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Abs t rac t .  The main result of this paper is to exhibit a complexity 
model for discrete surfaces obtained by regular subdivisions of cells. We 
use it for estimating the number of points that will be generated by 
the Dividing-Cubes algorithm to represent the surface of 3D medical ob- 
jects. Under the assumption that surfaces have uniform orientations in 
the space, and can be locally compared to planes, we show that their av- 
erage number of points is a quadratic function of the subdivision factors. 
We give analytical expressions for the coefficients of the quadratic form. 

1 I n t r o d u c t i o n  

Medical volume images can be obtained by many  medical imaging devices like 
Computerized Tomography Scanners, Magnetic Resonance Imagers, Positron or 
single photon Emission Tomography scanners or even ultrasound scanners. These 
3D images contain detailed information about 3D internal structures (human 
organs) and need appropriate extraction and visualization methods. Many tech- 
niques have been designed [6]. They present a compromise between the precision 
of the representation and the computing t ime of the images. A classification of 
these methods can be proposed according to the dimensionality of the graphic 
primitives that  are employed: 

- The oldest methods are based on 1D primitives. The objects contours appear  
on each slice and are extracted by 2D image processing techniques. The 
surfaces can then be visualized using wireframe representation. Two adjacent 
contours can then be joined by a polygon mesh to generate an approximation 
of the external surface of the objects [5, 7]. The main problems to solve with 
this approach are the closing of the surfaces and the variable number of 
contours on the adjacent slices generated by complex structures. 

* Invited at the LIP of the ENS Lyon during spring 1996. 
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- Lorensen and Cline extract directly 2D primitives (polygon meshes) from the 
3D images: they consider, in the Marching-Cubes algorithm [9], the cubic 
cells composed by eight adjacent samples of the image. For a value of the 
threshold, they determine the intersection of the surface with each cell and 
thus generate a polygonal approximation. 

- Many researchers are working on direct visualization techniques of 3D images 
without intermediate representation of data [8, 4]. Algorithms based on ray- 
tracing or on direct projection of voxels (3D primitives) give high quality 
images, with relative transparency or color of some materials being taken 
into account. On the other hand, these methods are very time consuming 
and are not compatible with real-time constraints. 

- Cline and al, notice in [3], that the polygons generated by the Marching- 
Cubes algorithm are projected on only some pixels of the screen. Without 
a specialized graphics hardware to perform the rendering, they suggest to 
represent the surface by a cloud of points. They propose in the Dividing- 
Cubes algorithm a regalax subdivision of the voxels so that  the size of the 
projection of a subdivided voxel on the screen is at most equal to the size of 
a pixel. 

The work presented here is a part of a project developed at the LIP, whose 
aim is the elaboration of a parallel environment dedicated to 3D medical imag- 
ing [1O]. The objectives of our research grot~p is to study the implementation, on 
distributed memory parallel machines, of 3D imaging methods. The processing 
nodes are general-purpose processors, not specialized in graphic operations. 

Therefore, we want to study a parallel version of the Dividing-Cubes algo- 
rithm on these kind of platforms. To have a balanced execution of the algorithm, 
we have to estimate the workload, as a function of the algorithm parameters, 
which are directly related to the number of points generated on the iso-surface. 
The remainder of the paper is organized as follows: 

Section 2 presents the basic principles of the Dividing-Cubes algorithm. In 
section 3 we summarize previous results concerning the optimization of subdi- 
vision parameters, for the visualization of still or animated images as well as a 
technique for quick production of lower quality images. We explain then how 
to determine the number of points generated on the iso-surface as a function 
of the subdivision factors. A statistical study in 2D and in aD allows to get a 
model of the complexity of the extracted surface. Our relations are validated by 
experimentation on artificial and medical images. 

2 The Dividing-Cubes algorithm 

2 . 1  S u b d i v i s i o n  a n d  S u r f a c e  R e c o n s t r u c t i o n  

The basic idea of the Dividing-Cubes algorithm is that the original voxels of 
the aD images are subdivided into a x b x e elementary cells. The subdivision 
factors a, b and c are chosen so that the size of one projected elementary cell is at 
most equal to the pixel size on the raster display. Then the algorithm generates 
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one point of the surface for each elementary cell intersected by the iso-surface. A 
point is represented by three coordinates (the center of the small cell) and a color 
calculated from the Phong model. The normal on a small cube is obtained by a 
trilinear interpolation of the normals to the vertices of the cells which are them- 
selves determined by a gradient computation. The Dividing-Cubes algorithm 
eliminates the scan conversion step used when rendering surfaces extracted by 
the Marching-Cubes algorithm. 

