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CHAPTER I: THE MAIN RESULT 
AND THE STRUCTURE OF ITS PROOF 

1-1. INTRODUCTION 

This paper represents a step in the general program of establishing principles 
for solving nonlinear systems of equations efficiently. 

Let A:(d) be the vector space of all homogeneous polynomial systems f : 
en+1 ---> en of degree d = (d1 ' ••• ,dn) (so that degree f; = d/) . 
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460 MICHAEL SHUB AND STEVE SMALE 

Consider the computational problem, given f E Jit(d)' solve f(O = O. What 
does this mean? A reasonable answer is: exhibit x E Cn+1 such that x is an 
approximate zero of f restricted to Nx ' f I N x : N x ----t Cn where N x = x + 
{y E Cn+l/(y, x) = O} and ( , ) is the Hermitian inner product on e+ 1 • 

See (*) of Theorem 1 of the next section for the precise definition of approxi-
mate zero. In particular, Newton's method for flNx' starting at x, converges 
quadratically to some , E Nx with f( 0 = 0, and e relative accuracy is ob-
tained with log I log el further steps. 

Nx is the Hermitian orthogonal complement to the vector x E Cn+1 through 
x, and can be thought of as the tangent space to complex projective n-space. 
In order to apply Newton's method, f is restricted to an n-dimensional sub-
space. The choice of Nx is natural from the projective space point of view and 
optimizes some of our estimates. That x is an approximate zero of f I N"( is 
invariant under scaling; i.e., AX is an approximate zero of f/ Nh , Ie i= 0, if x 
is an approximate zero of f I Nx ' Thus we say x is an approximate zero of f 
in the projective sense with associated actual zero ,. 

A curve F : [0, 1] ........ Jit(d) X Cn+1 satisfying f/'I) = 0, FI = U;, 'I) is called 
a homotopy-path. 

An important computational problem is to produce from the input (J;) and 
an approximation Zo of '0' a sequence Zi' i = 1, ... , k, which fits ('I) in 
the following sense. Each Zi is an approximate zero of J;, in the projective 
sense with associated actual zero 'I' 0 = to < ... < ti_ 1 < ti < ... < tk = 1. 

Projective Newton's method proposed by Shub [24] yields zi from zi-l by 
applying Newton's method to J; IN. . The problem we deal with here is how 

j ZI_I 

small can k be taken to obtain z,' ... , zk fitting ('I)' 
The answer we demonstrate is that the controlling factor is the distance along 

P(Jit(d)) ' p(F), in the corresponding projective spaces, of the curve ~ in Jit(d) x 
Cn+' to the discriminant locus r,' (an irreducible algebraic variety of ill-posed 
problems). The other factors are the length L of the curve (J;), a modest 
contribution from the degree of f and a small constant. 

More precisely: 

Main Theorem. Let FI = (J;, 'I) be a homotopy-path in Jit(d) x Cn+' , and let 
Zo satisfy 

Let 
C LD3/ 2 

I > --".2_-=:--
p(F)2 ' 

C, = .035 .... 

C2 = 8.35 ... 

then I projective Newton steps are enough to produce Z l' ... , z/ fitting ('I)' 
Here D = max(d). 

The number of variables n does not enter directly into the complexity I, 
but ,(F) ~ ..;n so it is implicitly there. 
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The problem of finding the starting point can be dealt with by choosing a 
universal i(d) E if(d) , or from aspects of the particular problem. The invariant 
p(F) needs to be studied from a geometric probability point of view. Part II is 
devoted to these problems. 

For the problem of fitting all the solution curves of given J;, we find similar 
results, using the distance in if(d) to the discriminant locus L. This will lead to 
the complexity of algorithms for finding all the zeros of a given system f E if(d) . 
Moreover, we provide a similar complexity analysis for the (nonhomogeneous) 
general polynomial system f: en --> en using a more traditional (yet global) 
form of Newton's method. 

One novel feature in our development is unitary invariance. For example, 
if V is a unitary transformation then x is an approximate zero of f in the 
projective sense iff V(x) is an approximate zero of f 0 V-I in the projective 
sense. In general, one would not expect the particular coordinate representation 
of the polynomial system to be reflected in the basic invariants of the theory. 
The distances of solutions to each other seem basic. Our way of dealing with 
this is by using a fully unitarily invariant theory. This has an added feature of 
forcing a more elegant development of the mathematics. 

Our proof of the main theorem puts into a very general setting theorems of 
Eckart-Young, Houth and Demmel on the condition number and the reciprocal 
of the distance to the algebraic variety of ill-posed problems. 

The most important work on this problem previously is that of Renegar [20]. 
That paper was very helpful to us. 

Very roughly, work on algorithms for Bezout's problem can be divided into 
two distinct schools. One is algebraic, represented for example by Brownawell 
[2], Grigoriev [9], Heintz [10], Canny [3], Renegar [21], and Ierardi [12], and 
a second more numerical analysis approach represented here. The algebraic 
algorithms tend to be less numerically stable (see, e.g., Morgan [18]). 

The convergence and practice of path-following algorithms (or homotopy 
methods) may be seen for example in Allgower-Georg [1], Garcia-Zangwill [7], 
Hirsch-Smale [11], Keller [13], Li-Sauer-Yorke [16], Morgan [17], Wright [34], 
and Zulehner [35]. One variable complexity results on these algorithms is in 
Shub-Smale [25, 26] and Smale [27, 28]. 

The proof of the Main Result is quite long. The rest of Chapter I is devoted 
to giving the structure of this proof by displaying some intermediate theorems. 
In fact, in these theorems there is an effort to isolate some main concepts. 

We would like to thank Matt Grayson for his calculations of some of our 
constants. 

1-2. COMPLEXITY OF PATH FOLLOWING IN BANACH SPACES 

Here we state some general results on complexity which are valid in a wide 
setting, yet form the framework of the main proofs on the complexity of Be-
zout's Problem. These ideas revolve about an invariant a(f, x) proposed 
in Smale [29, 30]. Subsequent work of Royden [23], Wang-Han [32] sharp-
ened and broadened these first results, and that work is incorporated into the 
present treatment, Theorems 1 and 2 below. Moreover, robustness results of the 
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462 MICHAEL SHUB AND STEVE SMALE 

o:-theory, only suggested in Smale [30] and in Renegar-Shub [22], are formu-
lated in Theorems 3 and 4. Besides applications to polynomial systems, these 
theorems may be used to analyze complexity of linear programming algorithms. 

It turns out profitable to give a complete demonstration of both the old and 
new results of this o:-theory together. Thus the theorems stated in this section 
are proved in Chapter II. For some motivation and broader perspective one can 
see Smale [30] as well as the other references. 

Throughout this section and Chapter II, E and IF denote Banach spaces. 
In the main applications they are both em, m-dimensional complex Carte-
sian space (or subspaces) with a norm defined by the standard Hermitian inner 
product. 

We consider analytic maps /: D,(xo) -> IF where Xo E E and D,(xo) = 
{x E Ellix - xoll :-::; r}. For x E D,(xo) let 

D/(x): E -> IF 

denote the derivative of / at x (see Lang [15] for our way of doing calculus). If 
D /(x) is not an isomorphism all the following 0:, p, yare 00 (or not defined). 
Otherw~se define for /: D,(xo) -> IF and x E D,(xo) 

P(f, x) = IID/(x)-'/(x)lI, 

y(f, x) = sup II D /(X)-I~k /(x) II k~l , 

bl k. 
o:(f, x) = P(f, x)y(f, x). 

Newton's method (when defined) constructs a sequence of points XI' x2 ' •.• 

in D,(xo) by the formula 

n = 1, .. , . 

We also write 

Nf(x) = x - D/(X)-I/(X) and xn = Nf(xn_ I ). 

Thus P(f, x n) = IIxn+' - xn II· 
We also frequently use these quantities: 

(1 + 0:) - J(1 + 0:)2 - 80: 
r(o:) = 4 ' forO:-::;0::-::;3-2v'2",.1715 

and 
1 

0:0 = 4" ( 1 3 - 3 m) '" . 1 5 7 6 71. 

Theorem 1. Let / : D,(xo) -> IF be analytic, P = P(/, xo)' y = y(f, xo)' 
0: = py and suppose r::::: ~. Then if 0: :-::; 0:0 , the Newton iterates XI' x 2 ' ..• 

are defined, converge to , E D,(xo) with /(0 = 0 and/or all n ::::: 1 

(1) 2"_1 
IIxn+' - xnll:-::;"2 !lx l - xoil· 
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Moreover II' - xoll :::; r~a) , and II' - xIII:::; r(a~-a . 

A point Xo E E is called an approximate zero (of f) if (*) is satisfied. 
In that case , is called the associated (true) zero. The following is an easy 
consequence of Theorem 1. 

Corollary. Let f : E -+ IF be analytic, Xo E E satisfy 0: = o:(f, xo) :::; 0:0 and 
have associated zero'. Then the nth Newton iterate Zn of Zo is within e of 
, provided n ~ (log I log r~~) I) + 1 . 

Remark. The ! in Theorem 1 may be replaced by any A, 0 < A < 1, with 0:0 
redefined. See §II-l. 

Consider as an example the following family of real-valued functions (which 
have a universal quality as we will see): 

2 it 
hp ,(t) = P - t + -1 - , , - yt p, y > O. 

Let 0: = py satisfy (0: + 1)2 - 80: > 0 or equivalently 0 < 0: < 3 - 2v'2. Then 
hp, y has two distinct real positive roots at 

r(o:) (0: + 1) ± -)(0: + 1)2 - 8cl' 
Y 4i 

Moreover d 2hp ,,(t)/dt2 > 0 as long as 0 < t < ~. Thus Newton's method 
starting at 0 converges to the smaller root since by convexity the Newton se-
quence is monotone. Let t n = Nh (t -I) where to = 0 . 

P., n 

Theorem 2 (Domination Theorem). Let f : Dr(xO) -> IF be analytic, p = 
per, xo), y = y(f, xo)' 0: = py and suppose r ~ r~.) and 0: :::; 0:0 , These 
values of P , y define h p , I' ' and the sequence tn' Then 

Ilxn - xn-111 :::; tn - tn_I' n = 1,2, ... , 

where xn is the Newton sequence of f starting at xo' 

The Domination Theorem yields the last sentence of Theorem 1 as follows. 

I ~ ~ _ r(ex) Ilxo - n:::; L IIxn+l - xnll:::; Ltn+l - tn -1' 
n=O n=O 

~ ~ r(n) II Xl - 'II:::; L Ilxn+1 - xnll :::; L tn+l - tn = -,-, - p. 0 
n=l I 

We next deal with the question, "How does It vary with the initial condi-
tion?" 

