
Complexity of Computations with Matrices and Polynomials

Victor Pan

Department of Computer Science, Columbia University, New York, NY 10027

Computer Science Department

State University of New York at Albany

Albany, New York 12222

and

Mathematics and Computer Science Department

Lehman College, CUNY

Bronx, NY 10468

CUCS-031-90

Summary. We review the complexity of polynomial and matrix computations, as well as their various

correlations to each other and some major techniques for the design of algebraic and numerical algo-

rithms.

0. Introduction.

Polynomial and matrix computations are highly important classical subjects. They have been

thoroughly revised during the last decades due to the development of computer technology, whose latest

notable progress was the advent of parallel computers.

The current polynomial and matrix algorithms perform far better than their classical predecessors,

and one of our major objectives is to review the computational cost of such modern algorithms, together

with other aspects of their design and analysis, including their various correlations to each other and to

the algorithms for other algebraic and numerical computations.

In this review we will present some highlights of computations with univariate polynomials and

matrices over the complex, real or rational fields; some further treatment can be found in [BP,a] (which

is the most updated coverage) and, to some extent, in the earlier books [AHU], [BM] and (for polyno-

- 2 -

mial computations) [Kn]. Many of the techniques and the algorithms that we review can be extended to

computations over finite fields too (see [BP,a]).

Reviewing matrix computations, we will avoid overlaps with the excellent presentations in such

books as [Wilk], [GL] and [GeLi] by focusing on distinct but still important issues, in particular, on the

complexity of general matrix computations, on some very recent algorithms, on the complexity of

computations with dense structured matrices and on their correlations to polynomial computations.

It is convenient and customary to characterize matrix and polynomial computations by their arith-

metic complexity, and we will do this in Part II of our review, but beyond this, in Part I, we will review

some techniques of computation with variable or fixed precision.

In the latter case (of the fixed precision) we recall the techniques of binary segmentation in section

1. In sections 2 and 3, we cover the very recent compact multigrid algorithm, which enables us to solve

the constant coefficients linear PDEs discretized over grids and which only uses very low precision com-

putations [with O(1) binary bits]. In section 4, we recall some powerful and universal techniques from

computer algebra that bound the precision of rational computations.

In Part II, we review the complexity of matrix and polynomial computations under the RAM and

PRAM arithmetic models, briefly recalled in section 5 (Part II). In section 6, we review the arithmetic

complexity of polynomial computations and outline a recent algorithm that supports the record cost esti-

mates for approximating to polynomial zeros. We review the complexity of computations with general

matrices in section 7 and extend our study to computations with dense structured matrices in sections 8

and 9, indicating a way to their unification (section 9) and some correlations to polynomial computa-

tions. We review polynomial division and its correlation to matrix and power series computations in

sections 10, 11 and 12.

Presenting the algorithms, we will indicate which of them may require a higher precision computa-

tion; in such a case their practical implementation for numerical computing may be a problem, of

course, but they may be either implemented as computer algebra algorithms or modified for numerical

computation with improved numerical stability (sometimes at the expense of some increase of their

complexity).

- 3 -

Part I. Exploiting Fixed and Variable Precision Computations.

In this part we will show how some numerical and/or algebraic computations can be made more

effective by means of either fixing their precision below the level of the machine precision or by varying

such a precision.

1. Binary segmentation.

Suppose that the machine precision is substantially higher than the precision of the computations

that we need to perform; then we may decrease the number of arithmetic operations involved, by using

binary segmentation.

Example 1.1. Interpolation via binary segmentation. Recall the interpolation problem of the

recovery of an n-th degree polynomial p(x) from its values. Generally, we need the values at n+1

points, but let p(x) =
i=0
S
n

 pix
i be a polynomial with nonnegative integer coefficients, which are all strictly

less than 2g for a positive g. Let h ‡ g be an integer. Then the binary values p0,...,pn can immediately

be recovered as the appropriate segments of the binary value p(2h) =
i=0
S
n

pi2
hi, that is, in this case, we

only need a single interpolation point x = 2h, rather than n+1 points.

Extension. The simple algorithm of Example 1.1 is immediately extended to the case where

p0,...,pn are integers lying strictly between - 2g and 2g ([Kn], p. 191). Choose an integer h ‡ g+1 and

compute p(2h) +
i=0
S
n

2hi+h- 1 =
i=0
S
n

(pi+2h- 1)2hi; then recover the nonnegative integers pi+2h- 1 < 2h and,

finally, pi for all i. Surely, the method also works where the coefficients p0, ...,pn are Gaussian integers,

that is, complex numbers with integer real and imaginary parts.

It is worth emphasizing that the binary segmentation relies on correlation between integers and

polynomials with integer coefficients. Such a correlation has been successfully exploited in order to

extend available algorithms for polynomial computations to computations with integers and vice versa;

this includes multiplication, division, computing the greatest common divisors (gcds) and the least com-

mon multiples (lcms) and the Chinese remainder computations ([AHU], [BM]).

- 4 -

Example 1.1 suggests that we may replace some operations with polynomials in x (in particular,

their multiplication, but see [P84], [BP], [BP,a] and [Eberly] on some other operations) by similar

operations with the values of such polynomials at x = 2h, for an appropriate positive integer h, so that

several shorter output values (the coefficients) can be read from a single longer value. Similar tech-

niques can be applied to compute the inner and the outer vector products. We only need to have the

longer output value fitted the computer precision; otherwise, we shall partition the original problem into

subproblems of smaller sizes.

Example 1.2, convolution of vectors via binary segmentation ([FP]). Let m and n be two

natural numbers, U and V be two positive constants, u and v be the coefficient vectors of u(x) and v(x),

two polynomials of degrees m- 1 and n- 1, respectively, whose coefficients are integers in the intervals

between - U and U and - V and V, respectively. Then the coefficients of the polynomial w(x)=u(x)v(x)

lie between - W and W where W = min {m,n}UV, so that Example 1.1 suggests that we may recover

the convolution of u and v, that is, the coefficients of the polynomial u(x)v(x), if we compute the binary

value u(2h)v(2h) for an integer h ‡ 1+log W.

Example 1.3, computing the inner and outer products of two vectors (section 40 of [P84]).

Under the assumptions of Example 1.2, we may compute the inner product uTv =
j=0
S
n

 uj vj (if m=n) and

the outer product [wij] = u vT = [uivj] of two vectors u = [ui] and v = [vj] by means of binary segmen-

tation of the two integers p(2h) and q(2h). Here,

p(2h) = (
i=0
S
n- 1

 2ihui)(
j=0
S
n- 1

 2(n- 1- j)hyj) =
k=0
S

2n- 2
 zk2kh, zn- 1 = uTv,

and in this case h is an integer, h‡1 + log W, W = n U V, whereas

q(2h) = (
i=0
S

m- 1
 2inh ui)(

j=0
S
n- 1

 2jh vj) =
i,j
S uivj 2(in+j)h,

and in this case h is an integer, h‡1 + log W, W = U V.

Thus, each of the inner and outer products is computed by means of a single multiplication of

integers and of binary segmentation of the product.

For demonstration, let the vectors u and v have dimension 8 and have components 0, - 1 and 1 and

- 5 -

assume the computer precision of 64 binary bits. Then the straightforward evaluation of the convolu-

tion, inner product and outer product of u and v requires 64, 15 and 64 ops, respectively. With binary

segmentation we only need single integer multiplication for each problem if we may use a sufficiently

high precision. Even if the computer precision were 32 binary bits, the single multiplication of

u(2h) by 2(n- 1)hv(2- h), for h=4, with chopping of the product to 32 bits and subsequent segmentation of

the last 32 bits would suffice for computing the inner product. For the convolution and outer product,

we would have needed two multiplications modulo 232 for each, that is, of u(2h) by v(2h) and of

2mhu(2- h) by 2nhv(2- h) for convolution where h=4 and of u(2nh/ 2) by p(2h) and by q(2h) where

p(x) = v(x) mod xn/2 =
j=0
S

n/2- 1
 vjx

i and q(x) = (v(x) - p(x)) / xn/2 for the outer product where h=1.

2. Lower Precision Computation. Compact Multigrid.

Some computers, such as CM-1 (Connection Machine) and MASPAR, are capable of taking sub-

stantial advantages of lower precision computations, and next we will follow [PR89a] and will show

how to solve a large class of partial differential equations (PDEs), (reduced to linear algebraic systems

of equations) by using lower precision computations. To formalize the results, we will assume that

multiplying a pair of (k-bit) integers modulo 2k takes a storage space of the order of k bits and time of

the order of ka bit-operations, 1 £ a £ 2.

We will first show how to decrease the storage space. The straightforward representation of the

solution within the discretization (truncation) error bound requires O(N log N) binary bits, but we will

follow [PR89a] and will arrive at a compact representation with O (N) bits, which in the case of con-

stant coefficient linear PDEs, we will compute by using a low precision and O (N) bit-operations [as

long as O(1) bit-operations suffice to multiply a pair of O(1)-bit integers]. Note that this means by ten

times improvement already in the case where N = 1024, which is far below the sizes of linear systems

handled in the practical PDE computations. Following [PR89a], we will call this algorithm COMPACT

MULTIGRID.

Let us next specify these results starting with some auxiliary facts and definitions. We will study

linear PDEs on the unit d-dimensional cube, discretized over a family of d-dimensional lattices

- 6 -

L0, L1,..., Lk, where each point of Lj lies at the distance hj = 2- j from its 2d nearest neighbors, so that

there are exactly | Lj | = Nj = 2dj points in Lj for j=0,1,...,k, and the overall number of points equals

Nk = N = 2dk, where k = (log N) / d, provided that we identify the boundary points whose coordinates

only differ by 0 or 1 from each other. (On the actual discretization grids for PDEs, all the boundary

points are distinct, so that the j- th grid contains slightly more than Nj points.)

Let u(x), a function in the d-dimensional vector of variables x, represent the solution to the PDE,

and let uj(x), for a fixed x ˛ Lj, denote the respective component of the Nj-dimensional vector uj that

represents the solution to the linear system,

Djuj = bj , (2.1)

of the difference equations generated by a discretization of the PDE over the lattice Lj, so that

D j(x) = u(x) - uj(x) for x ˛ Lj denotes the discretization error function on Lj for j=1,...,k.

Under the routine assumption that ||Dj|| 2 ||Dj
- 1 || 2 = O(hj

a) for a constant a, which we will call the

weak smoothness assumption, we may deduce that for some fixed b~ ‡ 1 and c~ ‡ 0,

| Dj(x) | < 2c~- b
~

j for all x˛ Lj. (2.2)

Thus, we need O(j) binary digits (bits) to represent the value uj(x) approximated to the level of

truncation, which means the order of k = log2N bits per point for j=k.

To compress this representation to O(1) bits per point, we will follow the routine of the multigrid

approach, will let u0(x) = 0 for x ˛ L0 and will let ûj- 1(x) for j=1,2,...,k denote the prolongation of

uj- 1(x) from Lj- 1 to Lj, obtained by means of the interpolation (by averaging) of the values of uj- 1(x) at

an appropriate array of points of Lj- 1 lying near x, so that ûj- 1(x) = uj- 1(x) if x ˛ Lj- 1, and ûj- 1(x) is

the average of uj- 1(y) over all y such that y ˛ Lj and, say, | y- x | = hj if x ˛ Lj- Lj- 1. Then

uj(x) = ûj- 1(x) + ej(x), x ˛ Lj, j=1,...,k, (2.3)

where ej(x) denotes the interpolation error on Lj. It is easy to deduce from (2.2) that

| ej(x) | £ 2c-a j (2.4)

for all x ˛ Lj, j=1,...,k, and for some fixed c ‡ 0 and a ‡ 1, and thus the prolongation of uj- 1(x) from

Lj- 1 to Lj only requires O(Nj) bit-operations.

- 7 -

Compression of the Output Data

Now assume the weak smoothness and compress approximations to all the N values of uk(x) on

Lk within absolute errors of at most 2c-a k, so as to decrease the storage space required. The straightfor-

ward fixed point binary representation of these values of uk(x) generally requires N Ø a k- c ø binary bits.

As an alternative, let us store uk(x) on Lk in the compressed form by recursively approximating

within 2c-a j-a to the fixed point binary values ej(x) for x ˛ Lj, j=1,...,k. The storage space of

2d Ø a- c ø + a (N2+N3+...+Nk) < 2d Ø a- c ø + 2a N = O(N) binary bits suffices for this compressed

information, which means saving roughly the factor of k = log N binary bits against the straightforward

representation.

Recovery of the Solution Values from the Compressed Data

Let us recover uk(x) on Lk from the compressed information given by ej(x) on Lj for j=1,...,k.

Start with u0(x) = 0 for x ˛ L0 and recursively, for j=1,...,k, compute the values

a) ûj- 1(x) on Lj, by prolongation of uj- 1(x) from Lj- 1 to Lj, and then

b) uj(x) on Lj, by applying the equations (2.3).

Perform both stages a) and b) with the precision 2c-a j-a , so that the stage b) amounts to appending

a binary bits of ej(x) to the available string of binary bits in the fixed point binary representation of

ûj- 1(x) for each x ˛ Lj, and the stage a) amounts to scanning the values of uj- 1(x) on Lj- 1 and to the

summation of few b-bit binary numbers [where, say, b = O(a)] defined by the b least significant binary

bits in the representation of uj- 1(x) for appropriate x from Lj- 1. Since
j
S Nj = O(N), the computational

complexity estimates for stages a) and b) stay within the desired bound O(N log N).