The choice of the threshold on an iso-surface determines which organ we 
want to visualize. In figure 1, we present two iso-surfaces extracted from the 
same 3D image. The left and the right image are processed for the threshold 
corresponding respectively to the skin tissue and to the bone surface. 

Fig. 1. Two iso-surfaces of a same 3D medical image 

2.2 Visual izat ion of the  iso-surface 

Once the iso-surface is extracted, the visualization is straightforward: each point 
is projected according to the visualization parameters. Its color is stored in the 
frame buffer and the elimination of the hidden parts is done by the depth buffer 
algorithm (ZBuffer). 

Figure 2 presents the visualization parameters used when the points of the 
surface are projected in perspective. The voxels coordinates are normalized be- 
tween -1 and +1. A view is defined by 6 parameters which are the distance r of 
the observer to the 3D image center, the focal distance f from the observer to 
the raster display center, the two Enler angles 0 and 9, and the raster display 
resolution (x, y). 

3 O p t i m i z a t i o n  o f  t h e  s u b d i v i s i o n  p a r a m e t e r s  

we explain in [1] how to optimize the subdivision parameters, both for the pro- 
duction of a single image and for the production of an animation, where vi- 
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Fig. 2. Visualization parameters 

sualization parameters vary. We give sufficient conditions to garantee that  the 
surface does not present holes. The number of points generated by this algorithm 
can nevertheless be very important,  around one million for the visualization of 
a medical image in 512 • 512 resolution. 

We also explain in [1] a mechanism for fast production of lower quality im- 
ages. The idea is to generate less points than the theoretically minimal number 
and to render each point by a rectangle instead of a single pixel. 

The following section presents an estimation of the number of points gener- 
ated on the surface, as a function of the subdivision parameters. This modeli- 
sation allows to predict the memory allocations needed to store the iso-surface. 
As part of a parallelization of the algorithm, this model also allows to predict 
precisely the workload of the algorithm which can then be balanced. 

4 Complexity of iso-surfaces 

We can estimate the number of the points S(a, b,c) generated on the given 
iso-surface as a function of the subdivision parameters a, b and c. The simple 
algorithm given in psendo-C notation in Figure 3 first explains how S(1,1,1) can 
be computed. S(1,1,1) represents the number of intersections with the iso-surface 
when cells are not subdivided. Obviously, it depends on the threshold value. The 
method we give here scans only once the whole 3D image, and precomputes this 
number for any possible threshold. 

It is natural to think that S(a, b, c) is proportional to S(1, 1, 1), the propor- 
tionality factor being a quadratic function of a, b and c. Indeed, only those cells 
that are intersected by the iso-surface are subdivided into abc small cubes. But 
in the volume composed by these abc small cubes, only a discrete surface will be 
preserved. We have then searched for a relation of the following form: 

b, 6 _  bc+ + (i) 
s(i, i, i) 
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f o r i = 0 t o 2 5 5  do 
WEi] = 0; 

for each cell (i,j,k) do 
m = min(V(i + el, 3 + e~, k + e3)); / * e~ = 0 or 1 */ 
M =  max(V(i + e l , j  + e2,k + e3));/ *ez =O or 1 " /  

/* this cell is intersected by each iso-surface ~r 
�9 of threshold ~r such as rn _< a < M */ 

W[m]++; 
WEM] -; 

{'or i = 1 to 255 do 
W[i] + =  W[i-1]; 

Fig. 3. Threshold-independant computation of S(1, 1, 1): at the end of this procedure, 
W[k] holds the number of (non-divided) cens intersected by surface of threshold k 

The experimentations carried out in section 4.3 show a good adequation of 
this formula with the reality. We have also observed that  a very simple relation 
links together the parameters  c~, ~ and ~: 

~+9+~i (2) 

The following section presents a statistical proof of these observations and 
gives mathemat ica l  formulation of a , /9  and 7 parameters.  We suppose that  the 
cells size are small enough to be able to assimilate locally the object 's  surface 
to planes. We suppose also that  the orientations and positions of these planes 
have equal probabilities. We determine then an average number of subdivided 
cells intersected by the iso-surface. 

We lead in a first step the statistical study in 2D. In this case, the planes 
become straight lines, the cells rectangles and the iso-surfaces iso-contours. We 
generalize afterwards this study in 3D. 

