
668 Dembo, Siu and Kailath

Complexity of Finite Precision

Neural Network Classifier

Amir Dembo1

Inform. Systems Lab.

Stanford University

Stanford, Calif. 94305

Kai-Yeung Siu

Inform. Systems Lab.

Stanford University

Stanford, Calif. 94305

ABSTRACT

Thomas Kailath

Inform. Systems Lab.

Stanford University

Stanford, Calif. 94305

A rigorous analysis on the finite precision computational <)Spects of

neural network as a pattern classifier via a probabilistic approach

is presented. Even though there exist negative results on the capa­

bility of perceptron, we show the following positive results: Given

n pattern vectors each represented by en bits where e > 1, that are

uniformly distributed, with high probability the perceptron can

perform all possible binary classifications of the patterns. More­

over, the resulting neural network requires a vanishingly small pro­

portion O(log n/n) of the memory that would be required for com­

plete storage of the patterns. Further, the perceptron algorithm

takes O(n2) arithmetic operations with high probability, whereas

other methods such as linear programming takes O(n3 .5) in the

worst case. We also indicate some mathematical connections with

VLSI circuit testing and the theory of random matrices.

1 Introduction

It is well known that the percept ron algorithm can be used to find the appropriate

parameters in a linear threshold device for pattern classification, provided the pat­

tern vectors are linearly separable. Since the number of parameters in a perceptron

is significantly fewer than that needed to store the whole data set, it is tempting to

1 The coauthor is now with the Mathematics and Statistics Department of Stanford University.

Complexity of Finite Precision Neural Network Classifier 669

conclude that when the patterns are linearly separable, the perceptron can achieve

a reduction in storage complexity. However, Minsky and Papert [1] have shown

an example in which both the learning time and the parameters increase exponen­

tially, when the perceptron would need much more storage than does the whole list

of patterns.

Ways around such examples can be explored by noting that analysis that assumes

real arithmetic and disregards finite precision aspects might yield misleading results.

For example, we present below a simple network with one real valued weight that

can simulate all possible classifications of n real valued patterns into k classes,

when unlimited accuracy and continuous distribution of the patterns are assumed.

For simplicity, let us assume the patterns are real numbers in [0,1]. Consider the

following sequence {xi,i} generated by each pattern Xi for i = 1, ... , n:

Xi,l = k· Xi modk

Xi,i = k . xi,i-l mod k lor j > 1

U(Xi,j) = [xi,i)

where [] denotes the integer part.

Let I: {Xl, ... , Xn} --+ {O, ... , k-l} denote the desired classification of the patterns.

It is easy to see that for any continuous distribution on [0,1], there exists a j such

that U(Xi,j) = I(xi), with probability one. So, the network y = u(x,w) may

simulate any classification with w = j determined from the desired classification as

shown above.

So in this paper, we emphasize the finite precision computational aspects of pattern

classification problems and provide partial answers to the following questions:

• Can the perceptron be used as an efficient form of memory'?

• Does the 'learning' time of perceptron become too long to be practical most of

the time even when the patterns are assumed to be linearly separable '?

• How do the convergence results compare to those obtained by solving system

of linear inequalities'?

We attempt to answer the above questions by using a probabilistic approach. The

theorems will be presented without proofs; details of the proof will appear in a

complete paper. In the following analysis, the phrase 'with high probability' means

the probability of the underlying event goes to 1 as the number of patterns goes to

670 Dembo, Siu and Kailath

infinity. First, we shall introduce the classical model of a perceptron in more details

and give some known results on its limitation as a pattern classifier.

2 The Perceptron

A perceptron is a linear threshold device which computes a linear combination of

the coordinates of the pattern vector, compares the value with a threshold and

outputs +1 or -1 if the value is larger or smaller than the threshold respectively.

More formally, we have

Output:

Input:

Parameters:

d

sign{ < w, i > -8} = sign{L Xi . Wi - 8}
i=l

weights

threshold 8 E R

sign{y} = { ~~ if y ~ 0
otherwise

Given m patterns xi, ... ,x~ in Rd, there are 2m possible ways of classifying each

of the patterns to ± 1. When a desired classification of the patterns is achieveable

by a perceptron, the patterns are said to be linearly separable. Rosenblatt(1962)

[2] showed that if the patterns are linearly separable, then there is a 'learning'

algorithm which he called perceptron learning algorithm to find the appropriate pa­

rameters wand 8. Let CTi = ±1 be the desired classification of the pattern xi. Also,

let Yi = CTi • xi. The perceptron learning algorithm runs as follows:

1. Set k = 1, choose an initial value of w(k) ¥ O.

2. Select an i E {I, ... , n}, set Y(k) = yi.
3. If w(k) . y(k) ~ 0, goto 2. Else

4. Set w(k + 1) = w(k) + Y(k), k = k + 1, go to 2.

Complexity of Finite Precision Neural Network Classifier 671

The algorithm terminates when step 3 is true for all Yi. If the patterns are lin­

early separable, then the above perceptron algorithm is guaranteed to converge in

finitely many iterations, i.e. Step 4 would be reached only finitely often.