3. Computing the Compressed Solution by Compact Multigrid.

In this section, in addition to our previous assumptions, we will assume that

1) a fixed iterative algorithm [such as Gauss-Seidel, SSOR or a multigrid algorithm of the next

section] for linear systems with matrices Dj uses O(1) multiplications of submatrices of Dj

by vectors for every j, in order to decrease, by the factor independent of j and N, the norm of

- 8 -

the error of the approximation to the solution uj(x) of the system (2.1) (linear convergence

assumption);

2) the entries of the matrices Dj for all j, as well as the components of bj , are integers having

magnitudes O(1) or turn into such integers after the truncation and scaling of the system

(2.1); this assumption of coefficient bounding holds for the constant coefficient PDEs.

Under these assumptions, we will compute the compressed solution to the system (2.1) for all j by

using O(1) bit-operations per point of a grid. The time complexity of computing the compressed data

structure is dominated by the time required to obtain the solution vectors ej for the linear systems of

equations over Lj, for j=1,...,k:

Djej = rj , (3.1)

where

rj = bj - Djûj- 1 , (3.2)

the matrices Dj and the vectors bj are from the linear systems (2.1), and the vectors ej and ûj- 1 have the

components ej(x) and ûj- 1(x) corresponding to the points x ˛ Lj and defined by (2.1) and (2.3).

We will follow the routine of the multigrid methods (compare [McC87], [FMc]) and will evaluate

the vectors ej recursively for j=1,...,k by applying the so called V-cycle multigrid scheme and arriving at

the desired Compact Multigrid algorithm, in which we will exploit the compressed representation of the

solution. Initially, we will let u0(x) = 0 for x˛ L0, and at stage j, we will successively compute for all

x ˛ Lj:

a) ûj- 1(x) [by prolongation of uj- 1(x) from Lj- 1 to Lj],

b) rj(x) [by using the equations (2.3)and (3.2)],

c) ej(x) [by solving the linear system (3.1) "to the level of truncation"],

d) uj(x) in the compressed form [by using the equations (2.3), as in section 6].

We may then restrict uj+1(x) to uj(x) for j=k- 1, k- 2, ..., 1 (this stage contains no smoothing itera-

tions, unlike some customary variants of the multigrid scheme) and then recursively repeat such a loop,

customarily called V-cycle.

- 9 -

The linear convergence assumption means that, for all j, the errors of the approximations to uj(x)

decrease by a constant factor independent of j and N when stages a)-d) are repeated once, even if only

O(1) iteration steps are used at stage c) for solving linear systems (2.1) for every j. Such convergence

results have been proven for the customary multigrid algorithms applied to a wide class of PDEs (see

[BD81], [Ha77], [HT82], [Hac80], [Hac85], [Mc86], [McT83], [FMc87a]).

Let us estimate the time complexity of these computations, dominated by the time needed for solv-

ing the linear systems (3.1).

The size | Lj | = 2dj of the linear system (3.1) increases by 2d times as j grows by 1. Even if we

assume that the solution time for the system (3.1) is linear in | Lj | , the overall solution time for all the k

such systems in terms of the number of arithmetic operations involved is less than 1/(1- 2- d) times the

solution time for the single system (2.1) for j = k, which gives us the uncompressed output values uk(x)

for x ˛ Lk. The bit-operation count is even more favorable to the solution of the systems (3.1) for all j,

as opposed to the single system (2.1) for j = k, because the output values ej(x), satisfying the systems

(3.1), are sought with the lower precision of a binary bits.

Furthermore, we solve the linear systems (3.1) by iterative methods where each step is essentially

reduced to a constant number (say, one or two) multiplications of a matrix Dj or its submatrices by vec-

tors. Due to the linear convergence assumption that we made, a constant number of iterations suffices at

each step j in order to compute the a desired binary bits of ej(x).

The computational cost of multiplication of Dj by a vector is O(Nj) arithmetic operations for a

sparse and structured discretization matrix Dj [having O(1) nonzero entries in each row]. The next two

propositions summarize our estimates:

Proposition 3.1. O(N) ops suffice to compute the vectors ej for all j, that is, to compute the

smooth compressed solution to a constant coefficient linear PDE discretized over the lattice Lk, under

the weak smoothness and linear convergence assumptions.

Furthermore, we only need O(1) binary bits in order to represent ej(x) for every x ˛ Lj and every

j. Since Dj has only O(1) nonzero entries per row and since these entries are integers having magni-

tudes O(1) [due to assumption 2) of strong pseudo regularity], it suffices to use O(1) bits to represent

- 10 -

rj(x). [These O(1) bits may not occupy all the positions of the nonzero bits of the associated component

of bj , since | rj(x) | may be much less than || bj ||¥ .] Thus, we will perform all the arithmetic operations

with O(1)-bit operands and will arrive at Proposition 3.2.

Proposition 3.2. O(N) bit-operations and O(N) storage space under the Boolean model of com-

putation suffice in order to compute (by using the Compact Multigrid algorithm) the compressed solu-

tion to a constant coefficient linear PDE that satisfies the weak smoothness and linear convergence

assumptions.

Extensions of the Results.

The above results can be immediately extended to the case of more general sequences of the sets

S0, S1, ...,Sk of the discretization of the PDEs, provided that each set Sj consists of cjs j points where

0 < c < c j < c*, s > 1, c, c* and s are constants (this includes the grids with step sizes that may vary

depending on the direction of the steps), and that the weak smoothness and linear convergence assump-

tions are respectively extended to the case of the sets Sj. We also need to assume a constant degree

bound 2d for all the discretization points, that is, each of them is supposed to have at most 2d neigh-

bors: this will imply that each equation of the associated linear algebraic system has at most 2d+1

nonzero coefficients. If we do not bound the coefficients, we may loose the bound of O(1) bit-

operations per point but may still decrease by the factor of log N the precision of the conventional mul-

tigrid methods (by using our compact scheme), and this may be a great advantage for ill-conditioned or

not-so-well-conditioned PDEs.

Finally, the presented approach can be further extended to some nonlinear PDEs, as long as our

assumptions [such as (2.4)] hold.

4. Some Techniques From Computer Algebra: Infinite Precision = Low Precision

Let us now shift to computer algebra, that is, to computing with no rounding-off errors, which in

particular, may handle the ill-conditioned problems. Even in this case, we may decrease the precision of

computations, due to using modular arithmetic, complemented by some other techniques of symbolic

and algebraic computing, and next we will briefly recall some of them.

- 11 -

We will first recall p-adic lifting, which invokes the names of Newton and Hensel. The idea is to

start with computing the solution modulo a prime p (which means the precision of the order of log p

binary bits), and then we recursively lift the resulting solution to its value modulo pk for recursively

growing k (which mean the order of k log p binary bits in the precision).

Typically, the computation modulo p involves more arithmetic operations than the lifting stages.

Here is an example from [MC]:

Algorithm 4.1, Hensel’s lifting process for linear systems.

Input: two positive integers H and p, an n· n matrix A and an n-dimensional vector b, both filled with

integers such that det A „ 0 mod p.

Output: xH = A- 1 b mod pH.

Stage 0 (initialization). Compute S(0) = A- 1mod p,

x1 = S(0)b mod p, v1 = A x1 mod p2.

Stage i, i=1,...,H- 1. Compute the vectors

wi = b - vi mod pi+1,

yi = (S(0)wi /pi) mod p2,

vi+1 = vi + piA yi mod pi+2,

xi+1 = xi + piyi mod pi+1.

Stage H. Recover the vector A- 1b from xH = A- 1b mod pH ([Wang]). Output A- 1b (or in some appli-

cations skip Stage H and output xH).

Stage i for i=1,...,H- 1 involves O(n) ops in order to add vectors and to multiply them by constants

and also involves two multiplications of matrices A and S(0) by vectors reduced modulo p2, that is,

these two multiplications are performed with lower precision, which may motivate, for instance, applica-

tion of binary segmentation at this point. We may avoid computing the matrix S(0) and find the vectors

x1 and yi for all i by solving the linear equations Ax1 = b mod p, Ayi = wi /pi mod p2.

Note that det A mod p may vanish even where det A does not, but this occurs with a low probabil-

ity for a random choice of p in an appropriate interval ([BP,a]).

- 12 -

In an alternate way to p-adic lifting for problems having an integer or rational output, we may

compute the solution modulo several primes p1,...,pk, by using a lower precision of O(log pj) binary

bits for j=1,...,k, and then obtain the solution modulo p1...pk by means of the Chinese remainder algo-

rithm ([AHU], [BM], [Kn], [BP,a]).

If the solution is an integer between - M/ 2 and M / 2 (as is the case, say, for polynomial multipli-

cation, for an easily estimated M) or if it is the ratio p/q where | p | and | q | are integers less that

77777M/ 2 , we may immediately recover the solution from its value modulo M. The integer case is trivial;

to recover p and q from (p/q) mod M, we may apply the algorithm of [Wang], which invokes the con-

tinued fraction approximation algorithm and outputs the solution value p/q where p and q are integers,

max{ | p | , | q | } < 77777M/ 2 . [The continued fraction approximation algorithm ([HW79]) is actually the

extended Euclidean algorithm ([AHU], [Kn], [BP,a]) applied to two positive integers a and b; it only

requires O(m(s) log s) bit-operations ([AHU]) where s = log max{a, b}, m(s) = O(s log s log log s) is the

number of bit-operations required in order to multiply a pair of integers modulo 2s.]

In the algorithm of [Wang], we need upper bounds on | p | and | q | in order to choose M. Typi-

cally such an output value p/q is a component of the solution vector to a system of linear equations;

then we may bound | p | and | q | by relying on Cramer’s rule and on the inequality | det A | £ ||A||N for

an N· N matrix A.

The modular arithmetic can be useful even in the fixed precision computations, where we may

compute modulo M and then recover the integer or rational output. This way we ensure that the preci-

sion of the intermediate computations does not grow more than to Ølog2 Mø.

The recovery of the rationals from their values modulo an integer has an interesting analogy with

their recovery from their binary approximation:

Fact 4.1, [UP83]. Let z = p/q; D, p, q, and s be integers, | q | < D, e < 1 / (2D2), x = a / 2s

approximate to z within e. Then p and q can be recovered (given a, s, e and D) by means of the contin-

ued fraction approximation algorithm applied to a and 2s.

Of course, simple rounding-off instead of the continued fraction approximation algorithm suffices

if z is an integer, q = 1, and e < 1 / 2.

- 13 -

If we try to implement computer algebra algorithms over a finite field of constants F of integers

modulo a prime p or a prime power pk (and this section should show why we may prefer to do this),

there may arise the problem of supplying the N-th roots of 1 in order to perform discrete Fourier

transform at N points and/or interpolation to a degree N- 1 polynomial (see section 6 below). A simple

solution to this problem is to perform the computation in an extension of F to a field E of integers

modulo pK for a larger K, which we may, however, bound by using the Fermat small theorem, so that

the transition to E increases the computational complexity by the factor of O(log log N).

Part II. Arithmetic Complexity of Polynomial and Matrix Computations.

5. RAM and PRAM Models.

Hereafter we will adopt the customary and convenient measure for the complexity of algebraic and

numerical computations in terms of the number of arithmetic operations involved under the Random

Access Machine (RAM) model ([AHU]). The algorithms of section 1 (using binary segmentation) sug-

gest that we should then appropriately bound the precision of computations. Indeed, otherwise, a single

multiplication suffices to compute a product of vectors or polynomials.

On the other hand, we avoid such a discrepancy and may estimate the complexity under the arith-

metic RAM model of computing as long as the computations are performed with the precision being at

most of the order of the output precision, as was the case in section 4 for the computer algebra computa-

tions and as is the case for the numerically stable numerical algorithms. Note that in section 3, the pre-

cision of the output, of the order of log N, even exceeded the precision of computations, O(1).

For parallel computations, we will assume Parallel RAM (PRAM) models, where in each step each

nonidle processor performs one arithmetic operation ([KR]). Under these models, the complexity of

processor communication and synchronization is not included, but we will apply PRAM models to the

computations that only require few or moderately many processors, so that the cost of their communica-

tion and synchronization is dominated by the arithmetic cost.

We will assume Brent’s scheduling principle, according to which a slowdown of parallel computa-

tions by O(s) times suffices in order to decrease the number of processors from p to p/s provided that s

- 14 -

and p/s are positive integers ([Bre]). We will write OA(T) and OA(t, p) to denote the sequential and

parallel arithmetic cost of an algorithm where T, t and p denote the numbers of arithmetic operations

(sequential time), of arithmetic parallel steps (parallel time) and processors used, respectively, all

defined within constant factors.

Then by Brent’s principle, the bound OA(t, p) implies OA(st, p / s) as long as p and s are positive

integers, in particular, OA(t, p) implies OA(tp, 1) if we let s = p, and tp is called the total work of a

parallel algorithm ([KR]), whereas the ratio T/ (tp) measures its processor efficiency, provided that T

denotes the record sequential time bound for the same computational problem.

Brent’s principle has a wide area of applications. For instance, one may immediately sum n

numbers by using Ølog2nø parallel addition steps and n processors, but by slowing down the first

Ølog2 Ølog2nøø steps, we may arrive at the bound of OA(log n, n / log n). Similar application of Brent’s

principle enables us to extend the bound of Proposition 3.2 to OA(log N, N / log N).

An arithmetic algorithm is in NC if its parallel cost is OA(t, p) where

t = O(log N), log p = O(log N), N being the dimension of the input to the computational problem (the

input size), say, the number of the coefficients of the input polynomial.

