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Introduction
Efficient implementation of arithmetic in finite fields is of primary importance
for cryptography, coding theory, digital signal processing etc. (see, for example
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). In this survey we consider only Boolean circuits for
arithmetic operations in finite fields. Another term: bit-parallel circuits. Boolean
circuits for multiplication and inversion in finite fields are implemented physically
on chips and are tailored for particular applications. These circuits are usually
called multipliers and invertors. In practice the main interest lies in fields of
characteristic two, but some fields of odd characteristic are also involved. In the
last case elements of a field are coded by binary strings. Boolean circuits are
composed from Boolean two-input cells (or gates) AND, NAND, OR, NOR, XOR,
XNOR, connected by wires. Depth of a given circuit is the length of the longest
directed path, connecting primary input and output of the circuit. Complexity of
a given circuit (in other words, size of a circuit) is the number of cells in it. This
notion is very close to the notion of bit complexity of computation (program). All
necessary definitions may be found in [11, 12, 13]. Minimization of the depth and
the complexity of circuits is one of the central and practically important problems
in the complexity theory.

In practice, are often exploited so-called circuits with memory (i.e. finite automata).
Numerous papers deal with finite fields arithmetic implementation on such circuits.
This subject needs in special review and does not included in the survey.

In some theoretical papers on computer arithmetic Turing machines are used
as a computational model. They function via reading and overriding an information
stored on a tape by a reading head (i.e. as an automaton). Various types of Turing
machines are known: multitape, pointer, with memory etc. As far as this concept
is mainly of theoretic interest, it is also omitted in the review.

0This work was supported by the Russian Foundation for Basic Research (grants no. 08–01–
00863 and 08–01–00632–a), Sci. Sch. (4470.2008.1), OMN RAN “Algebraic and combinatorial
methods of mathematical cybernetics” program (project “Synthesis and complexity of control
systems”).
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Computer program is a popular model to implement finite fields arithmetic.
If a program does not include cycles and conditional jumps, it appears in fact to
be nonbranching program. The latter notion can be formalized in such manner,
that it will turn to be identical with the notion of circuit. The execution time
of the program can be roughly estimated by the complexity of corresponding
circuit. To be more accurate, one must keep in mind, that execution time of
different primitive operations on computer differs. Further in the review, some
results concerned with program implementation are also mentioned, though it
can be subject of individual review.

The field of order q is denoted byGF (q). Elements ofGF (qn) may be represented
by polynomials over GF (q) of degree at most n − 1. If elements of GF (qn) are
represented in the standard basis

Bα = {α0, α1, . . . , αn−1}

(the element α ∈ GF (qn) is called the generator of Bα), then multiplication in
Bα amounts to polynomial multiplication modulo an irreducible polynomial g(x)
over GF (q) such that g(α) = 0. If the conjugate elements α, αq, αq

2
, . . . , αq

n−1

are linearily independent over GF (q), then they form a basis

Bα =
{
αq

0
, αq

1
, . . . , αq

n−1
}
,

which is called normal basis with generator α. (Theoretical background on finite
fields may be found in [5, 14].) Complexity of implementation of multiplication
and inversion in GF (q) are denoted by M(GF (q)) and I(GF (q)) respectively. We
also introduce notation DM (GF (q)) and DI(GF (q)) respectively for the depth of
the operations.

Similar notation is used for other operations. Sometimes it is convenient to
consider calculations over subfieldGF (p). For corresponding complexity and depth
measures we use the same notation with upper indices (p) like M (p)(GF (q)) or
D

(p)
I (GF (q)).

1 Integer Arithmetic
Circuits implementing elementary numeric operations (namely, operations modulo
p, where p is prime) are used as building blocks for circuits implementing operations
in finite fields (of order pn). This is why we discuss also some issues related to
implementation of integer arithmetic.

1.1 Addition
At first sight it may be striking, but even the problem of synthesis of efficient (in
some senses) circuits for addition or subtraction is not trivial. Various circuits are
described in books and papers on computer arithmetic. We list some theoretic
results below.

Complexity of addition (subtraction) of n-bit numbers (corresponding circuits
are usually called adders or subtractors) is known to be A(n) = 5n−3, due to N.P.
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Red’kin [15]. Such circuits are easy to built but the lower bound proof is rather
complicated (in [15] the tight complexity of an adder built from conjunctions,
disjunctions and negations is also found).

The problem of minimization of the depth of an adder appears to be complicated
even in constructing aspect. A method due to V.M. Khrapchenko [16] allows one to
build an adder of depth log n+

√
(2 + o(1)) log n (here and further on “log” denotes

binary logarithm); complexity of this circuit can be reduced to (8 + o(1))n [17].
In practice, when n is no more than several thousands, other methods result in
better circuits.

Some techniques for building such adders are presented in [17] (including
ternary method due to M.I. Grinchuk with depth bound 1.262 log n+ 2.05).

Recently M.I. Grinchuk invented the adder with the depth log n+ log log n+
6 [18]. This adder is also the best known for small values of n.

V.M. Khrapchenko’s [19] at 2007 proved the following lower bound for the
depth of an adder (built of AND, OR, NOT cells):

log n+ (1− o(1)) log log log n.

1.2 Multiplication
Numeric multiplication is evidently more complex operation than addition. The
reader can find a comprehensive analysis of theoretical aspects of implementation
of multiplication in [20]. In the present paper we briefly consider both practical
ant theoretic aspects.

Complexity of multiplication of n-bit numbers is denoted by M(n). It is well
known that the complexity of a standard multiplier is 6n2 − 8n + O(1) (clearly,
one should use binary, not decimal, version of the algorithm).

It is less evident, that standard multiplier can be constructed so that its depth
reduced to O(log n) (using a method, proposed independently by G.K. Stolya-
rov [21], A. Avizienis [23], Yu.P. Ofman [22] and C. Wallace [24]).

Minimization of the depth of a standard multiplier is one of extensively studied
problems of computer science. Essential results related to the problem was established
by V.M. Khrapchenko [25].

To the best of our knowledge, the best current asymptotic upper bound is
4.44 log n + O(1) (see [26, 27, 28]). More practical method leads to the depth
estimate 5 log n+5 [29]. This method also provides a benefit in terms of complexity.

The earliest method of reducing complexity of an integer multiplier is due to
A.A. Karatsuba [22] (at that time he was a post-graduated student of Moscow
State University (MSU), the problem was set by A.N. Kolmogorov). He made an
interesting historical review on fast arithmetic algorithms in [30]. The recursive
complexity estimate of Karatsuba’s integer multiplier is

M(2n) ≤ 3M(n) + 52n− 9.

The upper bound for n = 2s is 1

M(n) ≤ 1463
54
· nlog 3 − 52n+ 4.5.

1The bound given in [22] is M(n) = O(nlog 3). Constants in the above and below formulas
were obtained by A.A. Burtsev in the degree work.
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Karatsuba’s multiplier has lower size than a standard one for n ≥ 17. But its depth
is O(log2 n). Similarly to the case of standard multiplier, the depth of Karatsuba’s
multiplier can be reduced to O(log n) (see e.g. [13]). In [31] somewhat better
construction was presented2, but in any case multiplicative constants in estimates
for depth and complexity are exceedingly large for practical applications (the
depth of Karatsuba’s multiplier can be further reduced to (10+o(1)) log n causing
further increasing of the multiplicative constant in estimate for complexity [29]).

Asymptotically better multiplier was constructed by A.L. Toom [32] (at that
time he was a student of MSU, his scientific adviser was O.B. Lupanov). Constants
in Toom’s estimate were subsequently refined, S. Cook in his thesis [34] adapted
the method to Turing machines, A. Schönhage developed a modular method with
similar complexity estimate (reader can find a more detailed review in [33]).

Toom’s multiplier was improved by A. Schönhage and V. Strassen [35] (see
also [37]). The complexity of the last multiplier is O(n log n log log n), and the
depth is O(log n) (more precisely, a bound (9 + o(1)) log n can be achieved [29]).
It was also claimed in [35] that the same complexity estimate is valid for Turing
machine multiplication.