The existence of such simple and elegant 'learning' algorithm had brought a great

deal of interests during the 60's. However, the capability of the perceptron is very

limited since only a small portion of the 2m possible binary classifications can be

achieved. In fact, Cover(1965) [3] has shown that a perceptron can at most classify

the patterns into

2
dI:-1

() m - 1 = O(md- 1)
I

i=O

different ways out of the 2m possibilities.

The above upper bound O(md- 1) is achieved when the pattern vectors are in general

position i.e. every subset of d vectors in {xi, ... , x~} are linearly independent. An

immediate generalization of this result is the following:

Theorem 1 For any function f(w, i) which lies in a function space of dimension

r, i. e. if we can write

f(w,i) = al (w)!t (i) + ... + ar(w)fr(i)

then the number of possible classifications of m patterns by sign{f(w, in is bounded
by O(mr-l)

3 A New Look at the Perceptron

The reason why perceptron is so limited in its capability as a pattern classifier is

that the dimension of the pattern vector space is kept fixed while the number of

patterns is increased. We consider the binary expansion of each coordinate and view

the real pattern vector as a binary vector, but in a much higher dimensional space.

The intuition behind this is that we are now making use of every bit of information

in the pattern. Let us assume that each pattern vector has dimension d and that

each coordinate is given with m bits of accuracy, which grows with the number of

patterns n in such a way that d· m = c· n for some c > 1. By considering the binary

expansion, we can treat the patterns as binary vectors, i.e. each vector belongs to

{+l,-lyn. If we want to classify the patterns into k classes, we can use logk

number of binary classifiers, each classifying the patterns into the corresponding bit

of the binary encoding of the k classes. So without loss of generality, we assume

that the number of classes equals 2. Now the classification problem can be viewed

as an implementation of a partial Boolean function whose value is only specified on

672 Dem bo, Siu and Kailath

n inputs out of the 2cn possible ones. For arbitrary input patterns, there does not

seem to exist an efficient way other than complete storage of the patterns and the

use of a look-up table for classification, which will require O(n2) bits. It is natural

to ask if this is the best we can do. Surprisingly, using probabilistic method in

combinatorics [4] (counting arguments), we can show the following:

Theorem 2 For n sufficiently large, there exists a system that can simulate all

possible binary classifications with parameter storage of n + 2 log n bits.

Moreover, a recent result from the theory of VLSI testing [5], implies that at least

n + log n bits are needed . As the proof of theorem 1 is non-constructive, both

the learning of the parameters and the retrieval of the desired classification in the

'optimal' system may be too complex for any practical purpose. Besides, since

there is almost no redundancy in the storage of parameters in such an 'optimal'

system, there will be no 'generalization' properties. i.e. It is difficult to predict

what the output of the system would be on patterns that are not trained. However,

a perceptron classifier, while sub-optimal in terms of Theorem 3 below, requires

only O(n log n) bits for parameter storage, compared with O(n2) bits for a table

look up classifier. In addition, it will exhibit 'generalization' properties in the sense

that new patterns that are close in Hamming distance to those trained patterns are

likely to be classified into the same class. So, if we allow some vanishingly small

probability of error, we can give an affirmative answer to the first question raised

at the beginning:

Theorem 3 Assume the n pattern vectors are uniformly distributed over {+1, _1}cn,

then with high probability, the patterns can be classified into a1l2n possible ways us­

ing perceptron algorithm. Further, the storage of parameters requires only O(n log n)

bits.

In other words, when the input patterns are given with high precision, perceptron

can be used as an efficient form of memory.

The known upper bound on the learning time of percept ron depends on the max­

imum length of the input pattern vectors, and the minimum distance fJ of the

pattern vectors to a separating hyperplane . In the following analysis, our proba­

bilistic assumption guarantees the pattern vectors to be linearly independent with

high probability and thus linearly separable. In order to give an probabilistic upper

bound on the learning time of the perceptron, we first give a lower bound on the

minimum distance fJ with high probability:

Lemma 1 Let n be the number of pattern vectors each in Rm, where m = (1 + f)n

and f is any constant> O. Assume the entries of each vector v are iid random

variables with zero mean and bounded second moment. Then with probability --+ 1

Complexity or Finite Precision Neural Network Classifier 673

as n --+ 00 , there exists a separating hyperplane and a 15* > 0 such that each vector

is at a distance of at least 15* from it.

