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Abstract

Parkinson’s disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substan-

tia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA)

metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen

species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives

show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-

homeostasis and viability.

In this review we highlight different aspects of dopamine metabolism in the context of PD and neu-

rodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a

broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry

at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation

of all enzymes involved. This is followed by a short overview of cellular models currently used in

PD research. Finally, we will address the topic from a medical point of view which directly aims to

encounter PD.
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Introduction

The age-related Parkinson’s disease (PD) is the most common neurodegenerative motor disorder in the

world, affecting millions of elderly people. The motor symptoms of PD, such as rigidity, tremor or

bradykinesia, are caused by the degeneration of dopaminergic neurons within the substantia nigra pars

compacta. Despite intensive research over the past years, there is no cure for this disease and even

diagnosis of PD is complicated due to a lack of reliable diagnostic tests.

There are sporadic and inheritable forms of PD. Sporadic PD is by far the most common, and thus rep-

resents the more pressing medical need. However, similarities in both forms have led to the assumption

that there are common underlying molecular mechanisms [1,2].



Major causes of neurodegeneration are mitochondrial impairment and oxidative stress. In this context

it is interesting to note that although the adult human brain constitutes only about 2% of body weight,

it consumes about 20% of the body’s oxygen and glucose for the production of energy in the form of

adenosine triphosphate (ATP) [3]. Thus, this organ is particularly exposed to the consequences of mito-

chondrial energy metabolism malfunction and its resulting injurious transition. In addition to these well

known parameters, the catecholamine (CA) metabolism is a unique feature of catecholaminergic neu-

rons and represents an additional source for reactive oxygen species (ROS) production. According to this

prompted oxidative stress, brain tissue samples of post mortem PD patients comprise increased levels

of lipid peroxidation in the substantia nigra [4]. Catecholamine metabolism might be especially crucial

for cellular redox homeostasis and could be a trigger for ROS overload, i.e. ROS that can no longer

be detoxified by the cell. To better understand the catecholamine metabolism and its consequences to

cellular integrity, a systems approach on a metabolic level would be beneficial.

Systems biology and personalized medicine have become a fast growing field and have been more and

more advanced especially in the light of high computing power, low cost sequencing opportunities and

complex networks, underlying disease pathologies. Cellular regulation typically operates on four lev-

els, besides regulation of genome, transcriptome and proteome the metabolome is the fourth level of

regulation. Altered metabolic levels have in turn impact on the level of genome, transcriptome and pro-

teome. Analyzing the metabolome means to make a metabolic snapshot of the cell, which is challenging

because metabolism has turnover rates in the range of seconds.

Recent publications, that have been made possible by the advancement of new technologies, describe

in detail the underlying molecular mechanisms favoring these metabolic changes. In terms of today’s

research these advancements pushed our limits and opened new horizons. Key technologies are very

sensitive mass spectrometers coupled to gas or liquid chromatography and stable isotope labeling [5,6].

The simultaneous measurement of several hundred metabolites in one single sample is no longer a

challenge [7]. However, the key advancement in all large scale and “omics” analyses is the valuable

readout of these large data sets, from their respective software packages [8]. In terms of metabolomics,

this means identifying significantly deregulated metabolites, calculating enzyme activities, tracing the

metabolic fate of single metabolites and to even identify unknown metabolites. These advancements

can be observed in the field of cancer research, which has evolved tremendously over the last years [9].

Different examples nicely demonstrate the adaptation of cellular metabolism as an result of genetic

reorganization and the impact of metabolism on cellular and systemic functionality [10,11].

Mining the literature of the last decade and looking for data related to DA metabolism or CA metabolism

in general – also with respect to PD – we felt that this area of research is underrated, at least in the field of

metabolism. Most research has been based on genetic studies, since several genes could be successfully

linked to a PD phenotype. But we should not forget that most cases of PD are still idiopathic, rather than

of genetic heritage. Therefore, additional causes for the loss of dopaminergic (DAergic) neurons over

time, should exist. One key player for DAergic cell death might be the DA metabolism itself, which

serves as a major source of intracellular ROS production. In this review we present a detailed overview

over DA metabolism in the central nervous system, integrating molecular and biochemical aspects. We

will refer to informative articles that go deeper into the individual topics.

On the origin of dopamine research

DA was first prepared long before its importance as neurotransmitter was discovered. It was originally

synthesized in 1910 because of the strong physiological effects, observed for other phenolic bases like

epinephrine [12,13], but due to its comparatively low effect on arterial blood-pressure it was mostly

overlooked. The first time DA was found to occur in an organism was as a pigment-building metabolite

in the plant Sarothamnus scoparius [14]. Later on, it was found to be a substrate of aromatic amino acid

decarboxylase (AADC) [15]; which could be isolated from sympathetic ganglia [16] and other animal

tissues [17]. DA is also prevalent in invertebrates [18].



Initially DA was only assumed to be a precursor of the catecholic neurotransmitters epinephrine (E)

and norepinephrine (NE) or considered to be an intermediate in tyrosine degradation [15]. It was only

later that DA was recognized as an independent neurotransmitter [19,20]. It took some more time

till the first DA receptor was discovered [21]. The Nobel Prize in medicine and physiology in 2000

was awarded to Arvid Carlsson together with Eric Kandel and Paul Greengard, for their research in

the field of CAergic neurotransmission in the 1950s that lead to new techniques for DA measurement,

and most importantly to the insight that DA was itself a neurotransmitter [22]. Quickly afterwards

PD was associated with neostriatal DA depletion [23] which led to the first PD treatment with L-3,4-

dihydroxyphenylalanine (DOPA, levodopa) [24] which is still used today. Other disorders have in the

meanwhile been associated with DA metabolism or signalling, emphasizing the importance of a well

balanced DA metabolism. In schizophrenic patients increased DA release is observed [25] and PD-like

side effects can occur in schizophrenia treatment [26]. Deficient DA-signalling also plays a role in

attention deficit hyperactivity disorder (ADHD) [27] and GTP cyclohydrolase 1 deficiency (see GTPCH

section) which leads to another movement disorder named Segawa disease [28].

Dopamine biosynthesis

Although DA is an important neurotransmitter in the brain, a substantial part of the overall DA in the

body is produced outside the brain by mesenteric organs [29]. We will focus here on DA production

within the central nervous system (CNS). The classical pathway for DA biosynthesis was already postu-

lated by Blaschko in 1939 [30]. The two-step biosynthesis of DA takes place in the cytosol of CAergic

neurons and starts with the hydroxylation of L-tyrosine at the phenol ring by tyrosine hydroxylase (TH)

to yield DOPA (Figures 1, 2). This oxidation is strongly regulated and depends on tetrahydrobiopterin

(BH4) as a cofactor which is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase

(GTPCH). DOPA is then decarboxylated to DA by aromatic amino acid decarboxylase (AADC, also

known as DOPA decarboxylase).

Figure 1 Neuronal DA metabolism. In the neurite of DAergic neurons, DA is synthesized by com-

bined action of TH and AADC and imported into synaptic vesicles by VMAT2. DA leaking from the

vesicles is deaminated by MAO. Upon neuronal excitation DA is released into the synaptic cleft for sig-

nal transduction. DA signaling stops by reimport to the presynaptic neuron and recycling or by import to

surrounding cells and degradation by COMT, MAO, AR, ADH and ALDH. The main DA degradation

products are DOPAC and HVA. In cytoplasmic vesicles NM is built of DA oxidation products and other

components and can chelate iron. DA or DOPA can be oxidized to their corresponding reactive quinones

(Q) that react further on to form a variety of partly neurotoxic compounds and protein adducts. These

toxins and the ROS generated from DA deamination can cause cell damage and neurodegeneration. See

text and Figures 2, 4 and 5 for further details and references.