4.1 Stat is t ica l  s tudy  in 2 d imens ions  

The cell is a rectangle of dimension d~ • dy, subdivided into a x b small rectangles. 
We consider the set of the straight lines ~9 of the plane defined by equation: 

x cos(0) + ysin(0) = r (3) 

Among this set of straight lines we choose those ones that  have an intersection 
with the cell (see figure 4). We search to establish the average number of small 
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rectangles intersected by the straight line 7) as a function of the parameters 
a and b. By symmetry we consider the following intervals: 0 ~ [0, rr/2] and 
r e [0, r , ~ ( 0 ) ]  where r~a~(O) is the distance to the origin of the straight line 
beyond which there is no more intersection ( r ~ ( O )  --- cos(0)d~ + sin(O)dy). 

r m a x  

d, iii 

O I ] ~ - _  ,~-t 

f i i )  

�9 i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . ,  . . . . . . . . . . . . . . . . . . . .  : : .  

. . . . . . . . . . . . . .  i l i l i  

i l  i i i i  

i :  . . . . . . . . . . .  : . v : ,  

: : , D  : ~ 
: . . . . . . . . . . . . . . . . .  d x  . . . . . . . . . . . . . .  : 

Fig. 4. Cell intersected by a straight line :D(r, O) 

Given f(r ,  O) the nmnber of small rectangles intersected (discrete length) and 
l(r, O) the euclidean length of the intersection. We have the following relation: 

f(r,  O) = p(O)l(r, O) (4) 

where p(O) is a factor allowing to convert the euclidean length to the discrete 
length along the straight line perpendicular to the direction given by the angle O. 

E x p r e s s i o n  of  p(0): given v(x, y) a direction vector of the straight line O. 
The length l or euclidean norm of v as well as its discrete length f (number of 
intersected cells) are given by the following relations: 

1 = flvil (5) 
= 7 +y2 (6) 

xa yb 
f ~  ~-~+ d-~ (7) 

according to (4) the expression of p(O) is the following: 
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f ;(o) = ? (8) 

_ a sin(O)+ b cos(O) (9) - 

D e t e r m i n a t i o n  o f  t h e  a v e r a g e  va lue  f ~ #  of f(r, O) for all the orientations 
and positions of the straight lines D having an intersection with the cell. f~vg 
can be expressed as a double integral on r and 0. See [2] for more detailed 
computations. 

T r'max 

saY. j 1 / S(.,0)d.d0 (10) 
0 0 

2 i bd~ cos(0) + ady sin(0) 
= ~ d~ cos(O) + dy sin(O) dO (11) 

0 

after integration, we obtain the following relation, where e = ~ :  dx 

7c + 2c ln(c)  c27c - 2 e l n ( e )  (12) 
f ~ g -  ~r( l+e2)  b +  7 r ( l + e  2) a 

The equation (12) is in form ab + 2a and corresponds to a 2D formulation 
of the relation (1). We can verify that we have a +/3 = 1, which corroborate the 
relation (2) in 2D. 

4 . 2  G e n e r a l i z a t i o n  i n  3 D  

We take again the initial definition of a tridimensionnal cell. It is a rectangular 
parallelepiped of dimensions dx • dy x dz, subdivided into a x b x c small cells. 

Like in 2D, we search the average number of small cells intersected by all 
possible planes. One of these planes is defined by its equation: 

x cos(~) cos(O) + y cos({?) sin(O) + z sin(p) = r (18) 

where 0 and ~ are the Euler angles of the normal to the plane and r its 
distance to the origin. We can limit the integration space to the first octant for 
0 and ~o and to the interval [0, r,~x(O, ~,)] for r. 

Like in 2D we express the number of small cells intersected by a discrete 
plane surface as a function of the area of the corresponding continuous surface 
element. We have the relation: 
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f(r, 0, p) = p(O, p)s(r, O, p) (14) 

where p(O, p) is the factor to convert the continuous area s(r, O, p) to the 
corresponding discrete surface f(r, 0, p). We show in [2] that p(O, p) is expressed 
a s :  

p(O, p) = ~ b  sin(p) + ~ cos(p)( d@ cos(0) + ~ sin(0)) (15) 

De t e rmina t i on  of  the  average value f~g of f(r, 0, ~) for all the orienta- 
tions and positions of the planes in the space which have an intersection with the 
cell; f~g  represents the average number of subdivided cells intersected by the 
iso-surfaces, faro can be expressed as the triple integral on the domain occupied 
by the cell: 

~ ~ ( 0 , ~ )  

2 j f ( r  , 0, p)dr cos(~)dpdO (16) 
~o~(0 ,~ )  

0 0 0 

where: 

r,~ax(O, 99) = cos(p)cos(O)dx + cos(p)sin(O)dy + sin(p)dz (17) 

We show in [2], with similar computations as in the 2D space, that fang can 
be expressed as follows: 

w i t  

2 i i bccos(p) cos(O)dx + accos(~)sin(O)dv + absin(p)dz 
fang = 7 j j d~ cos(p) cos(0) + d~ cos(p) sin(0) + dz sin(p) 

c o s ( ~ ) d ~ d O  

o o 

The relation above has the form: 

2 r " i ~ r  :12 Abe + Bac + Cab 
fang cos(p) dp dO I ! 

