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A rigorous analysis on the finite precision computational <)Spects of 

neural network as a pattern classifier via a probabilistic approach 

is presented. Even though there exist negative results on the capa­

bility of perceptron, we show the following positive results: Given 

n pattern vectors each represented by en bits where e > 1, that are 

uniformly distributed, with high probability the perceptron can 

perform all possible binary classifications of the patterns. More­

over, the resulting neural network requires a vanishingly small pro­

portion O(log n/n) of the memory that would be required for com­

plete storage of the patterns. Further, the perceptron algorithm 

takes O(n2) arithmetic operations with high probability, whereas 

other methods such as linear programming takes O(n3 .5 ) in the 

worst case. We also indicate some mathematical connections with 

VLSI circuit testing and the theory of random matrices. 

1 Introduction 

It is well known that the percept ron algorithm can be used to find the appropriate 

parameters in a linear threshold device for pattern classification, provided the pat­

tern vectors are linearly separable. Since the number of parameters in a perceptron 

is significantly fewer than that needed to store the whole data set, it is tempting to 

1 The coauthor is now with the Mathematics and Statistics Department of Stanford University. 
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conclude that when the patterns are linearly separable, the perceptron can achieve 

a reduction in storage complexity. However, Minsky and Papert [1] have shown 

an example in which both the learning time and the parameters increase exponen­

tially, when the perceptron would need much more storage than does the whole list 

of patterns. 

Ways around such examples can be explored by noting that analysis that assumes 

real arithmetic and disregards finite precision aspects might yield misleading results. 

For example, we present below a simple network with one real valued weight that 

can simulate all possible classifications of n real valued patterns into k classes, 

when unlimited accuracy and continuous distribution of the patterns are assumed. 

For simplicity, let us assume the patterns are real numbers in [0,1]. Consider the 

following sequence {xi,i} generated by each pattern Xi for i = 1, ... , n: 

Xi,l = k· Xi modk 

Xi,i = k . xi,i-l mod k lor j > 1 

U(Xi,j) = [xi,i) 

where [] denotes the integer part. 

Let I: {Xl, ... , Xn} --+ {O, ... , k-l} denote the desired classification of the patterns. 

It is easy to see that for any continuous distribution on [0,1], there exists a j such 

that U(Xi,j) = I(xi), with probability one. So, the network y = u(x,w) may 

simulate any classification with w = j determined from the desired classification as 

shown above. 

So in this paper, we emphasize the finite precision computational aspects of pattern 

classification problems and provide partial answers to the following questions: 

• Can the perceptron be used as an efficient form of memory'? 

• Does the 'learning' time of perceptron become too long to be practical most of 

the time even when the patterns are assumed to be linearly separable '? 

• How do the convergence results compare to those obtained by solving system 

of linear inequalities'? 

We attempt to answer the above questions by using a probabilistic approach. The 

theorems will be presented without proofs; details of the proof will appear in a 

complete paper. In the following analysis, the phrase 'with high probability' means 

the probability of the underlying event goes to 1 as the number of patterns goes to 
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infinity. First, we shall introduce the classical model of a perceptron in more details 

and give some known results on its limitation as a pattern classifier. 

2 The Perceptron 

A perceptron is a linear threshold device which computes a linear combination of 

the coordinates of the pattern vector, compares the value with a threshold and 

outputs +1 or -1 if the value is larger or smaller than the threshold respectively. 

More formally, we have 

Output: 

Input: 

Parameters: 

d 

sign{ < w, i > -8} = sign{L Xi . Wi - 8} 
i=l 

weights 

threshold 8 E R 

sign{y} = { ~~ if y ~ 0 
otherwise 

Given m patterns xi, ... ,x~ in Rd, there are 2m possible ways of classifying each 

of the patterns to ± 1. When a desired classification of the patterns is achieveable 

by a perceptron, the patterns are said to be linearly separable. Rosenblatt(1962) 

[2] showed that if the patterns are linearly separable, then there is a 'learning' 

algorithm which he called perceptron learning algorithm to find the appropriate pa­

rameters wand 8. Let CTi = ±1 be the desired classification of the pattern xi. Also, 

let Yi = CTi • xi. The perceptron learning algorithm runs as follows: 

1. Set k = 1, choose an initial value of w( k) ¥ O. 

2. Select an i E {I, ... , n}, set Y(k) = yi. 
3. If w( k) . y( k) ~ 0, goto 2. Else 

4. Set w(k + 1) = w(k) + Y(k), k = k + 1, go to 2. 
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The algorithm terminates when step 3 is true for all Yi. If the patterns are lin­

early separable, then the above perceptron algorithm is guaranteed to converge in 

finitely many iterations, i.e. Step 4 would be reached only finitely often. 