Figure 2 DA biosynthesis and degradation. The major pathway for DA biosynthesis starts at tyrosine

or phenylalanine which can be hydroxylated by phenylalanine hydroxylase. Tyrosine is hydroxylated to

form DOPA, now bearing the catechol moiety, by BH4-dependent tyrosine hydroxylase or alternatively

by tyrosinase. Decarboxylation of DOPA by AADC leads then to DA. In another pathway for DA syn-

thesis AADC action occurs before the hydroxylation at the aromatic ring. Tyramine is then oxidized

by Cyp2D. Besides being a neurotransmitter itself, DA is also the precursor of epinephrine and nore-

pinephrine. DA degradation is performed by COMT, MAO, ADH, ALDH and AR in variable order lead-

ing to DOPAC and HVA as the main endproducts. Phenolsulfotransferases and uridine diphosphoglu-

curonosyltransferases catalyze conjugation reactions with phosphate and glucuronic acid respectively.

The relative contributions of the different enzymes are strongly species-, tissue- and celltype-dependent.

The depicted reactions may occur in distinct compartments.



Besides this classical biosynthetic pathway, a cytochrome P450-mediated pathway was shown to exist

in rat in vivo [31,32]. In this pathway decarboxylation precedes hydroxylation thus tyrosine is decar-

boxylated to tyramine which can then be hydroxylated by Cyp2D proteins (Figures 1, 2). Although the

contribution to total DA synthesis seems to be low, it might become important under specific condi-

tions [32].

Another possibility for DA biosynthesis is the tyrosinase catalyzed tyrosine hydroxylation and the sub-

sequent DOPA uptake by CAergic neurons. Tyrosinase is normally involved in the biosynthesis of

peripheral eumelanins and phaeomelanins [33], but for TH-negative mice this is the major source of

CAs. Yet tyrosinase-lacking albino TH-negative mice still seem to have some source of CA [34]. It is

not clear if this remaining DA is produced via the Cyp2D pathway or if other mechanisms still have to

be discovered.

In CAergic neurons DA is readily sequestered into synaptic vesicles by secondary active transport via

the vesicular monoamine transporter 2 (VMAT2) [35] (Figure 1). Inside these vesicles oxidation-prone

DA is stabilized by the slightly acidic pH there [36]. This prevents oxidative stress in the cytosol [37].

Oxidative stress is further minimized by association of DA biosynthetic enzymes TH and AADC with

VMAT2 [38]. Vesicular sequestration by VMAT2 can be irreversibly inhibited by the drug reserpine.

Amphetamine and similar compounds inhibit VMAT2 directly and further collapse the proton gradient

necessary for DA transport [35,39] (Figure 1).

To control DA homeostasis, the enzymes involved in DA synthesis – TH, GTPCH and AADC – play

an important role to prevent excessive oxidative stress. In the following paragraphs we will present the

underlying regulatory mechanisms that control enzyme activity of these proteins.

Tyrosine hydroxylase

TH catalyzes the first step of DA biosynthesis and is strongly regulated. It constitutes, together with

tryptophane hydroxylase and phenylalanine hydroxylase, the pterin-dependent aromatic amino acid

monooxygenases [40,41]. TH consists of four identical subunits, each catalytically active and each

of them requiring BH4, ferrous ion and O2 to oxidize tyrosine to DOPA [42].

Excellent in-depth reports of TH are available and should be consulted for further information [43,44].

Here we summarize the most important information to understand the regulation of TH activity and its

importance for DA synthesis.

TH is always coded by one single gene [45]. However, humans possess four TH isoforms due to alterna-

tive splicing in exon 2 [45-48] (Figure 3). Other primates have two isoforms and non-primate mammals

have only one TH isoform [49,50]. Human TH1 (hTH1) is most similar to rat TH and hTH1 and hTH2

are predominantly expressed in human brain [47]. One should note, that the websites ensemble.org and

NCBI show a different order and do not include TH2. In this manuscript we decided to stick to the

nomenclature used in the literature (Figure 3).

Figure 3 Overview of TH isoforms. A) Overview of the four human TH isoforms with their respective

amino acid length. Asterisks indicate the position of the serines that are targeted by phosphorylation.

Numbers on the bottom indicate amino acids located after a splice section. B) Alignment of TH1

and TH4 for illustration of the additional amino acids, present in the different isoforms. The numbers

correspond to the nucleotide numbering.

The structure of all four isoforms is based on the same principle: one N-terminal regulatory domain

(∼150AA), a central catalytic domain (∼300AA) and the C-terminal part, coding for a leucine zipper



domain which is responsible for tetramer formation [51]. Loss of tetramer formation ability leads to a

70% drop of TH activity [52].

Regulation of TH

TH is regulated on transcriptional [44,53-57] and post-transcriptional level [53] by covalent modifica-

tions, protein-protein-interaction and by allosteric regulation [43].

Synthesized CAs compete with the TH cofactor BH4 to bind the ferric ion at the catalytic site of TH [42,

58-60]. Thus, high CA levels inhibit TH activity and thereby regulate its own intracellular concentrations

via feedback regulation. The regulatory domain of hTH is targeted by phosphorylation at serine 19, 31

and 40 by various kinases, such as PKA, PKC CaMPKII, PKG, MPK, ERK which results in increased

stability and/or activity [44]. Rat TH can also be phosphorylated at serine 8, but hTH has a threonine

on this position instead. In vivo, depolarized cells increase their intracellular calcium concentrations via

voltage sensitive calcium channels. Increase of calcium leads to the activation of different kinases, that

in turn phosphorylate different serines on TH. Due to phosphorylation, the regulatory domain of TH

undergoes a conformational change and dissociation of bound CA is facilitated. The phosphorylated

version shows a sixfold higher dissociation rate compared to the non-phosphorylated form [59]. This is

also demonstrated by Daubner et al. who generated phosphomimetic versions of TH by replacing Ser 40

by glutamate [60]. This version shows lowered inhibition by DA.

Phosphorylation of Ser 40 seems to have the strongest effect in terms of TH activation. Depending on the

kinase and the position where TH is phosphorylated, the activity can increase up to 10 fold [60]. On the

contrary, phosphorylation of Ser 19 seems to have two other purposes: a) it favors binding of regulatory

14–3-3 protein which in turn stabilizes TH [61-63] b) it facilitates Ser 40 phosphorylation (hierarchical

phosphorylation) [64-66]. Phosphorylated Ser 31 results in a lowered Km value for BH4 binding and a

slight increase in activity, but this increase is only minor compared to Ser 40 phosphorylation [44]. Since

Ser 40 seems to be the most important phosphorylation target in respect of activation it is interesting to

note that only 5–11% of total TH proteins are phosphorylated in vivo [44,64,67].

To inactivate TH, there exist phosphatases (PP2A and PP2C) that can reverse the phosphorylation and

might, therefore, function as deactivators [68-70]. TH can be inactivated by nitration, for example via

reactive nitrogen species (peroxynitrite) or via S-thiolation on cysteine residues [71-74]. Regarding the

stability of this enzyme, dephosphorylated TH versions are more stable compared to their phospho-

rylated counterparts. The explanation for this might be pretty simple, because DA levels have to be

maintained at very defined levels and must not exceed thresholds of toxicity. Higher turnover rates of

the active enzyme seem to be more feasible in order to better control how much DOPA is produced.