Similar definitions, OB(T) and OB(t, p), as well as the total work, NC, processor efficiency and so

on, can be applied to estimating sequential and parallel Boolean complexity of computations with

Boolean operations (bit-operations) playing the role of arithmetic operations. We may immediately

extend upper bounds on the arithmetic complexity of computations to the Boolean complexity bounds if

we know the precision of computations. Indeed, we may simply apply the known estimates for the

Boolean cost of arithmetic operations given their precision (see [AHU], [Kn]). We will not comment

more on this issue in our review, but will mention that the O(1) precision algorithm of section 3

immediately implies the bounds OB(N) and OB(log N, N / log N) on the Boolean complexity of the

solution of PDEs, thus extending Proposition 3.2.

6. Arithmetic Complexity of Polynomial Computations.

We will next survey the known estimates for the arithmetic complexity of polynomial computa-

- 15 -

tions. In some cases, we will show a slight decrease of the parallel complexity of the computations by

computing any precision approximation (APA) to the output rather than computing it exactly.

- 16 -

Table 6.1. Arithmetic Complexity of Polynomial Computations

(c denotes constants not less than 1, upper bounds are within constant factors, except for evaluation at a
single point).

Sequential Arithmetic Time Parallel Arithmetic Complexity22
Problem Lower Bounds Upper Bounds Time Processors22

evaluation at a point n(–), n(–),
(no preconditioning) n(*,‚) n(*,‚) log n n/ log n
22
evaluation at a point n(–), n+2(–),

(with preconditioning)
2

n+13333(*,‚)
2

n+23333(*,‚) log n n/ log n
22
evaluation and
interpolation at n-th cn n log n log n n
roots of 1 (FFT)
22
evaluation at m
points. Interpolation log2n m(APAoutput)

m log n m log2n 2222222222222222222222222222222222222

at m=n points (log n)2 log*n m/ log*n
22
multiplication
(degrees m and n, cN N log N log N N
N=m+n)
22
division log k k(APA output)

ck k log k 2222222222222222222222222222222222222

(degrees m and n, log k log*k k/ log*k
k=m- n)
22
gcd computation N log N log N

cN N log2N 2222222222222222222222222222222222222

(degrees m and n, log2N N2 (integer
N=m+n) coefficients)
22
computing a zero
of a polynomial n+log b n log b log n log2n log(bn) n log b/ log n log(bn)
with error < 2- b

22
computing all the n log n log(bn) n log b/ log(bn)
zeros with n+log b n2log b log n 2222222222222222222222222222222222222

error < 2- b log3(nb) (bn)O(1)

22
composition log2n n(APA output)
of two polynomials cn2 n2log2n 2222222222222222222222222222222222222

of degree n (log n)2 log*n n2/ log*n
22
composition log2n (n3/ log n)1/2 (APA)
and reversion cn n log n3/2n 2222222222222222222222222222222222222

modulo zn (log n)2 log*n (n2/ log n)1/2/ log*n
22
decomposition (log N)2 log log N N/ log log N
of a polynomial cN N log2N 2222222222222222222222222222222222222

of degree N log2N N (APA)
2211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- 17 -

Table 6.1 shows a dramatic improvement of several classical polynomial computations, which typ-

ically involve of the order of N2 arithmetic operations for the input polynomials of degree N. This

improvement is due in particular to the famous fast Fourier transform (FFT) algorithm, which only costs

1.5 N log2N arithmetic operations or, in the parallel implementation, OA(log N, N) and which may

solve each of the two converse problems of multipoint evaluation and interpolation for a polynomial

p(x) of degree less than N = 2k with an integer k and for the nodes being the N-th roots of 1. The algo-

rithm recursively exploits the identity p(x) = s(y) + x t(y) where y = x2, which turns into (N/2)-th roots

of 1, for xN = 1, and where s(y) and t(y) are polynomials of degrees less than N/2. Thus, the original

problem is recursively reduced to two problems of half-size. Such a divide-and-conquer strategy gen-

erally leads to numerous effective algorithms. For example, the reader may apply such a strategy in

order to shift from Newton’s representation to the coefficient-wise representation of a polynomial of

degree N and vice versa for the cost OA(log N, N). Here is another (very famous) example of applica-

tion of FFT:

We may evaluate the polynomial product u(x) v(x) (vector convolution), that is, compute

wi =
j=0
S
i

 uj vi- j , i=0,1,...,D, D = deg(u(x) v(x)), by first computing u(x) and v(x) at the N-th roots of 1,

for N = 2n > D = deg (u(x) v(x)), for the cost OA(log N, N) of two FFTs at N points, then multiplying

the N pairs of the computed values, and finally recovering u(x) v(x) by means of interpolation (inverse

FFT) for the cost OA(log N, N) (versus the classical algorithm using N2 operations).

The problem of round-off errors in FFT can be avoided by means of performing FFT over the ring

of integers modulo a natural m, chosen so as to ensure the existence of the desired roots of 1 ([AHU],

[BM]). On the other hand, we have the following result on the numerical stability of FFT:

Fact 6.1 ([GS]). Let Q = W or Q = W H, K be a power of 2, and the d-digit floating point compu-

tation of Qb be performed by means of FFT at K points. Then

fl(Qb) = Qb + f(b), || f(b)|| 2 £ 2- df (K) || b|| 2 , f (K) = 8.5K 77K log K.

The power of FFT and of fast polynomial multiplication is extended to many other computations

with polynomials, matrices, partial fractions, power series and integers by means of various interesting

- 18 -

and sometimes intricate techniques, which can be found in [AHU], [BM], [Kn], [BP,a], and to some

extent, in sections 8 and 10 below.

Here are just two simple examples:

Example 6.1, discrete Fourier transform (DFT) at any number of points ([Kn], pp. 300 and

588). Given the values p0,p1, ...,pK- 1, compute rh =
j=0
S

K- 1
pjw

 hj for h=0,1,...,K- 1, where w is a primitive

K-th root of 1.

Solution. Rewrite

rh = w - h2/ 2
j=0
S

K- 1
w (j+h)2/ 2w - j2/ 2pj for h=0,1,...,K- 1.

Substitute m=K- 1, n=2K- 2, wn- h = rhw h2/ 2, uj = w - j2/ 2pj for j £ m, uj = 0 for j > m, vs = w (n- s)2/ 2 ,

and rewrite the expressions for rh as follows: wi =
j=0
S
i

ujvi- j , i=m,m+1,...,n. This reduces DFT at K

points to the evaluation of wi for i=m,m+1,..,n, which is a part of the convolution problem of comput-

ing wi =
j=0
S
i

 ujvi- j, i=0,1,...,n.

Remark 6.1. An alternate approach of [W79] decreases the above estimates for both numbers of

additions and multiplications for FFT at K points for any K, simultaneously yielding the bounds of

O(K) multiplications and O(K log K) additions. The best available lower bounds are of the order of K.

Example 6.2, shift of the variable ([ASU]). Given a complex value D and the coefficients

p0,p1, ...,pn of a polynomial p(x) =
i=0
S
n

 pi xi, compute the coefficients q0(D), q1(D),...,qn(D) of the poly-

nomial

q(y) = p(y+D) =
h=0
S
n

ph(y + D)h =
g=0
S
n

qg(D)yg

(or, equivalently, compute the values of the polynomial p(x) and of all its derivatives p(g)(D) = qg(D)g!

of the order g=1,2,..,n at x=D).

Solution. Expand the powers (y + D)h above and obtain that

qg(D) =
h=g
S
n

phDh- g
g!(h- g)!

h!33333333, g=0,1,..,n.

- 19 -

Substitute wn- g = g! qg(D), un- h = h!ph, vs = Ds/ s!, j=n- h and i=n- g, and arrive at the following

expressions [which are a part of a convolution problem]:

wi =
j=0
S
i

ujvi- j , i=0,1,...,n.

Thus, the solution involves at most 4.5 K log K +K ops for 2n < K £ 4n, not counting 4n- 4 multi-

plications and divisions by D and s! for s=2,3,..,n.

In sections 10, 11 and 12, we will revisit some current best algorithms for polynomial division,

which we will restate also in the forms of matrix and power series computations. Divisions turns out to

be reducible to multiplications and have almost the same computational cost (see Table 6.1). Polyno-

mial division applies to several other computations; in particular, the Euclidean algorithm computes the

gcd of two polynomials u(x) and v(x) by means of recursive reduction of one of them modulo another

by divisions. Only relatively few leading coefficients of such polynomials are involved in each division,

and this leads to the cost bound OA(N log2N) for the gcd. The parallel time of this algorithm is, how-

ever, linear in N, but we may reduce computing the gcd to computing the least-squares solutions to at

most Ølog2nø linear systems of equations with dense structured matrices and thus arrive at NC algo-

rithms (see [BGH], [G], [P90] and Remark 9.1 in section 9 below).

Multipoint evaluation and interpolation for polynomials will give us yet another occasion (in addi-

tion to the study of computing the gcd and division) for showing some simple correlations among poly-

nomial and structured matrix computations (see section 8). Polynomial computations are also closely

related to manipulation with formal power series (which turn into polynomials being reduced modulo a

power) and with integers (for a binary integer can be considered the value of a polynomial with 0 and 1

coefficients at the point x = 2). We refer the reader to [AHU], [Kn] and [BP,a] on these correlations.

In the remainder of this section, we will survey some most effective methods for approximating to

polynomial zeros and to linear factors of a polynomial in the complex domain; in particular, we will

outline an algorithm based on [P87a] (see also [BP,a] and [Sc]), and supporting the record estimates of

Table 6.1 for the approximation within the relative error of 2- b (that is, within an error bound

2- b
i<n

max | pi |) to all the complex zeros xj of an n-th degree monic polynomial,

- 20 -

p(x) =
i=0
S
n

 pix
i =

j=1
P
n

 (x - xj), pn = 1.

It is well-known that this problem is ill-conditioned; specifically, the worst case precision of this

computation must be at least of the order of nb, and we will not require any higher precision of comput-

ing.

Unlike many other algorithms, this algorithm is insensitive to clustering the zeros of p(x); it

always converges exponentially fast and right from the start.

The algorithm exploits Weyl’s geometric construction for search and exclusion ([He]), which itself

only ensures linear convergence. Let us first specify this construction and then describe its further

improvement.

We first define a square on the complex plane that contains all the zeros of p(x) (we know that

j
max | zj | £

i<n
max | pi |), and recursively partition it into four congruent subsquares; each of them is

either discarded if a test shows that it contains no zeros of p(x) or is called suspect and is further recur-

sively partitioned into four subsquares. The test is by Turan’s algorithm that, for the cost of O(1) FFTs,

approximates within, say, 2% error to the minimum absolute value of a zero of p(x). Since we may

shift the variable x to any complex point for the cost of 3 FFTs (see above), we may also compute the

desired minimum distance from a center of a square to a zero of p(x). At most 4n suspect squares need

to be examined in each Weyl’s recursive step, since every zero of p(x) may make at most four squares

suspect in each such a step.

The side of a suspect square decreases by twice in each recursive step, and thus we arrive at the

desired approximations to all the zeros of p(x) within the relative error 2- b for the cost OA(nb log n, n).

These bounds are quite effective for smaller b, but we may modify the approach and greatly decrease the

total work and the parallel time if b is large, that is, we may decrease them by the factor of b/log b,

from the order of b to the order of log b (as in Table 6.1). For this, we need to ensure an accelerated

convergence to an unknown smallest subsquare s of every given larger square S such that both squares

S and s contain exactly the same k zeros of p(x) (in particular, s is just a point if k = 1).

- 21 -

This turns out to be the critical step for improving the Weyl construction, in the cases where S is

much larger than s (such cases always arise where b is large). Except for these cases, the construction

soon defines new distinct connected components formed as unions of suspect squares [such a new com-

ponent is defined in O(log n) steps of Weyl’s construction if the ratio of the diameters of S and s is

nO(1)], and at any step there can be at most n such components, of course. Thus we will recursively

perform the accelerated contraction of S towards s, each time followed [until we output the desired

approximations to the zeros of p(x)] by a series of O(log n) Weyl’s steps, which ensure partition of the

union of the suspect squares into more and more components. Since each time the number of com-

ponents grows but never exceeds n, we will isolate all the zeros of p(x) in at most n- 1 partition stages.

It remains to ensure the accelerated contraction of S towards s. For this purpose, we first approxi-

mate to the average value M of the k zeros of p(x) in S and then to the maximum distance d from M to

such a zero. Both approximations to M and to d can be computed by means of numerical integration of

x p¢(x)/ p(x) and of (x- M)2 p¢(x)/ p(x), respectively. For the contour of integration we choose a circle,

C, containing exactly these k zeros of p(x), which enables us to reduce the integration to FFTs. The

errors of the integration are proportional to gQ- 1 or gQ- 2 where Q is the number of points used for each

FFT, and g < 1 is the ratio of the radius of the circle C (being the denominator) and of the distance from

its center to a zero of p(x) nearest to C (the numerator). We may decrease g by moving the center of C

closer to the zero of p(x), and this is easy to ensure when the current approximations to M and d give us

a smaller region that includes the yet unknown smallest square s containing the k zeros of p(x). This

process, being recursively repeated, very rapidly converges to the square s and thus enables us to deduce

the complexity estimates that are very close to ones of Table 6.1.