~ao a0 A + B +  C 

We deduce immediatly that the relations (1) and (2) are validated. 
Softwares specialized in formal computation did not succeed in integrating 

symbolically these formulae. Thus, we cannot give the analytical expressions of 
a, 9 and 7 for arbitrary values of d~, d v and dz. On the other hand, a numerical 
integration gives a good approximation when the ceil size is given. For example 
we will use for o~ the following expression: 

2 f f (cos(p))2 cos(0) dp d0 
O f  z - -  

rr d~ cos(p) cos(0) + d v cos(~) sin(0) + dz sin(~) 
0 0 
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4.3 E x p e r i m e n t a l  r e s u l t s  

The results presented in this section compare the number of points extracted 
from our images to the estimation obtained by our model. We choose four differ- 
ent discrete images for our experiments. The first two are synthetic examples 
mathemat ica l ly  generated: a sphere discretized with regular samples leading 
to cubic voxels, and a torus with anisotropic discretization, where voxels have 
2 x 3 x 1 ratio. The last two are CT scans of a head (256 • 256 x 113) and of a 
wrist (512 x 512 x 20). The voxels of these two medical image have respectively 
1 x 1 • 2 and 1 • 1 x 11.6 ratio. The numerical evaluations of our formulae are 
presented in the table 1. 

sphere torus CT skull CT wrist 

i 1/3 ,,~ 0.34 ~ 0.26 ~ 0.12 
1/3 ,~ 0.47 ~ 0.26 ~ 0.12 
1/3 ~0.19 ~ 0.48 ~ 0.76 

Table 1. Numerical evaluation of a, ~q and 7- 

Fig. 5. Discrete sphere and torus used for our experimentations 

The experimentations performed on our test images are presented in Table 2. 
The three columns contain respectively the subdivision factors used, the number 
of the extracted points on the iso-surface, and the estimation of this number given 
by relation (1). Our estimation is very accurate since the maximal  relative error 
is about  2%. 
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1 1 1 1448 1448 1 1 1 1512 I 1512 1 1 11 291005 291005 1 1 1 395642 395642 
2 2 2 5762 5791 1 2 3 5632 5796 1 1' 2 439080 432327 1 1 2 482625 485848 
4 4 S 38368 38609 4 3 2 12132 12216 1 1 4 734993 7449"/'3 i 1 4 661062 666340 
8 8 8   2120 . _ 663 ; 45 37228 37798 11610309431047618111!0 820827 s 2278 
7 14 11 157780 158781 6 124076 126155 3 3 6 3920220 3980948 2 2 2979999 3026345 

Table 2. Number of points on the iso-surface (subdivision parameters, measure and 
estimation) 

These experiments validate our statistical study, which can predict precisely 
the memory  space and the computing time associated to particular subdivision 
parameters.  

Fig. 6. Iso-surfaces extracted from a the sphere and a the torus. 

5 D i s c u s s i o n  

The expressions of the coefficients of our model are given only with integrals. 
Nevertheless these coefficients depend only on the voxel's proportions. They can 
be then tabulated for the most common proportions used in 3D imaging. The 
dx and dy dimensions are most often the same. The d~ dimension has typically a 
ratio between 1 and 10 as compared to d~ or dy. In the case of dx = dy = 1 and 
dz E [1, 10] we illustrate in figure 8 the evolution of the a, fl and 7 as functions of 
the cell height dz. The evolution of these functions is smooth,  so the tabulat ion 
method is very accurate. 
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Fig. 7. Iso-surfaces extracting from the CT wrist and the CT skull. 
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dz 

Fig. 8. Evolution of the c~, /3 and 7 coefficients as a function of the voxel's height dz 

6 Conclusion and Perspectives 

We have shown how to predict the complexity of the produced iso-surface. Ex- 
periments on real and on synthetic images corroborate the validity of our for- 
mulations. 

This work has been accomplished in the scope of a future parallelization 
of the algorithm on a distributed memory  machine integrating dynamic load 
balancing. Indeed, the extremely simple da ta  structure used to store the points 
of the surface allows to get a communication scheme much more effective than for 
surfacie algorithms. For an image animation, the visualization conditions vary 
slowly between two successive images, so we can take advantage of the frame- 
to-frame coherence: the points which have been handled by a processor for the 
production of an image are likely to be handled by the same processor for the 
following image, leading to a very low communication overhead. 
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