The best known multiplier can be constructed by M. Fürer’s method [38]
(2007), its complexity is

n log n2log∗ n,

but its depth is O(log n log∗ n) (worse than in Schönhage—Strassen’s method).
Here log∗ n is a very slowly growing function defined by

blog . . . log︸ ︷︷ ︸
log∗ n

nc = 1.

In [39] a modular version of Fürer’s algorithm was posed.
Evidently the last two multipliers both can not find applications in cryptography,

due to large multiplicative constants in estimates. Some ways for speeding up
program implementation of Schönhage—Strassen’s algorithm were considered in
detail in [40].

Pollard’s multiplier [1, 41] seems to have more chances for finding practical
applications, but also could not be used in cryptography. It was noted by Ya.V.
Vegner, that the complexity of Pollard’s multiplier is less than Karatsuba’s one
only for n > 222. In that paper bounds 30634n log n+393n for the complexity and
349 log n+ 50 for the depth of Pollard’s circuit was claimed under the restriction
n < 201326604.

Asymptotic efficiency (and practical inefficiency) of all above methods (except
Karatsuba’s and Toom’s ones) relies on multiple implementation of Fast Discrete
Fourier Transforms (either under the complex field or under Fermat residue rings).

From practical point of view Toom’s method is the best known. Using Toom’s
method, A.A. Burtzev has built a multiplier with recursive estimate of complexity

M(4n) ≤ 7M(n) + 662n+ 1085,

which leads for n = 4s, s ≥ 4, to the upper complexity bound

M(n) ≤ 402.5nlog4 7 − 662
3
n− 1085

6
.

2Benefit of this construction was confirmed by V.V. Baev in the degree work.
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In particular,M(1024) ≤ 1279651. Karatsuba’s method gives worse bound in this
case. With the use of technique [31] the depth of Toom’s multiplier can be reduced
to O(n log n).

1.3 Division
The “school” division method allows to built a circuit for division 2n-bit number
by n-bit one of complexity O(n2) and depth O(n log n). Best of known in computer
arithmetic analogous circuits have the same complexity, but depth O(n).

Efficient implementation of division (including depth minimization) seems to
be an even more complicated problem, than multiplication. However it can be
reduced to multiplication via Newton—Raphson method.

The reduction was accomplished in [34] (see also [33, 47]). The complexity of
Cook’s circuit is asymptotically 5 times greater than of a multiplier and the depth
is O(log2 n). However if n is small, school division circuits have less complexity
and slightly more depth.

The method of [42] allows one to reduce it to O(log n log log n). The size is of
the same order as for O(log n)-depth multipliers in both cases. Employing Fürer’s
technique leads to a circuit with somewhat higher estimated depth.

In [43] circuit for division of depthO(log n) and complexityO(n5) was produced.
In [44] division circuits of depth O(ε−2 log n) and complexity O(n1+ε) for any
positive parameter ε were constructed.

However, all proposed methods except for the first one seem to be of academic
interest only.

1.4 Prime Field Arithmetic
Arithmetic in a finite field of prime order p is just the integer arithmetic modulo p.
Complexity of multiplication modulo any natural p is not greater than 3M(log p)+
O(log p). To get this estimate one can perform usual multiplication, then calculate
remainder of division of d2 log pe-bit product by dlog pe-bit number p. The latter
operation may be implemented by the so-called Barret’s method [45] (see also [6,
47]). It is very likely that this method originates from papers [34, 46]. For some
particular modula like p = 2n ± c, c = O(log n), the above complexity estimate
may be improved to M(log p) +O(log p).

Complexity of addition (or subtraction) modulo n-bit number p can be estimated
as 2A(n) + O(1). For Mersenne primes p = 2n − 1 this bound can be reduced
to A(GF (p)) = 7n − 5. The depth in the last case is the same up to O(1) as
the depth of integer addition-subtraction. The same depth bound holds also for
Fermat prime p = 2n + 1, the complexity in this case is A(GF (p)) = 9n+O(1).

Multiplication by 2k in the Mersenne prime field for any integer k amounts to
the cyclic shift which costs nothing in terms of circuit complexity. Complexity of
multiplication by integer C, where C mod p can be represented as a sum of l(C)
powers of two, can be estimated as M(C, p) ≤ (l(C)− 1)A(GF (p)). For instance,
M(17, p) ≤ A(GF (p)).

Analogously for multiplication by 2k in Fermat prime field the following complexity
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and depth estimates can be obtained:

M(2k, p) ≤ 5A(GF (p))/9 +O(1),

DM (2k, p) = (1 + o(1)) log n ≤ 2 log n.

In the general case of multiplication by C complexity estimate takes a form
M(C, p) ≤ (l(C) − 1)A(GF (p)) + (5n + O(1))l(C). For instance, M(3, p) ≤
14A(GF (p))/9 +O(1).

Estimates 6n2−n+O(1) and 4.44 log n+O(1) are known for complexity and
depth of a standard multiplier modulo Mersenne prime p. In the Fermat case
analogous estimates are 6n2 + 11n+O(1) and 4.44 log n+O(1).

2 Multiplication in General Finite Fields
Let Mq,f (n) be the total number of operations over GF (q) (or the complexity
over GF (q)) required for multiplication of polynomials modulo f , deg f = n.
Similarly one can define mq,f (n)—multiplicative complexity and aq,f (n)—additive
complexity (i.e. the number of multiplicative and additive operations over GF (q)
respectively). ThenM(GF (qn)) ≤Mq,f (n)M(GF (q)) for any irreducible polynomial
f(x) over GF (q). To be more precise,

M(GF (qn)) ≤ mq,f (n)M(GF (q)) + aq,f (n)A(GF (q)).

We also use the notationMq(n) for the complexity over GF (q) of multiplication of
polynomials of degree less than n. Analogouslymq(n) and aq(n) denote multiplicative
and additive complexity.

Strassen’s method [46] (see also [37]) implies that for any f

mq,f (n) ≤ 3mq(n), aq,f (n) ≤ 3aq +O(n).

In [47] the other algorithm with the same complexity estimate was proposed.
The algorithm is a polynomial analogue of Barret’s algorithm (as well as the
Barret’s algorithm is its numeric analogue). If f(x) is a sum of k monomials, then
Mq,f (n) ≤ Mq(n) + (2k + 1)n, and if q = 2 then M2,f (n) ≤ M2(n) + kn. It is
well-known hypothesis that one can always choose an irreducible polynomial f
with k ≤ 5. Therefore

Mq,f (n) ≤Mq(n)(1 + o(1)).

In [48] (see also [37]) is proved that estimates mq(n) = O(n log n) and aq(n) =
O(n log n log log n) can be achieved simultaneously. In [49] a multiplicative constant
in this estimate was refined. But both methods seem not to be applicable in
cryptography or coding theory by the reason of this constant is too large.

It is known (see e.g. [41]) that in the case 2n − 1 ≤ q the multiplicative
complexity of multiplication in GF (qn) is 2n− 1. The main idea of upper bound
was proposed by A.L. Toom [32] and the proof of the lower bound is due to
S. Winograd (see e.g. [2]).

It was shown by brothers Chudnovsky [50] that in the general case multiplicative
complexity is O(n) as well. The reader can find improved estimates in [51] and in
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several papers by Ballet et al., see e.g. [52]. On the other hand additive complexity
of these methods is not that low. Therefore the above methods seem to have no
practical applications.

2.1 Polynomial Multiplication
First, consider the case of binary polynomial multiplication. Complexity and depth
estimates of the “school” method are

M(n) = n2 + (n− 1)2, DM (n) = 1 + dlog2 ne.

For n ≈ 1000 one has M(n) ≈ 2000000, D(n) = 11.
The recursive complexity estimates for Karatsuba’s method look as follows

M(2n) ≤ 3M(n) + 7n− 3,
M(2n+ 1) ≤ 2M(n+ 1) +M(n) + 7n− 1,

implying for n = 2k, k ≥ 3, the next relations:

M(n) ≤ 103
18

3k − 7n+
3
2
, DM (n) ≤ 3k − 3.