To arrive at the estimates of Table 6.1 themselves, we just need to replace the contraction of the

square S towards s by splitting p(x) into the product of two polynomials f(x) and g(x), f(x) sharing with

p(x) exactly the k zeros of p(x) in S. The sums of the i-th powers of such zeros for i=1,2,...,k are also

approximated by means of contour integration, and having these power sums, we may immediately

compute approximations to the coefficients of f(x) by using Newton’s identities ([He], [H]). The result-

ing approximations to f(x) and g(x) are then rapidly improved by means of Newton’s iteration (see

- 22 -

[BP,a], [Sc] for some error and complexity estimates of this process). Note that the recursive splitting is

least effective when k = 1 in all its steps (in which case we need n- 1 splitting steps), whereas we only

need O(log n) steps if the deg f(x) = deg g(x) in all steps.

This approach leads us to the bounds of Table 6.1 for approximating to all the zeros of p(x) and

(after some modification) to a single zero of p(x).

The recent ingenious algorithm of [Neff] (which followed the earlier work of [BFKT]) was a

breakthrough, since it gave us a long awaited NC (although so far processor inefficient) solution to the

problem of approximation to all the zeros of p(x). (NC algorithms for this problem must run in time

polylogarithmic in both n and b.)

All the above algorithms can be applied to approximate to the matrix eigenvalues as to the zeros

of its characteristic polynomial, if we agree to compute its coefficients first. The latter step, however,

can be avoided in the important case of a symmetric tridiagonal matrix, whose eigenvalues we may

directly approximate by using near optimum time and number of processors in a divide-and-conquer

algorithm ([BP90], see also [Pan89], [BP,a]).

In some applications (in particular, to the evaluation of the eigenvalues), we may seek the zeros of

a polynomial p(x) given by a subroutine for the evaluation of p(x) [and of p¢(x)] at any fixed point x.

Then the above approach does not work, and Newton’s iteration x(k+1) = x(k)- p¢(x(k))/ p(x(k)) is fre-

quently the method of choice, in particular, where the initial approximation x(0) is closer to one of the

zeros of p(x) than to the other zeros (see [S85], [R] on the convergence estimates of Newton’s method).

Newton’s iteration can also be used within the presented construction of [P87c] as a (generally only

slightly inferior) substitution for the contour integration.

7. Arithmetic Complexity of Matrix Computations.

We will continue reviewing some polynomial computations in sections 9-12, but our next topic is

computations with general matrices (in this section) and with structured matrices (in sections 8 and 9),

and we will observe some correlation between the computations with polynomials and structured

matrices.

- 23 -

Matrix-by-vector and matrix-by-matrix multiplications play the same fundamental role for matrix

computations as FFT and convolution play for polynomial computations, but the current improvement

of the classical multiplication algorithms for matrices and vectors is not as significant as for polynomi-

als. Furthermore, the straightforward algorithm for N· N matrix-by-vector multiplication supports the

optimum cost bounds of 2N2 - N arithmetic operations and OA(log N, N2/ log N) (compare Example

1.3, however).

It is increasingly popular to use matrix-by-vector multiplication and matrix inversion as the blocks

of many algorithms; moreover, the straightforward N· N matrix multiplication, for the cost of 2N3 - N2

arithmetic operations and OA(log N, N3/ log N) is now getting replaced by faster algorithms that

involve O(Nb) arithmetic operations, where for the currently implemented algorithms,

b = log2 7 = 2.807... (Strassen) and where b < 2.78 in another group of algorithms, also ready for prac-

tical implementation ([LPS]).

Weak (but sufficient in most of applications) numerical stability of these and of many other fast

matrix multiplication algorithms has been formally proven ([Brent70], [BL80]) and has been shown in

numerous experiments to be actually quite strong. All the fast O(Nb) matrix multiplication algorithms

allow their parallel implementation on the PRAMs for the cost OA(log N, Nb) ([PR], [P87b]), and

theoretically the exponent b can be decreased to b = 2.375... ([CW]), although immense overhead con-

stants are hidden in this "O" notation for b < 2.775.

The bounds OA(Nb) and OA(log N, Nb), b < 2.376, as N fi ¥ , are fundamental for estimating

the asymptotic complexity of numerous algebraic and combinatorial computations ultimately reduced to

matrix multiplications. In particular, the asymptotic complexity estimate OA(Nb), b < 2.376, has been

extended to computing the determinant and all the coefficients of the characteristic polynomial of a

matrix, its triangular and orthogonal factorization, its reduction to the Hessenberg form, its rank, its

inverse and its Moore-Penrose generalized inverse (which implies computing the solution and a least-

squares solution to a linear system of equations); the same asymptotic bound OA(Nb) has also been

extended to numerous combinatorial and graph computations ([P84], [P87b], [Datta], [KUW], [GP],

[GPa], [MVV], [PR,a], [BP,a]).

- 24 -

Some of these extensions (to matrix factorization and to computing the inverse and the deter-

minant of a matrix) rely on 2· 2 block Gauss-Jordan elimination that leads to the following factorization:

A =
Ø

ºD

B
 E

Cø

ß
 =

Ø

ºDB- 1

I
 I

Oø

ß

Ø

ºO

B
 S

Oø

ß

Ø

ºO

I
 I

B- 1Cø

ß
, (7.1)

A- 1 =
Ø

ºO

I
 I

- B- 1Cø

ß

Ø

º O

B- 1

S- 1

O ø

ß

Ø

º- DB- 1

I
 I

Oø

ß
(7.2)

where S = E - DB- 1C is the Schur complement of B. If A is a Hermitian positive definite (an h.p.d.)

matrix, AH = A, then so are B and S, and furthermore,

||A|| 2 ‡ max{||B|| 2, ||S|| 2},

||A- 1|| 2 ‡ max{||B- 1|| 2, ||S- 1 || 2},

so that the factorization (7.1), (7.2) can be recursively applied to the h.p.d. matrices B and S in a numer-

ically stable process. Likewise, numerical stability of the factorization (7.1), (7.2) can be proven if A is

a diagonally dominant matrix and/or positive definite but not a Hermitian matrix.

We may always assume the blocks of 2· 2 block matrices balanced in size, so that (7.1) reduces

the inversion of an h.p.d. (and/or diagonally dominant) matrix A to the inversion of two half-size h.p.d.

(and/or diagonally dominant) matrices B and S and to six multiplications of half-size matrices, which

recursively leads to the bound OA(Nb) for N· N matrix inversion ([St69]) based on an effective and

numerically stable algorithm.

The Cayley-Hamilton theorem and the Moore-Penrose conditions ([GL]) can be exploited in order

to compute [for the cost OA(Nb)] the Moore-Penrose generalized inverse A+ of A by using the matrix

equation:

cN- r A+ =
i=N- r+1

S
N- 1

 ((cN- r+1/ cN- r) ci - ci+1)Ai- N+r + (cN- r+1/ cN- r)A
r (7.3)

where det(l I- A) = l N +
i=N- r
S

N- 1
 cil

i , cN- r „ 0, provided [with no loss of generality since A+ = A(AHA)+

or since
Ø

ºA
H

O
 O

Aø

ß

+

 =
Ø

ºA
+

O
 O

(AH)+ø

ß
] that A is a Hermitian matrix, that is, AH = A. Here and hereafter

AH denotes the conjugate transpose of A. Note that rank A = trace(A+A), and x = A+b, over the com-

plex, real and rational fields, is a least-squares solution to a linear system Ax = b, which implies further

- 25 -

extensions of the complexity bound OA(Nb).

As we mentioned, the practical or potentially practical range for the exponent b is presently from

2.775 to 2.808 (not from 2.376), but these computations may be considered for practical use only where

the (weak) numerical stability of matrix multiplication can be extended. This seems to be the case for

several matrix inversion and factorization algorithms but not for the computations involving the

coefficients of the characteristic polynomial, as in (7.3) above. Numerically stable evaluation of A+ may

rely on computing the SVD of A or, alternatively, on Newton’s iteration, whose each step essentially

amounts to two matrix multiplications:

X0 = AH/ ||AHA||1, Xk+1 = XK(2I - AXk), k=0,1,...,K- 1, (7.4)

so that I - AXk+1 = (I - AXk)2 ([Be]). An improved modification of (7.4) numerically converges to A+

in log2 cond2A steps (7.4), cond2A = ||A|| 2 ||A+|| 2, or if A is h.p.d., in about (1/2) log2 cond2A steps

([PS88]), and thus, can be recommended for the generalized inversion of well-conditioned matrices A,

particularly, on parallel computers, on which matrix multiplication can be performed fast. It is interest-

ing that Xk =
i=0
S
s(k)

 (I - XoA)i Xo, s(k) = 2k- 1 under (7.4), whereas Xk = p(AHA)AH, 1 - zp(z) is a

scaled Chebyshev polynomial of degree 2k in the improved scheme of [PS88].

The algorithms of [PS88] also compute the matrices A(e) and (A(e))+, where the unknown matrix

A(e) is defined by zeroing all the singular values of A that are less than e, and again, A(e) and (A(e))+

are computed in [PS88] without computing the SVD of A.

8. Some Basic Computations with Structured Matrices.

The arithmetic cost of matrix computations and the storage space involved dramatically decrease if

the matrices are sparse and/or structured. We refer the reader to [GL], [LRT] and [PR88] (containing

further bibliography) on the sparse case, and we will revisit the dense structured case, where we typi-

cally need O(N) words of storage space and from OA(N log N) to OA(N log2N) time (versus the much

larger space bounds of O(N2) and from OA(N2) to OA(Nb) time in the general case). In particular, the

cited improved bounds apply to computing Ab and A- 1b where b is a vector and A is a matrix with the

Toeplitz, Hankel, Vandermonde or generalized Hilbert structure (see below); such matrices and such

- 26 -

computations are ubiquitous in sciences and engineering, so that the practical impact of the cited

improvement is very high. In the important special case of n· n band Toeplitz matrices with bandwidth

k = o(n), the complexity of computations may decrease even more, for instance, to OA(k log k log n)

for computing the value of a characteristic polynomial of such a matrix at a given point ([BPc], [BP88]).

Technically, the computations with dense structured matrices are closely related to polynomial

computations and greatly exploit FFT.

Let us recall some definitions and results. Let (W)i,k denote the i,k entry of a matrix W. Then for

all (i,k) entries, we write (T)i,k = ti- k for Toeplitz matrices T, (C)i,k = ci- k mod N (for a fixed N) for circu-

lant matrices C (which form an important subclass of Toeplitz matrices), (H)i,k = hi+k for Hankel

matrices H, (V)i,k = vi
k for Vandermonde matrices V and (B)i,k =

si- tk

133333 for generalized Hilbert matrices

B. Each such an N· N matrix is completely defined by one or two vectors of dimension N. Any N· N

Hankel matrix can be turned into a Toeplitz matrix by means of interchanging its columns (or rows) s

and N + 1- s, for s=1,2,...,N.

The cost bound OA(N log2N) for computing Ab and A- 1b for a Vandermonde matrix A = V and

for a generalized Hilbert matrix A = B can be deduced by means of the reduction of the problem to

polynomial evaluation and interpolation (recall Table 6.1 and see [Gast60] and [Ger87] or [BP,a] in the

generalized Hilbert case, A = B, whereas in the Vandermonde case, observe that Vb for

b = [b0, ...,bN- 1]T is the vector of the values of the polynomial
k=0
S

N- 1
 bkvk for v = vi, i=0,...,N- 1).

The algorithms supporting the bound OA(N log2N) for the polynomial evaluation and interpolation

with N nodes ([AHU], [BM], [BP,a]) (and consequently for computing Ab and A- 1b with A = V and A

= B) can be safely used if they are performed in rational arithmetic (see section 4), but lead to severe

problems of numerical stability in the presence of round-off errors, in which case alternate numerically

stable algorithms can be applied for the cost of OA(N2) ([GL]). Moreover, some other alternate tech-

niques of [Rok85], [Rok] enable us to compute approximations to Vb, V- 1b and Bb for a real Vander-

monde matrix V and a generalized Hilbert matrix B (the complexity then depends on the output error

bound e and is bounded by O(N) for a fixed constant e).

- 27 -

Let us comment on computing Bb in [Rok85]. Rewrite Bb as R(xl) =
k=0
S

K- 1

xl - wk

ak333333, l=0,...,L- 1,

denote a =
k

max | ak/ wk | , J = Ølog
(1- q)e

a K333333/ log(
q
133)ø where | xl / wk | < q < 1 for all k and l. Then

(3K + 2L - 1) J arithmetic operations suffice for approximating to R(xl) within e for all l ([Rok85]).

The algorithm relies on simple but effective techniques of summation reordering. Here are some details:

Substitute the expressions

x- wk

1333333 = -
wk

1333
j=0
S
¥

 (
wk

x333) j , k=0,1,...,K- 1,

and represent the sum of partial fractions R(x) as follows:

R(x) =
j=0
S
¥

 Ajx
 j (8.1)

where

Aj = -
k=0
S

K- 1
 ak/ wk

 j+1. (8.2)

The latter power series converges for sufficiently small | x | . Approximate to R(x) by the J-term finite

power series and estimate the errors in terms of | xl/ wk | and a. Under our assumptions about the

values J, | xl/ wk | , and | a k/ wk | , we have:

EJ(xl) = | R(xl) -
j=0
S
J- 1

 Ajxl
 J | £ a Kq J /(1- q) £ e .