Besides serine 19, 31 and 40, arginine 37 and 38 have regulatory relevance for TH. Engineered en-

zymes with a deletion up to amino acid 39 [75] or arginine 37 and 38 replaced by glycine or glutamate

showed higher activity due to favored BH4 affinity [76-78]. The authors speculated that these two amino

acids might have important functions for the tertiary structure of the regulatory domain and enable DA

mediated inhibition of TH [43].

A PEST domain has also been proposed for TH [79] and ubiquitylation of TH and associated protea-

somal degradation was demonstrated [80,81]. However, we could not find any reference stating which

lysine is targeted by ubiquitylation. UbPred an ubiquitylation site prediction tool [82] identified Lys 78

as the most likely target in TH4 (528AA). This would make sense as it lies within the regulatory N-

terminal domain, which is exposed to the outside of the protein and would, therefore, be accessible for

E3 ubiquitin ligase.



In addition to covalent modifications, TH stability is also controlled by interaction with other proteins

(14–3-3, DJ-1, α-synuclein, VMAT-2, AADC, GTPCH) via the N-terminus of TH [38,43,61,62,83-

85]; see also BH4 and GTPCH section. These interactions affect TH stability, activity and probably

intracellular localization, which finally affects DA production.

One additional important factor regarding DA production and stability seems to be the intracellular

O2 concentration. The O2 concentration in brain tissue is normally at 1–5%, whereas atmospheric

oxygen levels are around 20%. Firstly, increased oxygen levels induce DA oxidation thus triggering the

generation of ROS and secondly, the oxygen level influences TH protein abundance and activity [86,87].

It is important to mention that most biochemical in vitro studies have been performed with rat or other

non-human TH. However, one should keep in mind that there are substantial differences between the

species’ TH activities and their CA metabolism [60,88,89]. In summary, it is the N-terminal part of TH

and especially its state of modification that plays an important role in protein stability and activity. In

addition to active regulation of TH, the protein depends on the cofactor BH4 for catalysis. Regulation

of BH4 synthesis and the role of GTPCH for DA production will be explained in the following section.

BH4 and GTPCH

6R-L-erythro-5,6,7,8-tetrahydrobiopterine (BH4) functions as a cofactor for the pterin-dependent aro-

matic amino acid monooxygenases and for NO synthase. BH4 can directly react with molecular oxygen

to facilitate hydroxylation of the substrate. It is synthesized in three steps from GTP [90] (for review

see Thöny et al. [91] and Werner et al. [92]). As an alternative to de novo synthesis of BH4, the cofac-

tor can also be recycled via pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase

(DHPR) [91] (Figure 4). On the other hand, too high BH4 levels inhibit TH and are even toxic to the

cell by inhibiting complex I and IV of the electron transport chain [93].

Figure 4 Regulation of DA synthesis in dependency on BH4. Dopamin synthesis relies on hy-

droxylation of phenylalanine, hydroxylation of tyrosine and decarboxylation of DOPA (blue box). The

key enzyme tyrosine hydroxylase (TH) needs tetrahydrobiopterine (BH4) as a cofactor to catalyze the

hydroxylation of tyrosine. Guanosine triphosphate (GTP) is the precursor for BH4 synthesis and GTP

cyclohydrolase I is the key enzyme in this reaction (grey box). GTP cyclohydrolase I converts GTP into

7,8-dihydroneopterine triphosphate which is subsequently converted into 6-pyruvoyltetrahydropterine

by PTPS. SR finally converts 6-pyruvoyltetrahydropterine into BH4. GTPCH is stimulated by Pheny-

lalanine and repressed by high BH4 levels. in this case BH4 binds to the GTPCH feedback regulatory

protein (GFRP). BH4 can be recycled via pterin-4a-carbinolamine dehydratase (PCD) and dihydropteri-

dine reductase (DHPR) to maintain sufficient BH4 (yellow box).

The first and rate-limiting reaction in BH4 production is catalyzed by the enzyme GTP cyclohydrolase I

(GTPCH). GTPCH is coded by one gene and is built of six exons [94]. Alternative splicing yields at least

three different splice variants, but only one version seems to be catalytically active. In addition, GTPCH

is expressed in a tissue specific manner with especially high mRNA concentrations within serotonergic

neurons. Results about GTPCH in CA producing neurons are controversial [95-98]. Dassesse et al.

found relatively strong GTPCH immunoreactivity in the substantia nigra of rat brain [98]. Dominant

as well as autosomal recessive GTPCH mutations have been reported and linked to DOPA responsive

dystonia [99-102]. Other diseases associated with GTPCH or BH4 deficiency, respectively are hyper-

phenylalaninemia, cardiovascular disorders and phenylketonuria (PKU) [91,92,103,104].

Expression of GTPCH is regulated on transcriptional and post-transcriptional level. Administration of

cAMP results in up-regulation of GTPCH gene expression. GTPCH activity is induced by phenylalanine

and inhibited by BH4 via the GTPCH feedback regulatory protein (GFRP) [91,97,105,106]. In addition,

phosphorylation of Ser 81 increases GTPCH activity [107-109].



GTPCH-TH-interaction

Bowling et al. [83] could demonstrate that TH interacts with GTPCH and that this interaction depends

on the phosphorylation of both. Interaction with TH prevented BH4-mediated inhibition of GTPCH,

resulting in increased GTPCH and TH activities. These findings suggest that GTPCH activity is stimu-

lated as long as TH is present in a phosphorylated (thus itself active) state and therefore DA production

is also dependent on GTPCH. Experiments in Drosophila melanogaster showed that administration of

BH4 could not restore TH activity in flies with mutated GTPCH versions. The authors assume that full

TH activity depends on the interaction of TH with GTPCH [110]. These results were also confirmed by

Bowling et al. [83], who showed that addition of GTPCH to TH increased Vmax of TH. Interestingly,

they also found a functional explanation for the phenomenon that high BH4 concentrations inhibit TH

activity as previously reported [47] and that only physiological concentrations of 25–100 µM increased

TH activity. Others report that concentrations of 10 µM have activating effects on TH [68]. However,

there is a common agreement that the BH4 level has to be balanced. The concept is, that only a certain

concentration of BH4 molecules results in active TH, because too high concentrations block GTPCH on

the N-terminal part and prevent thereby the interaction with TH. Too low concentrations will be limit-

ing due to lacking cofactor molecules for TH. In summary, TH needs both, the cofactor BH4 and the

interaction partner GTPCH for functionality.

Although TH interaction with GTPCH prevents feedback regulation of GTPCH by its end product BH4,

TH can still be inhibited by DA, even in the presence of GTPCH. This is based on the way these two

enzymes undergo complex formation and the resulting three-dimensional structure [83]. These findings

further advocate the complex underlying regulatory mechanisms that control intracellular DA levels.

Aromatic amino acid decarboxylase

AADC was probably first described by Blaschko [30] and subsequently described by Schales and

Schales [111] and Clark et al. [112]. Blaschko already asked the question whether AADC is specific to

DOPA or if it can use other aromatic amino acids as substrate. Today we know that AADC uses pyri-

doxal phosphate (vitamin B6) as cofactor [113] and catalyzes the decarboxylation of several aromatic

L-amino acids such as L-DOPA, L-tyrosine, L-tryptophane and L-histidine, thus being an important

enzyme in the synthesis of different neurotransmitters and not exclusively specific to DOPA.