In particular, for n = 1024 we have M(n) ≤ 330725, D(n) ≤ 27.
Using Schönhage’s [48] FFT method a circuit for cyclic convolution with

complexity Z(2187) ≤ 428351 and depth DZ(2187) ≤ 46, or a circuit with bounds
Z(2187) ≤ 430537 and DZ(2187) ≤ 34 can be constructed. As a corollary we have

M(1024) ≤M(1093) ≤ 430537, DM (1024) ≤ DM (1093) ≤ 34.

In this case Karatsuba’s multiplier is more efficient.
On the other hand, Karatsuba’s method for convolution allows one to build

circuits with
Z(2048) ≤ 998216, DZ(2048) ≤ 30.

In this case FFT method is preferable.
Another example: multiplication modulo x1458 +x729 + 1 can be implemented

using FFT method with complexity 273850, and depth 33. In this case Karatsuba’s
method again plays over.

So, the point where Schönhage’s multiplier takes advantage over Karatsuba’s
one lies somewhere after n = 1000.

There also exists D. Cantor’s method [53] for polynomial multiplication over
finite fields. The asymptotic complexity of this method is slightly greater than
FFT’s (e.g.O(n log1,59 n) for multiplication overGF (2) andO(n log2 n) for multiplication
over any finite field), but for some medium-sized fields Cantor’s method may be
preferable. In [54] a modification of Cantor’s method and some applications to
polynomial factorization were considered.

The Cantor’s method can be viewed as some refinement of Toom’s method.
For interpolation it exploits as nodes an elements of affine subspaces over GF (2)
of appropriate extension field GF (2n). Here the polynomial whose roots are the
above nodes has few nonzero coefficients. So the interpolation polynomial is easy
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to calculate. Certainly, it is more efficient to choose the roots of binomial xn − 1
as a nodes. It is equivalent to using Discrete Fourier Transform (DFT) of order n.
To implement an n-point FFT one requires O(n log n) operations in the minimal
field GF (2m) containing all n-th roots of unity. It is clear that 2m > n, therefore
the complexity of multiplication in the field GF (2m) (the best known Schönhage’s
method is used) is greater than Ω(log n(log log n)(log log log n)). Hence the total
complexity of multiplication of n-degree polynomials over GF (2) following the
above way can be bounded as

Ω(n log2 n(log log n)(log log log n)).

This bound is not easy to achieve following this way, before n must divide 2m−1,
that prevents it to have a form 2k, which is convenient to perform DFT fast,
and rarely allows to have a form 3k or 5k. Nevertheless, sometimes this bound is
achievable. Following the method [55], consider n = 2p−1, q = 2p−1 be Mersenne
prime. For multiplication of n-degree polynomials over GF (2) it is sufficient to
multiply this polynomials as the polynomials with integer coefficients 0,1. The last
operation may be performed as the multiplication of polynomials over GF (q) with
the use of 2n-point FFT over GF (q2). It is known, that (2n/2 + 3n/2i)2 ∈ GF (q2)
is 2n-th root of unity, where i ∈ GF (q2) is the root of irreducible polynomial
x2 + 1 over GF (q). As was proved in [55], an 2n-point FFT over GF (q2) may be
computed using 3

2n log n+O(n) multiplications and 6n log n+O(n) additions in
the field GF (q) 3.

From the formula (3) [55] it follows that

mq(n) ≤ 9
2
n log n+O(n), aq(n) ≤ 18n log n+O(n),

hence the complexity of multiplication of n-degree polynomials over GF (2)

M2(n) = aq(n)A(GF (q)) +mq(n)M(GF (q)) =

=
9
2
M(p)n log n+O(np log n) = O(p log p log log p)n log n).

Note that the multiplicative constant in the above estimate is rather large owing
to the large constant in M(p) estimate. Number n has special form (for another
n the constant is to be even more large). Moreover, it is still an open question if
the set of Mersenne numbers is infinite. Let p = 17, q = 217 − 1, n ≈ 216, then

M2(n) ≈ 27 · n log3(2n) = 21617327.

This bound is close to the complexity of standard school method of multiplication.
Hence, the given method of multiplication is better than standard method only
if n is greater than 70000.

Program implementation of the above method seems to be more challenging.
As follows from [55], the multiplication of polynomials of degree n < 2p−1 over

3In [55] the formula for primitive 8-th root of unity was printed incorrectly. The proper one
is ε = 2−(p+1)/4(1 + i). Also the number of additions required for the computation of n-point
FFT was given inaccurately. The right number is 3n logn.
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GF (q), where q = 2p − 1 is Mersenne prime, may be performed by 9
2n log n +

58n+ 1 operations in GF (q2) (in [55] the last bound was printed incorrectly). If
multiplication and addition tables for GF (q2) are stored in a computer memory (it
is enough to keep only the table of volume (n− 1)q2 ≤ q3/2 for multiplication on
n−th roots of unity, because each of n general multiplications may be performed
using 6 operations modulo q), then for q = 127 the given method of multiplication
for 63-degree polynomials uses almost the same time as school method. However
to multiply polynomials of higher degrees one should to increase the field order
(and consequently a size of computer memory).

After having read this, a reader can appreciate Schönhage’s trick [48]. Schönhage’s
technique for polynomial multiplication involves FFT in the ring GF (2)[X]/(xn+
1), and leads to the complexity bound O(n log n log log n). Strangely enough, this
estimate still not so widely known — the authors know several papers with the
similar of weaker results in which [48] is not cited. For instance, in [56] a later
paper is followed (and DFT is used for division instead of using Strassen’s trick
mentioned above, which is seemingly is not known to the author of [56]).

Various aspects of program implementations of multiplication of polynomials
over both binary and any field GF (p), including algorithms based on methods
Karatsuba, Toom, Schönhage, D.Cantor are discussed in [6, 9, 57, 58, 59, 60].
In [61] it was suggested once more algorithm for program multiplication modulo
irreducible trinomial based on multiplication of Töplitz matrix by vector. It is not
clear, is the algorithm [61] faster than algorithms [57], since the work [57] was not
cited in [61] (though the authors of both papers work in the same institute).

2.2 Multiplication in Standard Bases
Various architectures of multipliers for standard bases were proposed in [62, 63,
64]. Generally complexity and depth of these multipliers are estimated as O(n2)
and O(log n) respectively.

It was shown in [65], that sometimes using a standard basis with irreducible
polynomials of maximum weight, i.e. polynomials of the form

1 + x+ · · ·+ xm−1 + xm+1 + · · ·+ xn,

offers a benefit.
Close idea was used in [66]. More exactly, there was suggested instead of

given irreducible polynomial to take the trinomial divisible by this polynomial
and at first to perform multiplication modulo this trinomial (in this case the
field is embedded into the ring modulo the trinomial). Also in [66] was given
corresponding tables of such trinomials. There is also stated that sometimes
this trick is more efficient than using of irreducible pentanomials. To get it, the
trinomial is to be chosen in such way that its middle term has a degree not less
than a half of the leading term degree. It can be always done, because the tables
for any trinomial include its reciprocal.

Similar idea, but with using xn − 1 instead of trinomial was suggested in
some works about so called redundant bases. Once more possibility of speeding of
modular multiplication based on Montgomery method (see, for example, references
in [9]).
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Multipliers of asymptotic complexity O(nlog 3) can be constructed following
Karatsuba’s method. Some aspects of application of Karatsuba’s method to multiplication
in GF (2n) are discussed in [67, 68].

For example, multiplication in GF (21024), when an irreducible polynomial is
taken to be

x1024 + x19 + x6 + x+ 1,

can be implemented by a circuit with

M(GF (21024)) ≤ 356865, DM (GF (21024)) ≤ 31.