Now, it remains to compute the coefficients A0,...,AJ- 1 of (8.2) by using J(3K- 1) ops and then compute

R(xl) of (8.1) for l=0,1,...,L- 1 by using 2JL ops. 5

If | wk /xl | < q < 1 for a constant q and for all k and l, we will arrive at a similar algorithm by

substituting
x- wk

1333333 =
x
133

j=0
S
¥

 (
x

wk333) j . [AGR], [CGR] and [ODR] contain important applications of both

algorithms (and, moreover, the algorithms are extended in order to include approximation to logarithmic

functions); [AR] presents some further extensions to the low precision multiplication of a matrix W with

a certain structure by a vector.

Next, let us recall computing Ab and A- 1b for the cost of OA(log N, N) where A = C is a circu-

- 28 -

lant matrix. This is reduced to three FFTs:

Theorem 8.1 ([Da74]). Let c denote the first row of a circulant matrix C. Let W denote the

(n+1) · (n+1) Fourier matrix, (W)i,j = w ij / 7777n+1 , (W H)i,j = w - ij / 7777n+1 , i, j = 0,1,...,n, wn+1 = 1,

ws „ 1 for 0 < s £ n. Then W HW = I, W HCW = D, D = diag(d0,..,dn) where di = (d)i , d = 77n WH c.

Since we may embed any Toeplitz matrix A = T into a circulant matrix, the result for Cb is

extended to computing Tb. An alternate way [slightly inferior but still supporting the bound

OA(log N, N) for computing Tb] is by embedding a general N· N Toeplitz matrix into a more special

Toeplitz matrix U of the equation

Ø

º
wm+n

.

...

w1

w0
ø

ß

=

Ø

º0

um

.

...

u1

u0

. . .

. . .

. . .

um

.

...

u1

u0

0ø

ß

Ø

º
vn

...

v1

v0ø

ß

. (8.3)

where N = n+1, m = 2N- 1. Then Tv is a part of Uv, and Uv is the convolution of the vectors

u = [u0, ...,um] and v.

The first N = n+1 equations of (8.3) form a linear triangular Toeplitz system Tv = w. If

w0 = 1, wi = 0 for i > 1, then v equals the first column of T- 1, which is the coefficient vector of the

reciprocal polynomial v(x) =
i=0
S
n

 vix
i such that v(x) w(x) = 1 mod xN, w(x) =

i=0
S
n

 wix
i, N = n+1. Com-

puting v(x) essentially amounts to polynomial division and costs OA(log N log*N, N / log*N) or (in the

APA case), OA(N log N) (see Table 6.1 and sections 10-12).

For a general Toeplitz matrix T, there are several algorithms that compute T- 1b for the cost

OA(N log2N) ([BGY], [BA], [Mus] and [dH], [AG,b]). The algorithm of [AG,b] supports this bound

with a small overhead constant but still meets tough a competition from some OA(N2) algorithms unless

N grows to several hundreds ([CB]). We refer the reader to [Bun] on the numerical stability study and

to [Ch], [Strang,a] and [ChS] on iterative solution of some more special Toeplitz linear systems.

- 29 -

All the cited algorithms for T- 1b (where T is the general Toeplitz matrix) require at best linear

parallel time bound N. It is possible to compute T+b for the cost OA(log2N, N2) (provided that T is

filled with integers or rationals) by relying on Newton’s iteration (7.4) and on (7.3) (see [P89b], [P90]);

Newton’s iteration [but without involving (7.3)] may also be used as a very effective means of refining

approximations to T- 1 and T- 1b (see the next section).

9. Structured Matrices and the Shift and Displacement Operators.

The structured matrices of the previous section are naturally associated with some linear operators

of displacement and scaling. This powerful approach, due to [KKM], [KVM], leads us to a unified

treatment of computations with various structured matrices.

Let hereafter D(v) = diag(v1,...,vN); let L(v) and V(v) denote the lower triangular Toeplitz matrix

with the first column v and the square Vandermonde matrix [vi
k] with the second column v, respec-

tively, for v = [v1, ...,vN]T; let J and Z denote the reflection matrix and the lower displacement matrix,

respectively, both filled with zeros except for the antidiagonal of J and the first subdiagonal of Z, filled

with ones, so that J v = [vN,...,v1]T, Z B = [0, v1, ...,vN- 1]T for a vector v = [v1, ...,vN]T, and we will

denote v- 1 = [v1
- 1, ...,vN

- 1]T.

Following [KKM], [KVM], [GKKL], consider the operators

FZZT (A) = A - ZAZT, (9.1)

FZTZ(A) = A - ZTAZ, (9.2)

Fv ,Z(A) = D(v)A - AZ, (9.3)

FZ, v(A) = ZA - D(v)A, (9.4)

Fs,t(A) = D(s)A - AD(t). (9.5)

Observe that rank FZZT (A) = rank rZTZ(A) £ 2 if A is a Toeplitz matrix, Fv ,Z(A) = DN- 1(v)euT(N- 1)

(and thus has rank at most 1) if A is the N· N Vandermonde matrix V(bold v), defined by a vector v

(here, e = [1,1,...,1]T, uT(k) is the unit coordinate vector with the k-th component equal to 1), and

Fs,t(A) = eeT and thus also has rank 1 if A is a generalized Hilbert matrix, (A)ij =
si- tj

133333. These obser-

vations suggest measuring Toeplitz-like, Vandermonde-like and Hilbert-like structures of any matrix A

by the ranks of the matrices FZZT (A) [or FZTZ(A)], Fv, Z (A) [or Fv, ZT (A)] and Fs,t(A), respectively. The

- 30 -

smaller this rank, the closer the structure of a given matrix to the structures of Toeplitz, Vandermonde

and generalized Hilbert matrices, respectively.

Representing the N· N matrix F(A) of rank r as GHT where F is an operator of (9.1)-(9.5), G and

H are a pair of N· r matrices [called a generator of length r for F(A) or an F-generator of length r for

A], we may immediately recover the matrix A. In particular, let gi and hi denote the i-th columns of

the matrices G and H, respectively. Then

A =
i=1
S
r

 L(g i) L
T(hi) if F = FZZT ([KKM]), (9.6)

A =
i=1
S
r

 LT(Jg i) L(Jhi) if F = FZTZ ([KKM]), (9.7)

A =
i=1
S
r

 L(g i)D
- 1(v) VT(v- 1) D(hi) if F = FZ, v ([GKKL].

Suppose that we deal with N· N Toeplitz-like matrices given with generators of smaller length r

for their FZZT -images. Then we may operate with the generators rather than with the matrices, dealing

with 2rN entries of G and H, rather than with N2 entries of A, and due to (9.6), (9.7), we may multiply

A by a vector for the cost OA(log N, rN), rather than OA(log N, N2/ log N). This is effective for

smaller r, and r is small for many important nonToeplitz matrices. For instance, rank FZZT (A) is at most

2 for the inverse of a Toeplitz matrix, is at most 4 if A is a product of two Toeplitz matrices, and is at

most m + n if A is an m· n block matrix with Toeplitz blocks.

Given a scalar a and two generators of length r1 for F(A) and length r2 for F(B), we may immedi-

ately define a generator of length r1 + r2 for F(A + a B); furthermore, if F is an operator of (9.1) or

(9.2), we may compute [for the cost OA(log n, n(r1 + r2)2)] a generator of length at most r1 + r2 + 1 for

F(AB) ([CKL-A]). Indeed,

F(AB) = AB - ZABZT =

0.5 (A - ZAZT) (B + ZBZT) +

0.5 (A + ZAZT) (B - ZBZT) +

Z A (I - ZTZ) BZT,

and I - ZTZ = u(n)uT(n), u(n) = [0,...,0,1]T which gives us the desired generator for F(AB).

- 31 -

All this leads us to the extension of the effective algorithms of [BA], [Mus] and [AG,b] to solving

Toeplitz-like linear systems A x = b for the cost OA(N r hlog2N) where h takes the values 2 or 3

(depending on the algorithm) provided that we are given a generator of length r for FZZT (A).

For instance, such an extension is immediate for the algorithm of [BA], based on the recursive fac-

torization (7.1), (7.2) and on the observation that the inverse matrix S- 1 of the Schur complement S of

(7.1) is a submatrix of A- 1 and that consequently the matrices FZZT (A- 1) and FZZT (S- 1) have the same

rank.

Let us revisit Newton’s iteration (7.4), Xk+1 = Xk(2I - AXk), where A and X0 are Toeplitz

matrices given with length 2 generators for F(A) and F(X0), F = FZZT . (This can be extended to the

Toeplitz-like case.) Then we may recursively compute generators of length rk £ 2rk- 1 + 5 £ 2k*7 - 5

for F(Xk), k=0,1,2,..., for the cost OA(log N, N
h=1
S
k

 rh
2) = OA(log N, 2kN).

Thus, the first few steps (7.4) still involve only Toeplitz-like matrices and have lower complexity,

but the displacement rank of Xk grows as k grows, so that the k-th steps become costly for larger k. To

keep their cost lower for larger k, for which ||Xk - A- 1|| is small, we may compute a close approxima-

tion X~k to Xk such that rank F (X~k) = rank F(A- 1) = 2, ||X~k - X~k|| 2 = O(||Xk - A- 1||), and then we res-

tart the iteration (7.4) with X~k replacing Xk. The transition from Xk to X~k may rely on the Gohberg-

Semencul formula for the inverse of Toeplitz matrices ([P89b]) or on computing the SVD of F (Xk) and

zeroing some smallest (positive) singular values, ([P88b]). Both approaches decrease the complexity of

performing (7.4).

It remains to find a good initial approximation to A- 1, which, for instance, for many Toeplitz

matrices A, encountered in signal processing applications, are given by readily invertible band Toeplitz

matrices. In some other important applications to signal processing, the matrix A is slowly updated,

and the user ought to update A- 1 in real time too. Then the currently available value of the inverse A- 1

can be used as an initial approximation to the inverse of the updated matrix A. In such cases, where a

good initial approximation to A- 1 is readily available, the above approach to the numerical solution of a

linear system Ax = b has parallel cost OA(log2n,n), is strongly stable numerically and thus seems to be

- 32 -

highly effective.

In the general case, we may arrive at the desired initial approximations by using homotopy tech-

niques, and this leads us to NC algorithms with N processors for solving any well-conditioned

Toeplitz-like linear system whose N· N coefficient matrix A is given with a fixed constant length gen-

erator FZZT (A) (see [P88b], [P89b]); these algorithms are numerically stable too but may involve large

overhead constants in their cost estimates which leave open the problem of devising practical NC algo-

rithms for all Toeplitz-like linear systems.

For the general Toeplitz-like (and, possible, ill-conditioned) linear system Ax = b, we may com-

pute [for the cost OA(log2N, N2) and by involving (7.3), and the coefficients of the characteristic poly-

nomial of A] their least-squares solution as follows: First compute [for the cost OA(log2N, N2)] the

generators of F(Ai
- 1) for the auxiliary N· N matrices Ai = I - h z iA, i=0,1,...,2N- 1, where | h | is a

small scalar, and z is a primitive (2N)-th root of 1. The desired initial approximation to Ai
- 1 is given

by the identity matrix I. Then [for the cost OA(log N, N2)] recover trace(Aj), j=1,2,...,N, and the

coefficients of the characteristic polynomial of A, det(l I - A) =
i=0
S
N

 cil
i , as well as the vectors Ajb for

j=1,2,...,N. Finally, compute A+b by applying (7.3).

This approach and the resulting overall complexity estimate OA(log2N, N2) for computing A+b

apply (at least theoretically) to the case of any N· N Toeplitz-like matrix A filled with integers or ration-

als and given with a generator of length O(1) for FZZT (A). [P90a] contains a distinct approach to the

same computations, over any field F of constants, for the cost OA(log2n, n3log log n), which decreases

back to OA(log2n, n2) if F has characteristic equal to 0 or exceeding n and if F supports FFT or to

OA(log2n, n2 log log n) if the characteristic of F equals 0 or exceeds n but if F does not support FFT.

Remark 9.1 on the gcd. In particular, computing the greatest common divisor (gcd) of a pair of

polynomials of degrees at most N can be reduced to finding least-squares solutions for Ølog2Nø linear

systems with such matrices ([BGH], [G]), and thus, we arrive at the parallel complexity estimate

OA(log3N, N2) for computing the gcd over the rationals. With a further elaboration ([BG] or [P90a]),

we may extend the bounds of [P90a] to computing the polynomial gcd over a more general field F (for

- 33 -

the cost of OA (log2N, N3 log log N) over any field and OA (log2N, N2 log log N) if the characteristic

of F is zero).

We recall that the Hankel matrices can be turned into Toeplitz matrices by row-or-column permu-

tations, and we will next explore some further correlations among various structured matrices.

Observe that VTV is a Hankel matrix, (VTV)h,k =
i
S vi

h+k, if V is a Vandermonde matrix,

(V)ik = vi
k; this gives us (VT)- 1 = V(VTV)- 1 by means of inverting a Hankel matrix. Similarly,

VT(v- 1) V(v) is a Toeplitz matrix. These are just simple examples of more general correlations

represented in Table 9.1. According to these correlations, for any given matrix A of the class HT (that

is, of Toeplitz-like or Hankel-like matrices), V (of Vandermonde-like matrices) or H (of Hilbert-like

matrices), we may immediately define a Toeplitz, Hankel, Vandermonde or generalized Hilbert matrix B

such that AB belongs to one of the classes HT, V or H, shown in the corresponding line of Table 9.1.