Let 

If/(u) = 2i - 4u + 1, 

so that 0:::; If/ ( u) :::; 1 . 

v'2 O<u<l--- - 2' 
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Proposition 1. Let f: Dr(xO) ---> IF be analytic. For x E Dr(xO) ' we have 

f a(f, xo)( 1 - u) + U 
0'( ,x)::::: ) 

If/(ut 

where u = y(f, xo)lIxo - xii and u < 1 -{}. 

Proposition 1 plays a role in the proof of the following result which permits 
repeated applications of Newton's method. 

Theorem 3. There are universal constants 
0: about .08019667, t1 about .02207 

with this property. Let f: Dr( () ---> IF be analytic with y = y(f, () ::::: y (some 
constant), P = P(f, () ::::: y., and r ~ !if. Suppose x E Dr( () satisfies 
Ilx - (II ::::: % and (I is the associated zero of (. Then Ilxl - (III ::::: ~, where 
XI = Nf(x). 

Theorem 3 can be readily seen to have global implications. A homotopy 
f; : E ---> IF is a family of analytic maps 0 ::::: t ::::: 1 with the induced map 
[0, 1] x E ---> IF continuous. An associated path is a continuous map [0, 1] ---> E , 
t ---> (t' satisfying for each t E [0, 1], (a) f;((t) = 0 and (b) the derivative 
D f( (t) : E ---> IF is an isomorphism. Sometimes we call {f;, (t} a homotopy-
path. 

The central algorithm in this paper (as used in Smale [28]) is designed to 
follow a path associated to a homotopy and works this way. To a subdivision 
T = {to = 0, t l , ... , tk = I}, ti < ti+ l , ITI = k, Xo with Ilxo - (oil < J, 
define inductively by Newton's method 

(*) xi=Nj,(Xi_ I), i=l, ... ,k. 
f, 

If Iti - ti_11 and Ilxo - (oil are small enough, then Ilxi - (til is small for 
all i = 1, ... , k. More precisely we will say that Newton's 'method follows 
the homotopy-path {f;, (t} , relative to T and J provided Xi of (*) is well 
defined, O'(f;, ' Xi) < 0'0 ' and (t, is the associated actual zero to the approximate 
zero Xi of f;, i = 1 , ... , I TI . 

Note that i~ this case the number of Newton steps to reach an e-approxima-
tion of the zero (I of .ft is given by 

ITI + log log r(a) 
ey 

where 0' = aU;, XI)' Y = y(f.., XI)' The central complexity measure is ITI· 
The most important example of a homotopy is a linear homotopy: f; = 

t f.. + (1 - t)fa, fa, f.. : E ---> IF. Often in this case a zero (or all the zeros) of .fa 
is known. 

Theorem 4. Let F = {f;, (t} be a homotopy with an associated path as above. 
Let ~ = k, k an integer, and y > 0 be such that P(f;, , (I) ::::: % and yCfr' , (I) ::::: 
ji if It' - tl ::::: ~. ' 
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Let Ilzo - '011 :::; ~. Then if T = {O,~, 2~, ... ,k~ = I}. Newton's method 
follows F. In fact 

i = I, ... , k. 

The proof of Theorem 4 from Theorem 3 is practically apparent. One uses 
only the appropriate continuity of the associated zero which comes from The-
orem I. 

Theorem 4 indicates the importance of estimating flU;" '/), y(J;" 'I) and 
much of the rest of this paper is devoted to just that. 

1-3. COMPLEXITY FOR POLYNOMIAL SYSTEMS 
IN TERMS OF THE CONDITION NUMBER, f1 

We start this section with some general background on polynomial systems. 
It turns out that the affine (usual) and projective developments shed light on 
each other, and in fact we treat, in part, the affine problem in a homogeneous 
context. In both cases a representation of the unitary group plays an important 
role in our study. 

Subsequently, the condition number f1 = f1(/, x) for f : en ---> en, x E 
en, is introduced. This is a modified version of the simple IIDf(x)-III. Our 
condition number must assume a more technical definition for several reasons, 
mainly related to natural scalings. 

The algorithms to follow a path of a homotopy are modeled on that of Theo-
rem 4 (previous section) and we are able to estimate the appropriate a invari-
ants in terms of the degree and the condition number of the homotopy. The 
passage from Theorem 3 to Theorem 4 in the previous section gives the under-
lying idea of how we then obtain complexity results. As usual, this section is 
on the overall structure with full proofs in Chapter III. 

We turn to describing spaces of polynomial systems together with a unitarily 
invariant metric. This metric while natural and used in the theory of group 
representations (Stein-Weiss [31]) is not traditional in the numerical analysis 
literature of equations. It has been suggested by Kostlan [14] and seems to be 
well suited to purposes of complexity, and corresponding estimates appear to 
be more elegant. Unitary invariance plays a central role in our approach to 
complexity. 

We use 9'(d) to denote the linear space of all polynomial systems f: en ---> 

e", f = U;, ... , f n ), each h a polynomial of n-variables of degree :::; d j , 

and d = (d l ' •.• ,dn ), d j ~ 0. 
Let Jt(d) be the homogeneous counterpart. That is, f E Jt(d) is a map 

cn+1 ---> e" of the form f = (/1' ... ,fn) where each h is a homogeneous 
polynomial of degree exactly d j • We suppose ° E Jt(d) so that Jt(d) is a linear 
space. 

Note that there is a natural linear isomorphism cI> : 9'(d) ---> Jt(d) given by 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



466 MICHAEL SHUB AND STEVE SMALE 

homogenization as follows. Let f = u; , ... , In) E 9(d) , so that 

l"l~di 

"=("1 ""'''.) 

" a"z 

where z" = z~I ... z~n and lal = 2:ai. Then 4>(f) = (4)1(1;), ... , 4>n(fn)) 
with 4>lt;)(zo' ... , zn) = 2:" a"z" zgi-I"I . The inverse of 4> is given by setting 
Zo = 1. 

For homogeneous polynomials g, f: Cn+1 -t C of degree d, let 

(f ) =" b (a I! ... an! ) 
, g d ~ a" " d! 

l"l=d 

where f(z) = 2: a"z", g(z) = 2: b"z" . This induces a Hermitian inner prod-
uct on ?t(d)' Simply write, for f, g E ?t(d) , 

(f, g) = 2:u;, g)d' 
I 

i 

Proposition 1 (Kostlan [14]). Let the unitary group act on Cn+1 in the canonical 
way and on ?t(d) by the induced representation. Then ( ) on ?t(d) is invariant. 

In other words (fu- I , gu- I) = (f, g) for all f, g E ?t(d)' and u: Cn+1 -t 

Cn+1 unitary. Of course IIfu-11i = IIfll. 
By the isomorphism 4>: 9'(d) -t ?t(d) we obtain an induced Hermitian struc-

ture on 9'(d)' We will denote the corresponding norm on f by simply Ilfll for 
each 9'(d) and ?t(d)' We sometimes use the same symbol for f E 9'(d) and 
4>(f) E ?t(d) . 

If lE is a linear space over C, let P(lE) denote the corresponding projective 
space of lines through the origin in lE. So P(lE) = (lE - O)/C*, C* = C - 0. 
A Hermitian structure on lE induces a Riemannian structure on P(lE) (of con-
stant curvature). Thus we have canonical metrics on P(9'(d))' P(?t(d))' Some-
times for f E ?t(d) , the same symbol will denote the corresponding element of 
P(?t(d) . 

We define, for x E Cn+ 1 , 

n+1 Null(x)={VEC ,(v,x)=O} 
and an affine subspace 

n+1 Nx = x + Null(x) c C . 

Let eo=(l,O,oo.,O)ECn+l • 

We will use the notation d(Yi) to mean the diagonal matrix whose ith ele-
ment is Yi . 

We are ready to define the condition number J1(f, x) of f E 9'(d) at x E Cn . 

The idea is to take J1 to be IIDf(x)-III, e.g., as in Wilkinson [33], but it 
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is important to take into account the special polynomial nature of I. We 
also want to make J.l compatible with homogenization. Moreover, for sharper 

I 

estimates on complexity it is convenient to have a further factor of dl . Thus 
define 

J.l(f, x) = IIIIIIIDI(x)-ILl((dJ!lIxll~j-I)1I 
or 1, whichever is larger, and where IIxlll = (2:7 x; + l)! . 

If I is treated as an element of Jl(d) this is equivalent to 

J.l(f, x) = IIIIIIIDIIN (X)-ILl(dlllxll dj - l ) or 1 
'0 

where x = (xo' ... , x n ), Xo = 1. 
We will use the two versions interchangeably. 
The projective version of the condition number is: For I E Jl(d) and x E 

J.lproj.(f, x) = IIIIIIIDIINx(x)-ILl(d/llXlldj-I)1I or 1 

whichever is larger. 
For I E Jl(d) , let 

(I ) = IILl(d,-! IIxll-d')I(x)1I 
t7 ,x 11111 

For IE 9'(d) , t7(f, x) is the same except IIxll is replaced by IIxlll . 
Let IE 9'(d) , x E Cn • Appropriate versions of P(I, x), y(f, x) are 

P(I, x) 
Po(f, x) = IIxlll ' 
yo(f, x) = y(f, x)lIxll l· 

Thus a(f, x) = Po(f, x)yo(f, x). 
The projective case goes as follows. For IE Jl(d)' x E Cn+1 , 

Po(II N ' x) = P(fIN ' x)/lIxll, 
x x 

YO(fIN ' x) = y(fIN ' x)lIxll· 
x x 

These definitions are invariant under scalings of I and x, so they make 
sense on p(~) and P(Cn+ I ). 

Proposition 2. For I E 9'(d)' x E cn • 

Po(f, x) :::; J.l(f, x)t7(f, x). 

For IE Jl(d)' x E Cn+1 • 

Po(II Nx ' x) :::; J.lproj.(f, x)t7(f, x). 

The proof of Proposition 2 is obtained by putting together the definitions 
with IIAbll :::; IIAlillbll· 

In Chapter III we will show 
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Proposition 3. 

J 

Y (f x) < fl(f, x)D! 
o ,- 2 ' 

J 

, (fl ) flproj. (f , x)D"2 
Yo Nx ' x :S 2 ' f n+1 

E~, XEC . 

For f, g E 7l(d)' let dp(f, g) = min..lEiC "~if~lgll. dp(f, g) is independent 
of scaling of both f and g and defines a distance function on P(7l(d))' To see 
that this function is in fact a metric we compare it to the standard metric on 
P(7l(d)' There is up to scaling a unique unitarily invariant Hermitian metric on 
P(7l(d)) . One way to get the existence of one is simply to restrict the Hermitian 
structure on 7l(d) to Null (f) at each f. This Hermitian structure defines a 
unique Riemannian structure and a distance dR(f, g) for f, g E P(7l(d))' 

Proposition 4. dp(f, g) = sindR(f, g) for f, g E P(7l(d))' 

Proof. 