How CA biosynthesis in the human brain is regulated on the level of AADC is not completely clear

[114]. AADC is regulated at transcriptional level and at post-translational level [115-117]. At tran-

scriptional level AADC can be differentially expressed by alternative promoter usage and by alternative

splicing [118]. At protein level AADC is regulated by phosphorylation [119] and DA receptor stimu-

lation [117,120,121]. Based on the two different regulation types: transcriptional and post-translational

regulation, AADC is regulated by a quick acting, short-term mechanism, via regulation of the protein

activity and in a slower longer lasting regulation, by adapting the gene expression [115,116].

AADC activity is dependent on DA levels. By using the DA receptor antagonist cis-flupenthixol and

haloperidol, an increase of striatal AADC activity could be detected [122,123]. DA receptor antagonists

enhance the activity of AADC, whereas agonists are more likely to reduce activity [117,123]. In ac-

cordance to this, inhibition of MAO decreases AADC activity, implying that higher DA levels result in

more DA bound to DA receptors [120,124]. Depletion of DA by reserpine treatment results in AADC

activation [121]. Similar as TH, AADC is regulated in a species and tissue specific manner [115,116],

which is even more reasonable for AADC, since it catalyzes the decarboxylation of different substrates

in a wide range of tissues. Results about the kinetics are differing and seem to depend on the tissue,

investigated [116].



Although TH is normally heavily regulated to control DA synthesis and AADC is not the rate limiting

enzyme, AADC plays the key role in DA synthesis [125] if DOPA is administered as a drug to PD

patients. In this case DOPA crosses the blood brain barrier via L-type amino acid transporters [126]

to enter the endothelial cells from where it is sequestered to the neurons. Degradation of cytosolic

DA by MAO and COMT as well as sequestration into vesicles via VMAT2 is even more important.

Increased levels of DOPA not only have the potential to induce oxidative stress, but are also associated

with schizophrenia [127]. In addition to DOPA administration, there are already ongoing clinical studies

where AADC is targeted for gene therapy. More detailed research on human AADC would be beneficial

to understand DA metabolism, also in respect of PD.

Dopamine degradation

Upon excitation of DAergic neurons, the synaptic vesicles are emptied into the synaptic cleft (de-

granulation) to interact with the postsynaptic DA receptors or regulatory presynaptic DA autorecep-

tors [128,129]. To stop signaling, extracellular DA has to be removed from the synaptic cleft. It can

either be recycled after reuptake by DAergic neurons or be degraded after uptake by glial cells.

Neuronal reuptake by DAT [130] is followed by sequestration into the synaptic storage vesicles by

VMAT2. DA still accumulating in the cytosol, as a consequence of leakage from synaptic vesicles, is

degraded by monoamine oxidase. Oxidative deamination by MAO produces hydrogen peroxide and the

reactive 3,4-dihydroxyphenylacetaldehyde (DOPAL). This aldehyde can be inactivated by either reduc-

tion to the corresponding alcohol 3,4-dihydroxyphenylethanol (DOPET) or by further oxidation to the

carboxylic acid 3,4-dihydroxyphenylacetic acid (DOPAC) by alcohol dehydrogenase (ADH) or alde-

hyde dehydrogenase (ALDH) respectively. Under normal conditions DOPAL is predominately oxidized

to the corresponding carboxylic acid. While the reduction of DOPAL to DOPET occurs only to a very

low extent, the deamination products of NE and E are mainly reduced to the alcohol [131].

Synaptic cleft DA is also taken up by surrounding glial cells. These cells readily degrade DA by

MAO and also by catechol-O methyl transferase (COMT). COMT transfers methyl groups from S-

adenosylmethionine (SAM) to hydroxyl groups of various catecholic compounds [132,133].

3-O-methylation of DOPAC by COMT leads to homovanilic acid (HVA), one of the main degradation

products of DA. COMT operates in glial cells but there is no COMT activity in DAergic nigro-striatal

neurons [134].

Conjugation — Glucuronides and sulfates

DA and its metabolites can further undergo phase II conjugation reactions before excretion. O-Sulfatation

and O-glucuronidation occur in both CNS and periphery [135-137].

Sulfate formation is catalyzed by phenolsulfotransferases (PSTs) that transfer sulfate from

3’-phosphoadenosine-5’-phosphosulfate (PAPS) to phenolic hydroxyls. Both 3- and 4-sulfates occur,

but the 3-sulfates are predominant [132] (Figure 2). There are big differences in the extent of sulfatation

between different species [29]. In rats and especially dogs, but not in guinea pigs, there was substantial

sulfatation observed after oral DA application which did not occur after intravenous application [138].

There are even differences in respect to different brain areas with higher degree of sulfatation in the

hypothalamus and hippocampus, and a lower percentage in the striatum [136].

Glucuronidation is performed by ER-bound uridine diphosphoglucuronosyltransferases (UGTs) [139]

transferring glucuronic acid from UDP-glucuronic acid to DA. DA-4-O-glucuronide and

DA-3-O-glucuronide are formed in almost equal amounts, but no N-glucuronide was found (Figure 2).

Of all the human UGTs, only UGT1A10 was found to have substantial affinity to DA [140], but there



is no UGT1A10 expression in the brain [140] that could be responsible for the DA-glucuronides found

there [135].

The main excretion products of DA found in human urine are HVA, DOPAC, their sulfates and glu-

curonides as well as DA conjugates [132,141]. In the brain DA-Conjugates seem to play only minor

roles as in rat brain microdialysates DOPAC and HVA are the main metabolites by far [135]. There

are varying reports concerning the ratio of conjugated metabolites to non-conjugated ones and ratio of

sulfatation to glucuronidation of DA metabolites is not the same for all metabolites. For instance for DA

glucuronidation predominates over sulfatation in mouse and rat brains [135], whereas DOPAC is mainly

sulfated in human and rat brains [141].

Monoamine oxidase

MAO is a key player in monoamine degradation and target of many therapeutic inhibitors (MAOI). It

catalyzes the oxidative deamination of CAs to the corresponding aldehydes using flavin adenine dinu-

cleotide (FAD) as a cofactor and generates hydrogen peroxide as a side product. There are two forms:

MAO-A and MAO-B, which are coded by two separate genes [142,143]. The enzymes are localized in

the outer mitochondrial membrane and are found in both the CNS and the periphery. In the CNS MAO

is present in neurons, microglia cells and astrocytes. Substantia nigral neurons show comparatively low

MAO presence compared other neurons or glial cells [144].

There are species specific differences in affinity of the two enzymes: although the in vitro affinity of

both MAO types is the same, DA is mostly oxidized by MAO-B in human, but by MAO-A in rats [89].

However, MPTP, a synthetic compound causing PD-like symptoms [145] is oxidized by MAO-B in both

rat and primates [146].

Catechol-O-methyltransferase (COMT)

The Mg2+-dependent COMT transfers activated methyl groups from SAM to catechol hydroxyl groups

[132,133] (Figure 2). There are two isoforms of COMT coded by one single gene [147]. The soluble

cytoplasmic form is present in glial cells and the periphery, but the rough ER-bound isoform M-COMT

on the rough ER is prevalent in neurons. The latter one has a higher CA affinity and is mainly responsible

for metabolism of CAs originating from DAergic and NEergic neurotransmission whereas the soluble S-

COMT is more responsible for exogenous CAs [89]. COMT activity is highest in excretory organs such

as liver and kidney, but is also present in the CNS where it is most abundant in microglia cells. COMT

is less prevalent in neurons and astrocytes and was not at all detected in human DAergic nigro-striatal

neurons [134].

