some kind of tool (such as a CASE tool or a program development environ-

ment) which can also be used to extract information to allow design metrics to

be computed. Much of the design information required for quality assessment

is available from the source code of many object-oriented programming lan-

guages, so that design quality metrics can also be used to assess some aspects

of the code quality, including code from prototypes, frameworks and bought-in

software components.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

472 Software Quality Management

COMPLEXITY METRICS FOR OBJECT SYSTEMS

Complexity metrics for software systems have been known for a long time [10].

It is natural from the object-oriented viewpoint to concentrate on the interfaces

to classes; in particular, the two different interfaces identified earlier. We can ar-

gue that some measure of the complexity of the interface can provide important

information on the ease of understanding of the class interface (which is needed

for reuse, maintenance, rework and redevelopment), as well as information on

testing strategy (from a 'black-box' perspective). Furthermore, it might be reas-

onable to assume that the complexity of the interfaces will gave some idea of

how difficult the class will be to design (correctly) and implement.

We expect to perform much application development by composition - cre-

ating instances of existing classes and 'assembling' them to form some more

complex software structure; in this case, we will be using the public interface

discussed previously. We also will use inheritance to add new refined subclasses,

using the protected interface. Since these two kinds of design activity are dif-

ferent, it seems sensible separately to estimate the complexity of the public and

subclass interfaces.

Method Complexity

The smallest unit usually identified by the design process are the methods asso-

ciated with a class. We can estimate the interface complexity for a single method

s follows:

~ ̂ return — classes ~*~ zL ârg — classeŝ '
i= 1

where ̂ return -classes ̂ the number of different classes (or types) possibly

returned from this method, Nargs is the number of arguments to the method,

and Nftro _ classes^ ̂ the number of different classes (or types) for each of the

arguments /. This implies that a method is regarded as more complex if it has a

large number of arguments, or if the arguments can be of many different kinds,

or if the result returned to the caller can be of many different kinds.

For example (using C++ syntax), the method:

int length ()

defined in class String takes no arguments and always answers with an integer

value, has complexity 1. As another example (using Smalltalk]!!] syntax), the

method:

scaleBy: factor

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 473

defined in class Point always returns an instance of class Point, but has an argu-

ment which can be an instance of one of six classes (either Point or the Number

subclasses LargeNegativelnteger, LargePositivelnteger, Smalllnteger, Float or Frac-

tion), has complexity 7.

We can already see some evidence that low complexity can be associated

with good design. For example, it is considered [3] that methods should have

a small number of arguments, which can be of a wide range of classes. If the

scaleBy: method in class Point was replaced by:

scaleByX: xFactor y: yFactor

where xFactor and yFactor can be of any of the five number classes mentioned

above, then the complexity measure would be 11 in this case.

We can also estimate the interface complexity for a single instance variable

/C/y with both read and modify permission as:

7C/y = 2 x ̂classes

where ̂classes ™ ^ie number of different classes (or types) to which an instance

variable can refer. Note that this is equivalent to two accessor methods, one of

which simply returns the value of the instance variable, and the other which sets

the variable.

For example, if a class Person defines an instance variable name which will

always be of type String, then equivalently we might provide two methods

getName and setName to return and set the instance variable respectively. The

complexity of each of these two methods is 1, so the total complexity is 2. Of

course, if strict encapsulation is implied, then instance variables are not available

in the public interface, but are often accessible through the protected interface.

If the instance variable is read-only, then the interface complexity is reduced:

1C /y = ̂ classes

This is equivalent to a single accessor method, which simply returns the value

of the instance variable.

Class Interface Complexity

Given a metric for the complexity for individual methods, it is a reasonable

step to compute an overall complexity for each of the two interfaces to a class.

For example, we can compute the complexity of the public interface JCp^ by

summing the complexity of each method which appears in that interface:

i= 1

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

474 Software Quality Management

where AL%& is the number of methods in the public interface and IC

is the complexity of each of these methods. Note that this metric attempts to

give a measure of the client interface complexity which is independent of the

exact nature of the interface; for example, a change which reduces the number

of arguments to methods or reduces the number of methods, but increases the

number of different kinds of arguments might result in approximately the same

measure.