2.3 Multiplication in Normal Bases
Numerous methods for multiplication in normal bases are known by now, e.g. [5,
69, 70, 71, 72, 73]. Let T = (ti,j) be a matrix, whose i-th row is the vector of
entries of ααq

i ∈ GF (qn) with respect to normal basis Bα. A number of nonzero
entries in the matrix T is called complexity of the basis Bα and is denoted C(Bα).
If

ξ =
n−1∑
i=0

xiα
qi

, ζ =
n−1∑
j=0

yjα
qj

are some elements of GF (qn), then the product π = ξζ may be computed by the
formula

π =
n−1∑
m=0

pmα
qm

, pm =
n−1∑
i,j=0

ti−j,m−jxiyj = A(Sm(x), Sm(y)),

where Sm(v) is the cyclic shift of a given vector v by m positions, A(u, v) is
the bilinear form associated with the matrix A = (ai,j), with the condition
ai,j = ti−j,−j and indices i − j and −j are handled modulo n. This Massey—
Omura algorithm [69] for multiplication over normal basis B in GF (qn) requires
n(2C(B) + n − 1) operations over the subfield GF (q). In [70] a more efficient
algorithm with the bound n(C(B) + 3n − 2)/2 was proposed. But both these
bounds are at best quadratic in n, and cubic in the worst case.

Alternatively, an idea of transition to the standard basis representation of the
field elements may be exploited. The asymptotically fast polynomial multiplication
algorithm with the Strassen’s trick for modular reduction are to be used to
implement multiplication in the standard basis.

Usual method for implementation of such transition rests on the fact that
transition is a linear operator over the subfield GF (q). Thus, the transition can
be implemented by a circuit of O(n2/ logq n) complexity and O(log n) depth. This
is a corollary to a classical result due to O.B. Lupanov [11, 74]. In [75] circuits
for transition between standard and normal bases with complexity O(n1.806)
and depth O(log n) were constructed. (The same estimate for the complexity
of single-direction transition had been proven earlier in [78] with a worse depth
bound.) Such transition circuits allow to perform multiplication in GF (qn) using
O(n1.806) operations over GF (q) in depth O(log n). Exploiting new algorithm for
Frobenius operation [76, 77], the complexity of method [75] may be also estimated
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as O(n1,667 +
√
n(n log q)1+o(1)). 4 In [75] another construction for transition

circuits was proposed, which implies for any normal basis B that the following
estimates hold simultaneously:

M (q)(GF (qn)) = O(
√
nC(B) + n1.667 + n1.5 log q log n log log n),

D
(q)
M (GF (qn)) = O(

√
n log q log n).

Particularly, if B is a low complexity basis, i.e. C(B) = O(n1.167), and q is small
enough, i.e. log q = o(n0.167), then M (q)(GF (qn)) = O(n1.667). But multiplicative
constants in the estimates above are pessimistic.

For some special but important cases better bounds are known. Normal bases
in GF (qn) of the minimal complexity 2n − 1 are called optimal normal bases
(ONB). All these bases were enumerated in [80]. Any ONB belongs to one of
three types. ONB of type I exists iff n + 1 = p is a prime number, and q is a
primitive element modulo p. Type II and III ONB exist iff q = 2m, (m,n) = 1,
2n+ 1 = p is a prime, and either 2 is a primitive element modulo p (type II) or n
is odd and −2 is a primitive element modulo p (type III). The type II or III basis
is generated by the element α = ζ + ζ−1, where ζ ∈ GF (q2n), ζp = 1, ζ 6= 1, and
coincides to commutation with the basis

{α1, . . . αn}, αk = ζk + ζ−k, k = 1, . . . , n.

The type II and III bases construction may be generalized for q 6= 2m, but in this
case the complexity of the bases is larger than 2n − 1, so they are not optimal,
though the bases of complexity O(n). Others various kinds of low complexity
normal bases with C(B) = O(n) were stated in [81, 82, 71, 83], particularly,
Gaussian normal bases (GNB) which are more general than optimal. Using the
method of [84] the following bound for the type k 5Gauss normal basis may be
obtained:

M(GF (qn)) ≤ (Mq(kn) + 7kn− 8)M(GF (q)).

In the particular case of q = k = 2 (which is the ONB case) this result was
obtained later in [72] independently and was patented. For the type I ONB one
has

M(GF (qn)) ≤ (Mq(n) + 7n− 8)M(GF (q)).

For the type II and III ONB the bounds

M (q)(GF (qn)) ≤ 3Mq(n) +O(n log n),

M(GF (2n)) ≤ 3M(n) +
3n
2

log n+O(n)

4Frequently used constant 1, 667 is the exponent of special rectangular matrix
multiplication [79].

5Type-k GNB exists in GF (qn), when kn+ 1 is prime, and is generated by the element

α = ζ + ζγ + . . .+ ζγ
k−1

,

where ζ is a primitive root of order kn + 1 in GF (qkn) and γ is a primitive root of order k in
residue field Zkn+1, which is generated together with q multiplicative group Zkn+1 \ {0}.
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were proved in [73]. The corresponding construction is settled on the circuit for
transition from the basis {α1, . . . , αn} to the basis {α, . . . , αn}, α = α1 = ζ+ ζ−1

of complexity O(sn logs n), where q = sm, s is prime, and depth O(logs n). Factor
3 in the above estimate occurs from the Strassen’s inequality

M (q)((GF (qn)) ≤ 3Mq(n) +O(n).

This relation implies that the complexity of reduction modulo minimal polynomial
f of the standard basis Bα = {1, . . . , αn−1} is estimated by 2Mq(n) +O(n).

Under certain conditions (e.g. f has a few nonzero coefficients) the latter
bound may be improved. For example [9], if n = 3 · 2k − 1 and ONB of type II
or III exists, then for the complexity and the depth of multiplication in this basis
we have

M(GF (2n)) ≤M(n) +
7n
2

log n+ 4n,

DM (GF (2n)) ≤ D(n) + 2 log n+ 2 log log n+O(1).

In particular,
M(GF (2191)) ≤ 31600, D(GF (2191)) ≤ 44.

For comparison, a method of the paper [70] implies the bound M(GF (2191)) ≤
90916. Another mentioned above estimate

M(GF (qn)) ≤ (Mq(kn) + 7kn− 8)M(GF (q))

for q = 2 = k, n = 191 with the use of Karatsuba’s method leads to inequality

M(GF (2191)) ≤ 77441.

Recently mentioned above algorithm [73] for transition between bases {α1, . . . , αn}
and {α, . . . , αn}, α = α1 = ζ + ζ−1 was reopened in [85] (2007) and the next
estimate was established:

M (q)(GF (qn)) ≤Mq(n) +O(qn logq n).

Instead of reduction modulo minimal polynomial of basisBα (as in [73]) algorithm [85]
implies linear transform between redundant bases {α, . . . , α2n} and {α1, . . . , α2n}.
The complexity of the transform is O(sn logs n), where q = sm, and the depth is
O(logs n), as it was shown in [73]. In view of equalities

αk+n = ζk+n+ζ−k−n = ζk+n−p+ζp−k−n = ζk−n−1+ζn+1−k = αn+1−k, k = 1, . . . , n,

the transition to the basis {α1, . . . αn} may be performed with the complexity n
and the depth 1. As a consequence,

M(GF (2n)) ≤M(n) + 2n log n+ 10n,

DM (GF (2n)) ≤ D(n) + 2 log n+ 4.
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3 Inversion in Finite Fields
The best known asymptotic complexity estimate for inversion in a standard basis
of GF (qn) over GF (q) is O(n log2 n log log n). The corresponding algorithm can
be derived from the fast extended Euclidean GCD (greatest common divisor)
algorithm.

Fast numeric version of this algorithm was stated by Knuth [89] and was
optimized by Schönhage [86] (Knuth—Schönhage algorithm can be also viewed
as a modern version of Euclid—Lehmer GCD algorithm; Lehmer algorithm ca be
found in [33]). Polynomial version of this algorithm was published in [87] (see
also [36]) but the algorithm works incorrectly in some cases; correct algorithm see
in [88, 90, 37]).