Metabolic differences

Metabolic differences between species, organs and tissues make elucidation of DA metabolism more

complicated; the multitude of different models used make it hard to combine the different findings

[88,131,132,138]. As an example, urinary metabolite measurements were sometimes used, making it

hard to unravel neuronal DA metabolism as these samples contain a mixture of DA metabolites derived

from all the different tissues with their different predominant metabolic reactions. In this context, it

is also important to keep in mind that almost half of the DA found in the body is synthesized in the

gastrointestinal tract [29].



Catecholamines, oxidative stress and inflammation

Dopamine oxidation and oxidative stress

As described in the previous section, oxidative deamination of CAs by MAO generates hydrogen per-

oxide causing oxidative stress in CAergic neurons or CA-degrading cells. Besides this side-chain ox-

idation, DA as well as all other CAs are prone to oxidation at their electron-rich catechol moiety. DA

and DOPA are easily oxidized enzymatically, by metal-catalysis (Fe3+) [148] or even spontaneously,

yielding the highly reactive electron-poor ortho-quinones DOPA-quinone and DA-quinone (Figure 5).

CAs can be enzymatically oxidized by cyclooxygenases (COX, prostaglandin H synthase), tyrosinase

and other enzymes [149,150]. With oxygen as the electron acceptor these reactions generate superoxide

radical anions (O−·
2

). Both, quinones and ROS can react unspecifically with many cellular components

altering their functionality and thus being potentially neurodegenerative. The DOPA-Q and DA-Q read-

ily react with nucleophiles intra- and intermolecularly.

Figure 5 CA oxidation products. Catecholic compounds can be enzymatically or non-enzymatically

oxidized to their corresponding quinones. These highly reactive compounds can undergo a multitude

of different reactions, only a few are depicted here. Intramolecular cyclization and further oxidation of

DOPA- and dopaminequinone lead to the precursors of neuromelanin. DA-quinone can react with hydro-

gen peroxide to 6-hydroxydopaminequinone, or with aldehydes to tetrahydroisoquinoline like salsolinol,

both neurotoxic compounds. Cysteinylresidues of proteins or peptides readily react with DA-quinone to

form 5-cysteinyl-DA-derivatives.

CA-quinones are central oxidation intermediates leading to a multitude of different products (Figure 5).

Their amino group can attack the electrophilic quinone ring to form the cyclic aminochrome that tau-

tomerizes to 5,6-dihydroxyindole a precursor for the neuronal pigment neuromelanin [151] (Figure 5).

In the presence of iron DA-quinone can react further on to form the neurotoxin 6-hydroxydopamine

[152]. DA-quinones are also precursors for the enzymatic formation of tetrahydroisoquinolines like sal-

solinol [151,153]. Salsolinol is an endogenous neurotoxin causing oxidative stress and mitochondrial

damage by inhibition of the electron transport chain [153,154]. Additionally, salsolinol can heavily

disturb CA metabolism by inhibition of TH, DA-β-hydroxylase, COMT and MAO [151].

Reaction of CA-quinones with e.g. thiol groups of amino acids and proteins lead to a variety of 5-

cysteinyl-catechol derivatives. As cysteinyl residues of proteins are usually important for secondary

structure and posttranslational modifications, their derivatization leads to impaired protein function.

DAT and TH where already shown to be affected by DA-caused stress [73,155]. Conjugation of DA-

quinone with glutathione limits the cell’s capability to deal with oxidative stress.

Another protein affected by DA oxidation products is α-synuclein, a major component of Lewy bodies,

which are cytosolic inclusion bodies associated with PD [156,157]. α-Synuclein is a small protein

ubiquitously present in the brain [158] and a negative regulator of DA biosynthesis due to interaction

with TH [85]. DA or its derivatives as well as iron stabilize α-synuclein protofibrils thus preventing

its inhibitory effect on DA synthesis, possibly leading to more oxidative stress [85]. More importantly,

with PD-associated mutations of α-synuclein, these protofibrils seem to form membrane-permeabilizing

pores probably leading to severe cellular dysfunction [159]. The mode of DA action is not clear here.

As α-synuclein does not contain any cysteine residues, no cysteinyl derivatization can explain this effect

[160].

The oxidation of the catechol moiety of CAs can be prevented by derivatization of its hydroxyl groups.

O-Methylation by COMT not only inhibits oxidation of the compound itself, but additionally shows

antioxidative effects by inhibition of metal-catalyzed ROS generation [161,162].



Oxidation chemistry of CAs and physiological implications have been thoroughly reviewed elsewhere

[149-151,163].

Neuromelanin

NM is a complex pigment found in specific brain regions, mostly in the substantia nigra and the locus

coerulus. NM is built of DA-derivatives and contains 15% covalently bound amino acids and 20%

adsorbed lipids [164]. It is not totally clear if enzyme-catalysis is needed in NM formation but at least

iron is required, either as cofactor or alone [148]. Altough its structure is not totally clear, NM seems to

be similar to the skin pigment melanin [165]. Studies on a synthetic DA-derived melanin suggests that

it is not a covalently bound polymer but is kept together by π-stacking interactions [166].

NM is synthesized from non-vesicular DA. This could be demonstrated inhibition if its formation by

VMAT2 overexpression [148]. NM is found in lysosome-like double membrane autophagic organelles

within the cytoplasm [167], but no extracellular NM accumulation could be detected [150]. It is not

clear at which stage DA, NM or the intermediates enter these NM granules. Overexpressed VMAT1

was reported to localize in endosomes of CHO cells [168] and could explain DA accumulation as NM

precursor in endosomes or lysosomes. Additionally, with its lower affinity to DA compared to VMAT2

[35], VMAT1 could form a good secondary sink for excessive cytosolic DA. However, no VMAT1 could

be found in NM granules [167] or in neuronal cells in general [169].

It is not totally clear if the polymer is degradable in vivo or not. At least there is no enzymatic degradation

pathway known for NM, but it is sensitive to peroxidation in vitro [170]. As its formation is probably

irreversible, excessive DA is sequestered effectively, reducing oxidative stress in the cytosol rendering

NM synthesis neuroprotective [148].

Besides acting as a DA sink NM can bind transition metals, especially iron, preventing Fenton-type

OH· radical generation (Fe(II) + H2O2 → Fe(III) + OH· + OH−) and protect the cell from oxidative

stress [171]. This is even more important for DAergic cells, as there is a higher ROS occurrence as

compared to other cells.

Yet NM can turn detrimental depending e.g. on the iron load [172]. At some point the accumulation of

metal ions within the polymer might become too high and turn detrimental. Oxidative stress might lead

to NM degradation through peroxidation possibly leading to an release of previously captured metal ions

or toxins, worsening the situation [173]. Neuronal cell death and subsequent release of NM might start a

vicious circle of microglia activation and inflammation [174] causing more ROS stress and killing even

more exhausted neurons [171].

Oxidative stress, inflammation and neurodegeneration

Neuroinflammation in respect to PD is broad enough for its own review. Therefore, we refer to other

reviews that nicely summarize this topic [175-178]. Here we will present some food for thought to

illustrate the complexity of DA metabolism and its consequences.

As mentioned before, oxidative stress is part of DA metabolism due to its underlying chemistry. In

general, oxidative stress is associated with many neuronal disorders such as Alzheimer’s Disease, PD

and Schizophrenia [179]. On the other hand, ROS can be quenched by low-molecular antioxidants

and antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidases (GPX) and catalase

[180]. However, in the substantia nigra of PD patients, glutathione levels as well as the activities of

SOD, catalase, and GPX have been shown to be decreased [151], rendering the cells more vulnerable

to oxidative stress. Due to ROS overload, injurious effects such as lipid oxidation, uncoupling of the

electron transport chain or DNA damage occur, which finally leads to cell death [181-184].