The existence of such simple and elegant 'learning' algorithm had brought a great 

deal of interests during the 60's. However, the capability of the perceptron is very 

limited since only a small portion of the 2m possible binary classifications can be 

achieved. In fact, Cover(1965) [3] has shown that a perceptron can at most classify 

the patterns into 

2
dI:-1 

( ) m - 1 = O(md- 1 ) 
I 

i=O 

different ways out of the 2m possibilities. 

The above upper bound O( md- 1 ) is achieved when the pattern vectors are in general 

position i.e. every subset of d vectors in {xi, ... , x~} are linearly independent. An 

immediate generalization of this result is the following: 

Theorem 1 For any function f( w, i) which lies in a function space of dimension 

r, i. e. if we can write 

f(w,i) = al (w)!t (i) + ... + ar(w)fr(i) 

then the number of possible classifications of m patterns by sign{f(w, in is bounded 
by O(mr-l) 

3 A New Look at the Perceptron 

The reason why perceptron is so limited in its capability as a pattern classifier is 

that the dimension of the pattern vector space is kept fixed while the number of 

patterns is increased. We consider the binary expansion of each coordinate and view 

the real pattern vector as a binary vector, but in a much higher dimensional space. 

The intuition behind this is that we are now making use of every bit of information 

in the pattern. Let us assume that each pattern vector has dimension d and that 

each coordinate is given with m bits of accuracy, which grows with the number of 

patterns n in such a way that d· m = c· n for some c > 1. By considering the binary 

expansion, we can treat the patterns as binary vectors, i.e. each vector belongs to 

{+l,-lyn. If we want to classify the patterns into k classes, we can use logk 

number of binary classifiers, each classifying the patterns into the corresponding bit 

of the binary encoding of the k classes. So without loss of generality, we assume 

that the number of classes equals 2. Now the classification problem can be viewed 

as an implementation of a partial Boolean function whose value is only specified on 
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n inputs out of the 2cn possible ones. For arbitrary input patterns, there does not 

seem to exist an efficient way other than complete storage of the patterns and the 

use of a look-up table for classification, which will require O(n2) bits. It is natural 

to ask if this is the best we can do. Surprisingly, using probabilistic method in 

combinatorics [4] (counting arguments), we can show the following: 

Theorem 2 For n sufficiently large, there exists a system that can simulate all 

possible binary classifications with parameter storage of n + 2 log n bits. 

Moreover, a recent result from the theory of VLSI testing [5], implies that at least 

n + log n bits are needed . As the proof of theorem 1 is non-constructive, both 

the learning of the parameters and the retrieval of the desired classification in the 

'optimal' system may be too complex for any practical purpose. Besides, since 

there is almost no redundancy in the storage of parameters in such an 'optimal' 

system, there will be no 'generalization' properties. i.e. It is difficult to predict 

what the output of the system would be on patterns that are not trained. However, 

a perceptron classifier, while sub-optimal in terms of Theorem 3 below, requires 

only O(n log n) bits for parameter storage, compared with O(n2 ) bits for a table 

look up classifier. In addition, it will exhibit 'generalization' properties in the sense 

that new patterns that are close in Hamming distance to those trained patterns are 

likely to be classified into the same class. So, if we allow some vanishingly small 

probability of error, we can give an affirmative answer to the first question raised 

at the beginning: 

Theorem 3 Assume the n pattern vectors are uniformly distributed over {+1, _1}cn, 

then with high probability, the patterns can be classified into a1l2n possible ways us­

ing perceptron algorithm. Further, the storage of parameters requires only O( n log n) 

bits. 

In other words, when the input patterns are given with high precision, perceptron 

can be used as an efficient form of memory. 