Table 9.1.
22

A B AB F-rank r of AB
22

HT V V r £ r1+r2+1
22

V V H r £ r1+r2+1
22

V V HT r £ r1+r2
22

H V V r £ r1+r2
22

HT HT HT r £ r1+r2+1
22

H H H r £ r1+r2
2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Furthermore, the generators of lengths r2 for FZ(B) and r for F(AB) can be immediately computed

given a generator of length r1 for F1(A), r £ r1 + r2 + 1, and r1 £ 2 for HT, r1 = 1 for V and H. Here,

the operators F1, F2 and F are associated with the respective classes HT, V and H (see the details in

[P89a] and compare (9.1)-(9.5)). This fact can be proven similarly to the above bound on the length of

the generator of F(AB) for the displacement operators F, and it reduces the inversion problem for the

classes of Hankel-like, Toeplitz-like, Vandermonde-like and Hilbert-like matrices to each other, in par-

ticular, all such problems can be reduced to the inversion of Toeplitz-like matrices, and a similar

- 34 -

reduction we have for computing the determinants, since A- 1 = B(AB)- 1, det A = det (AB) / det B for

nonsingular matrices A and B. Such a reduction enables us, for instance, to reduce computing a least-

squares solution to linear system with a transposed Vandermonde or a generalized Hilbert matrix A of

full rank and of size m· n to a Toeplitz-like linear system with the coefficient matrix ATA and thus to

solve the original problem for the cost OA(N log2N) = OA(N log2N, 1) or OA(log2N, N2), N = m+n.

10. Five Versions of the Polynomial Division Problem.

Let us next recall the fundamental problem of polynomial division with a remainder. We will

state it in five equivalent versions, which will demonstrate its correlation to matrix and power series

computations. In the next sections we will review some solution algorithms for this problem:

Version 10.1. Given the coefficients of two polynomials s(x) =
i=0
S
m

 six
i, t(x) =

i=0
S
n

 tix
i, where

sm tn „ 0, find the coefficients of the quotient q(x) =
i=0
S

m- n
qix

i and of the remainder r(x) =
i=0
S
n- 1

rix
i of the

division of s(x) by t(x) such that

s(x) = t(x)q(x) + r(x), deg r(x) < n. (10.1)

If q(x) is available, then r(x) can be immediately obtained for the price of multiplication of t(x) by

q(x) and subtraction of the result from s(x). If r(x) is available, then we may arrive at q(x) by means of

the evaluation of q(x) = (s(x)- r(x))/ t(x) at all the K-th roots of 1, wi, i=0,1,...,K- 1, K=m- n+1, and

subsequent interpolation. This will give us q(x) for the cost of the forward and inverse FFTs at K

points and of K scalar divisions.

Remark 10.1. If we perform the evaluation and interpolation at the points Nwi for a large posi-

tive N, rather than at the points wi, then the latter approach can be extended to approximate to q(x) even

when r(x) does not vanish. Indeed,
t(x)
s(x)3333 = q(x) +

t(x)
r(x)3333 and

q(x)
r(x)3333 fi 0 as x fi ¥ since

deg q(x) > deg r(x) (see [PLS]).

- 35 -

Version 10.2 Compute q0,...,qm- n,r0, ..., rn- 1 such that

Ø

º
s0

.

.

.

sn- 1

sn

.

.

.

.

sm- 1

sm ø

ß

=

Ø

º 0

t0

.

.

.

.

.

tn- 1

tn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

t0

.

.

.

tn- 1

tn

0 ø

ß

Ø

º
q0

.

.

.

qm- n- 1

qm- n ø

ß

+

Ø

º r0

.

.

.

rn- 1

0

.

.

.

.

0

0 ø

ß

. (10.2)

It is easy to observe the equivalence of Versions 10.1 and 10.2 to each other. Furthermore, it is

sufficient to solve in qm- n, ...,q0 the first K=m- n+1 linear equations of (10.2); then (10.1) immediately

defines r0, ..., rn- 1. Actually, we have already observed these equivalence relations when we analyzed

(10.1). Indeed, the first K equations of (10.2) form a triangular Toeplitz system, so that the equivalent

Problems 10.1 and 10.2 are reduced to solving such a system.

Hereafter, we let

S(z) = zms(1/ z) =
i=0
S
m

 sm- iz
i, T(z) = znt(1/ z) =

i=0
S
n

 tn- iz
i , (10.3)

V(z) = T- 1(z) mod zK =
i=0
S

K- 1
viz

K- 1- i

and arrive at two new versions of the problem:

Version 10.3. Invert a lower triangular Toeplitz matrix T formed by the first K rows of the

matrix of (10.2).

Version 10.4. Compute V(z) = T- 1(z)mod zK.

When the problem in its versions 10.3 or 10.4 has been solved, the coefficient vector

q = [qm- n, ...,q0]T can be computed as the product T- 1s, s = [sm,..., sn]T, or as the leading coefficients of

the polynomial product V(z)
i=n
S
m

 siz
i- n. The latter product can be computed by applying FFTs.

- 36 -

If we only need to compute the coefficients of q(x), we may truncate the polynomials s(x) and t(x)

to the K=m- n+1 leading terms, for this will not change the output (of course, we do not truncate t(x) at

all if K ‡ n). Similarly, we may truncate each of s(x) and t(x) to the h leading terms if we use the fol-

lowing version of the problem:

Version 10.5. Compute the h leading coefficients of the formal power series d(x) = s(x)/ t(x)

where s(x) and t(x) are formal power series of the form

s(x) =
i=0
S
¥

 sm- ix
m- i, t(x) =

i=0
S
¥

 tn- ix
n- i , m ‡ n,

and h is a fixed positive integer.

In particular, s(x) and t(x) are polynomials if sg = tg = 0 for all the negative g. We may replace x

by 1/ z, multiply s(1/ z) by zm and t(1/ z) by zn, and arrive at the equivalent problem of the division of

the formal power series S(z) = zms(1/ z) =
i=0
S
¥

 sm- iz
i by T(z) = znt(1/ z) =

i=0
S
¥

 tn- iz
i [compare (10.3)].

The output coefficients are, of course, invariant in the multiplication of s(x) by the monomial xa

and of t(x) by the monomial xb for any a and b. In particular, multiplying s(x) by x2h- m and t(x) by

xh- n and truncating the two resulting power series to the first h+1 terms (which turns them into two

polynomials s*(x) and t*(x) of degrees m*=2h and n*=h, respectively), we may reduce version 10.5 of

the problem to the equivalent versions 10.1, 10.2, 10.3 and 10.4, because the coefficients of the quotient

of the division (with a remainder) of s*(x) by t*(x) equal the h+1 leading coefficients of d(x). Thus, any

solution of the problem in its versions 10.1, 10.2, 10.3 and 10.4 can be immediately extended to the

evaluation of the coefficients of the formal power series equal to the quotient of two given polynomials

or of two given power series.

The same problem can also be equivalently represented by the infinite triangular Toeplitz system

of linear equations, which generalizes (10.2) in that the remainder-vector is removed from (10.2) and the

two other vectors and the matrix are infinitely continued downward (the matrix is also infinitely contin-

ued rightward). For a given h, we may compute the values qm- n,qm- n- 1, ...,qm- n- h+1 that satisfy this

infinite system truncated to its first h equations, which amount to version 10.2 if the notation has been

properly adjusted.

- 37 -

11. Algorithms for Polynomial Division and Their Arithmetic Computational Cost. Matrix Ver-

sions of the Algorithms.

In this section we will first describe five effective algorithms for polynomial division, whose com-

plexity is shown in Table 11.1. The algorithms exploit FFT, evaluation-interpolation techniques,

Newton’s iteration and various identical representations of the polynomial
i=0
S

K- 1
 wi(z). Later on in this

section, we will reinterpret the latter identities as matrix identities and will arrive at the equivalent

matrix versions of the same algorithms applied to the inversion of triangular Toeplitz matrices. Simi-

larly, we will rewrite Newton’s iteration for polynomial division as a divide-and-conquer inversion of a

triangular Toeplitz matrix. Finally, we will briefly review some results on approximate polynomial divi-

sion and on the application of binary segmentation to the division and to computing the gcd.

i) Algorithm for "synthetic division" is the classical polynomial division algorithm (see [Kn]); it

costs OA(nK) or OA(K,n).

ii) The Sieveking-Kung algorithm evaluates for the parallel computational cost of

OA(log2K,K/ log K), the coefficients of the polynomial V(z) of (10.3) by truncating the power

series computed by Newton’s method applied to the equation f(w,z) = 1 - (T(z)w)- 1 = 0, to be

solved for the power series w = w(z). In this case, the Newton iteration takes form of the

recurrence

wj+1(z) = wj(z) + wj(z)(1 - T(z) wj(z)) mod z2J, J = 2j, j=0,1,..., (11.1)

where wj(z), j=0,1,..., is a sequence of polynomials in z, w0(z) = w0 = 1/ tn [compare (7.4)]. Note

that the cost bound turns into OA(log K log(K / k), K / log(K/ k)) if w(z) mod zk is known from

the start.

iii) Reif and Tate’s algorithm relies on the following identity:

Vch(z) = Vh(z)
j=0
S
c- 1

(1 - Tch(z)Vh(z)) j mod zch, (11.2)

where c and h are natural numbers,

Th(z) = T(z) mod zh,

- 38 -

Vh(z) = V(z) mod zh = T- 1(z) mod zh. (11.3)

To prove (11.2), recall the identity (1- w)
j=0
S
c- 1

 wj = 1- wc, substitute w = 1- Tch(z)Vh(z) and obtain that

Tch(z)Vh(z)
j=0
S
c- 1

(1- Tch(z)Vh(z)) j = 1- (1- Tch(z)Vh(z))ch = 1 mod zch, (11.4)

where the last equality holds since 1- Tch(z)Vh(z) mod zh = 1- Th(z)Vh(z) mod zh = 0 [due to (11.3)].

Multiplying the identity (11.4) by Vch(z) and substituting Vch(z)Tch(z) = 1 mod zch, we arrive at (11.2).

Due to the relation (11.2), we may compute Vch(z) given Vh(z) for the cost OA(log(ch),c2h). The

polynomial on the right hand side of (11.2) has degree at most c2h- 2c- h+2 < c2h (before the reduction

mod zch), so that the evaluation-interpolation technique can be applied to compute the coefficients of

Vch(z) by means of FFT at c2h points.

The coefficients of the polynomial VK(z) can be computed by means of recursive application of

(11.2). Assuming that K = 2b- 1 for an integer b, we define fi = Ø b(1- 1/ 2i- 1) ø and recursively apply

(11.2) for c = ci, h = hi, hi = 2fi , ci = hi+1/ hi = 2fi+1- fi , i=1,..., Ø log b ø +1, so that we compute Vhi+1
(z)

[given Vhi
(z)] for the cost OA(fi+1,22fi+1- fi) = OA(log K, K).

Recursively repeating this computation for i=1,2,..., Ø log b ø +1, b- 1 = log K, we arrive at the

coefficients of VK(z) for the cost OA(log K log log K, K).

It is possible to reduce the number of processors to O(K/ log log K) by splitting the algorithm into

two stages as follows:

Stage 1. Set a = º log(K/ log K) ß and compute T2a (z) by applying the above scheme, for the cost

OA(log K log log K, K/ log K).

Stage 2. Compute TK(z) given T2a (z) for the cost OA(log K log log K, K / log log K) by applying

the Sieveking-Kung algorithm.

The arithmetic computational cost of these three methods is summarized in Table 11.1, together

with the cost of the algorithms of [B], [Sc82], [Geor] and [BP90], [BP90a], shown at the end of this

section.

- 39 -

Table 11.1 (Arithmetic Cost of Polynomial Division Algorithms)

22
Algorithm Arithmetic operations Parallel steps Processors

22

Classical O(K min{K,n}) O(K) min{K,n}
(Problem 1.3.1)

22

Sieveking-Kung O(K log K) O(log2K) K/ log K
(Problem 1.3.4)

22

Bini- Scho
..

nhage O(K log K) O(log K) K
[B],[Sc]

22

Reif and Tate O(K log K) O(log K log log K) K/ log log K
[RT]

22

Georgiev O(K log3K) O(log K) K log2K
[Geor]

22

Bini-Pan O(K log K Ø2- h log(h)Kø) O(h log K) (K/ h) Ø2- h log(h)Kø
[BP90]
[BP90a] 22

O(K log K) O(log K log*K) K/ log*K
2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Next, we will show the equivalent matrix versions of the three algorithms described above. We

will do this by presenting the basis matrix identities for the matrix versions of the polynomial division

algorithms, which correspond to the basis polynomial identities for the polynomial division versions of

the same algorithms. We will leave this to the reader to verify that the resulting algorithms for the tri-

angular Toeplitz matrix inversion evaluate the same intermediate and output values as their counterparts

for computing the reciprocal of a polynomial modulo xK.

i) It is immediately verified that the classical polynomial division algorithm [for computing q(x)] can

be rewritten as the back substitution stage algorithm of Gaussian elimination for the subsystem of

the K first linear equations of the system (10.2).

ii) The Sieveking-Kung algorithm is equivalent to the divide-and-conquer matrix inversion algorithm

- 40 -

due to [BM] (page 146) and [Laf] and applied to the evaluation of the triangular Toeplitz matrix

T- 1. Namely, let Th be the 2h · 2h triangular Toeplitz matrix (where h = Ø log K ø), whose first

column coincides with the first column of T on the first K entries and is filled with zeros else-

where. Then T- 1 is the K· K leading submatrix of Th
- 1, and Th

- 1 is computed by recursively

inverting all its leading submatrices of sizes 2i · 2i for i=0,1,...,h, according to the following for-

mulae:

Ti+1 =
Ø

ºWi Ti

Ti O ø

ß
 , T i+1

- 1 =
Ø

º- Ti
- 1WiTi

- 1
Ti

- 1

Ti

- 1
O ø

ß
 .