We can use the same approach to computing the complexity due to methods

and instance variables in the protected interface. Note that it is rare for the public

interface to include any instance variables, while it is much more common for

instance variables defined in a superclass to be made available to subclasses.

In this case, therefore, the protected interface complexity ICprot includes the

complexity of the instance variables:

Nprot 1p rot

+]L /QvO)

7 = 1

where Nprot is the number of methods in the protected interface and /Ĉ r̂/z — /?mf

is the complexity of each of these methods; Iprot is the number of instance vari-

ables in the protected interface and /C/y(/) is the complexity associated with each

of these variables.

Having got a complexity measure for both of the interfaces to a class, we

might want to combine these to form a single complexity measure. However,

adding together the two numbers may be inadequate. This is because of the

nature of the subclass interface: it is an interface explicitly provided so that

subclasses can modify the operation in ways unforseen by the original designer.

This arbitrary extensibility makes the subclass interface very difficult (possibly

impossible) to test, and it is probably fair to weight the subclass interface rather

more heavily; perhaps a weighting factor of five might be appropriate. This quite

arbitrary factor will of course have to be verified. So, a measure of complexity

for a single class IĈ ^ (considered individually), is:

where weight is the weighting factor applied to the protected interface.

Note that any method which appears in both interfaces is counted twice. Such

a method may be defined so that a different implementation must be provided

in subclasses (a deferred or pure virtual function or a subclassResponsibility

method), or may be only optionally re-implemented by subclasses.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 475

Implications of Inheritance and Polymorphism

Now that we have a measure of class complexity, there is a temptation to es-

timate the overall complexity of an object-oriented design by simply summing

the complexity of each class. This approach is inappropriate, since classes are

coupled one to another by inheritance. For example, public methods in a class

are usually all inherited by subclasses; therefore, the true public interface com-

plexity of a class should include all of the methods inherited, as well as the ones

directly implemented. However, note that methods which appear two or more

times in the interface should not be counted twice; for example, such methods

may be defined as subclassResponsibility in a superclass and implemented in a

subclass.

This discounting of duplicated methods in the public interface can be justified

by observing that, from the point of view of understanding a class interface (so

that the class can be reused, for example), all classes sharing some particular

method share that aspect of the interface, and we only need to understand that

aspect once. This can result in a very significant reduction in the computed

complexity. For example, in a class hierarchy of 3D graphics objects (spheres,

cubes, toroids and so on), all classes inherit much interface from an abstract

class ThreeDObject. Many methods which have sensible behaviour for all kinds

of object (such as transformBy:, moveTo: and so on) are defined by class ThreeD-

Object and inherited by all 75 subclasses. In this case, the complexity of the

transformBy: method is only counted once.

The protected interface has an inherited component as well. Instance vari-

ables inherited by a class will usually be available in that class's protected in-

terface, in a fashion identical to instance variables actually defined by that class.

Protected methods inherited by a class will also appear in that class's protected

interface, unless an implementation is provided which not expected to by again

overridden in further subclasses (i.e. effectively made private). In this case, the

method does not appear in the class's protected complexity computation. Also,

inherited protected methods which are re-implemented, but continue to appear

in the protected interface should only be counted once. Thus, under some cir-

cumstances, methods can be discounted from the protected interface.

One view of the purpose of inheritance is to make it easy to provide many

classes of objects which have very similar (compatible) behaviour, without the

difficultly of implementing every method separately. Such compatible classes

can be used interchangeably (polymorphically), so that one can be removed and

another inserted to change the behaviour of the application in a controlled fash-

ion. This polymorphic approach means that object-oriented systems can be read-

ily changed (for maintenance or extension), or the components reused in other

applications.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

476 Software Quality Management

In some circumstances, there may be classes which can be used in this com-

patible fashion, even where the classes which are not related by inheritance. In

this case, it is sensible to reduce the overall computed interface complexity by

discounting methods in the public interface, as considered above. Note that some

object-oriented programming languages will not permit this particular flexibil-

ity; this discounting is therefore only appropriate where the design is specifically

targeted at a programming language where this can be achieved.