The known upper bound on the learning time of percept ron depends on the max­

imum length of the input pattern vectors, and the minimum distance fJ of the 

pattern vectors to a separating hyperplane . In the following analysis, our proba­

bilistic assumption guarantees the pattern vectors to be linearly independent with 

high probability and thus linearly separable. In order to give an probabilistic upper 

bound on the learning time of the perceptron, we first give a lower bound on the 

minimum distance fJ with high probability: 

Lemma 1 Let n be the number of pattern vectors each in Rm, where m = (1 + f)n 

and f is any constant> O. Assume the entries of each vector v are iid random 

variables with zero mean and bounded second moment. Then with probability --+ 1 



Complexity or Finite Precision Neural Network Classifier 673 

as n --+ 00 , there exists a separating hyperplane and a 15* > 0 such that each vector 

is at a distance of at least 15* from it. 

In our case, each coordinate of the patterns is assumed to be equally likely ±1 

and clearly the conditions in the above lemma are satisfied. In general, when the 

dimension of the pattern vectors is larger than and increases linearly with the num­

ber of patterns, the above theorem applies provided the patterns are given with 

high enough precision that a continuous distribution is a sufficiently good model for 

analysis. 

The above lemma makes use of a famous conjecture from the theory of random 

matrices [6] which gives a lower bound on the minimum singular value of a random 

matrix. We actually proved the conjecture during our course of study, which states 

which states that the minimum singular value of a en by n random matrix with 

c> 1, grows as Fn almost surely. 

Theorem 4 Let An be a en X n random matrix with c > 1, whose entries are i. i. d. 

entries with zero mean and bounded second moment, 0'"(-) denote the minimum sin­

gular value of a matrix. Then there exists f3 > 0 such that 

lim inf u( A~) > f3 
n-oo yn 

with probability 1. 

Note that our probabilistic assumption on the patterns includes a wide class of dis­

tributions, in particular the zero mean normal and symmetric uniform distribution 

on a bounded interval. In addition, they satisfy the following condition: 

(*) There exists a a> 0 such that P{[v[ > aFn} --+ 0 as n --+ 00. 

Before we answer the last two questions raised at the beginning, we state the fol­

lowing known result on the perceptron algorithm as a second lemma: 

Lemma 2 Suppose there exists a unit vector w* such that w* . v > 15 for some 

15 > 0 and for all pattern vectors v. Then the perceptron algorithm will converge to 

a solution vector in ::::; N2 /152 number of iterations, where N is the maximum length 

of the pattern vectors. 

N ow we are ready to state the following 

Theorem 5 Suppose the patterns satisfy the probabilistic assumptions stated in 
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Lemma 1 and the condition (*), then with high probability, the perceptron takes 

O( n 2 ) arithmetic operations to terminate. 

As mentioned earlier, another way of finding a separating hyperplane is to solve 

a system of linear inequalities using linear programming, which requires O( n3 .S) 

arithmetic operations [7] . Under our probabilistic assumptions, the patterns are 

linearly independent with high probability, so that we can actually solve a system 

of linear equations. However, this still requires O(n3 ) arithmetic operations. Fur­

ther, these methods require batch processing in the sense that all patterns have to 

be stored in advance in order to find the desired parameters, in constrast to the 

sequential 'learning' nature of the perceptron algorithm. So for training this neural 

network classifier, perceptron algorithm seems more preferable. 

When the number of patterns is polynomial in the total number of bits representing 

each pattern, we may first extend each vector to a dimension at least as large as 

the number of patterns, and then apply the perceptron to compress the storage of 

parameters. One way of adding these extra bits is to form products of the coordi­

nates within each pattern. Note that by doing so, the coordinates of each pattern 

are pairwise independent. We conjecture that theorem 3 still applies, implying even 

more reduction in storage requirements. Simulation results strongly support our 

conjecture. 

4 Conclusion 

In this paper, the finite precision computational aspects of pattern classification 

problems are emphasized. We show that the perceptron, in contrast to common be­

lief, can be quite efficient as a pattern classifier, provided the patterns are given with 

high enough precision. Using a probabilistic approach, we show that the percep­

tron algorithm can even outperform linear programming under certain conditions. 

During the course of this work, we also discovered some mathematical connections 

with VLSI circuit testing and the theory of random matrices. In particular, we 

have proved an open conjecture regarding the minimum singular value of a random 

matrix. 
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