Subsequently some modifications were introduced (see e.g. [91, 92]). Stehle—
Zimmermann’s algorithm [92] shows considerable promise for polynomial multiplication
over GF (2). In practice, all the algorithms are implemented in software because of
the great depth of the corresponding circuits, which is O(n) (for numeric version it
was constructed a circuit of the depth O(n/ log n) and complexity O(n1+ε) [93]).

Usual binary GCD algorithm seems to be more efficient for small values of n.
Its complexity is O(n2) (see e.g. [9, 92]). However the circuit version has several
times greater complexity and the depth O(n log n).

That is why to construct a small depth invertor one has to use completely
different approaches.

3.1 Addition Chain Method
A sequence of natural numbers a0 = 1, a1, . . . , am = n, in which each number ai is
a sum aj +ak, where j, k < i (indices j and k may coincide), is called an addition
chain for n. Parameter m is called a length of the addition chain. The length
of the shortest addition chain for n is denoted by l(n). Comprehensive study of
addition chains including all classical results may be found in [33].

Put λ(n) = blog nc. It is known that

l(n) = λ(n) + (1 + o(1))
λ(n)

λ(λ(n))
.

The upper bound is due to A. Brauer [94] and proof of the lower bound is due to
P. Erdős [95].

Evidently raising to the n-th power using only multiplications corresponds
to constructing of an addition chain for n. Fermat’s identity x = xq

n

for any
x ∈ GF (qn) implies that inversion in GF (qn) is equivalent to raising to the power
qn − 2. This forms background for the use of addition chains in constructing
invertors.

A.Brauer [94] proposed an appropriate way to build an addition chain for 2n−1
starting from an addition chain for n. His method easily extends to calculation of
(qn − 1)/(q − 1) where multiplications by q are used instead of doubling steps.

Denote y = x(qn−q)/(q−1). To calculate inverse fast, one can use identity x−1 =
y(xy)−1, as proposed in [96]. Clearly, xy ∈ GF (q), as far as (xy)q−1 = xq

n−1 = 1.
For computation of y = (x(qn−1−1)/(q−1))q either Brauer’s or Itoh—Tsujii [96]
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method can be used (actually, the latter is just a special case of Brauer’s method).
To finish calculations one has to multiply x by y (it is simpler than in the general
case, due to the fact that the product belongs to subfield) and divide by xy ∈
GF (q). In the case q = 2 one needs only calculate y = x−1.

Less elegant approach based on the formula

x−1 = x(qn−1−1)qxq−2

was followed in [97].
Let F (GF (qn)) andDF (GF (qn)) denote the maximum onm of the complexity

and the depth of the circuit implementing a Frobenius operation x → xq
m

in
GF (qn), m = 1, . . . , n. In standard basis Frobenius operation is equivalent to
computation of polynomial gq

m

mod f and may be performed as a modular composition
g(h) mod f, where h = xq

m

mod f. Actually, if

g(x) =
s∑
i=0

aix
i,

then

gq
m

(x) =
s∑
i=0

aq
m

i xq
mi =

s∑
i=0

aix
qmi mod f =

s∑
i=0

aih
i mod f = g(h) mod f.

Let d(n) denote the depth of a shortest addition chain for n. Using the addition
chain method and a result of paper [98] a standard basis invertor with complexity
and depth

I(q)(GF (qn)) ≤ (l(n− 1) + 1)
(
M (q)(GF (qn)) + F (q)(GF (qn))

)
+ n = O(n1.667),

D
(q)
I (GF (qn)) ≤ (d(n− 1) + 1)

(
D

(q)
M (GF (qn)) +D

(q)
F (GF (qn))

)
+ 1 = O(log2 n)

can be constructed [101]. The same scheme of calculations in the case of a normal
basis implies the following bounds:

I(q)(GF (qn)) ≤ (l(n− 1) + 1)M (q)(GF (qn)) + n = O(n1.806),

D
(q)
I (GF (qn)) ≤ (d(n− 1) + 1)D(q)

M (GF (qn)) + 1 = O(log2 n),

since the Frobenius operation is simply a cyclic shift of a field element coefficients
in the normal basis, which has zero complexity, and multiplication in any normal
basis can be implemented with complexity O(n1.806) and depth O(log n) [75].
Additive terms n in both complexity bounds and 1 in both depth bounds can be
omitted in the case q = 2.

The complexity of Brent—Kung method may be estimated as O(n1,667). In
2007 Umans [76] ( see also [77]) proved that the complexity of modular composition
is equal to (n log q)1+o(1). Hence it follows that

I(q)(GF (qn)) ≤ (l(n−1)+1)(M (q)(GF (qn))+F (q)(GF (qn)))+n = (n log q)1+o(1),
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for standard base and for normal base

I(q)(GF (qn)) ≤ (l(n− 1) + 1)M (q)(GF (qn)) + n = O(n1,667).

But this method does not give the bound O(log2 n) for the depth.
The above estimates based on the A.Brauer’s (1939) method seem to be hardly

familiar to cryptographers. Some particular cases of the Brauer’s method like
Itoh—Tsujii method [96] or TYT-method [99] are frequently cited and exploited.
These methods does not provide optimal complexity (for example, method [99]
yields to the general Brauer’s for n = 24, 44, 47, . . . ). Using the Brauer’s method
some very recent results can be improved straightforwardly, e.g. the complexity
bounds [100] for inversion in the fields GF (2384), GF (2480) (see details in [101]).

To minimize the depth of invertor we may use a version of right-to-left binary
method (see [33, 101]). The method allows one to build a minimal depth δ(n) =
dlog2 ne addition chain for n with the length λ(n) + ν(n) − 1, where ν(n) is the
number of 1’s in the binary representation of n. The length of such a chain is at
most 2λ(n), this bound is tight.

Using a modified Yao’s method [102], an addition chain for n with the depth
δ(n) + 1 and asymptotically minimal length

λ(n) +
λ(n)

λ(λ(n))
+
O(λ(n)λ(λ(λ(n))))

(λ(λ(n)))2

was constructed in [101].
Thereby, a standard-basis invertor of complexity

I(q)(GF (qn)) ≤
(
λ(n− 1) + (1 + o(1))

λ(n)
λ(λ(n))

)
×
(
M (q)(GF (qn)) + F (q)(GF (qn))

)
and depth

D
(q)
I (GF (qn)) ≤ (δ(n) + 1)

(
D

(q)
M (GF (qn)) +D

(q)
F (GF (qn))

)
+ 1

can be constructed. Analogous bounds for normal basis take the form:

I(q)(GF (qn)) ≤
(
λ(n− 1) + (1 + o(1))

λ(n)
λ(λ(n))

)
M (q)(GF (qn)),

D
(q)
I (GF (qn)) ≤ (δ(n− 1) + 1)D(q)

M (GF (qn)) + 1.

Actually, for any n ≤ 228 there exists a minimal length chain of the depth at
most δ(n) + 1. For any n ≤ 1024 there exists a minimal length chain of the depth
at most δ(n) + 2.

3.2 Logarithmic Depth Method
The GF (qn) invertors of logarithmic depth (over GF (q)) invertors were presented
in [103, 104] (the former paper considers the binary case). The authors didn’t
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estimate complexity and depth of the circuits more tightly than nO(1) and O(log n)
respectively. In fact, the multiplicative constants involved are rather large. Invertor
in GF (2n) of the depth (6.44 + o(1)) log n and complexity (2/3)n4 + o(n4) was
constructed in [105] (the result holds for an arbitrary field basis). In the same
paper a standard basis invertor with the depth O(log n) and complexity O(n1.667)
was constructed. The latter result was extended in [106] to the case of the general
field GF (qn). As a corollary, a normal basis invertor of complexity O(n1.806) and
depth O(log n) can be constructed.