Another aspect which can arise is when two or more classes have methods

which are not quite compatible, but are very close. These classes may, or may

not, be related by inheritance. For example, consider the classes Point (repres-

enting locations in a two-dimensional space) and ThreeDPoint (for three dimen-

sions). These classes both define a method scaleBy:; for class Point, the argument

can be a Point or number (as discussed before), while for class ThreeDPoint the

argument can also be a ThreeDPoint. The two methods are not strictly com-

patible, and have a different complexity measure; nevertheless, they are rather

similar. One solution to this problem is not to discount one of these methods in

the overall complexity; this encourages the redesign of the scaleBy: method in

class Point to accept the same kinds of argument as the version in ThreeDPoint.

A larger number of well-designed classes which are compatible (and perhaps

share a common superclass) are not necessarily more complex, and often may

be less complex, than a single class with the same functionality. For example,

a viewer for 3D objects was originally implemented as a single class, which

provided a large amount of functionality: a viewpoint transformation, projection

and a variety of rendering techniques. The complexity of the public interface

for this class was high, as might be expected from the considerable amount of

function supported. Also, metrics for internal class cohesion (see later) suggested

that this class had a poor structure.

After a re-design, the viewer class was broken up, with different abstract

classes provided for aspects such as view transformation, projection and ren-

dering. For each of these classes, different subclasses were defined; for ex-

ample, different rendering classes where provided for 'wire-frame' display and

ray-tracing. Despite that fact that some tens of classes are now provided where

previously only one was implemented, the aggregate interface complexity of the

classes as a whole was significantly reduced. The cohesion of each class was

also much improved.

Complexity Estimation for Testing

So far, we have considered how to combine our complexity measures to estimate

how hard it is to understand a group of classes, and therefore be able to use (i.e.

reuse) them effectively. However, the perspective when considering the testing

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 477

of classes is somewhat different. For example, the abstract class ThreeDObject

defines the transformBy: method; this is re-implemented in around 45 of the

subclasses. To estimate ease of understanding, these re-implementations can be

discounted; however, each method will have a different implementation (often,

very significantly different), and will have to be tested separately. So, to use

interface complexity to estimate the testing requirements for an object-oriented

design, we should not discount inherited methods.

Another aspect to be considered when we attempt to use interface complexity

to estimate testing requirements is the provision of public 'convenience' meth-

ods. When classes are designed for very general use, and especially where ex-

tensive reuse is anticipated, then it is conventional to include large numbers of

methods whose functionality is (strictly speaking) unnecessary and which add

nothing to the basic operation of the class, but which might prove to be con-

venient for some future use. Such methods clearly add to the complexity of the

public interface, and these methods will of course have to be tested. However,

we might not wish to use interface complexity arguments to completely discour-

age designers from including convenience methods, as they might well enhance

future reusability; one possible approach is to distinguish between 'essential' and

'convenience' methods in the interface, and weight the 'convenience' methods

less highly during complexity metric computations. Note also that 'convenience'

methods are often rather simple, and merely repackage existing functionality.

As an example, the ThreeDObject class introduced previously defines two

related methods: transformBy:, which transforms the object itself, and trans-

formedBy:, which copies the object and transformed the copy. Clearly, the second

can also be achieved by client code first copying the object and using trans-

formBy:; nevertheless, having both methods enhances the usefulness of all sub-

classes.

Note that this issue is a reflection of a general point about designing highly

reusable software: if much effort is expended to make general-purpose software

components, which can be used in many circumstances, then they will neces-

sarily be more complex (both at the interface and internally) than components

designed for a particular tightly-specified purpose. Reusable components will

probably be harder to understand, implement and test, but need only be con-

structed once.