Il f (f,g)g II 2 1 
d (f g) = min Ilf - ,1.gll = -"""(g,if = (1 _ l(f, g)1 ) 2 

P' ..lEiC Ilfll Ilfll IIfl1211g112 

by expanding the norm in the numerator as a Hermitian product. Now 

1 - I ( ,g) I = sin arccos I (f, g) I ( f 2) 1/2 
IIfl1211g112 Ilfllllgll 

so we have only to see that dR(f, g) = arccos 111~1'lm" To see this last, use 
unitary invariance and the uniqueness of unitary structure on CN up to iso-
morphism. We may assume that d R and arccos III~I'IWI are defined on CP( 1) 
corresponding to C2 spanned by f and g. Moreover in affine coordinates we 
may assume f = (1, 0), g = (1, xo) where the metric (see Mumford [19]) is 

ds2 = dx dx _ (x dx)(x dx) = dx dx 
1 + Ixl2 (1 + Ix12)2 (1 + IxI2)2' 

Now integrate on the path (1, txo) for 0 :S t :S 1 . 

11 IXol ( 1 ) 2 2 dt = arctan IXol = arccos 2 1/2 o 1 + t IXol (1 + IXol ) 
which verifies the formula in this case. Note that to see that d p is a metric it 
is enough to note that sin (A + B) :S sin A + sin B for O:S A, B:S ~ . 

The diameter of P(7l(d)) equals one with dp (and equals ~ for dR ). Note 
dp :S dR . 
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Proposition 5. Let f, g E ?t(d)' (E en+ 1 . Then 

() ( r)< Ji(f,()(l+dp (f, g)) It r 1 
a Ji g, '> - 1 _ DI/2dp (f, g)Ji(f, 0 or '>0 = , 

(b) . ( 0 < Jiproj. (f, 0 (1 + d p (f, g)) for (i= 0 
JiproJ. g, - I-D 1/ 2dp (f, g)Jiproj.(f, 0 

as long as the denominators are positive. 

Remark. DI/2 in (b) may be omitted by a different proof. 
For a while now we restrict ourselves to the affine case. So in §I-2, lE and IF' 

both become en and a homotopy 1; : en -+ en is a (continuous) curve in gd . 

Then (t is a curve in en with 1;((/) = 0 and D1;((/) : en -+ e nonsingular. 

Theorem 1. Suppose Co E [0, 1] and {1;, (I} is a homotopy-path in g(d) x en, 
t, t' E [0, 1], Ji = Ji(1;, (I) with 

Let 

Then 

and 

,. _ D 3/ 2 (1 + Co) 
y- 2 Ji I-C' o 

y(1;" (t) ~ Yo(1;, , (I) ~ y. 
For example one could take Co as 0:0 or a from the previous section. If 

Co = a, then 

is about .11629. 
We give the short proof here (assuming the previous propositions). Choose 

in Propositions 2 and 3, f = 1;, , and x = (I . Then 

P(1;, , (I) ~ Ji(1;, , (/)17(1;, , (I)' 
Lemma 1 (easy). 

By Proposition 5 
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Lemma 2. 
1 + ~p 1 + Co --...,--;-;::-'----- < --

1-DI/2~pJl - 1- Co· 

Proof. Using the hypothesis on ~p and the fact that D ::::: 2, Jl::::: 1, one sees 
that JlDI/2 ~p ::; Co. Then ~p ::; Co and the lemma is proved. 

The estimate on p and y of Theorem 1 now follows by making the appro-
priate substitutions. 

We now will give an estimate of the number of steps of the algorithm of 
§I-2 described right after Theorem 3. For a homotopy-path F = U;, 'I} in 
9'(d) x en , define L = L(F) to be the length in the metric dp of the curve h' 
o ::; t ::; 1 . Define the condition number 

Jl = Jl(F) = max Jl(h, 'I)· 
09::;1 

Note that Jl takes different meanings in different contexts. 

Theorem 2. Let F = U;, 'I} be a homotopy-path in 9'(d) x en . Let 

LD3/ 2 2 
k::::: --*-Jl 

°! 

Then k Newton steps are sufficient to follow the path 'I' [0::; t ::; 1], in the 
sense of§I-2. 

Again we give the short proof which follows from Theorem 1, but first note: 

Remark. For the main case of a linear homotopy h = tf + (1 - t)fo ' recall that 
L is less than or equal to the diameter of projective space, which is 1. 

Proof. One may choose ti so that 

i = 1, ... , k. 

Then since t ::; O! * I D 3/ 2Jl, the hypotheses of Theorem 1 are satisfied where 
Co = a. The conclusions of Theorem 1 put us into the situation of Theorem 3 
of §I-2 and this finishes the proof of Theorem 2. 

The next theorem is an important step in analyzing the projective version of 
Newton's method. 

Theorem 3. There exist numbers O!proj. '" .07364, Uproj . '" .0203... with the 
following. Suppose f E Jf(d)' y::::: DI/2 and x E N, satisfies 

(a) ,,(f, OJlproj.(f, 0 ::; O!proj.ly, 

(b) Ilx - '11/11'11 ::; upro)Ji, 
(c) yo(f, 0::; y. 

Then 
Ilx'-(1I 

11(11 
U . < pro]. 

y 
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where x' = N flNx (X), x' E N( and A.( is the associated zero of x for flNx ' 
some A. E e. 
Remark 1. If we take y = D 3/2Ji./2, Ji. = Ji.proj.(f, ') then (c) is automatically 
satisfied by Proposition 3. 
Remark 2. That f E /t(d) is not crucial to the proof. 1; homogeneous complex 
analytic of degree d; with large enough radius of convergence around ~ suffices 
with y~max(I,DI/2), D=max;=I, ... ,nld;l. Note also that the expression 1'/Ji. 
of (a) does not involve Ilfll and is defined for all such f. 

A homotopy 1; : en+1 -+ en in the homogeneous case is a curve in the space 
/t(d) , 0::; t ::; 1. An associated path 'I is a curve in en+1 satisfying 1;('1) = O. 

Let 
F = {1;, 'I}' 

be the condition number of the homotopy-path F. 
We will now prove the main theorem, §1, with p(F) replaced by J.I.(~)' In 

the next section, the main theorem asserts these quantities are equal and so that 
result will finish the proof of the main theorem. 

Let C1 be the first positive root of 

C ( 1 + D 37z Ji.2 ) 2 = 2aproj. (1 _ ~) 2 

for D = 2, Ji. = 1 and let C2 = i . Then C2 = 8.35. .. . 
1 

Let 
1 _ (1 + Ll)D3/2 

Ll = and y = ..:..Ji.-,-_-:--,,~_ 
C2D 3/2/ 2(1 - D 1/ 2LlJi.) . 

Choose ti' i = 0, ... , k = [X], such that for s E [t;, t;+I]' dp(fs, 1;)::; Ll. 
Here [x] is the smallest integer ~ x. Let Ji.' = SUPSE[I, , 1,+11 Ji.Cfs, 'I)' Then 

I Ji.( 1 + Ll) 
Ji. ::; 1 _ DI/2LlJi. 

by Proposition 5 and for s E [t;, t;+I]' 

Ji.( 1 + Ll)D3/2 _ 
Yo(fs, 'I)::; 2(I-DI/2LlJi.) = Y 

by Proposition 3. This gives condition (c) of Theorem 3. We now check con-
ditions (a) and (b). For (a), note that 1'/(fs' 'I) ::; Ll for s E [t;, ti+d by 
Lemma 1. Also ' 

A _ I 1 Ji.( 1 + Ll)D3/2 Ji.( 1 + Ll) uyJi. < . 
- C2D 3/ 2Ji.2 2(1 - D I/2LlJi.) (I - D I/2LlJi.) 

CI (1 + CII D 3/2 Ji.2) 2 
--~--------~~<a . 

2 (1 - CI /DJi.)2 - pro). 
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by the definition of C I . Thus 1'/ :::; a proj.lY/1' . 
For (b), by hypothesis, 

Ilzo - '011 < C p(F) < Uproj . 
II '0 II - I D 3/ 2 - Y 

Apply Theorem 3 inductively to obtain 

IIxi - 'Ii II < Uproj . 

1"111 y 
1 

for all i. 
Finally from Proposition 2 of §III-2 

2 K(a . U .) U . a < pro).' pro). pro). < .024 
x - )2 - , 

'II (uproj . 

the last using a pocket calculator. Here ax stands for a of J; at XI . Thus 
HI I 

XI is an approximate zero of J; and so certainly XI is. Theorem 1 of §1-2 
I HI HI 

applies to yield log log estimates, i.e. 

IINt,IN" (Xli+,) - '1,+,11 1 
1 <_ 
1"1 II - 22i 

1+' 

where 'I here means the associated root of XI in Nx D 
ITt f tj 

1-4. COMPLEXITY IN TERMS OF THE DISTANCE 
TO THE DISCRIMINANT VARIETY L 

The goal of this section is to replace the condition number in the estimates 
of the previous section by the distance to the discriminant variety. To that end, 
we extend an idea going back to Eckart and Young [6] and developed especially 
by Demmel [4]. 

Consider the product space Jf(d) x Cn+1 with quotient Jf(d) x Pn where Pn = 
P(Cn+ l ) is n-dimensional complex projective space. Let 

V = {(f, z) E Jf(d) x Pnlf(z) = O}. 

We may consider the projection of V onto the second factor V --+ Pn as a 
vector space bundle with fiber over z given by Vz = {f E Jf(d) 1 f(z) = O} . 
The associated bundle 7r2 : V --+ Pn with fiber P( Vz ) is a smooth algebraic 
hypersurface V C P(Jf(d)) x Pn (see Shub [24]). 

Let L' be the algebraic hypersurface in V given as the set of (f,~) E V 
such that Df(~) : Cn+1 --+ e is singular (i.e., of rank less than n). 

While we have considered V as a bundle 7r2 : V --+ Pn we may also consider 
the projection 7r: V --+ P(Jf(d)) on the first factor. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPLEXITY OF BEZOUT'S THEOREM. I: GEOMETRIC ASPECTS 473 

Remark. "'£' may alternately be described as the set of critical points of 7C . That 
is, (f, x) E V is in "'£' precisely when D7C(f, x): 1(f.x)(V) ---+ Tf (P(7i(d»)) is 
singular. 

The image under 7C, 7C("'£') = "'£ c P(7i(d») , is the algebraic hypersurface of 
polynomial systems with a degenerate zero (i.e. f E "'£ if and only if there is 
some' E Pn with f(C) = 0 and Df(C) singular). 

This variety "'£ c P(7i(d») is called the discriminant variety. It is familiar 
in the affine one variable case as the set of all polynomials with nonvanish-
ing leading coefficient having a multiple root. The map 7C : V ---+ P(7i(d») is 
an n-dimensional generalization (homogenized) of the well-known map taking 
roots of a polynomial onto the coefficients by the symmetric functions (in one 
variable; sometimes the "Vieta map"). 