This method [106] looks like a parallel version of addition chain method. It
involves multiple multiplications. We denote complexity and depth of multiplication
of m elements in the field GF (qn) by MM(m,GF (qn)) and DMM (m,GF (qn))
respectively. Combining ideas from [107, 44, 42] the following bounds for multiple
multiplication circuit were proved in [106]:

MM (q)(m,GF (qn)) = O
(
lcm1+εn1+l−3

(log(mn) log log(mn) + l3)
)
,

D
(q)
MM (m,GF (qn)) = O(l logm+ ε−1 log n),

where l is a natural, ε is a positive parameters and c is a certain constant.
The use of multiple multiplications rests on the following result [105, 106]: let

m = d r
√
ne, r ∈ N. Then raising to the power (qn − q)/(q − 1) in GF (qn) can be

implemented by a circuit with complexity and depth

(2r − 1)(mF (GF (qn)) +MM(m,GF (qn))) + (r − 1)M(GF (qn)),
2(DF (GF (qn)) +DMM (m,GF (qn))) +DM (GF (qn))

+ (r − 2) max{DF (GF (qn)) +DMM (m,GF (qn)), DM (GF (qn))}

respectively. As before, two more operations are required to finish inversion.
Finally, for any r ∈ N a standard basis invertor with the following complexity
and depth estimates can be constructed:

I(q)(GF (qn)) = O(rn1/r(nw + n1.5 log n log log n)),

D
(q)
I (GF (qn)) = O(r log n),

where w is somewhat smaller then 1.667. One can set r to be large enough to
obtain a logarithmic depth circuit of complexity O(n1.667).

Better bounds in both standard and normal cases may be obtained if the
transition between the bases is performed fast. Denote by T (GF (qn)) andDT (GF (qn))
complexity and depth of a transition circuit (bilateral transition is considered).
Then exploiting an idea that multiplication is faster in standard bases and Frobenius
operation is faster in normal bases the following bounds for the inversion in either
of the bases could be obtained [106]:

I(q)(GF (qn)) = O
(
Rbn1+2/R

)
+O

(
R R
√
n
)
T (q)(GF (qn)),

D
(q)
I (GF (qn)) = O

(
R
(

log n+D
(q)
T (GF (qn))

))
,

where b < 2.12 and R is a natural parameter which is either constant or some
very slowly growing function with respect to n. Therefore, if a transition circuit of
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almost linear complexity and logarithmic depth exists, then a logarithmic depth
invertor of almost linear complexity can be constructed.

For instance, an invertor in type k Gauss normal basis of the field GF (qn) of
complexity O(ε−bn1+ε) and depth O(ε−1 log n), where ε > 0, can be constructed
under the condition k = o(log n).

4 Arithmetic in Composite Fields
All the above logarithmic depth circuits leads over addition chain circuits only
when n is large enough (n > 500) but their complexity in that case (even when
n ≈ 100) is too high for applications. That’s why for n of order of several hundreds
various versions of addition chain method are used (Itoh—Tsujii method as usual).
Some depth reduction is possible for composite degree fields of characteristic 2
if not standard bases but bases evolved from field tower representation are used.
It is essential that complexity is also decreases. Seemingly, the idea of applying
composite fields to minimize depth initially appeared in [96]. Multiple approaches
for arithmetic implementation in composite fields were proposed in [63, 108, 67,
68, 70, 109, 111].

Combining [73, 75], one can prove that if n and m are coprime, then for some
normal basis

M (q)(GF (qnm)) = O(nm(m0.806 + n0.806)).

Particularly, if n = Ω(m), then

M (q)(GF (qN )) = O(N1.403), N = nm.

If N is an ε-smooth number, i.e. N = n1 . . . nm, all ni are coprime, n1+ · · ·+nm =
O(N ε), then M (q)(GF (qN )) = O(N1+0.806ε). But the depth of this circuit is
prohibitively high.

4.1 Multiplication and Inversion in Towers of Fields
Tower is a consequence of fields embedded one into another. In [111] the authors
considered a general construction of field tower and for multiplication complexity
in the corresponding fields GF (2n) they established the estimate O(n log2 n). So
the best possible estimate of straightforward DFT implementation way is to be
improved. Obviously, the authors [111] didn’t know about work [48], where better
result was obtained.

Towers in [111] look like

GF (q) ⊂ K1 ⊂ . . . ⊂ Kh, Kj = GF
(
qP1...Pj

)
, j = 1, . . . , h,

where each prime factor of Pj is either a factor of q−1, or p, that is characteristic of
the field. Besides, Pj is an even number if q = 1 mod 4 only. On any floor of such
tower one can choose a basis with minimal polynomial being binomial (similar
towers were considered independently in [112] and got the name of optimal tower
fields). To implement multiplication on each floor Toom’s method [32] and FFT
method (in the latter case primitive roots belong to the previous floors) were
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used. However fundamental formulas on the page 227 [111] are questionable by
the reason that they relies on the fact that multiplication of an element from
Kj by an element of Kj−2 has the same order of complexity as addition in Kj

(really, each of PjPj−1 coordinates is to be multiplied by the element of Kj−2, so
the complexity of multiplication is to be estimated as PjPj−1M(Kj−2).) In the
particular case Pj = pj , where p | q − 1, n = Ph, in [111] the following estimates
were proved:

M (q)(GF (qn)) = O(n1+1/ log p), I(q)(GF (qn)) = O(n1+1/ log p).

Estimates of multiplication complexity are worse than for Schönhage’s standard
basis multipliers, but the invertor has the same order of complexity and depth
not so large as one based on fast Euclidean algorithm.

In [113] it was proved that for any ε > 0 and any natural m > 1 one may
choose a basis in the field GF (2n), n = ms, s ≥ sε, in such way that

M(GF (2n)) < n1+ε/2, I(GF (2n)) < n1+ε.

In particular, the next asymptotic complexity bounds for n = 8 ·3k were obtained:

I(GF (2n)) = O
(
nlog3 5

)
, M(GF (2n)) = O

(
nlog3 5

)
.

Further, for n = 2 · 3k the next bounds were established:

M(GF (2n)) < n(log3 n)
log2 log3 n

2 +O(1),

I(GF (2n)) < n(log3 n)
log2 log3 n

2 +O(1).

All above statements from [113] may be improved at the expense of more accurate
estimating of the complexity of multiplication by constants implied in FFT algorithm.
More exactly, with a suitable choice of a basis multiplier and invertor in GF (2n),
n = ms, s ≥ sm, with the next complexity and depth bounds may be constructed:

M(GF (2n)) = Om(n log n log log n), I(GF (2n)) = Om(M(GF (2n))),

DM (GF (2n)) = Om(log n), DI(GF (2n)) = Om(log2 n).

Sometimes the above bounds may be pointed in more precise form. For instance,
if m = p is a prime, 2 is a primitive root modulo p (this is exatcly the condition
of existing ONB of type I in GF (2p−1)), and p2 - 2p−1 − 1 (it is known that the
last condition is fair for p < 1012), then for some basis in GF (2n), n = (p− 1)ps,
the equalities

M(GF (2n)) = O

(
p

log2 p
n logp n log2 logp n

)
, I(GF (2n)) = Op(M(GF (2n))),

are valid. In particular, for p = 3

M(GF (2n)) = 5
5
8
n log3 n log2 log3 n+O(n log3 n),

I(GF (2n)) .
5
2
M(GF (2n)), DM (GF (2n)) ∼ 6

log2 3
log2 n.
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For the tower of fields GF (2n), n = 2k, multiplier and invertor of complexity

M(GF (2n)) = O(n1.58), I(GF (2n)) = O(n1.58)

were constructed in [110]. The method implies, for example,

M(GF (21024)) ≤ 357992, I(GF (21024)) ≤ 538033.