Oxidative stress signals and chemoattractants released by DAergic neurons result in activation of mi-

croglia cells and subsequent inflammatory reactions [176,185-188]. First observations for microglial

activation in PD have been published in 1988 by McGeer et al. who analyzed tissue of the substantia

nigra of PD patients post mortem [185]. Exposure to environmental toxins such as rotenone, MPTP and

LPS lead to microglial activation [177]. Even years after MPTP exposure, activated microglia could

still be detected [189,190]. Activation of microglial cells can also occur because of released NM from

degenerating neurons as shown in vitro [174].

Reactive nitrogen species (NOS) and regulation of DA levels

Upon microglial activation, intracellular NO production, synthesis of cytokins, inflammatory glycopro-

teins, chemokins and cell adhesion molecules are induced, resulting in adhesion of microglia cells to

neurons. Chemoattractants released by degrading neurons promote these processes. Finally, microglia

cells become phagocytic upon DAergic neurons [176]. NO can diffuse from activated microglia cells

into DAergic neurons where it can react with superoxideanions (e.g. originating from the mitochondria)

to peroxynitrite (NO−
3

), a very potent oxidizing agent. In addition, production of hydrogen peroxide is

increased, which further increases the level of ROS in neurons [177,191].

On the other hand, peroxynitrite can generate tyrosine nitrations in proteins, inhibiting TH activity

[72,192]. NO-mediated repression of TH activity via S-thiolation on cysteine residues has also been

reported [73,74] and is discussed in [43].

An additional regulatory mechanism to control intracellular ROS levels by adapting TH activity in de-

pendence on the redox potential, is mediated by DJ-1, both on transcriptional and post-transcriptional

level. DJ-1 upregulates TH transcription by altering the acetylation state of the TH promoter. DJ-1

silencing results in lowered TH expression and most probably less DA production [193]. Interestingly,

the oxidation state of DJ-1 regulates its own activity and subsequently also TH expression [43]. Inde-

pendent of the detailed molecular regulations that take place on TH, such modification could be a sensor

for the intracellular redox level. When intracellular DA level rises, the level of oxidative stress and

simultaneously peroxynitrite formation increases. Inhibition of TH would then inhibit DA formation to

limit further ROS production. However, in the light of progressive PD such a repression of TH would

be disadvantageous, because DA production will be further limited.

Available cell models for research

Different cell lines are in use for research, related to the DAergic system. However, as described before

there are strong species and tissue specific differences in regulating DA metabolism and DA synthesis.

These differences make cell models of non-human or non-neuronal derivation not optimally suited for

PD-related research.

PC12 cells [194] have been of great benefit in elucidating the kinetics of TH and its underlying biochem-

istry. However, PC12 cells are phaeochromacytoma cells of rat adrenal medulla, thus not originating

from the CNS. In the original publication they are titled as “noradrenergic cells” [194]. Moreover, al-

though they can be differentiated into non-dividing cells, they are still of cancerogeneous nature, and

therefore, harbour a physiology far different from that of normal cells in tissue [195]. Another cell line

in use is the MN9D line. This cell line originates from mice and was generated from a fusion of embry-

onic ventral mesencephalic and neuroblastoma cells. Differentiated MN9D cells were shown to express

TH, voltage-activated sodium channels and to synthesize, harbour and release DA [196]. Although these

cells can somehow mimic a DAergic neuron like phenotype, Rick and colleagues came to the conclusion

that this cell line is not optimally suited as an in vitro model to study PD, because they do not mimic

the electrophysiological properties of DA neurons [197]. If the cells are not electrical excitible, cell to



cell communication may be lacking. Moreover, these cells are, as well as the PC12 cells, of non human

origin.

SH-SY5Y is most probably one of the most frequently used cell line to mimic DAergic neurons. This

line was subcloned from the original clone SK-N-SH, which was isolated from a neuroblastoma bone

marrow biopsy [198-200]. Besides the fact that these cells are hard to cultivate and to differentiate into

DAergic cells, these cells again originate from cancerogenous tissue. Most importantly there are reports

that state that TH and AADC could not be detected in this cell line [160,201]. Xie et al. summarized in

his review that “the SH-SY5Y cell line is not an ideal PD cell model” [201]. Balasooriya and Wimalsena

characterised these cells physiologically and came to the conclusion that they are rather noradrenergic

than DAergic [202].

LUHMES (LUnd Human MESencephalic) cells may be the most promising cell model currently avail-

able. They originate from 8-week-old fetal human ventral mesencephalic tissue, conditionally immor-

talized by introduction of v-myc [203,204]. These cells are human derived, of non cancerogenous origin

and can be differentiated into postmitotic neurons, showing DAergic features, based on morphology, the

expression of neuronal and DA specific marker genes, as well as neuron type like electrophysiological

properties [204].

In moving towards personalized medicine, the future seems to lie in the use of induced pluripotent

stem cells (iPS cells) [195]. In terms of a human-based model, the use of iPS cells differentiated into

DAergic neurons is at the moment probably the most promising tool and is constantly under development

[205-208]. Regarding embryonic stem cells (ESC), Cho and colleagues developed an efficient method

to generate DAergic neurons from human ESC [209,210]. Their protocol yields in over 80 positive

functional TH positive neurons. Transplantation of these cells into a parkinsonian rat model could

demonstrate behavioral recovery [210]. However, ESC harbour the problem of availability and ethical

problems, which in turn favours the use of iPS cells.

Compared to animal models, never changing arguments put the in vitro models into critizism. Cell

models are monocultures: isolated, two-dimensional tissues, lacking a three-dimensional cell to cell

communication as well as impulses from different cell types such as astrocytes or microglia. This makes

other signals e.g. neurotransmitters like serotonin or GABA or signaling molecules like NO, missing in

these cell models. Towards this end, attempts to mimic three dimensional like tissue structures [211] as

well as co-cultures [212] are underway to encounter the proposed drawbacks and to develop models that

are closer to in vivo reality.

From the lab to clinical application

There is still no cure for PD and diagnosis is also not always easy. Different imaging methods are

available and can be used for the classification of different idiopathic PD forms [213,214].

Treatments are available to alleviate the symptoms. As a medication, DOPA in combination with a

peripherally-acting AADC inhibtor (carbidopa) is still the gold standard. Supplying DOPA as a DA

precursor circumvents TH-deficiency but has major drawbacks. High DOPA dosages might become

problematic in the light of highly toxic oxidation products which cause cell damage and inhibiting DAT

and TH [73,155]. Moreover, high DOPA dosages could also be shown to reduce AADC activity over

time and that DOPA “holidays” increased AADC activity [115,215]. Excessively supplied DOPA and its

derivatives also cause problems when they undergo degradation by MAO and COMT. MAO-caused ROS

use up the cell’s glutathione pool and can in turn cause oxidative damage. COMT-catalysed methylation

of catechols potentially exhaust the cell’s methylation capacity [216]. This reaction depends on the uni-

versal methylation cofactor SAM, which is regenerated from homocysteine by cobalamine-dependent



methylation from 5-methyltetrahydrofolate. DOPA administration was shown to lead to increased ho-

mocysteine levels and peripheral neuropathies [217-220], but this might be countered by coapplication

of COMT inhibitors or folate and cobalamine [221]. Excessive DOPA treatment should therefore be

carefully considered. Current techniques in drug delivery are moving towards extended drug release

and non-oral administration which could help to circumvent fluctuating plasma levels as generated by

current formulations [222].