The variety "'£ has played an important role in recent complexity analysis 
of polynomial zero finding since it consists of "ill-posed problems". For one 
variable Newton method see especially Smale [27, 28], Shub-Smale [25, 26]. 
For the many variable case see Renegar [20]. On the algebraic side, a similar 
situation prevails; see Canny [3], Heintz [10], Ierardi [12], and Renegar [21]. In 
both cases, however, there is a subvariety of the discriminant locus of a more 
seriously ill-posed system which contains an infinite number of zeros. 

An underlying theme in much of this literature is the idea that the condition 
number is bounded by the reciprocal of the distance to "'£. This theme also 
comes from numerical analysis (see for example Demmel [4, 5]) even more 
explicitly. We sharpen and develop that idea here with Theorem I below. 

Our account continues with one version of a result seen in undergradua.te 
numerical analysis texts. Let IIAIIF be the Frobenius norm of a matrix A E 
L(n), the set of all n x n matrices. Thus 

IIAIIF = ("'£la;/)1/2. 

Let S c L(n) be the subset of singular matrices and let dF(A, S) be the 
distance from A to S in the Frobenius norm. 

Proposition 1 (Eckart and Young [6]). 

-I 1 
IIA II = dF(A, S)" 

The proof is in Golub and Van Loan [8]. 
Here IIA-III refers (as always here) to the usual operator norm induced from 

the Hermitian structure on en . 
Next we define a function p on V which represents the distance to the 

discriminant variety. For (f, x) E V, take p(f, x) as the distance in the 
fiber Vx of 7C : V ---+ Pn over x of (f, x) to "'£' n Vx ' Recall that this fiber 
is the projectified subspace {f E 7i(d) I f(x) = O} of 7i(d)' and the distance 
is computed in the dp metric. Thus p is ultimately defined by our unitarily 
invariant norm on 7i(d) . 

Theorem 1. Let f E 7i(d)' x E Cn+1 , f(x) = O. Then Jl.proj. (f, x) = p<f.X) . 
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On one hand Proposition 1 is used to prove Theorem 1; on the other hand it 
is a special case of Theorem 1. In the case of one variable polynomials, there 
is the work of Hough and Demmel [4] giving upper and lower bounds for the 
condition number of f at x in terms of a version of our p(f, x) -I . 

In the passage from Proposition 1 to Theorem 1 we use heavily unitary invari-
ance. Unitary invariance has already played a role in the proof of Proposition 3 
of 1-3 and continues to do so throughout many of our proofs. 

In more detail the unitary group U(n + 1) acts on /t(d) x en+1 by sending 
(f, z) to (f U -I , uz) for u E U (n+ 1). This action induces actions on /t(d) x Pn 

leaving V invariant and on P(/t(d)) x Pn leaving V invariant as well as 'L' c V 
invariant. 

As a corollary to Theorem 1 we have immediately that, in the main complex-
ity results of §1-3, we may replace J..lproj. (f, x) by pj,X). 

Next we give a result which corresponds to Theorem 1 with the x eliminated. 
Quite simply for f E /t(d) , let 

J..lproj. (f) = m!x J..lproj. (f, x) , 
f(x)=O 

p(f) = min p(f, x). x 
f(x)=O 

Then J..lproj. (f) may be thought of as the condition number of f. 
Corollary. Let f E /t(d). Then 

1 
J..lproj. (f) = p(f). 

Remark. It is easily seen that p(f) 2: d p (f, 'L) so that J..l(f) :::; 1/ d p (f, 'L) . 
We now proceed to an analysis of the condition number in the affine case. 

The situation here is more complicated. 
Define 'L~ = V n 'Loo where 

'Loo = {(f, z) E P(/t(d)) x Pn I Zo = O}. 

Thus (f, z) E 'L~ means that f has z as a zero at oc. Let 'Lo = 7r('L~), 7r : 
V -> P(/t(d). We may consider 'Lo as contained in 9'(d) via <1>-1 : /t(d) -> 9'(d) 
(abusing notation). This way 'Lo consists of all polynomial systems f: en -> 

en with the property that the highest order homogeneous parts of 1; have a 
common nontrivial zero. It was observed in Hirsch-Smale [11] that if f f/. 'Lo' 
then f is proper. From the construction 'L~ and hence 'Lo are varieties and in 
fact irreducible (compare Shub [24]) hypersurfaces in V, P(~) respectively. 

The following proposition gives a bound on the zeros of a polynomial map 
f: en -> en. 
Proposition 2. Let f E 9'(d) , x E en and f(x) = o. Then 

_ ( n 2) 1/2 11~(di/2)fll DI/211fll 
Ilxlll - 1 + Llxil :::; d(f 'L) :::; d(f 'L)" 

I '0· , 0 
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Let Po(f) = d(f, Lo)/lIfll. Thus (1 + 2:7IxiI2)1/2 :::; D I/2 /Po(f) if f(x) = 
O. 

The following gives us the affine condition numbers in terms of the projective 
ones. 

Theorem 2. Let f E 9J(d) , ~ E e. Then 

tJ(f,~):::; 11~llltJproj.(f, (1, ~)). 

Corollary. Let f E 9J(d) , x E en with f(x) = O. Then 

DI/2 
tJ(f, x) :::; Po (f) p(f , x) , 

DI/2 
tJ(f) :::; Po(f)p(f)' 

The corollary uses both Theorems 1, 2 and the proposition. This yields 
another version of Theorems 1 and 2 of the previous section. 

We summarize this section by reviewing what must be proved in Chapter IV. 
These results are Proposition 1, Theorem 1, Proposition 2 and Theorem 2. 

CHAPTER II: THE ABSTRACT THEORY 

II-I. POINT ESTIMATES 

We prove the results stated in §I-2. The proof of the first part of Theorem 1 of 
§I-2 is given. We proceed directly with a general result which is rather technical 
sounding. It is used in proving all of the theorems of §I-2. 

Use the basic notation of §I-2 and besides let 
2 l.fI(c, u) = 1 - 2(c + l)u + (c + l)u . 

Proposition 1. Let f : Dr(z) -+ IF be an analytic map and z' E Dr(z). Let 
P = P(f, z), p' = P(f, z') and c, <5 > 0 satisfy 

IIDf(z)-;~kf(Z)11 :::; c<5 k- l , k = 2,3, .... 

If u = liz - z'lI<5 and l.fI(c, u) > 0, i.e., u < ~/(c + 1), then 
2 

p' :::; ~(~,u~) (p + (1 ~ u + 1) liz' - Zll) . 
~I if' C ,,' J h lYJ.oreover,l c = fII(C,U) ' u = I-u' t en 

IIDf(z')-;~k f(z')11 :::; c'(<5'/-1 k = 2,3, .... 

Finally, if K = P<5, K' = P'<5' , then 

, (I - u) ( (CU )) 
K :::; l.fI(c, u) K + 1 _ u + 1 u . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



476 MICHAEL SHUB AND STEVE SMALE 

Note that the /C' estimate is a consequence of the p' estimate and the defi-
nitions of J' , /C, /C' • 

We write down the special case of Proposition 1 for c = 1 and J = y(f, z) . 
Let IfI(U) = 1fI( 1, u) . 

Proposition 2. Let f: Dr(z) -> IF be analytic, z' E Dr(z) with lfI(u) > 0 where 
U = liz' - zlly(f, z). Then 

, (l-u) , 
P(f, z)::; IfI(U) ((1- u)P(f, z) + liz - zll), 

(f ') < y(f, z) 
y ,z - lfI(u)(I-u) ' 

(f ') (1 - u)a(f, z) + U a ,z ::; 2. 
lfI(u) 

This proves Proposition 1 of §I-2. 
We now prove Proposition 1. 

Lemma 1. Let A, B : IE -> IF be bounded linear maps with A invertible such 
that IIA-IB - III < c < 1. Then B is invertible and liB-I All < I~C. 
Proof. Using the series I~X = 1 + x + x 2 + ... for Ilxll < 1, A-I B = 1-
(I -A-IB) is invertible. So B is invertible and IIB-IAII = II(A-IB)-III::; I~C. 

The following very easy lemma is left to the reader to prove. 

Lemma 2. 
IfI(C, u) = l-C( (_1 )2 -1). 
(l-u)2 l-u 

If IfI(C, u) > 0, then c(( l~u)2 - 1) < 1. 

Lemma 3. With notations and hypotheses of Proposition 1 
(1) D f( z') is invertible, 
(2) IIDf(z')-1 Df(z)11 ::; (1 - U)2 /1fI(c, u), 
(3) IIDf-l(z')Dk f(z')/k!11 ::; C'(J,)k-l. 

Proof. The Taylor series of Df(z') about z is 

So 

k f ' k-l 
Df(z') = Df(z) + L D (~t~ ;)t) 

k=2 

IIDf(z)-1 Df(z') - III::; L kIIDf(Z)~;Dkf(Z)IIIIZ' _ zllk-l 
k=2 

::; C L kJk-11Iz' - zllk-l 
k=2 
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This bound is less than 1 by Lemma 2 and thus Lemma 1 applies to yield 

f ' -I f 1 liD (z) D (z)ll::; 1 _ c(( l~u)2 _ 1) . 

By Lemma 2 we obtain Lemma 3 parts (1) and (2). 
For part (3) of Lemma 3 we use part (2) as follows. 

IIDf(z')-~~k f(z') II::; IIDf(Z')-IDf(Z)1111 L Dfk~)-I Dk+~{(Z) (z' - z{11 
1=0 

::; (l-u)2L(k~:)!Ct5k+I-IIIZ'_ZIII 
lfI(c, u) 1=0 k.l. 

2 
c(1 - u) 15k-I L (k + I)! 1 

::; IfI(C, u) k!l! u 
1=0 

C - U t5k-1 C u (1 )2 (1 )k+1 ( .. )k-I 
::; lfI(c, u) 1 - u ::; lfI(c, u) 1 - u 

::; c' (t5,)k-1 

proving Lemma 3. 

By Lemma 3 it is sufficient for the proof of Proposition 1 to estimate p' , or 
the first part of the following lemma. 
Lemma 4. 

(a) IIDf(z)-1 f(z')11 ::; P + (lC::u + 1)llz' - zll· 
(b) Let z' = z-Df(z)-lf(Z). Then 

-I , CU, 
IIDf (z)f(z )11 ::; 1 _ u liz - zll· 

Proof· 

IIDf(z)-1 f(z')11 ::; IIDf(Z)-1 (f(Z) + f: Dk ~(Z) (z' - z/) II 
k=1 

::; IIDf(z)-1 f(z) + z' - zll + f: IIDf(Z)-~!Dk f(z)lIlIz' - zllk . 
k=2 

But 

f: IIDf(z)-~~k f(z)lIlIz' - zllk ::; (f: ct5k- Illz' - zllk-I) liz' - zll 
k=2 k=2 

CU , 
::; 1- ullz - zll· 

To prove (b) note that in this case IIDf(z)-lf(z) + z' - zll = O. For (a) we 
have 

-I' , CU, 
IIDf(z) f(z)lI::; P + liz - zll + 1 _ u liz - zll· 
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This proves Lemma 4. Proposition 1 follows, 

pi = IIDf(zl)-lf(zl)1I ~ IIDf(zl)-IDf(z)IIIIDf(z)-lf(z')11 

(1 - U)2 ( I CU I ) 
~ ( ) P + liz - zll + -1 -liz - zll I/Ic,u -u 

by Lemma 3 and the above. 