But the depth of the invertor is Ω(log3 n).
Consider ONB {ξ, ξ2, ξ4, ξ8} in GF (24), and select in each floor the element

αk ∈ GF (22k+2
) such that

α2
k + αk = ξα1 . . . αk−1

(similar bases for k = 1 were considered in [114] in order to implement AES
S-boxes). Then consider in the floor the standard basis {1, αk} or normal basis
{αk, α2k+1

k }. With the use of the above construction asymptotically worse bounds

M(GF (2n)) = O(nlog 3 log n), I(GF (2n)) = O(nlog 3 log n),

DI(GF (2n)) = O(log3 n) may be established. However, S. Zikrin proved that
for n ≤ 64 best multipliers and invertors than in [67] may be constructed. For
example, he obtained the next estimates:

M(GF (216)) ≤ 382, DM (GF (216)) ≤ 11,

I(GF (216)) ≤ 479, DI(GF (216)) ≤ 26,

M(GF (232)) ≤ 1233, DM (GF (232)) ≤ 13,

I(GF (232)) ≤ 1714, DI(GF (232)) ≤ 48.

M(GF (264)) ≤ 3943, DM (GF (264)) ≤ 18,

I(GF (264)) ≤ 5609, DI(GF (264)) ≤ 75,

M(GF (2128)) ≤ 12728, DM (GF (2128)) ≤ 24,

I(GF (2128)) ≤ 18587, DI(GF (2128)) ≤ 114.

One may compare this estimates with those from [67]:

M(GF (2128)) ≤ 12476, DM (GF (2128)) ≤ 25,

I(GF (2128)) ≤ 18316, DI(GF (2128)) ≤ 170.

Note that for a standard basis with the irreducible polynomial x128+x7+x2+x+1
in GF (2128) the next estimates hold: M(GF (128)) ≤ 33042, DM (GF (128)) ≤ 11.
Complexity and depth of Karatsuba’s multiplier in this case are estimated as
12343 and 18 respectively. However the estimates for an invertor look as 200000
and not less than 200.
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4.2 Minimization of Inversion Depth in Composite Fields
In this section we observe some recursive methods [115, 116] aimed at constructing
depth-efficient invertors in composite binary fields for the values of n not more
than several hundreds.

Suppose that n is odd, DM (GF (2n)) ≥ DS(GF (2n)) + 1, where S(GF (2n)) is
the complexity of squaring in GF (2n). Applying a method from the paper [108],
one can construct invertor and multiplier with the following recursive bounds on
the complexity and the depth:

M(GF (22n)) ≤ 3M(GF (2n)) + 4n, DM (GF (22n)) ≤ DM (GF (2n)) + 2,

I(GF (22n)) ≤ I(GF (2n)) + 3M(GF (2n)) + S(GF (2n)) + 2n,

DI(GF (22n)) ≤ DI(GF (2n)) + 2DM (GF (2n)) + 1.

Suppose that (n, 3) = 1, B2 = {α, α2, α4} is the ONB in GF (23), where
α3 = α2 + 1, and B1 is any basis in GF (2n), DM (GF (2n)) ≥ DS(GF (2n)) + 2,
then for multiplication in B = B1 ⊗B2 we have

M(GF (23n) ≤ 6M(GF (2n)) + 12n, DM (GF (23n)) ≤ DM (GF (2n)) + 3.

Further, for inversion in B we have the following recursions:

I(GF (23n)) ≤ I(GF (2n)) + 9M(GF (2n)) + 3S(GF (2n)) + 8n,

DI(GF (23n)) ≤ DI(GF (2n)) + 3DM (GF (2n)) + 1.

If B1 is a normal basis, then S(GF (2n)) = 0.
If in the field tower GF (((2n)2)2) the ONB {α1, α

2
1} and the standard basis

{1, α2}, where α2
1 + α1 = 1, α2

2 + α2 = α1, are chosen, then for the complexity
and the depth of a multiplier the next relations hold

M(GF (24n)) ≤ 9M(GF (2n)) + 20n, DM (GF (24n)) ≤ DM (GF (2n)) + 4.

If we choose a normal basis in GF (2n), then one can construct an invertor with
the following recursive relations for complexity and depth

I(GF (24n)) ≤ 14M(GF (2n)) + 14n+ I(GF (2n)),

DI(GF (24n)) ≤ 3DM (GF (2n)) + 2 + max{DI(GF (2n)), 2}.

Suppose that (n, 5) = 1, B2 = {α, α2, α4, α8, α16}, where α5 = α4 +α2 +α+1,
B1 is any normal basis in GF (2n) and B = B1 ⊗B2. Then for the multiplication
in the basis B the next relations hold:

M(GF (25n)) ≤ 15M(GF (2n)) + 40n, DM (GF (25n) ≤ DM (GF (2n)) + 4,

and for inversion:

I(GF (25n)) ≤ I(GF (2n)) + 91M(GF (2n)) + 117n,

DI(GF (25n) ≤ DI(GF (2n)) + 3DM (GF (2n)) + 1 + max{DM (GF (2n)), 6}.
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The field GF (26n) can be represented as an extension of GF (2n) of degree
6. We choose in GF (26) an ONB B2 = {α, α2, α4, α8, α16, α32}, where α6 =
α5 + α4 + α + 1. Also we choose in GF (2n) arbitrary basis B1 and consider the
basis B = B1 ⊗ B2 in GF (26n). Suppose that DM (GF (2n)) ≥ DS(GF (2n)) + 2.
Then for multiplication and inversion in B one has:

M(GF (26n)) ≤ 21M(GF (2n)) + 60n, DM (GF (26n)) ≤ DM (GF (2n)) + 4,

I(GF (26n)) ≤ I(GF (2n)) + 42M(GF (2n)) + 5S(GF (2n)) + 65n,

DI(GF (26n)) = 4DM (GF (2n)) + 4 + max{DI(GF (2n)), 4}.

Suppose that (n, 2) = 1, B1 = {α1, α
2
1}⊗{1, α2}, where α2

1+α1 = 1, α2
2+α2 =

α1 and B2 = B1⊗{1, α3}, where α2
3 +α3 = α1α2, B is arbitrary basis in GF (2n),

then for the basis B2 ⊗B in GF (28n) the following relations hold:

M(GF (28n)) ≤ 27M(GF (2n)) + 80n, DM (GF (28n)) ≤ DM (GF (2n)) + 7.

If B is the normal basis, then

I(GF (28n)) ≤ I(GF (2n)) + 45M(GF (2n)) + 101n,

DI(GF (28n)) ≤ 4DM (GF (2n)) + 8 + max{DI(GF (2n)), 6}.

If we choose in GF (24) an ONB B1 = {α, α2, α4, α8}, where α4 = α3 + α2 +
α+1, then in GF (28) there exists a basis B2 = B1⊗{1, β}, such that β2 +β = α.
One can choose in GF (2n) a normal basis B and consider the basis B2 ⊗ B in
GF (28n). For the chosen basis in GF (28n) the following bounds for the complexity
and the depth are valid:

M(GF (28n)) ≤ 30M(GF (2n)) + 82n, DM (GF (28n)) ≤ DM (GF (2n)) + 5,

I(GF (28n)) ≤ I(GF (2n)) + 52M(GF (2n)) + 88n,

DI(GF (28n)) ≤ 4DM (GF (2n)) + 6 + max{DI(GF (2n)), 2}.

Let (n, 30) = 1. Then in GF (230n) a normal basis can be chosen and multiplier
and invertor can be constructed to prove relations:

M(GF (230n)) ≤ 315M(GF (2n)) + 1140n,

DM (GF (230n)) ≤ DM (GF (2n)) + 8,

I(GF (230n)) ≤ I(GF (2n)) + 566M(GF (2n)) + 1537n,

DI(GF (230n)) ≤ 6DM (GF (2n)) + 17 + max{DI(GF (2n))
+ max{DM (GF (2n)), 6}, DM (GF (2n)) + 8}.

Table 1 shows bounds on the depth and complexity of inversion in certain
fields of characteristic 2 obtained by the above methods.