Besides carbidopa and levodopa there are also drugs on the market or applied in clinical studies that

target MAO B and COMT. Other trials target specifically the motor symptoms of PD by modulating

glutamatergic, serotonergic or adrenergic systems. Different serotonin agonists for the treatment of PD

symptoms are currently in clinical and preclinical trial [222]. Deep brain stimulation is currently used

as an additional treatment option and shows amazing effects in diminishing the motor symptoms. The

disadvantage of all therapies is the fact that symptoms are only attenuated for a limited amount of time.

Another promising idea is the use of iPS cells differentiated to DAergic neurons to replace the lost

ones. These cells contain an identical genomic background as the patient but the risk of uncontrolled

proliferation is currently not completely under control. However, attempts are on the way to attenuate

these problems [223,224]. Alternative approaches aim to counter high levels of oxidative stress by

using neuroprotective agents [225] or by using antiinflammatory drugs [191]. In this respect, nicotinic

receptors are also promising targets for therapy. There exist reports showing that smoking leads to

lowered DOPA dosages in PD patients. Furthermore, stimulation with a nicotinic agonist have resulted

in increased amounts of TH protein [226-228].

A more recent wave of clinical phase I and II trials uses adeno-associated virus systems to deliver

the important enzymes of DA metabolism - AADC, TH and GTPCH - into the affected brain region.

However, by delivering AADC to the system [229,230], the treatment is only symptomatic, rather than

targeting the roots of the disease. Engineering TH and GTPCH instead of AADC alone could help to

improve the endogenous DA system. Such an attempt has already been made in vitro [231], in animal

models [232] and is now also part of a phase I study [233]. An alternative gene therapy approach could

be the use of engineered and more active TH versions, providing increased tyrosine hydroxylation rates

and higher stability towards oxidative stress. However, this might be ethically more complicated and

unwanted side effects must be minimized. For further details in state-of-the-art therapeutics and ongoing

developments we recommend the article of Poewe et al. [222].

Conclusions

The metabolism of DA sets DAergic neurons under constant oxidative stress. Therefore, DA homeosta-

sis and ROS detoxification is of special importance. Synthesis and regulation of DA has been heavily

investigated in the 20th century and many of its metabolic products as well as regulation of the synthesis

enzymes, have been unraveled in in vitro and in vivo experiments.

However, a detailed analysis of the DA metabolism and its consequences to the cellular integrity is

important to understand disease mechanisms. It is especially important to distinguish between animal

models and human based data. To investigate DA metabolism and degeneration of DAergic neurons

as observed in PD, a human cell culture model harbouring the full metabolic pathway is indispensable.

Although animal models have the advantage of having the whole organism with all the different tissues

available, there are strong species specific differences in DA metabolism and regulation. For this reason,

we feel that models of non-human and non-neuronal origin are only of limited use for research on human

neurodegenerative diseases.



As presented here for DA metabolism and associated processes, there are intricate regulatory mech-

anisms in place for many biological pathways. To fully understand them, it is important to not only

look at single aspects but to combine the different omics technologies with more classical fields of cell

biology, enzymology and neuroanatomy to obtain a comprehensive systems level view.

In the case of PD, insights into DA metabolism, ROS detoxification as well as the consequences of

DA-derived ROS-overload will help to understand the underlying problems of the disease and thus to

develop new approaches to tackle this human burden.

Abbreviations

AADC: Aromatic Amino Acid Decarboxylase (DOPA decarboxylase); ADH: Alcohol Dehydrogenase;

ALDH: Aldehyde Dehydrogenase; AMPH: Amphetamine; AR: Aldehyde Reductase; ATP Adenosine

Triphosphate; BH4: 6R-L-erythro-5,6,7,8-tetrahydrobiopterin; CA: Catecholamine; CNS: Central Ner-

vous System; COMT: Catechol-O Methyl Transferase; COX: Cyclooxygenase; DA: Dopamine; DAT:

Dopamine Transporter; DOPAL: 3,4-dihydroxyphenylacetaldehyde; DOPAC: 3,4-dihydroxyphenylacetic

acid; DOPET: 3,4-dihydroxyphenylethanol; E: Epinephrine; ER: Endoplasmic Reticulum; GPX: Glu-

tathione Peroxidases; GTP: Guanosine Triphosphate; GTPCH: GTP Cyclohydrolase; HVA: Homovanilic

Acid; iPS: induced Pluripotent Stem cell; DOPA: L-3,4-dihydroxyphenylalanine; LPS: Lipopolysac-

charide; MAO: Monoamine Oxidase; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NE: Nore-

pinephrine; NM: Neuromelanin; PAPS: 3’-phosphoadenosine-5’-phosphosulfate; PD: Parkinson’s Dis-

ease; PGH: Prostaglandin H; PKM2: Pyruvate Kinase; ROS: Reactive Oxygen Species; SAM: S-

adenosylmethionine; SOD: Superoxide Dismutase; TH: Tyrosine Hydroxylase; VMAT: Vesicular

Monoamine Transporter.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JM and DW drafted and wrote the manuscript. KH contributed to the critical revision of the manuscript.

DW prepared Figures 1, 2 and 5; JM and DW prepared Figures 3 and 4. All authors read and approved

the final manuscript.

Acknowledgements

The Authors want to thank the Metabolomics group of the LCSB for careful reading and feedback. Re-

lated research of the authors was supported by the Fonds National de la Recherche (FNR) Luxembourg

(ATTRACT A10/03 and AFR-Postdoc-3973022).

References

1. Fitzgerald JC, Plun-Favreau H: Emerging pathways in genetic Parkinson’s disease: autosomal-
recessive genes in Parkinson’s disease–a common pathway? FEBS J 2008, 275(23):5758–

5766.

2. Kim SW, Ko HS, Dawson VL, Dawson TM: Recent advances in our understanding of Parkin-
son’s disease. Drug Discov Today: Dis Mech 2005, 2(4):427–433.



3. Purdon AD, Rosenberger TA, Shetty HU, Rapoport SI: Energy consumption by phospholipid
metabolism in mammalian brain. Neurochem Res 2002, 27(12):1641–1647.

4. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD: Basal
lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989,

52(2):381–389.

5. Crown SB, Antoniewicz MR: Parallel labeling experiments and metabolic flux analysis: Past,
present and future methodologies. Metab Eng 2012, 16C:21–32.

6. Antoniewicz MR, Kelleher JK, Stephanopoulos G: Elementary metabolite units (EMU): a novel
framework for modeling isotopic distributions. Metab Eng 2007, 9:68–86.

7. Hiller K, Metallo C, Stephanopoulos G: Elucidation of cellular metabolism via metabolomics
and stable-isotope assisted metabolomics. Curr Pharm Biotechnol 2011, 12(7):1075–1086.

8. Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K, Schomburg D: MetaboliteDetector: com-
prehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis.
Anal Chem 2009, 81(9):3429–3439.

9. Hiller K, Metallo CM: Profiling metabolic networks to study cancer metabolism. Curr Opin

Biotechnol 2013, 24:60–68.

10. Christofk HR, Heiden MGV, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD,

Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer
metabolism and tumour growth. Nature 2008, 452(7184):230–233.

11. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor
growth and spreading. Semin Cancer Biol 2005, 15(4):300–308.

12. Mannich C, Jacobsohn W: Über Oxyphenyl-alkylamine und Dioxyphenyl-alkylamine. Berichte

der deutschen chemischen Gesellschaft 1910, 43:189–197.