Proposition3. Under the conditions of Proposition 1, let z' = z-Df(z)-lf(z). 
Then 

I pc P ~ ( )K(I-K). 1/1 C, K 

Moreover take t5 = y and C = 1, to obtain 

as in Smale [29]. 

Note that for 

we have u = K and 

y' < y 
- l/I(a)(1 - a) , 

P' < pa(l-a) 
- I/I(a) , 

2 
I a 

a <--
- l/I(a)2 

I -I 
Z = Z - Df(z) f(z) 

p(ZI) = IIDf(zl)-lf(zl)11 

~ IIDf(zl)-IDf(z)IIIIDf(z)-lf(z')11 
2 (l-u) cu I 

~ I/I(C, u) . (1 _ u)llz - zll 
< CK(I-K) P 
- I/I(C, K) 

using Proposition 1 and Lemma 4(b). Now recall that for t5 = y we may take 
C = 1 and K = U = a. Thus the inequality for y' follows from Proposition 2, 
the inequality for pi from the above both by substitution and the inequality 
for a ' by multiplying the inequalities for y' and pi . This proves Proposition 
3. 

We next make a change of variables from C to a as follows: 

CK a= --~ 
(I-K)2' 

I I 
I C K a = -------=-

(I-K' )2· 

1 O<a<-, - -4 

We are continuing the use of notation from Proposition 1. 
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Proposition 4. Under the hypotheses of Proposition 3, 
( ) K' < (JK a _ 1-2(J+(JK' 

(b) p' < P(I-K)(J « (J P) 
- 1-2(J+(JK - 1-2(J , 

( c) (J' s: ( 1 !2(J ) 2 . 

Proof. Observe that 
If/(C,K)_12 ---:::-2 - - (J + (JK. 
(1 - K) 

479 

Then (b) follows from Proposition 3 and an easy substitution, and (a) follows 
from (b) since K' = p' J' and J' s: 1 ~K by Proposition 1 recalling that u = K . 

It remains to confirm (c). 

Let If/ = If/(c, K). Then 

But 
(I_K)2 (I-K)2 

---'---------'--;--, < 2 
If/( 1 - K ) - If/ - CK I - 2cx / (I - K) 2 1 - 2(J 

proving Proposition 4 from Proposition 3. 
We now suppose the hypotheses of Theorem 1 of §I-2. 

Proposition 5. For ° s: (J s: i, let ° s: A s: 1 satisfy (J = A/( 1 + A)2. Then 

k=O,I,2, .... 

For the proof of Proposition 5, we use the following lemma. 

Lemma 5. Let Pk = P(f, zk) and (J) be the jth iterate under (J --> (1~2(J)2 of 
(Jo = (J. Then 

(a) Pk s: n~:d (l-"l(Ji)P , 
(J 2) 

(b) (t=ia) s: ic . 
i 

S· nk-I 12i 12k -I P .. 5 . f hIM lOce j=O /I. = /I. ,roposltlOn IS a consequence 0 t e emma. ore-
over, (a) is a consequence of Proposition 4(b). Note that 

, ( ).j(I+A)2 )2 
(J s: 0 

I - 2A/(l + ).r 
It follows that 
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But since 

we have 

proving (b) of the lemma. 
Take c = 1 . Then K = a and 

a A 
a=------,,-

(1-a)2 (I+A)2' 

Choose A = !, so a = a o = t(13 - 3v'I"7) and Proposition 5 implies the first 
part of Theorem 1 of §I-2. Recall that the rest of Theorem 1 follows from 
Theorem 2. The next section is devoted to a proof of that theorem. 

11-2. THE DOMINATION THEOREM 

For the proof of the domination theorem (Theorem 2 of §I-2), we will use 
some lemmas. The first concerns the monotonicity of the functions defining the 
inequalities in Proposition 4 of the previous section. Let 

aK 
K(K, a) = 1 2 ' - a+aK 

p(I-K)a 
B(p,K,a)= 1 2 ' - a+aK 

S(a) = C ~2a r 
Lemma 1. Suppose 0 :s; K t :s; K2 :s; 1, O:s; at :s; a2 :s; t and 0 :s; Pt :s; P2 · Then 

(a) K(a t , K t ) :s; K(a2 , K 2 ), 

(b) B(P t , K t , at) :s; B(P2 , K t , at), 
(c) S(at):S; S(a2 ) , 

(d) S(at):s; t, O:s; K(a t , K t) and O:s; B(P t , K t , at)· 
Proof. For (a), (b), (c), compute the derivatives of K, B, S with respect to the 
appropriate variables and note that they are nonnegative. The proof of (d) is 
straightforward. 

Next introduce the functions 
2 K 2 (I-K) pt 

hp K a(t) = P - t + a-1- K-· 
, , K - pt 

We have purposefully not simplified the expression for ease of manipulation. 
By direct calculus we prove 
Lemma 2. 

(a) Dhp,K,(J(t) = -1 + (1~K)2a(_1 + 1/(1- ~t)2), 
(b) 

D(i)h (t) (I_K)2 (~)i-t 
P ,K , a = a p for i ~ 2 , 
i! K (1 _ ~t)i+t ' 
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(c) hp,K,,,(P) = a(l - K)P, 
(d) Dhp,K ,,,(P) = -( 1 - 2a + Ka). 

Let 
T(P, K, a) = (B(P , K, a), K(a, K), S(a)) 

and B j (P , K, a) be the P component of the jth iterate T j of T. 

Lemma 3. 

where (P', K', a') = T(P, K, a). 

481 

Proof. We prove this algebraic identity as follows: the Taylor senes for 
hp,K,,,(s + P) is: 

using the previous lemma. 

hp,K,,,(s+P) a(l-K)p +s- as '"'( KS )i-I 
-hp' (P) - 1-2a+Ka - K(1-2a+Ka) ~ (l-K)P 

,K," 1~2 

a (~)S2 

K( 1 - 2a + Ka) (1 - P(IK_K)S)' 

Comparing terms finishes the proof. 

Newton's method has the following basic property. 

Proposition 1. Let L be a linear automorphism of IF', A : IF' -+ lE an affine 
isomorphism, U c lE, and f: U -+ lE. Then 

-I 
NL.f.A=A NfA. 

Let Tr(b) denote the translation by b. 

Lemma 4. 

for n ~ 1. 
Proof. For n = 1 

Tr(-p)Nh Tr(p) = N = Nh ' 
P . K. U g T(P . K. u) 
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The first equality follows from the last proposition and the second equality from 
Lemma 3. Now induction finishes the proof. 

Recall that in the setting of the domination theorem we have 

yt2 a 
hp y(t) = P - t + -1-- = hp (1 (t) where a = 2 , -yt ,ll,~ II (I-a) 

and tn is the nth iterate of 0 by Newton's method so tn = N: (0) . 
p,a,an 

Lemma 5. For n ~ 1 
n-I tn - tn_ I = B (P, a, all)' 

Proof. For n = 1, this is obvious. Since to = 0, induction gives us at stage 
n - 1 that 

n-2 
tn- I = 'LBi(P, a, aJ. 

i=O 

It follows from Lemma 4 that 

substituting (*) gives 

Nh "-I (0) = Nh (tn_I) - tn_ I = tn - tn- I 
T IP ,0, .0) IP ,0 '·0) 

where the last equality is the definition of tn' Now Bn-I(P, a, all) is by 
definition the p component of T n- I (P , a, all) so 

Proof of the Domination Theorem (Theorem 2, §I-2). By Proposition 4, §1I-1, 
Lemma 1 and induction it follows that 

n-l P(f, x n_ 1) ~ B (P, a, aJ for n ~ 1. 

Now Ilxn - xn_III = P(f, xn- I) by definition and Bn-1(P, a, aJ = tn - tn_ 1 
by Lemma 5; thus Ilxn - xn_111 ~ tn - tn-I' 

11-3. ROBUSTNESS 

Here we give the proof of Theorem 3 of §I-2. Toward the proof of Theorem 3 
consider the function a(t) = r(t) - t with r(t) = (l + t - J(l + t)2 - 8t)/4 as 
usual. 
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Lemma 1. The map a is a differentiable homeomorphism, 
where to = 3 - /8, Uo = 3~-4, a'(t) > 0, t E (0, to)' 
Proof. It is easy to check that a(O) = 0, a(to) = uo' 

a : [0, to] ---+ [0, uo] 

, 1 (3-t ) a (t) = 4 J 2 - 3 > 0, 
1 - 6t + t 

0< t < to' 

a' (0) = 0, a' (to) = 00. Thus a-I : [0, uo] ---+ [0, to] is well defined and 
differentiable on the interior. 
Lemma 2. Suppose b > O. The function a(~s) = r(bsl-bs is monotone increasing 
for O<s~ ¥. 

It is sufficient to show that this function has a positive derivative. We leave 
this as an exercise fqr the reader. 

Define 
( ) _ t(1-u)+u 

st,U- 2' 
lfI(U) 

We remind the reader that 
2 lfI(U) = 2u - 4u + 1. 

2 

Lemma 3. The functions (~(:? and (~(U)) are monotone increasing for 0 ~ u < 
1 - ..j2 2 . 

Once again check the positivity of the derivative. 
Lemma 4. s(t, u) is monotone increasing in t and u for 0 < t ~ 1 and 
0<u<1-1· 

The numerator increases and the denominator decreases to zero in this range. 
Let 

lfI(U)2a -1 ('I'(U)(I-U)) - u 
a(u) = 1 -u 

for 0 ~ u ~ ul where ul is defined by Ulllfl(UI)(1 - ul ) = uo' 
Note for 0 ~ u ~ uI ' a(s(a(u) , u)) = 'I'(u)(I-u)' The following is straight-

forward. 
Lemma 5. a(O) = 0, a(u l ) < 0 and a'(u) > 0 forsmall u > O. 

Definition. Let u be the first positive zero of a' (u) and a = a(u), 

U = 0.02207 ... , a = 0.08019667 .... 

Let G(y, u) = 'I'(U)[I-U) for 0 ~ y and 0 ~ u < 1 -1. Let s = s(a, u) and 
G = G(y, u). 
Lemma 6. As in Theorem 3 (§I-2) let a = Py, P = P(f, 0, y = y(f, O. Let 
also ax = PxYx' Px = P(f, x), Yx = l(f, x). Suppose a ~ a, y ~)" u ~ u 
where u = yllx - '" and P ~ ~. Then 

a(aJ < a~). 
Ix - G 
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Proof. 
_a(_ax_) < a(PxG(y, U)) < _a(~pX~G_) 

yx - G(y, U) - G 
by Proposition 2 of §II-l, Lemma 2 applied twice and the monotonicity of G. 