5 Arithmetic in Pseudo-Mersenne Fields
A prime number q of the form 2n± c, where c is small, is called pseudo-Mersenne
prime number. Mersenne fields were mentioned above. Several techniques for
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Таблица 1:
n I(GF (2n)) DI(GF (2n))
10 220 14
12 293 16
15 590 20
16 499 23
20 905 21
24 1 162 24
30 1 925 29
36 4 438 30
40 3 355 30
120 36 230 54
210 88 000 67
330 171 009 71
690 712 655 101

implementing multiplication in pseudo-Mersenne fields GF (qn), n = 2k, 3k, were
proposed in [112, 117] aimed at the application to elliptic and hyperelliptic curve
cryptography (see [118]). Special bases (so called optimal tower bases [112, 117])
were used. This bases are a special cases of bases considered in [111].

5.1 Multiplication in Optimal Towers of Pseudo-Mersenne
Fields

Improving the results of [112], in [117] multipliers of complexity

M
(
GF

(
q2

k
))
≤ 3kM(GF (q)) + 5(3k − 2k)A(GF (q)) +

1
2

(3k − 1)M(α0, q),

M
(
GF

(
q3

k
))
≤ 6kM(GF (q)) + 5(6k − 3k)A(GF (q)) +

2
5

(6k − 1)M(α0, q)

were constructed, where x2 − α0, x3 − α0 are irreducible binomials over GF (q),
α0 ∈ GF (q), M(α0, q) is the complexity of multiplication by α0 in GF (q). As a
consequence,

M(GF (q4)) ≤ 9M(GF (q)) + 25A(GF (q)) + 4M(3, q),

M(GF (q8)) ≤ 27M(GF (q)) + 95A(GF (q)) + 13M(3, q),

M(GF (q32)) ≤ 243M(GF (q)) + 1055A(GF (q)) + 121M(3, q).

Some effective applications of similar results in hyperelliptic cryptography were
noted in [118]. In [119] some improvements were proposed for this circuits based
on FFT in the case of Fermat number q = 216 + 1.

Independently related results were obtained in [73], namely for q = pn, p =
216 + 1, the next bound was proved:

M(GF (q2
k

)) ≤ 2k+1M(GF (q)) + 2k+1(3k + 1)A(GF (q))

+ (3(2k(k − 1) + 1) + k + 2)M(2s, q).
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Using convolution modulo x(x2k+1 − 1)/(x2 − 1) it was proved [120] that

M(GF (q4)) ≤ 7M(GF (q)) + 59A(GF (q)) + 3M(3, p),

M(GF (q8)) ≤ 15M(GF (q)) + 193A(GF (q)) + 7M(3, p),

M(GF (q16)) ≤ 31M(GF (q)) + 558A(GF (q)) + 15M(3, p),

M(GF (q32)) ≤ 63M(GF (q)) + 1525A(GF (q)) + 31M(3, p).

Construction of the circuit on which the latter bound was achieved rests on the
existence of the primitive root

√
2 = 24(28− 1) of order 64 in the field GF (p). As

follows from Winograd’s theorem (see, for example, [2]), multiplicative constants
in the terms involving M(GF (q)) in the above estimates are minimal.

For q = pn, p = 213 − 1, n = 2k0 · 3k1 · 5k2 · 7k3 · 13k4 , where k0 = 0, 1, the
following relations were proved in [120]:

M(GF (q7)) ≤ 13M(GF (q)) + 344A(GF (q)) + 6A(GF (p)),

M(GF (q13)) ≤ 26M(GF (q)) + 1026A(GF (q)) + 12A(GF (p)).

Also in [120] analogous bounds were proved for q = pn, p = 217− 1, n = 2k0 · 3k1 ·
5k2 · 17k3 , where k0 = 0, 1:

M(GF (q9)) ≤ 17M(GF (q)) + 578A(GF (q)) + 6A(GF (p)),

M(GF (q18)) ≤ 35M(GF (q)) + 1825A(GF (q)) + 17A(GF (p)).

These results rely on using FFT modulo Mersenne prime p corresponding
to primitive roots ±2 of order p or 2p. In the last case FFT is performed by
the Good—Thomas method (see [2]). Multiplication in GF (qn) was implemented
using 3 FFT’s and reduction modulo an irreducible binomial.

The method proposed in the paper [121] requires 2 FFT’s on the average when
batch calculation of sufficiently many multiplications in GF (qn) is performed.
This method was called modular multiplication in the frequency domain since
all the operations are performed over Fourier-images of input data. For modular
multiplication Montgomery method was used. For example, if binomial xn − 2 is
irreducible over GF (p), p = 2m − 1, 2n− 1 ≤ m then the complexity of modular
multiplication in the frequency domain is

mM(GF (p)) + (m− 1)M(1/m, p) + (6m2 − 7m+O(1))A(GF (p)).

In the case of 2n− 1 < 2m complexity bound

2mM(GF (p)) + (m− 1)M(1/m, p) + (4m2 − 4m+O(1))A(GF (p))

was obtained. Effective application of this results in elliptic curve cryptography
was demonstrated in [122].

We remark that instead of Montgomery multiplication the use of usual modular
multiplication is possible. It implies some simplifications, but corresponding algorithm
for modular multiplication in the frequency domain requires roughly 2m2 multiplications
on 2k more than algorithm [121]. It is essential for software implementation, but
it isn’t so important for constructing of a circuit.
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6 Multiplication in Fields of Small Characteristic
In the last years numerous papers on the so-called pairing-based cryptography
were published (see e.g. [10]). A problem of primary practical importance in this
research direction is the efficient implementation of pairings. In [123] an efficient
algorithm was proposed for Tate pairing in some supersingular curves over fields
of characteristics 3. The performance of this algorithm depends on the efficient
implementation of arithmetic in GF (3n). Various approaches to this problem were
developed in [124, 125, 126, 127].

In [128, 129] a fast algorithm was presented for Tate pairing on hyperelliptic
curve y2 = xp − x + d, d = ±1, over the field GF (pn). In the case p = 3 this
algorithm is more efficient than that of the paper [123]. In [130] some improvements
of Duursma—Lee (DL) algorithm for binary fields were suggested. In fact, similar
improvements are possible in general case (see e.g. [10]). Another improvement of
the DL algorithm was suggested in [131].

To implement the DL algorithm for general case, one needs a circuit for
arithmetic in GF (p2pn), (2p, n) = 1, p = 4k + 3.

For this purpose one can use a multiplier with complexity estimate

M(GF (p2pn)) ≤ (6p− 3)M(GF (pn)) +O(p2nM(GF (p))).

The smallest field to be of some interest is the fieldGF (714n) which corresponds
to the case p = 7. Efficient implementation of arithmetic in this field leads to
improvements in a method of paper [132]. The following complexity and depth
estimates for multiplication in GF (714n) were proved in [133]:

M(GF (714n)) ≤ 13M(GF (72n)) + 258nA(GF (7)),

DM (GF (714n)) ≤ 11DA(GF (7)) +DM (GF (72n)).

Particularly, M(GF (714·31)) ≤ 698 554.
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[63] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, J. Pelzl, Efficient hardware
implementation of finite fields with application to cryptography, Acta Appl.
Math. 93 (2006), 75–118.

[64] S. Erdem, T. Yanik, C. Koc, Polynomial basis multiplication over GF (2n),
Acta Appl. Math. 93 (2006), 33–55.

[65] O. Ahmadi, A. Menezes. Irreducible polynomials of maximum weight,
preprint, 2005.

[66] C. Doche. Redundant Trinomials for Finite Fields of Characteristic 2 ACISP
2005, LNCS 3574, pp. 122-133, 2005.

[67] C. Paar, Effective VLSI architectures for bit paralel computation in Galois
fields, Ph.D. Thesis, Universität GH Essen, Germany, 1994.

[68] C. Paar, P. Fleischmann, P. Roelse, Effective multiplier architectures for
Galois fields GF (24n), IEEE Trans. Comp. 47 №2 (1998), 162–170.

[69] J.L. Massey, J.K. Omura, Apparatus for finite fields computation, US patent
4587627, 1986.

[70] A. Reyhani-Masoleh, M.A. Hasan, On effective normal basis multiplication,
Proc. IndiaCRYPT-2000, LNCS 1977 (2000), 213–224.
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