Here, Ti and Ti
- 1 are 2i · 2i leading triangular Toeplitz submatrices of Th and Th

- 1, respectively,

so Ti+1
- 1 is defined by its first column:

vi+1 = [vi
T, (- Ti

- 1Wi vi)
T]T, (11.5)

where vi denotes the first column of Ti
- 1.

Comparing (11.1) with (11.5) we note that the evaluation of the leading 2i coefficients of the poly-

nomial product u(i)(z) = - T(z) w(i)(z) [all other coefficients of 1 + u(i)(z) are zeros] is equivalent

to the evaluation of the matrix-by-vector product gi = - Wivi , and the evaluation of the coefficients

of the polynomial product w(i)(z) (1 + u(i)(z)) is equivalent to the evaluation of the matrix-by-

vector product Ti
- 1gi .

iii) The matrix version of Reif and Tate’s algorithm relies on the following matrix identity:

Tch
- 1 =

Ø

º
O

Th

Th

. . .

Rh

Oø

ß

 - 1

j=0
S
c- 1

 (I- Tch

Ø

º
O

Th

Th

. . .

Rh

Oø

ß

 - 1

) j ,

where Ti is the i· i leading principal submatrix of the triangular Toeplitz matrix T.

Remark 11.1. If the integers m and n are such that n<K, then the matrix T is a band matrix with

bandwidth n+1. In this case the system Ts = q (where s = [sm,..., sn]T and q = [qk- 1, ...,q0]T) can be

solved in a different way, that is, by considering T as a bidiagonal block matrix and applying block back

substitution. This way the sequential cost is reduced to OA(K log n) if n<K, that is, to

OA(K log min{n, K}) in the general case.

- 41 -

In the remainder of this section, we will recall another (very recent) approach to polynomial divi-

sion. Let for a fixed natural k £ K, d = Ølog(K/ k)ø, D = 2K Ølog(K/ k + 1ø - 2 ºK/ kß +2. Now, sup-

pose that the coefficients of w0(z) = T- 1(z) mod zk are known and point-wise evaluate the following

polynomials at all the D-th roots of 1:

a) Ti- 1(z) = T(z) mod zk2i

, concurrently for i = 1,...,d, by means of d applications of DFT;

b) wi(z) = wi- 1(z) (2 - Ti- 1(z) wi- 1(z)), recursively for i = 1,...,d.

Finally, apply inverse DFT to compute and output the first K coefficients of wd(z), which wd(z)

shares with T- 1(z). Indeed, observe that

wi(z) = T- 1(z) mod zk2i

,

deg wi(z) £ (i+1) k2i - 2i+1+1,

for i = 1,...,d, which for i = d turns into the relations deg wd(z) < D, wd(z) = T- 1(z) mod zK, and the

correctness of the above algorithm follows. Its computational cost bound is given by

OA(log K, K log2(K/ k)); for k = 1, this is OA(log K, K log2K), the estimate of [Geor].

Following [BP90a], [BP90a] we will improve this bound to

c(K,h) = OA(h log K, (K / h)(1 + 2- h log(h)K)) for any fixed h, h = 1,..., log*K. (11.6)

Fix h and recursively apply the same algorithm, replacing K by Kj and k by kj, where

k0 = 1, kj+1 = Kj, j = 0,1,... . Denote K(h) = K2- h, sj = K(h)/ kj, and set

Kj = ØK(h)/ log2 sj ø, j = 0,1,..., J- 1, where we will specify J later on. Then the application of the

above algorithm for each j costs OA(log K(h), K(h)), and the overall cost is given by

OA(J log K(h), K(h)) (for all j).

In j applications, we arrive at T- 1(z) mod ZKj , where Kj = K(h)/ sj, and we note that

s0 = K(h), s1 = log2K(h), s2 = log2 log2K(h),..., so that sJ = O(log(h)K(h)) for some J £ 2h.

One more application of the same algorithm, this time, for k replaced by KJ and for K replaced by

K(h), gives us T - 1(z) mod K(h) for the additional cost OA(log K(h), K(h)(log(h+1)K(h))2), which can be

replaced by the weaker bound, OA(h log K(h),
h

K(h)33333 log(h)K(h)). At this stage, the overall cost can be

bounded by OA(h log K(h), K(h) (1+(1/ h) log(h)K(h))), or even by OA(h log K, K2- h(1+log(h)K)),

- 42 -

which is consistent with (11.6).

Finally, we compute the remaining (if any) coefficients of T- 1(z) mod zK by applying the

Sieveking-Kung’s algorithm for the additional cost OA(h log K, K / h), which is still consistent with

(11.6), and we observe that (11.6) turns into OA(log K log*K,
log*K

K333333) for h = log*K, since log(h)K £ 1

for h = log*K.

12. Approximate Polynomial Division. Binary Segmentation for Polynomial Division and Polyno-

mial GCD.

The cited algorithms reduce the parallel cost of polynomial division almost to OA(log N, N), the

cost of FFT and polynomial multiplication, but the algorithm of [B] reached the latter cost bound for

approximate evaluation of q(x) and r(x) of (10.1) with arbitrarily high precision. The algorithm

exploits, in particular, the representation of a lower triangular Toeplitz matrix T = [tn+j- i], ts = 0 unless

0 £ s £ n, as T =
i=0
S

m- n
 tn- iZ

i where Z is the displacement matrix defined in section 9. This representation

also enables us to obtain the following a priori bound on the coefficients of q(x) in terms of the

coefficients of s(x) and t(x):

i=0
S

K- 1
 | qi | £ (1 + t / tn)K- 1

i=n
S
m

 | si | / tn (12.1)

where t =
0 £ i £ m- n

max | tn- i | , tg = 0 if g < 0 (see [BP]).

It is easy to observe that binary segmentation reduces the division with a remainder of two polyno-

mials with integer coefficients, s(x) by t(x), to the division of their values at x = 2h, for sufficiently large

integer h. Due to the bound (12.1), we may choose an appropriate h, for which we arrive (in [BP]) at

the record parallel asymptotic estimates for the Boolean complexity of polynomial division. Similarly,

binary segmentation has led us in [BP] (see also [BP,a]) to the record sequential Boolean complexity

estimates for the sequential evaluation of the gcd of two polynomials with integer coefficients (in this

case, we also have a priori upper bounds on the magnitude of the output values).

In both these cases (of the division and computing the gcd) the binary segmentation generally

- 43 -

involves operations with long integers, so that the techniques of section 4 would be required in order to

implement the resulting algorithms.

Remark 12.1. The approximation algorithm of [B] has been originally obtained for the triangular

Toeplitz matrix inversion, but has also two equivalent versions: in the forms of the division of formal

power series ([Sc82]) and of the division of polynomials with a remainder (see Remark 10.1).

Finally, it is interesting to point out that the estimate (12.1) has been deduced in [BP] by means of

the study of the inversion of a triangular Toeplitz matrix whereas both of the above applications (by

using Remark 10.1 and binary segmentation) rely on the transition to polynomial division, in particular,

on the equation (10.1).

- 44 -

References

[AHU] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1976.

[ASU] A.V. Aho, K. Steiglitz, and J.D. Ullman, ‘‘Evaluating Polynomials at Fixed Set of

Points,’’ SIAM J. on Computing, vol. 4, pp. 533-539, 1975.

[AR] B. Alpert and V. Rokhlin, ‘‘A Fast Algorithm for the Evaluation of Lagrange Expan-

sions,’’ Research Report YALEU/DCS/RR-671, Yale University, Dept. of Computer

Science, 1989.

[AGR] J. Ambrosiano, L. Greengard, and V. Rokhlin, ‘‘The Fast Multipole Method for Grid-

less Particle Simulation,’’ Research Report RR-565, Yale Univ., Dept. of Computer

Science, 1987.

[AG,b] G.S. Ammar and W.G. Gragg, ‘‘Superfast Solution of Real Positive Definite Toeplitz

Systems,’’ SIAM J. on Matrix Analysis and Applications, vol. 9,1, pp. 61-76, 1988.

[BD81] R. Bank and T. Dupont, ‘‘An Optimal Order Process for Solving Finite Element

Equations,’’ Mathematics of Computation, vol. 36, pp. 35-51, 1981.

[Be] A. Ben-Israel, ‘‘A Note on Iterative Method for Generalized Inversion of Matrices,’’

Math. Computation, vol. 20, pp. 439-440, 1966.

[BFKT] M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, ‘‘A Fast Parallel Algorithm for Deter-

mining All Roots of a Polynomial with Real Roots,’’ SIAM J. on Computing, vol.

17,6, pp. 1081-92, 1989. (Short version in Proc. 18-th Ann. ACM Symp. on Theory

of Computing, pp. 340-349, 1986).

[B] D. Bini, ‘‘Parallel Solution of Certain Toeplitz Linear Systems,’’ SIAM J. Comp., vol.

13,2, pp. 268-276, 1984. Also T.R.B82-04, I.E.I. of C.N.R., Pisa, Italy (April 1982).

[BG] D. Bini and L. Gemignani, ‘‘On the Euclidean Scheme for Polynomials Having Inter-

laced Real Zeros,’’ Proc. 2nd ACM Symp. on Parallel Algorithms and Architecture,

pp. 254-258, 1990.

- 45 -

[BL80] D. Bini and G. Lotti, Stability of Fast Algorithms for Matrix Multiplication, Numer-

ische Math., vol. 36, pp. 63-72, 1980.

[BP] D. Bini and V. Pan, ‘‘Polynomial Division and Its Computational Complexity,’’

Journal of Complexity, vol. 2, pp. 179-203, 1986.

[BP88] D. Bini and V. Pan, ‘‘Efficient Algorithms for the Evaluation of the Eigenvalues of

(Block) Banded Toeplitz Matrices,’’ Math. of Computations, vol. 50,182, pp. 431-

448, 1988.

[BP90] D. Bini and V. Pan, ‘‘Computing Matrix Eigenvalues and Polynomial Zeros Where

the Output is Real,’’ Tech. Rep. CUCS 025-90, Computer Science Dept., Columbia

University, NY, 1990.

[BP90a] D. Bini and V. Pan, ‘‘Improved Parallel Polynomial Division,’’ Tech. Report CUCS

026-90, Computer Science Dept., Columbia Univ., 1990.

[BPc] D. Bini and V. Pan, ‘‘On the Evaluation of the Eigenvalues of a Banded Toeplitz

Block Matrix,’’ Tech. Rep. CUCS-024-90, Columbia University, Computer Science

Dept., N.Y., 1990.

[BP,a] D. Bini and V. Pan, Numerical and Algebraic Computations with Matrices and Poly-

nomials, Birkha
..
user, Boston, 1991.

[BA] R.R. Bitmead and B.D.O. Anderson, ‘‘Asymptotically Fast Solution of Toeplitz and

Related Systems of Linear Equations,’’ Linear Algebra and Its Applics., vol. 34, pp.

103-116, 1980.

[BM] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric

Problems, American Elsevier, New York, 1975.

[BGH] A. Borodin, J. von zur Gathen, and J. Hopcroft, ‘‘Fast Parallel Matrix and GCD

Computation,’’ Information and Control, vol. 52,3, pp. 241-256, 1982.

[Brent70] R.P. Brent, ‘‘Error Analysis of Algorithms for Matrix Multiplication and Triangular

Decompositions Using Winograd’s Identity,’’ Numerische Math., vol. 16, pp. 145-

- 46 -

156, 1970.

[Bre] R.P. Brent, ‘‘The Parallel Evaluation of General Arithmetic Expressions,’’ J. ACM,

vol. 21,2, pp. 201-206, 1974.

[BGY] R.P. Brent, F.G. Gustavson, and D.Y.Y. Yun, ‘‘Fast Solution of Toeplitz Systems of

Equations and Computation of Pade´Approximations,’’ J. of Algorithms, vol. 1, pp.

259-295, 1980.

[Bun] J.R. Bunch, ‘‘Stability of Methods for Solving Toeplitz Systems of Equations,’’

SIAM J. on Scientific and Statistical Computing, vol. 6,2, pp. 349-364, 1985.

[CGR] J. Carier, L. Greengard, and V. Rokhlin, ‘‘A Fast Adaptive Multipole Algorithm for

Particle Simulation,’’ Research Report RR-496, Yale Univ., Dept. of Computer Sci-

ence, 1987.

[ChS] R.H. Chan and G. Strang, ‘‘Toeplitz Equations by Conjugate Gradients with Circulant

Preconditioner,’’ SIAM J. Sci. Stat. Comput., vol. 10, pp. 104-119, 1989.

[Ch] T.F. Chan, ‘‘An Optimal Circulant Preconditioner for Toeplitz Systems,’’ SIAM J.

Sci. Stat. Comput., vol. 9, pp. 766-771, 1988.

[CKL-A] J. Chun, T. Kailath, and H. Lev-Ari, ‘‘Fast Parallel Algorithm for QR-factorization of

Structured Matrices,’’ SIAM J. on Scientific and Statistical Computing, vol. 8,6, pp.

899-913, 1987.

[CW] D. Coppersmith and S. Winograd, ‘‘Matrix Multiplication via Arithmetic Progres-

sions,’’ J. of Symbolic Computations , vol. 9,3, 1990 (short version in Proc. 19th

Ann. ACM Symp. on Theory of Computing, pp. 1-6, 1987).