13. Barger G, Ewins AJ: Some phenolic derivatives of β-phenylethylamine. J Chem So 1910,

97:2253–2261.

14. Schmalfuss H, Heider A: Tyramin und Oxytyramin, blutdrucksteigernde Schwarzvorstufen
des Besenginsters Sarothamnus scoparius WIMM. Biochem Zeitschr 1931, 236:226–230.

15. Blaschko H: The activity of l(-)-dopa decarboxylase. J Physiol 1942, 101(3):337–349.

16. Schümann H: Nachweis von Oxytyramin (Dopamin) in sympathischen Nerven und Ganglien.
Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 1956, 227(6):566–573.

17. Schümann HJ, Heller I: [On the hydroxytyramine content of organs]. Naunyn Schmiedebergs

Arch Exp Pathol Pharmakol 1959, 236:474–482.

18. Cottrell GA: Occurrence of dopamine and noradrenaline in the nervous tissue of some inver-
tebrate species. Br J Pharmacol Chemother 1967, 29:63–69.

19. Hornykiewicz O: Dopamine miracle: from brain homogenate to dopamine replacement. Mov

Disord 2002, 17(3):501–508.

20. Carlsson A: Nobel Lectures. In A Half-Century of Neurotransmitter Research: Impact on Neurol-

ogy and Psychiatry. Edited by Jörnvall H. Singapore: World Scientific Publishing Co.; 2003:303.



21. Kebabian JW, Petzold GL, Greengard P: Dopamine-sensitive adenylate cyclase in caudate nu-
cleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA 1972,

69(8):2145–2149.

22. Foundation TN: The nobel prize in physiology or medicine 2000 — Award ceremony speech
2000. [http://www.nobelprize.org/nobel_prizes/medicine/laureates/2000/presentation-speech.

html]

23. Ehringer H, Hornykiewicz O: Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin)
im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Sys-
tems. Klin Wochenschr 1960, 38(24):1236–1239.

24. Birkmayer W, Hornykiewicz O: Der L-3,4-Dioxyphenylalanin (= DOPA)-Effekt bei der
Parkinson-Akinese. Wien Klin Wochenschr 1961, 73(45):787–788.

25. Heinz A, Schlagenhauf F: Dopaminergic dysfunction in schizophrenia: salience attribution
revisited. Schizophr Bull 2010, 36(3):472–485.

26. Breier AF, Malhotra AK, Su TP, Pinals DA, Elman I, Adler CM, Lafargue RT, Clifton A, Pickar

D: Clozapine and risperidone in chronic schizophrenia: effects on symptoms, parkinsonian
side effects, and neuroendocrine response. Am J Psychiatry 1999, 156(2):294–298.

27. Tripp G, Wickens J: Reinforcement, dopamine and rodent models in drug development for
ADHD. Neurotherapeutics 2012, 9(3):622–634.

28. Segawa M: Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev 2011,

33(3):195–201.

29. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E:

Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol

Metab 1997, 82(11):3864–3871.

30. Blascko H: The specific action of L-dopa decarboxylase. J Physiol (Lond ) 1939, 96(50):50–51.

31. Hiroi T, Imaoka S, Funae Y: Dopamine formation from tyramine by CYP2D6. Biochem Biophys

Res Commun 1998, 249(3):838–843.

32. Bromek E, Haduch A, Gołembiowska K, Daniel WA: Cytochrome P450 mediates dopamine
formation in the brain in vivo. J Neurochem 2011, 118(5):806–815.

33. Sánchez-Ferrer A, Rodríguez-López JN, García-Cánovas F, García-Carmona F: Tyrosinase: a
comprehensive review of its mechanism. Biochim Biophys Acta 1995, 1247:1–11.

34. Rios M, Habecker B, Sasaoka T, Eisenhofer G, Tian H, Landis S, Chikaraishi D, Roffler-Tarlov S:

Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J

Neurosci 1999, 19(9):3519–3526.

35. Chaudhry FA, Edwards RH, Fonnum F: Vesicular neurotransmitter transporters as targets for
endogenous and exogenous toxic substances. Annu Rev Pharmacol Toxicol 2008, 48:277–301.

36. Miesenböck G, De Angelis DA, Rothman JE: Visualizing secretion and synaptic transmission
with pH-sensitive green fluorescent proteins. Nature 1998, 394(6689):192–195.

37. Vergo S, Johansen JL, Leist M, Lotharius J: Vesicular monoamine transporter 2 regulates the
sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res

2007, 1185:18–32.



38. Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, Egaña L, Torres GE: A bio-
chemical and functional protein complex involving dopamine synthesis and transport into
synaptic vesicles. J Biol Chem 2010, 285(3):1957–1966.

39. Sulzer D, Rayport S: Amphetamine and other psychostimulants reduce pH gradients in mid-
brain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 1990,

5(6):797–808.

40. Fitzpatrick PF: Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem

1999, 68:355–381.

41. Fitzpatrick PF: Mechanism of aromatic amino acid hydroxylation. Biochemistry (Mosc) 2003,

42(48):14083–14091.

42. Nagatsu T, Levitt M, Udenfriend S: Tyrosine Hydroxylase. The Initial Step In Norepinephrine
Biosynthesis. J Biol Chem 1964, 239:2910–2917.

43. Daubner SC, Le T, Wang S: Tyrosine Hydroxylase and Regulation of Dopamine Synthesis.
Arch Biochem Biophys 2011, 508:1–12.

44. Dunkley PR, Bobrovskaya L, Graham ME, Nagy-felsobuki EIV, Dickson PW: Tyrosine hydrox-
ylase phosphorylation : regulation and consequences. J Neurochem 2004, 91(5):1025–1043.

45. Kobayashi K, Kaneda N: Structure of the human tyrosine hydroxylase gene: alternative splic-
ing from a single gene accounts for generation of four mRNA types. J Biochem (Tokyo) 1988,

103(6):907–912.

46. Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J: A single human gene encod-
ing multiple tyrosine hydroxylases with different predicted functional characteristics. Nature

1987, 326(6114):707–711.

47. Alterio J, Ravassard P, Haavik J, Caer JpL, Biguet NF, Waksman G, Mallet J: Human Tyrosine
Hydroxylase Isoforms. J Biol Chem 1998, 273(17):10196–10201.

48. Lewis D, Melchitzky D, Haycock J: Four isoforms of tyrosine hydroxylase are expressed in
human brain. Neuroscience 1993, 54(2):477–492.

49. Haycock JW, Ahn NG, Cobb MH, Krebs EG: ERK1 and ERK2, two microtubule-associated
protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ.
Proc Natl Acad Sci USA 1992, 89(6):2365–2369.

50. Haycock J: Species differences in the expression of multiple tyrosine hydroxylase protein
isoforms. J Neurochem 2002, 81(5):947–953.

51. Goodwill KE, Sabatier C, Stevens RC: Crystal structure of tyrosine hydroxylase with bound
cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-
binding site. Biochemistry (Mosc) 1998, 37(39):13437–13445.

52. Vrana KE, Walker SJ, Rucker P, Liu X: A carboxyl terminal leucine zipper is required for
tyrosine hydroxylase tetramer formation. J Neurochem 1994, 63(6):2014–2020.

53. Kumer SC, Vrana KE: Intricate regulation of tyrosine hydroxylase activity and gene expres-
sion. J Neurochem 1996, 67(2):443–462.

54. Nankova B: Induction of tyrosine hydroxylase gene expression by a nonneuronal
nonpituitary-mediated mechanism in immobilization stress. Proc Natl Acad Sci USA 1994,

91(13):5937–5941.
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