In our case, each coordinate of the patterns is assumed to be equally likely ±1

and clearly the conditions in the above lemma are satisfied. In general, when the

dimension of the pattern vectors is larger than and increases linearly with the num­

ber of patterns, the above theorem applies provided the patterns are given with

high enough precision that a continuous distribution is a sufficiently good model for

analysis.

The above lemma makes use of a famous conjecture from the theory of random

matrices [6] which gives a lower bound on the minimum singular value of a random

matrix. We actually proved the conjecture during our course of study, which states

which states that the minimum singular value of a en by n random matrix with

c> 1, grows as Fn almost surely.

Theorem 4 Let An be a en X n random matrix with c > 1, whose entries are i. i. d.

entries with zero mean and bounded second moment, 0'"(-) denote the minimum sin­

gular value of a matrix. Then there exists f3 > 0 such that

lim inf u(A~) > f3
n-oo yn

with probability 1.

Note that our probabilistic assumption on the patterns includes a wide class of dis­

tributions, in particular the zero mean normal and symmetric uniform distribution

on a bounded interval. In addition, they satisfy the following condition:

(*) There exists a a> 0 such that P{[v[> aFn} --+ 0 as n --+ 00.

Before we answer the last two questions raised at the beginning, we state the fol­

lowing known result on the perceptron algorithm as a second lemma:

Lemma 2 Suppose there exists a unit vector w* such that w* . v > 15 for some

15 > 0 and for all pattern vectors v. Then the perceptron algorithm will converge to

a solution vector in ::::; N2 /152 number of iterations, where N is the maximum length

of the pattern vectors.

N ow we are ready to state the following

Theorem 5 Suppose the patterns satisfy the probabilistic assumptions stated in

674 Dembo, Siu and Kailath

Lemma 1 and the condition (*), then with high probability, the perceptron takes

O(n 2) arithmetic operations to terminate.

As mentioned earlier, another way of finding a separating hyperplane is to solve

a system of linear inequalities using linear programming, which requires O(n3 .S)

arithmetic operations [7] . Under our probabilistic assumptions, the patterns are

linearly independent with high probability, so that we can actually solve a system

of linear equations. However, this still requires O(n3) arithmetic operations. Fur­

ther, these methods require batch processing in the sense that all patterns have to

be stored in advance in order to find the desired parameters, in constrast to the

sequential 'learning' nature of the perceptron algorithm. So for training this neural

network classifier, perceptron algorithm seems more preferable.

When the number of patterns is polynomial in the total number of bits representing

each pattern, we may first extend each vector to a dimension at least as large as

the number of patterns, and then apply the perceptron to compress the storage of

parameters. One way of adding these extra bits is to form products of the coordi­

nates within each pattern. Note that by doing so, the coordinates of each pattern

are pairwise independent. We conjecture that theorem 3 still applies, implying even

more reduction in storage requirements. Simulation results strongly support our

conjecture.

4 Conclusion

In this paper, the finite precision computational aspects of pattern classification

problems are emphasized. We show that the perceptron, in contrast to common be­

lief, can be quite efficient as a pattern classifier, provided the patterns are given with

high enough precision. Using a probabilistic approach, we show that the percep­

tron algorithm can even outperform linear programming under certain conditions.

During the course of this work, we also discovered some mathematical connections

with VLSI circuit testing and the theory of random matrices. In particular, we

have proved an open conjecture regarding the minimum singular value of a random

matrix.

Acknowledgements

This work was supported in part by the Joint Services Program at Stanford Uni­

versity (US Army, US Navy, US Air Force) under Contract DAAL03-88-C-OOll,

and NASA Headquarters, Center for Aeronautics and Space Information Sciences

(CASIS) under Grant NAGW-419-S5.

Complexity or Finite Precision Neural Network Classifier 675

References

[1] M. Minsky and S. Papert, Perceptrons, The MIT Press, expanded edition, 1988.

[2] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1962.

[3] T. M. Cover, "Geometrical and Statistical Properties of Systems of Linear In-

equalities with Applications in Pattern Recognition", IEEE Trans. on Electronic

Computers, EC-14:326-34, 1965.

[4] P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics, Academic

Press/ Akademiai Kiado, New York-Budapest, 1974.

[5] G. Seroussi and N. Bshouty, "Vector Sets for Exhaustive Testing of Logic Cir­

cuits", IEEE Trans. Inform. Theory, IT-34:513-522, 1988.

[6] J. Cohen, H. Kesten and C. Newman, editor, Random Matrices and Their Ap­

plications, volume 50 of Contemporary Mathematics, American Mathematical

Society, 1986.

[7] N. Karmarkar, "A New Polynomial-Time Algorithm for Linear Programming",

Combinatorica 1, pages 373-395, 1984.