CONCLUSIONS

By using interface complexity metrics, we can reasonably compare alternative

designs for the same application or system, meeting the same requirements spe-

cification. Of course, comparing designs for different systems does not really

make any kind of sense. Our metrics may well identify parts of a design which

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

478 Software Quality Management

are poor, or which have been poorly coded. However, metrics do not (directly)

suggest alternatives; we need to invent design alternatives for comparison us-

ing suitable metrics. Design guidelines can be useful here. Another application

are is the incorporation of complexity metrics into design reorganisation tools

(e.g. [12]), so that designs or programs can be semi-automatically restructured

to improve the design quality.

Some other work [13] on object-oriented design metrics is based on the famil-

iar notions of 'coupling' and 'cohesion' between software components or mod-

ules. Classes should have a high level of internal cohesion, and as low a coupling

with other classes as possible. These approaches have been applied in an object-

oriented fashion [14, 2], in various ways. Some work has linked the complexity

of a system to the coupling of the components of that system; however, from

an object-oriented perspective, it is difficult to assess coupling, since the same

component (class) may be used in many different circumstances (e.g. through

extensive reuse), or different classes may be used interchangeably. Cohesion

within classes has been linked to the internal complexity of those classes; the

identification of 'sub-interfaces' within a class (such as a single instance variable

and the methods using it) give rise to evaluations strikingly similar to cohesion

measures.

Evaluating Metric Correctness

Metrics are an ad-hoc mapping of various computable measures about software

structure onto some abstract notion of quality. The absence of an underlying

physical or casual model for these kinds of metrics is a a fundamental problem

for evaluation, since without a model it is hard to devise a scientific validation

of the measures. In practice, however, we need to be sure that the metrics used

genuinely measure what we anticipate: that 'better' numbers really indicate 'bet-

ter' designs or implementations. The relationship had better be at least mono-

tonic, and ideally linear (or some other well-understood mathematical function).

Furthermore, when weighting factors are used, we need to determine these in

some way.

Two possible approaches are, firstly, to compare the measures with 'expert

opinion'. This is fraught with problems; first, find an expert you believe in!

However, experts are notorious for not always agreeing with each other, so an

exact approach is tricky. Alternatively, apply the metrics to some successfully

implemented systems. Of course, the trouble with this approach is that not all

successfully implemented systems are well-designed, and not all well-designed

systems get to be implemented. Clearly, there are other significant factors here.

While initial results suggest that the complexity metrics suggested in this paper

might be useful, they cannot yet be regarded as anything other than plausible

candidates for design quality assessment.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 479

Metrics for Reuse

There are really two kinds of reuse measure: the first is a measurement of the

amount (and effectiveness) of reuse actually achieved in a particular case. This

achieved reuse is a relatively straightforward idea, and there are fairly obvious

ways of measuring this. For example, the ratio of new to reused classes in a

design or implementation gives some idea of the effectiveness of the reuse, and

perhaps an indication of the future reusability of the parts reused. However, this

approach is based on the (naive) assumption that all classes are comparable: as

a counter-example, consider the case where we reuse nine very simple classes

and build just one new and very complex class - are we really achieving 90%

reuse?

For better measures of reuse achieved, better 'quantity' measures for classes

are required. We could simply use some measure of code size, if this is available,

but this still raises questions of comparability. Possibly, interface complexity

measures could be used here, with the amount of reuse achieved depending on

the ratio of the complexity of the new and pre-existing classes. This approach

has not yet been explored in any systematic fashion, however. For another more

sophisticated approach, Bieman [151 suggests separately assessing software re-

use of components taking into account the amount of internal modification to

those components.

The second reuse measure is much harder to assess: we want an estimation

of the (likely) ease of reusing a software component (such as a class) before it

has ever been reused. Also, we require an indication of how much reuse a class,

or library of classes, will support. Some measures are required to assist in the

design of genuinely reusable classes.