Now 

pxG(y, u) ~ (~(U~) ((1 - u)P + Ilx - (II) Ij/(U)tl _ u) 

by Proposition 2 of §II-l again. This is 

«(1-U)2 a +(1-U)U) 1 
- Ij/(u) Ij/(u) lj/(u)(l - u) 

by the hypotheses, and is 

< ((1_U)2 _ (l-U)U) 1 ____ _ 
- Ij/(u) a + Ij/(u) lj/(u)(l _ u) - s(a, u) - s 

by Lemma 3. By Lemma 2 a(PxG) ~ a(s) and thus a(ax)/yx ~ a(s)/G. 
Proof of Theorem 3 (§1-2). By Theorem 1 (§1-2) 

a(a) a(s) 
IIxl -~III ~ _x_ ~ G by Lemma 6 

yx 

= ~ by the definition of sand G. y 

CHAPTER III: REDUCTION TO THE ANALYSIS 
OF THE CONDITION NUMBER 

Here we give the proofs of the statements in §1-3. Some references back to 
that section are inevitable. 

111-1. THE HIGHER DERIVATIVE ESTIMATE 

Our main goal of this section is to prove the estimate on y of Proposition 3 
of §1-3 and Proposition 5 of that section. We start with 

Proposition 1. Let f : Cn+ I -+ C be a homogeneous polynomial of degree d. 
Then 

If(x)1 ~ Ilfllllxlld for all x E cn+ l . 

Proof. Let x E Cn+1 and y = (1Ixll, 0, ... , 0). Take a unitary automorphism 
V d"'n+1 • f' V-I Th : Il..- ~ satls ymg y = x . en 

If(x)1 Ifv- I (Vx)1 Ig(y)1 
~ 

= 
Ilxlld IiY"Ir 

where g = fV- 1 = La baxO: and Ilgll = IIfll by Proposition 1 of §1-3. We 
have 

I ( )1 Ib Illxlld 
~ = d,O, ... ,O = Ib I ~ Ilgll = IIfli. 0 IIYlld IIYlld d 0, ... ,0 
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Proposition 2. If f E lE(d)' then 11L1(llxll-d')f(x)11 ~ IIfll· 
Proof. From the previous proposition we know that 

i = 1, ... , n. 

Just square both sides and sum over i. 

Proposition 3. Let f be a homogeneous polynomial of degree d. Then 

IIDk f(x)(w l , ... , wk)1I ~ d(d - 1)··· (d - k + 1)lIfllllxlld-kllwllI'lIwkll 

for all x, Wi E cn+ I . 

The proof uses two lemmas. 

485 

Lemma 1. Let U: Cn+1 ~ Cn+1 be a unitary automorphism, f: Cn+1 ~ C a 
homogeneous polynomial and x, w E Cn+ I . Then 

D(f 0 U-I)(U(x))(Uw) = Df(x)(w). 

The lemma follows from the chain rule, 

D(f 0 U-I)U(x) = Df(x)U- I. 

Apply this to U w . 
Next let g; be the space of homogeneous polynomials Cn+1 ~ C and f E 

g;, W E Cn+ l . Then Df(x)(w) is a polynomial of degree d - 1 in x and 
can thus be considered as an element say Df(w) of g;_1 . 
Lemma 2. IIDf(w)lIg: ~ dllfllg:llwll. 

d-I d 

Here the subscripts on the norms are temporary. It is sufficient to prove 
Lemma 2 for IIwll = 1 by scaling and then for w = eo = (1,0, ... ,0) by 
choosing unitary U with Uw = eo and using Lemma 1 together with the 
unitary invariance of the norm. 

Then since 

we have 

This proves Lemma 2. 
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Note considering D2 f(w l ' w2) as a polynomial in x we have from Lemma 2 
applied twice 

and similarly by induction: 
k 

liD f(w l , ... ,wk)llg: :::; d(d - 1)··· (d - k + 1)llfllg: Ilwlll" ·llwkll. 
d-k d 

Now apply Proposition 1 to obtain the assertion of Proposition 3. 

Lemma 3. Let d 2: k 2: 2 be positive integers. Then 

( d(d-l) ... (d-k+ 1))I/(k-l) 
max 
bl d l / 2kl 

is at k = 2. 
Proof. Observe 

( k-l (d_i))l/k-l > d-k 
IT i+l k+l i=l 

for 2 < k :::; d since each of the k - 1 terms in the product is bigger than t7 . 
Now for 2 :::; k :::; d - 1 

(d(d-l) ... (d-k+l))l/(k-l) k 1/2(k-lJ k-l d-i l/(k-l) 
( dl/2k! ) = d (TIi=1 (T+T)) > 1 

(d(d-l)---(d-k))l/k d-k . 
d1/2(k+I)! k+l 

Thus 
d(d-l)···(d-k+l) l/k-l 

( d 1/ 2kl ) 
is a decreasing function of k . 

Lemma 4. Let f: Cn+ l ---+ C be a homogeneous polynomial of degree d. Then 

( IIDk f(x)(w l , ... , wk)11 ) I/(k-l) d 1/ 2(d - 1) 
dl/21Ixlld-kklllfllllwlll" .llwkll :::; 2 

for every k > 1 . 

This follows from Proposition 3 and Lemma 3. Recall from the introduction 
that D = max(di ) . 

Theorem 1. Let f E £(d) and x E Cn+ j . Then 

( 11~(IIXlldi-kdi-l/2)-IDkf(X)II)I/(k-l) < Dl/2(D_l) < D 3/2 

klllfil - 2 - 2 . 
Proof of Theorem 1. By the definition of II II, 

( 11~(IIXlld,-kdi/2)-jDkf(X)II) l/(k-l) = ( ( IIDk .t;(X)II. )2) 1/2(k-l) 
klllfil L Ilxlld,-k k111flld,l/2 
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and by Lemma 4 

( (( d//2(dj _ 1))k-III.t;II)2) I/2(k-l) 
::; L 2 IIfll 

DI/2(D - 1) 
::; 2 . 0 

We next prove Proposition 3 of §I-3. 
For f: en -> en , x E en , 

yo(f, x) = y(f, x)llxll l 

II Df(x)-' Dk f(x) II'/(k-I) 
= max k' Ilxll, k>I . 
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II 
D f(x) -I /!,.(dl/2)/!,.(llxlldi-1 )/!"(d~'/2)/!"(llxll-(di-k))Dk(f) III/(k-I) 

= max I I I I 
k>1 k! 

I/(k_I)D3/2 
::; maxJ1(f, x) -

k>1 2 
by Theorem 1. The last is less than J1(f, x)D3/ 2/2 since J1(f, x) ~ 1. This 
proves the first part. The proof of the second part is essentially the same. 
Lemma 5. Let A, B : lE -> IF be bounded linear maps of Banach spaces where 
B is invertible, and IIA - BIIIIB-'Il < 1. Then A is invertible and IIA-III ::; 
IIB-III/( 1 - IIB-'IIIIA - BII). 
Proof. III - AB-III ::; IIA - BIIIIB-III so, by Lemma I, §II-I, 

IIBA-III < 1 and IIA-III < IIB-IIIIIBA-III. 
- I -IIA - BIIIIB-III -

We next prove Proposition 5a of §I-3. For Ai- 0, A E e, 
)J.(g, (J = )J.(J...g, () = 11(~(di-I/211"1-(di-I))D(J...g)IN (O}-IIIIIJ...gll 

eo 
11(~(rl/211(11-(d,-I)JDfl (O}-IIIIIJ...gll 

< I ~ 

- I _11~(rl/211(11-(di-I))D(f - J...gJI ,mllll(~(rl/211(11-(d,-I))Dfl (O}-III 
I !'tI eO I NeO 

by Lemma 5 as long as the denominator is positive. Thus 
(f r) IIA.gll < J1, .. li7iI 

J1(g, 0 - 1 -11/!"(d//2)(f - ).g)IIJli&'II() 

which follows from Proposition 3, and 
J1(f, O( 1 + II! -i-gll ) 

u(g () < II!II 
. - I - DI/211! -)·gll J1(f r)' 

II!II ' .. 

We apply the last inequality to that A for which dp(f, g) = 11.~~lll which by 
hypothesis makes the denominator positive. 

The proof of 5 (b) is the same replacing J1 by J1 o' and Ne by Null.. 
pr J. 0 <, 
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111-2. ANALYSIS OF PROJECTIVE NEWTON METHOD 

We give the proof of Theorem 3 of §1-3. Part of this proof is very similar to 
that of Theorem 3 of §1-2 in §1I-3, where we use the same notation. 

For 0 ::; a ::; a o' 0::; U < 1 - 1- ' let 

, 2((I-U)a+U) 2 a(u, a) = (K(U, a)) 2 = K(U, a) S(a, u) 
Ij/(u) 

where 
_ (1 +U2)1/2 
K(u,a)= 2 2 2· 

1 - u((2u - U )/(1 - u) + 2a)(1 - u) /Ij/(u) 
For each u let a(u) be the maximum of a such that 

( ')(1 (;:;;2(')) K(u,a)u a a + V L.! a ::; lj/(u)(1 _ u)" 

Recall that a(t) = r(t) - t is defined in §1I-3. 
Let a proj. be the maximum of a( u) (over u) and Uproj. the least u such 

that a(u) = a proj .. 

Lemma 1. Both a proj. and Uproj. are defined uniquely and are positive. Moreover 
approximately 

a proj . = .07364 ... , Uproj. = .0203 .... 

The proof is very close to the proof of Theorem 3 of §1-2 in §1I-3. One must 
check the monotonicity and boundary conditions of K. We leave the details to 
the reader. 

Proposition 1. Let f E Jf(d)' x, ( E e+ 1 with x E N, where N, = (+ Null" 
Nx = x + Nullx ' Null, = {v E Cn+1 I (v, () = O} etc. Let ro = 111i'lf", 
U = royo(fIN ' o. Then IIDf(x)I~' Df(x)I N II ::; K where , x, 

(l+r~)1/2 
K= ----------------~----------~----

1 - ro((2 - u)u/(1 - U)2 + Dllfl)(1 - U)2/Ij/(U) 

where Il = Ilproj. (f, 0, fI = fI(f, 0 and as long as the denominator remains 
positive. 
Proof. For the proof we use a series of lemmas. 