[CB] G. Cybenko and M. Berry, ‘‘Hyperbolic Householder Algorithms for Factoring Struc-

tured Matrices,’’ Tech. Report, Center for Supercomputing Research and Develop-

ment, University of Illinois, Urbana, IL , 1989, to appear in SIAM J. on Matrix

Analysis..

- 47 -

[Datta] K. Datta, ‘‘Parallel Complexity and Computations of Cholesky’s Decomposition and

QR Factorization,’’ International J. Computer Math., vol. 18, pp. 67-82, 1985.

[Da74] P. Davis, Circulant Matrices, Wiley, New York, 1974.

[dH] F.R. deHoog, ‘‘On the Solution of Toeplitz Systems,’’ Linear Algebra and Its Appl-

ics., vol. 88/89, pp. 123-138, 1987.

[Eberly] W. Eberly, ‘‘Very Fast Parallel Polynomial Arithmetic,’’ SIAM J. on Computing, (to

appear).

[FP] M.J. Fischer and M.S. Paterson, ‘‘String Matching and Other Products,’’ SIAM-AMS

Proc., vol. 7, pp. 113-125, 1974.

[FMc] P.O. Frederickson and O.A. McBryan, ‘‘Parallel Superconvergent Multigrid,’’ in Mul-

tigrid Methods: Theory, Applications and Supercomputing, ed. S. McCormick, vol.

100, pp. 195-210, M. Decker, Inc., Lecture Notes in Pure and Applied Math, 1988.

[FMc87a] P.O. Frederickson and O.M. McBryan, ‘‘Superconvergent Multigrid Methods,’’ Pre-

print, Cornell Theory Center, May 1987.

[GP] Z. Galil and V. Pan, ‘‘Improving Processor Bounds for Algebraic and Combinatorial

Problems in RNC,’’ Proc. 26-th Ann. IEEE Symp. on Foundation of Computer Sci.,,

pp. 490-495, Portland, Oregon, 1985.

[GPa] Z. Galil and V. Pan, ‘‘Improved Processor Bounds for Combinatorial Problems in

RNC,’’ Combinatorica, vol. 8,2, pp. 189-200, 1988.

[Gast60] N. Gastinel, ‘‘Inversion d’une Matrice Generalisant la Matrice de Hilbert,’’ Chiffres,

vol. 3, pp. 149-152, 1960.

[G] J. von zur Gathen, ‘‘Parallel Algorithms for Algebraic Problems,’’ SIAM J. on

Comp., vol. 13,4, pp. 802-824, 1984.

[GS] W. Gentleman and G. Sande, ‘‘Fast Fourier Transform for Fun and Profit,’’ Proc.

Fall Joint Comput. Conf., vol. 29, pp. 563-578, 1966.

- 48 -

[GeLi] J.A. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite Sys-

tems, Prentice-Hall, New Jersey, 1981.

[Geor] R.E. Georgiev, ‘‘Inversion of Triangular Toeplitz Matrices by Using the Fast Fourier

Transform,’’ J. New Gener. Comput. Syst., vol. 2,3, pp. 247-256, 1989.

[Ger87] A. Gerasoulis, ‘‘A Fast Algorithm for the Multiplication of Generalized Hilbert

Matrices with Vectors,’’ Math. of Computations, vol. 50, 181, pp. 179-188, 1987.

[GKKL] I. Gohberg, T. Kailath, I. Koltracht, and P. Lancaster, ‘‘Linear Complexity Parallel

Algorithms for Linear Systems of Equations with Recursive Structure,’’ Linear Alge-

bra and Its Applications, vol. 88/89, pp. 271-315, 1987.

[GL] G.H. Golub and C.F. van Loan, Matrix Computations, Johns Hopkins Univ. Press,

Baltimore, Maryland, 1989.

[Ha77] W. Hackbusch, ‘‘On the Convergence of Multi-grid Iteration Applied to Finite Ele-

ment Equations ,’’ Report 77-8, Universita
..
t zu Ko

..
ln, 1977.

[Hac80] W. Hackbusch, ‘‘Convergence of Multi-grid Iterations Applied to Difference Equa-

tions,’’ Mathematics of Computation, vol. 34, pp. 425-440, 1980.

[Hac85] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin, 1985.

[HT82] W. Hackbusch and U. Trottenberg (eds.), ‘‘Multigrid Methods,’’ Springer’s Lecture

Notes in Math., vol. 960, 1982.

[HW79] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford

Univ. Press, Oxford, 1979.

[He] P. Henrici, Applied and Computational Complex Analysis, Wiley, N.Y., 1974.

[H] A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation,

McGraw-Hill, New York, 1970.

[KKM] T. Kailath, S.-Y. Kung, and M. Morf, ‘‘Displacement Ranks of Matrices and Linear

Equations,’’ J. Math. Anal. Appl., vol. 68,2, pp. 395-407, 1979.

- 49 -

[KVM] T. Kailath, A. Viera, and M. Morf, ‘‘Inverses of Toeplitz Operators, Innovations, and

Orthogonal Polynomials,’’ SIAM Review, vol. 20,1, pp. 106-119, 1978.

[KR] R. Karp and V. Ramachandran, ‘‘A Survey of Parallel Algorithms for Shared

Memory Machines,’’ Handbook of Theoretical Computer Science, North-Holland,

Amsterdam, 1991.

[KUW] R.M. Karp, E. Upfal, and A. Wigderson, ‘‘Constructing a Perfect Matching Is in Ran-

dom NC,’’ Proc. 17-th Ann. ACM Symp. on Theory of Computing, pp. 22-32, 1985.

[Kn] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2,

Addison-Wesley, 1981.

[LPS] J. Laderman, V. Pan, and X-H Sha, ‘‘On Practical Acceleration of Matrix Multiplica-

tion,’’ Techical Report, TR 90-14, Computer Science Dept., SUNYA, Albany, NY,

1990.

[Laf] J.C. Lafon, ‘‘Base Tensorielle des matrices de Hankel (ou de Toeplitz), Applica-

tions,’’ Numerische Math., vol. 23, pp. 249-361, 1975.

[LRT] R.J. Lipton, D. Rose, and R.E. Tarjan, ‘‘Generalized Nested Dissection,’’ SIAM J. on

Numerical Analysis, vol. 16,2, pp. 346-358, 1979.

[McC87] S. McCormick, editor, Multigrid Methods, SIAM, Philadelphia, 1987.

[McT83] S. McCormick and U. Trottenberg (eds.), ‘‘Multigrid Methods,’’ in Appl. Math.

Comp., vol. 13, pp. 213-474, 1983.

[Mc86] S. McCormick (ed.), ‘‘Proceeding of the 2nd Copper Mountain Multigrid Confer-

ence,’’ Appl. Math. Comp., vol. 19, (special issue), pp. 1-372, 1986.

[MC] R.T. Moenck and J.H. Carter, ‘‘Approximate Algorithms to Derive Exact Solutions to

Systems of Linear Equation,’’ Proc. EUROSAM, Lecture Notes in Computer Science,

vol. 72, pp. 63-73, Springer, 1979.

[MVV] K. Mulmuley, U. Vazirani, and V. Vazirani, ‘‘Matching Is As Easy As Matrix Inver-

sion,’’ Combinatorica, vol. 7,1, pp. 105-114, 1987.

- 50 -

[Mus] B.R. Musicus, ‘‘Levinson and Fast Choleski Algorithms for Toeplitz and Almost

Toeplitz Matrices,’’ Internal Report, Lab. of Electronics, M.I.T., 1981.

[Neff] C.A. Neff, ‘‘Polynomial Rootfinding is in NC,’’ Proceedings 31st Ann. IEEE Symp.,

FOCS, 1990.

[ODR] S.T. O’Donnell and V. Rokhlin, ‘‘A Fast Algorithm for Numerical Evaluation of

Conformal Mappings,’’ SIAM J. on Scientific and Statistical Computing, vol. 10, 3,

pp. 475-487, 1989.

[P84] V. Pan, How to Multiply Matrices Faster, Lecture Notes in Computer Science, 179,

Springer Verlag, 1984.

[P87b] V. Pan, ‘‘Complexity of Parallel Matrix Computations,’’ Theoretical Computer Sci-

ence, vol. 54, pp. 65-85, 1987.

[P87a] V. Pan, ‘‘Sequential and Parallel Complexity of Approximate Evaluation of Polyno-

mial Zeros,’’ Computers and Mathematics (with Applications), vol. 14,8, pp. 591-

622, 1987.

[P87c] V. Pan, ‘‘Sequential and Parallel Complexity of Approximate Evaluation of Polyno-

mial Zeros,’’ Computers and Mathematics (with Applications), vol. 14,8, pp. 591-

622, 1987.

[P88b] V. Pan, ‘‘New Methods for Computations with Toeplitz-like Matrices,’’ Technical

Report 88-28, Computer Science Dept., SUNY Albany, 1988.

[Pan89] V. Pan, ‘‘A New Algorithm for the Symmetric Eigenvalue Problem,’’ Techn. Report

TR 89-3, Computer Science Dept., SUNYA, 1989.

[P89b] V. Pan, ‘‘Parallel Inversion of Toeplitz and Block Toeplitz Matrices,’’ Operator

Theory: Advances and Applications, vol. 40, pp. 359-389, Birkhauser, Basel, 1989.

[P89a] V. Pan, ‘‘On Some Computations with Dense Structured Matrices,’’ Proc. ACM-

SIGSAM Intern. Symp. on Symbolic and Alg. Comp., pp. 34-42, 1989 and Math. of

Comp., vol. 55, 191, pp. 179-190, 1990.

- 51 -

[P90] V. Pan, ‘‘Parallel Least-Squares Solution of General and Toeplitz-like Linear Sys-

tems,’’ Proc. 2nd Ann. ACM Symp. on Parallel Algorithms and Architecture, pp.

244-253, 1990.

[P90a] V. Pan, ‘‘Parametrization of Newton’s Iteration for Computations with Structured

Matrices and Applications,’’ Tech. Report CUCS-032-90, Columbia University, Com-

puter Science Dept., 1990.

[PLS] V. Pan, E. Landowne, and A. Sadikou, ‘‘Approximate Polynomial Division with a

Remainder by Means of Evaluation and Interpolation,’’ Tech. Report CUCS-030-90,

Columbia University, Computer Science Dept., NY, 1990.

[PR] V. Pan and J. Reif, ‘‘Efficient Parallel Solution of Linear Systems,’’ Proc. 17-th Ann.

ACM Symp. on Theory of Computing, pp. 143-152, Providence, R.I., 1985.

[PR88] V. Pan and J. Reif, ‘‘Fast and Efficient Parallel Solution of Sparse Linear Systems,’’

Technical Report 88-18, Computer Science Dept., SUNYA, 1988.

[PR,a] V. Pan and J. Reif, ‘‘Fast and Efficient Solution of Path Algebra Problems,’’ J. Com-

puter and System Sciences, vol. 38, pp. 494-510, 1989.

[PR89a] V. Pan and J. Reif, ‘‘On the Bit-Complexity of Discrete Solution of PDEs: Compact

Multigrid,’’ Computers and Mathematics (with Applications), (to appear in 1990).

[PS88] V. Pan and R. Schreiber, ‘‘An Improved Newton Iteration for the Generalized Inverse

of a Matrix, with Applications,’’ Technical Report 88-35, Computer Science Dept.,

SUNYA, 1988 (to appear in SIAM J. Sci. Stat. Comp.).

[R] J. Renegar, ‘‘On the Worst-Case Arithmetic Complexity of Approximating Zeros of

Polynomials,’’ J. of Complexity, vol. 3,2, pp. 90-113, 1987.

[Rok85] F. Rokhlin, ‘‘Rapid Solution of Integral Equations of Classical Potential Theory,’’ J.

Comput. Physics, vol. 60, pp. 187-207, 1985.

[Rok] V. Rokhlin, ‘‘A Fast Algorithm for the Discrete Laplace Transformation,’’ J. of Com-

plexity, vol. 4, pp. 12-32, 1988.

- 52 -

[Sc82] A. Scho
..
nhage, ‘‘Asymptotically Fast Algorithms for the Numerical Multiplication

and Division of Polynomials with Complex Coefficients,’’ Proc. EUROCAM, Mar-

seille, 1982.

[Sc] A. Scho
..
nhage, ‘‘The Fundamental Theorem of Algebra in Terms of Computational

Complexity,’’ manuscript, Dept. of Math., University of Tu
..
bingen, Tu

..
bingen, West

Germany, 1982.

[S85] S. Smale, ‘‘On the Efficiency of the Algorithms of Analysis,’’ Bull. Amer. Math.

Soc., vol. 13,2, pp. 87-121, 1985.

[Strang,a] G. Strang, ‘‘A Proposal for Toeplitz Matrix Calculations,’’ Stud. Appl. Math., vol. 74,

pp. 171-176, 1986.

[St69] V. Strassen, ‘‘Gaussian Elimination is Not Optimal,’’ Numerische Math., vol. 13, pp.

354-356, 1969.

[UP83] S. Ursic and C. Patarra, ‘‘Exact Solution of Systems of Linear Equations with Itera-

tive Methods,’’ SIAM J. on Algebraic and Discrete Methods, vol. 4, pp. 111-115,

1983.

[Wang] P. Wang, ‘‘A p-adic Algorithm for Univariate Partial Fractions,’’ Proc. 1981 ACM

Symp. on Symbolic and Algebraic Comp., pp. 212-217, 1981.

[Wilk] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[W79] S. Winograd, ‘‘On the Multiplicative Complexity of the Discrete Fourier Transform,’’

Advances in Math., vol. 32, pp. 83-117, 1979.