To reuse software, the interfaces have to be understood. A low client inter-

face complexity of the entire library is therefore one indication of usefulness.

Similarly, controlled polymorphism is desirable, since common compatible be-

haviour for many classes reduces the intellectual effort in understanding. Also,

measures of the subclass interface complexity give some guides, as much reuse is

enabled by inheritance. A low (non-inheritance) coupling measure also suggests

ease of reuse of a class, as it does not need large numbers of other classes to be

useful. However, it is better to use the other classes, rather than to re-implement

everything inside a single class, as this will tend to increase the potential for

reuse overall.

Nevertheless, all this is not enough to ensure effective reuse. There is an aph-

orism which states: "Software is not reusable, until it has already been reused -

by someone else." In other words, there is nothing quite like a serious attempt at

reusing code to expose hidden assumptions, incomplete interface specifications

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

480 Software Quality Management

and a lack of understanding of the precise functionality of a class.

We believe that it is reasonable to suggest that object-oriented designs which

are 'good' (i.e. low complexity interfaces) as assessed by the metrics discussed

in this paper are more likely to be reusable. Such classes will be easier to under-

stand, and good understanding is a pre-requisite to effective reuse. Low protected

interface complexity makes it easier to add new subclasses, while a uniform pub-

lic interface for many classes (with a low overall complexity) will make arbitrary

composition of object easier. We believe that interface complexity metrics can

be useful is assessing object-oriented developments, but they should always be

treated with suspicion; they are no substitute for skill, experience and thought.

In summary, design quality metrics are not a panacea for all ills, and interface

complexity metrics are not perfect; we can expect continuing work in this area

for some time.

References

[1] Barry W. Boehm, 'A Spiral Model of Software Development and En-

hancement', IEEE Computer, May 1988, pp. 61-72.

[2] Shy am Chidamber and Chris Kemerer, Towards a Metrics Suite for Ob-

ject Oriented Design', pp. 197-211, Proceedings of the Conference on

Object-Oriented Programming: Systems, Languages and Applications

(OOPSLA'91), October 1991.

[3] Ralph Johnson and Brian Foote, 'Designing Reusable Classes', pp. 22-

35, Journal of'Object-Oriented Programming, June 1988.

[4] Roxanna Rochat, In Search of Good Smalltalk Programming Style,

Technical Report CR-86-19, Tektronix Laboratories, September 1986.

[5] K. Lieberherr and I. Holland, 'Assuring Good Style for Object-Oriented

Programs', IEEE Software, September 1989.

[6] Ralph E. Johnson, 'Documenting Frameworks using Patterns', pp. 63-

76, Proceedings of the Conference on Object-Oriented Programming:

Systems, Languages and Applications (OOPSLA'92), October 1992.

[7] Brad J. Cox and Andrew J. Novobilski, Object-Oriented Programming:

An Evolutionary Approach (second edition), Addison-Wesley, 1991.

[8] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,

1986.

[9] Grady Booch, Object-oriented Design with Applications, Addison-

Wesley, 1991.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 481

[10] T. J. McCabe, 'A Complexity Measure, pp. 308-320, IEEE Transactions

on Software Engineering, vol. 2, no. 4, 1976.

[11] Adele Goldberg and David Robson, Smalltalk-80: the Language and its

Implementation, Addison-Wesley, 1984.

[12] Bernd Hoeck, A Framework for Semi-automatic Reorganisation of

Object-oriented Design and Code, M.Sc. Thesis, Computer Science De-

partment, University of Manchester, September 1993.

[13] L. L. Constantine and E. Yourdon, Structured Design, Prentice-Hall,

1979.

[14] D. Embley and S. Woodfield, 'Cohesion and Coupling for Abstract Data

Types', pp. 229-234, Proceeding of the Sixth Annual Conference on

Computers and Communication, Phoenix, February 1987.

[15] James Bieman, Deriving Measures of Software Reuse in Object Ori-

ented Systems, Technical Report CS-91-112, Department of Computer

Science, Colorado State University, July 1991.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