Lemma 2. Let L : Cn+1 --t en have rank n. Suppose Cn+1 = Vn ED Vi as 
unitary direct sum where V n has dimension n and Vi dimension 1. With 
respect to this splitting write L(x + y) = Ax + By, A = L/Vn , B = L/Vl . 
Let W n be an n-dimensional subspace of cn+1 which is given as the graph of 
a linear map a: v n --t Vi , 

w n = {(x, a(x)) I x E V n }. 
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If A is invertible and IIA- 1 Ball < 1 then L I W n is also invertible and 

II(L I Wn)-I AII ::; (1 + 110'112)1/2 . 
1 - IIA- 1 Ball 

Proof. We wish to solve the equation 
n -I 

(L I W) A(v) = x + a(x) 

where x E V n or 
(L I Wn)(x + a(x)) = A(v) 

or yet 
Ax + Ba(x) = A(v). 

Inverting A we have 
-I 

x+A Bax=v. 

This last equation can be solved for x by (1 - t) -I = 1 + t + t2 + ... , 
x = (I + A-1Ba)-I(v) and Ilxll ::; I-IIAI1Ballllvll. Finally since Ilx + a(x)11 ::; 

(1 + IlaI12)1/21Ixll, multiplying gives 

Ilx + a(x)1I ::; (1 + IlaI12)1/21Ivll. 
1 - IIA- 1 Ball 

Lemma 3. Let x E Null(()+(. Then Nullx is the graph of a: Null(O ----> q TIh) 
where 0'( w) = - (w 11(110 . (Here q TIh) means the subspace generated by TIh.) 
Proof. Given w E Null, we want to find a(w) such that (w+a(w)TIh, x) = O. 
Solving for 0'( w) 

\ a(w) II~II ' x) = -(w, x) 

but now 
/ ( ) a(w) \ a(w)m' x = m(((' x - 0 + ((,0) = a(w)II(1I 

and 
(w, x) = (w, x - 0 + (w , 0 = (w , x - 0 

since x - ( E Null, and w E Null, . 

Lemma 4. 
II(DfI N (X))-I Df(x)xll 

x Ilx II ::; J.lproj. (f, x) 11(f, x )D. 

Proof. Df(x)x = !1(di )f(x) is Euler's identity and 

II(DfIN (x))-'!1(d)f(x)11 
x 

Ilxll 
::; II (D fl Nx (x)) -1!1( d//21Ixlld,-I) 1111!1( d i ) 1111!1( d i- I /2 11x II-d, )f(x) II 
::; J.lproj.(f, X)l1(f, x)D. 
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Lemma 5. Let x E N,. Then 

II(DfIN,(x))-IDf(x)(11 ~ 11'11(11j/(~)2 (flproj.U, 011U, OD+ ~~=:~~). 
Proof. 

II(DfI N, (x)) -I D f(x)(11 ~ II(D flN~ (x)) -I D fiN; (()IIII(D fiN, (0) -I D f(x)(ll. 

The first term of the product ~ (~(~( by Lemma 3, §II-l. The second term 
satisfies 

IIDUIN/())-I Df(x)(11 = II f DUI N, (0)-1 Dk+;{(O (x - (/ (II 
k=O 

(Xl 

~ II(DfIN.(O)-1 Df(O(11 + 11(112)k + 1)(y(Ollx _ "I)k , k=1 
which by Lemma 4 and summation of the series is less than or equal to 

11(11 (flproj.U, 011U, OD+ ( 1 2 -1). 
1 - u) 

Now multiply the two estimates together. 

Proof of Proposition 1. We apply Lemma 2 with 

(w, x -" 
a(w) = - 11(11 ' 

( 
B = Df(x)lmf' 

A = DfIN.(x). , 
Thus lIall ~ ro' 

-I -I II(DfIN.(x))-IDf(x)(llro 
IIA Ball ~ IIA Bliliall ~ '11(11 

(I-U)2( ,.. (2-U)U) 
~ ljI(u) Dflproj U, I., )I1U, 0 + (1 _ U)2 ro < 1 

where the last inequality is a hypothesis of Proposition 1. 0 

Proposition 2. As in Proposition I, let /l, = /lOUIN., 0, /3~ = /loUI I\' ,x) etc. 
ThM " 

(1 - u)(( 1 - u)/l. + ro) 11(11 
/l <I( . ' -, 

x - Ij/(u) Ilxll 
" < I("r', Ilxll 
IX - ljI(u)( 1 - u) 11'11 ' 

1(2((1 - u)n. + u) 
n < ' 

x - IjI(U)2 
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This proposition is a consequence of Proposition 2 of §II-l, and the previous 
proposition. 

Proposition 3. Let x' E N(' where A( is the zero of fiN associated to x 
by Newton's method on fiN and where x' is one Newton iterate of x. (We 
suppose a(fINx ' x) = ax ::; ~o.) Then 

r' = Ilx' - (II < (,(a) - ax) (1 + y'2,(a)) . 
o 11('11 - Yo(x) Yo(x) 

First we prove a lemma. 

Lemma 6. Let (, x' E Nx . Let n(x') be the radial projection of x' into the 
space N(. Then 

(a) 

I 11(112 I 11~'112, 
n(x) = 11(112 _ (~' _ x' , ( _ xI x = (x' , (( . 

(b) If Ilx - (II ~ Ilx' - (II then 

Iln(x') - (II::; Ilx' - (II (1 + y'211~;I~tll). 

Proof. (a) Since (~' - x' , XI = 0, 

11(112 - (( - x' , ( - xI = (x' , (I 

so to prove (a) it suffices to prove (11~1112x'/(x', ~'I - (, n = 0 which is im-
mediate. 

b) 

I I II' (( 11(11 2 1) 'II IIn(x ) - ~ II = x - + 11~'112 _ (( _ x' , ( _ XI - x 

I I II (( - x' , ( - xliii 
::; Ilx - ~ II + 11(112 _ (( _ x' , ( _ x( 
::; Ilx' - ~'II + II (( - x; , ~; - XI x'il 

(x ,0 
< Ilx' _ ;:'11 + Ilx' - (IIIII( - xli Ilx'll 
- '" I(x' , (II 

= Ilx' - (II (1 + II~;(:,~~I~!I;~'II). 

Now we note that 
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which follows from expanding (Xl - ( , Xl - (). Substituting we have by 
Pythogoras 

substituting above yields 

Proof of Proposition 3. Let n(x/) be the radial projection of Xl on N,,( . Then 

and 

Ilxl_(11 
11('11 

by Theorem 1, §I-2. Therefore 

Iln(x/) - Ani 
IIA"II 

IIn(x/) - A(II < r(ax ) - ax (1 + v'2 r(a) ) 
IIA"II - IIAnlyx yxllxll 

by Lemma 6 and since IIA(II 2: Ilxll , we are done. 

After these preliminary results we go directly to the proof of Theorem 3 
(§I-3). So suppose 17 = 17(1, 0 :S aproj.ly J1 as in the hypotheses of the theorem. 
Let 

We will show 

(a) a,:Saproj.' 
(b) K:S K(Uproj., a proj ) = K, 
(c) ax:S a, 
(d) "~:2r"Y:s a(a)(1 + v'2r(a))lf/(uproj )(1 - uproj)/K. 
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First note that (d) with the definition of a proj.' Uproj. yields Theorem 3. 
Next (a) is a consequence of the bounds on '1, Yo and Proposition 2 of §I-3. 
Here is the argument for (b). Observe 

(i) 'oy::; Uproj. by hypothesis and y > 1 so '0 < Uproj. ' 

(ii) U = 'oYo ::; 'oy ::; Uproj. ' 
( iii) 

U· a· D ,DJ.l.'1 < pro]··D pro]. = -u .a . < U .a . o - y Y y2 pro]. pro]. - pro]. pro]. 

by the hypotheses. 
Finally note that iC(U, a) is monotone in U and a, as long as the denominator 
doesn't vanish. 

Part (c) is a consequence of Proposition 2 and (a), (b). 
For (d) we have by Proposition 3 that 

II x' ~ (II < a(ax ) (1 + y'2r(aJ ) . 
lie II - Yox YOx 

By Proposition 2 
KYO, IIxll 

YOx ::; ljI(u)(1 - u) m 
so by (ii) and the monotonicity of K, If/(U){l u) and the hypothesis that Yo, ::; Y 
we have 

Let 
-( )M 

H(y) = K a proj.' Uproj. 11'11 y. 
IjI (uproj.)( 1 - Uproj ) 

Then by Lemma 2 of §II-3 and the assumption that ax ::; ao ' 

a(aJ < a(PoxH(y)) 
YOx - H(y) . 

By Proposition 2 

P H(-) < K(l - u)((l - u)P, + '0) K(aproj., upro)y . 
ox Y - ljI(u) ljI(uproj.)(1 - u proj ) 

Then Po, ::; aproj.ly by Proposition 2 of §I-3 and the hypothesis that n J.l.proj ::; 

apro/Y. Also by hypothesis 'oy < Uproj .. Thus by Lemma 3 of §II-3 and (b) 

By Lemma 1 of §II-3 

Thus 

PoxH(y) ::; a(uproj. ' a proj ) = a. 

a(aJ a(a) --<--YOx - H(Y)· 
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As ** 2: 1, 
K(a .,u.) H(-) > proJ. proJ. -

y - ( )( 1 - ) Y If/ uproj . Uproj . 

and we have 
a(a) < a(O:)If/(uproj )(l - Uproj ) 

Yox - YK(aproj., uproj) . 

Now we consider the term r(a)/yox' By Lemma 2 of §II-3 r(bs)/s is also 
monotone increasing in sand r(t) is monotone in t by Lemma 1 of §II-3. 
Thus as above 

r(ax ) r(o:) ---- < ~~~~~ YOx - YK{<>proj., uproj) 
\If(upro)(I-upro) 

since Y 2: DI/2 2: 1, K(aproj., Uproj ) > 1 and If/(uproj.)(l - uproj ) < 1 the 
denominator is > 1. Hence r(ax)/yox ::; r(O:). And 

(* * *) (1 + .;2r(ax )) ::; (1 + .;2r(O:)). 
Yox 

Multiplying (**) and (* * *) and substituting in (*) finishes the proof of (d) 
and hence the theorem. 

CHAPTER IV: CHARACTERIZING THE CONDITION NUMBER 

IV-I. THE PROJECTIVE CASE f.L = 1/ p 

In this section we prove Theorem 1 of §I-4. We begin with the same notation 
and a preliminary proposition. 

Given two n-dimensional complex vector spaces ~, V; with Hermitian 
structures and a linear map A : ~ ---+ V; we define the Frobenius norm of 
A, IIAIIF as IIMIIF where M is a matrix representation of A with respect to 
any orthonormal bases of VI and V;. By the following standard lemma, IIAIIF 
is well defined. * 

Lemmal. Let A, ~, V; be nxn matrices with ~, V; unitary. Then II~AV2I1F 
= IIAII F · 

Let 01= x E Cn+1 . Let Lx(Cn+1 , Cn) be the subspace of linear maps vanish-
ing at x . Let ~ C 7i(d) be the subspace of maps f = u; , .. , , fn) of the form 
~(z) = ((z, x}di-I /(x, x}d,-I)L i and L = (L I , ... , Ln) E Lx(Cn+! , Cn). Let 
Dx : 7i(d) ---+ L(Cn+ l , Cn) be the derivative f ---+ Dxf. Recall Vx = {f E 

7i(d) I f(x) = O}. For f E ~, Dxf(x) = 0 since f is constantly zero on 
the ray through x. Thus we may consider Dx : ~\" ---+ Lx(Cn+! , Cn). Let 
Gx = {f E Vx I Dxf = O} . 

• IIAIIF is the same as the Hilbert-Schmidt norm (trace(A* A))1/2 . 
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Proposition 1. (a) Vx in the Hermitian direct sum s: EB Gx ' 

(b) For hE S:' Ilhll = 11~(d,-1/21Ixll-(di-I))Dh(x)INUl1)F' 
For the proof of this proposition we prove two lemmas. 
L trn+1 trn+1 b . f' d et u : IL- --+ IL- e a umtary trans ormatlOn an 

induced isometry u(f) = f ° U -I . 

Lemma 2. Let u : en+1 --+ en+1 be unitary. Then 

(a) u(S:) = 2;.x' 
(b) u(G) = Gux ' 

Proof. (a) Let f E s: so 

f = u; , ... , f n ), 
( )d -I 

J(z) = z, x ' L(z), 
I ( )d -I I x, X ' 

495 

with L = (LI' ... , Ln) E Lx(en+1 , en). But then Lou- I = (LI ou- I , ... , Ln o 
-I) (n+1 n) d f -I {' -I f- ' u E Lux e ,e an ° u = (J IOU , ... , n ° U ) where 

( -I )d-I (d-I 
f -I() U z,X' L -I() z,ux)' (L -I) 

i ° U Z = d -I' i ° U Z = d -I ° U iZ. 
(x, x) , (ux, ux) , 

This shows u(S:) c 2;.x' but as u- I = u- I , U-I(~) C s: and u(S:) = 
2. ux 

(b) By the chain rule, D(f ° u- I (u(x))) = 0 iff Df(x) ° u- I = 0 which holds 
iff Df(x)=O. 

Lemma 3. Let L E Lx(en+1 , en) and f(z) = U; (z), ... ,In(z)) where f(z) = 
((z, X)d,-I/(X, x)d,-I)Li(z). Then 

(a) Df(x) = L, 
(b) Ilfll = 11~(d,:-1/21Ixll-(d,-I))Df(x)INUll, II F · 

Proof. (a) f(z)=~((z,x)di-I/(x,x)d,-I)L(z) so 

Df(x)v = ~(D( (z, x):'=:) (X)v) L(x) + ~((X' x):'=:) L(v) 
(x,x)' (x,x)' 

=O+L(v). 

(b) Let u be the unitary transformation mapping x to Ilxlleo' 
By Lemma 2 

where 
_d,-I n 

h(z) = "-0 '\' az, 
I . Ilxlld,-1 ~ IJ J 

and where 
n 

-I L Lou = a .. z .. I I j j 

J=1 
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Thus 

by Lemma 1. 

Proof of Proposition 1. (a) Dx: Vx --+ Lx(Cn+1 ,Cn) is linear. The kernel is Gx 
by definition, and Dx : ~ --+ L)Cn+1 , Cn) is an isomorphism by Lemma 3(a). 
Thus Vx is the direct sum of ~ and Gx ' We need only check they are 
orthogonal. As ~x = ~ and G).x = Gx for A. E C, A. =I- 0 it is sufficient to do 
this for IIxll = 1 and by Lemma 2 for x = eo' In this case .2; = u; , ... , fn) 

o 
and 

D( Laaz" ) (eo) = 0 
a 

where a o ::; di - 2. Thus for Dg(eo) = 0 all the aij = O. This establishes the 
orthogonality. 

l(b) is Lemma 3(b). 

Proof of Theorem 1. First we prove that f.Lproj.(f, x) 2: pJx): Let (g, x) E ,£' 

be such that p(f, x) = dp(f, g) = "{jff" and let f - g = h. First we claim 
that h E ~. By Proposition I 

h = hy + hG ' h:£. E ~,hG E Gx ' 
x x x x 

and IIhll 2: Ilhy II with equality iff h = h:£. . Since D hG = 0, D(g+hG )(x) = 
x x X x x 

Dg(x) and (g + hG ,x) E '£' but dp(f, g + hG ) ::; Ilh.:l' 11/11fll· Thus Ilhll = 
IIh.2" II and h = h.2" ~ x x 

That g E '£' n v: means that Dx(f - h) is singular or 

L\(di-I/21Ixll-(d;-I))(Dx(f - h)) 

is singular. It follows that 

dF(L\(di-I/21Ixll-(d,-I))Df(x)INUll ,S) 
x 

::; 1IL\(di-I/21Ixll-(d;-I))Dh(x)INull IIF = Ilhll 
x 
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by Proposition 1. By Proposition 1 of §1-4 
-1/2 -(d,-I) -I 1 II (Ll(di IIxll )DI(x)INun) II 2: W 

and hence J1proj.(f, x) 2: ~ = pd,x) . Now we prove the opposite inequality 
I 

J1proj. (f, x) :::; p(f, x)" 

Suppose 1I(Ll(di-I/2I1xll-(d,-I))DI(x)INUll)-11i = K. SO J1 proj(/, x) = KII/II. 
Then by Proposition 1 of §1-4 there is a linear map B : Nullx --> en such that 
Ll(di-I/2I1xll-(d,-I))(DI(x)INUllx - B) E S and IILl(dl~I/2I1xll-(d,-I))BIIF = ~. 

~ n+1 n ~ ~ n+1 n Extend B to B : e --+ e by making B(x) = 0 so B E Lx(e ,e). Let 
Bi be the ith coordinate of Band h = (hI' ... , hn ) where 

d-I ~ 

hi = ((z, x)' I(x, X))Bi(z). 

By Lemma 3(a) DhlNullx = BINUllx = B and 1- h E L' n Vx ' By Proposition I 

IIhll = ~ and p(f, x):::; m = KIII!II = i<proJt!,X)' 

IV-2. BOUNDS ON ZEROS AND THE AFFINE CASE 

We first prove Proposition 2 of §1-4. It follows immediately from 

Theorem 1. Let I E 7lfd) and x f- 0 E e n+ I with I(x) = O. Then 

IXol 1/2 
d(f, LO) :::; W"Ll(di )/11· 

For the proof we first construct a perturbation H E 7lfd)' Let Hi (z) = 

/(x)((z, x)d'/(x, x)d,) be the ith coordinate of H where / is the "highest 
order homogeneous part" of 1;. Precisely /(z) = 1;(z)l zo =o or yet / consists 
of the sum of monomials of 1; which do not contain zO' Note that we have 
immediately that H(x) = j(x) so that 1- H E Lo . 

The theorem is thus a consequence of 
Lemma 1. Under the hypotheses 01 Theorem I 

IIHili :::; :~I: IId:/21;1I. 

Prool 01 Lemma 1. Using unitary invariance of the norm it is easy to see that 

IIHII = 1/(x)1 = _1 (11;(X) - /(X)I) 
I IIxll d, IIxli IIxlld,-1 

IXol Ig(x)1 
Wllxlld,-I 

where zog(z) = 1;(z) - /(z) and degree g is di - I. Thus by Proposition 1 
of sIll-I, IIHili :::; (lxol/llxll)lIgli. 

Thus for Lemma 1 and Theorem 1 it is sufficient to prove 
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Lemma 2. IIgll2 S di 1I.t; 112 . 
Note that all the terms of .t;(x) = L:1al=dj aaxQ where 0:0 = 0 have been 

subtracted off by 1;, and the coefficients of g are the remaining aa with 0:0 
reduced by one, i.e., 

Therefore 

and 

so IIgl12 S dill.t;112. 0 

We proceed to the proof of Theorem 2 of §I-4. 

Lemma 3. Let x, ~ E Cn+! such that (x,~) f= O. Let 1C~ : Cn+1 ---> Null~ and 
1Cx : Cn+1 ---> Nullx be the orthogonal projections. Then 

II 1Cx 1C.; (x) II II ~ X)I 
111C~(x)1I = \ m' N 

and 1C~(X) is orthogonal to Nullx n Null~ . 

Proof. 1C~(X) = x - (~',~)~ . Now if W E Nullx n Null~ then (x, w) and (~, w) 
are both zero, so (1C~(X), w) = 0 and 1C~(X) is orthogonal to Nullx n Null~ . 
Let v = 1C~(X) . 

1C (v) = V _ (v, x) x. 
x (x, X)2 

Note that (v, x) = (v, v) since v = 1C~(X). Thus 1C)V) = v - (11v1l2 IllxI12)X. 
4 

IIvl1 2 = II 1Cx v11 2 + IIvl1411xl12 
Ilxli 

and 
2 2 2 

II 1Cx vll = 1 _ ~ = Ilx - vII by Pythagoras 
Ilv 112 IIxl12 IIxl12 

2 
I (x ~ ~) 12 by the definition of v. 
II~II IIxll 

Lemma 4. Let x, ~ E c n + 1 such that (x,~) f= O. Let 1C~ : cn+1 ---> Null~ be 
the orthogonal projection. Then 11(1C~ I Null )-1 11 = ~. 

~ x I(x .~)I 
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Proof· Let VI"'" vn _ 1 be an orthonormal basis of Nullx nNull.;' Then 
VI' ... , vn ' 7rx~/ll7rx~11 is an orthonormal basis of Nullx and VI"'" vn ' 
7r.;7rx~ is an orthonormal basis of Null.;' Let 

n 7r 7r ~ 
~ ';x 

V = ~aivi + an+lll7r 7r ~II' 
1=1 .; x 

Then 

and 

117r~I(V)11 = (t la/ + lan+112117rx~II2) 1/2 
i=1 117r.;7rx~II 

= (~laI2+la 1211~II2I1Xll2)1/2 '8 1 n+1 I(x, ~)12 

by the previous lemma. This is less than or equal to 1111~ ,'~'i (IIv II) with equality 
if all ai = 0 for i = 1 , ... , n, an+1 =f. o. 0 

Proposition 1. Let A : Cn+1 -+ Cn be linear. Suppose A(~) = 0 and A I Null.; 
is invertible. Let x E Cn+1 such that (x,~) =f. O. Then A I Nullx is invertible 
and 

Proof. 
-I -I 

II(A Nullx) II = II(A I Null.;) 0 7r.; I Null) II 

::; II(7r.; I Nullx)-IIIII(A I NUll.;flll 

and the previous lemma finishes the proof. 

Theorem 2 of §I-4 now follows from Proposition 1. Let 

A = ~(d:I/2)~(II~II-(di-l))Df(~) 

and x = eo' Then IIxll = 1 and (x,~) = eo . 
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