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1 Introduction

In recent years, it has become widely appreciated that quantum information theory is a

fruitful lens with which to examine the conundrums of quantum gravity. While most of

the ongoing research has focused on holographic entanglement entropy [3, 4], ‘quantum

complexity’ (e.g., see [5–7]) is another concept from quantum information theory that has

recently found a place in this discussion. These ideas emerged from studies aimed at

understanding the growth of the Einstein-Rosen bridge for AdS black holes in terms of

quantum complexity in the dual boundary CFT [8–11].

Loosely speaking, the complexity C of a particular state |ψ〉 is the minimum number of

quantum gates required to produce this state from a particular reference state |ψ0〉.1 Now

in the context of the AdS/CFT correspondence, two proposals have been made to evaluate

the complexity of a boundary state: the first is that the complexity should be dual to the

volume of the extremal codimension-one bulk hypersurface which meets the asymptotic

boundary on the time slice where the boundary state is defined [10] — see section 5. The

second conjecture states [1, 2]

C =
I

π ~
, (1.1)

where I is the gravitational action evaluated on a particular spacetime region in the bulk,

known as the ‘Wheeler-DeWitt (WDW) patch.’ In particular, the WDW patch is the

region enclosed by past and future light sheets sent into the bulk spacetime from the time

slice on the boundary, e.g., see figure 1.

Both of these holographic conjectures satisfy a number of properties expected of com-

plexity, e.g., they continue to grow (linearly with time) after the boundary theory reaches

thermal equilibrium. However, the second conjecture has certain advantages. In partic-

ular, the complexity=volume duality requires introducing an additional length scale in

relating the bulk geometric quantity to the complexity — see eq. (5.1). However, the

complexity=action duality faced the obstacle that when the conjecture was originally pro-

posed, there was no rigorous method for evaluating the gravitational action on spacetime

regions with null boundaries. However, this problem was recently overcome with a careful

analysis of the boundary terms which must be added to the gravitational action for null

boundary surfaces and for joints where such null boundaries intersect with other boundary

surfaces [16].

The new boundary terms developed in [16] have opened up the possibility of investi-

gating the complexity=action proposal in a variety of new situations and this is the focus

of the present paper. In particular, we use the new boundary terms to answer a question

posed in [1, 2]: what is the ‘complexity of formation’ for a thermal state of temperature T?

That is, the full geometry of an eternal AdS black hole can be interpreted as being dual to

the thermofield double state [17],

|TFD〉 = Z−1/2
∑

α

e−Eα/(2T )|Eα〉L|Eα〉R , (1.2)

1See [5, 11] for further details. A more refined definition is still required for application to continuum

quantum field theories [2], perhaps using the geometric perspective of [12–14] — see also [15].
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where we have two copies of the CFT, which are associated with the left (L) and right

(R) asymptotic boundaries — see the Penrose diagram in figure 1. Of course, integrating

out either the left or right copy in the above state leaves us with the thermal density

matrix for the CFT at temperature T . The Einstein-Rosen bridge emerges in the bulk

geometry through the entanglement between these two sets of degrees of freedom [17, 18].

The question, which we investigate here, is what is the additional complexity involved in

forming this entangled thermofield double state (1.2) compared to preparing each of the

two individual CFTs in their vacuum state, i.e., the complexity of formation.

Hence applying the complexity=action proposal [1, 2], we begin by evaluating the

action of the WDW patch in the AdS black hole spacetime to determine the complexity of

the thermofield double state (1.2). Then for comparison to the CFT vacuum, we evaluate

the action of the WDW patch in (two copies of) the vacuum AdS spacetime. One of our key

results is that when the spacetime dimension d of the boundary theory is three or higher,

the complexity of formation grows linearly with the thermal entropy at high temperatures,

i.e., ∆C = kdS, where the proportionality coefficient depends only on d. For the special

case of d = 2, we find that the complexity of formation is a fixed constant, independent of

the temperature.

At this point, let us again stress that the complexity=action duality, as well as the

complexity=volume duality, are only conjectures. Hence our results can be understood as

examining the consistency of these conjectures. However, regardless of the ultimate validity

of these two conjectures, they do call attention to two interesting geometric quantities in the

bulk gravity theory. Our paper can also be regarded as an exploration of these geometric

quantities, which is worthwhile in its own right.

The paper is organized as follows: in section 2, we review the details of our action

computation including the various null surface and joint terms. In section 3, we evaluate the

complexity of formation for black holes in five and four bulk dimensions, where we consider

various possible horizon geometries — spherical, planar and hyperbolic. This section also

presents the result for planar black holes with general d. In section 4, we study the

complexity of formation for the special case of d = 2, where the bulk geometry is described

by a BTZ black hole. Section 5 compares our results for the complexity of formation

using the complexity=action duality to those found with the complexity=volume approach.

Finally, we close with a brief discussion in section 6. A number of technical details are left

to four appendices: appendix A presents some details about the choice of the UV cutoff

surfaces, which are needed to regulate the action. In appendix B, we describe certain

subtle differences in the calculation of the vacuum complexity that arise for the different

spatial geometries. Appendix C describes the calculation of the complexity of formation for

‘small’ hyperbolic black holes, i.e., with a negative mass. Appendix D demonstrates that

our results for the complexity of formations are robust against ambiguities in the definition

of the gravitational action found in [16]. In appendix E, we examine the description of

the analogous CFT states in terms of MERA tensor networks to gain some insight into

our results.
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2 General framework

In this section, we describe the evaluation of the (regulated) gravitational action for the

Wheeler-DeWitt (WDW) patch in various asymptotically locally AdS spacetimes. In par-

ticular, we focus on the AdS black holes in d + 1 dimensions, whose metric takes the

general form:2

ds2 = −f(r) dt2 + dr2

f(r)
+ r2 dΣ2

k,d−1 , (2.1)

with

f(r) =
r2

L2
+ k − ωd−2

rd−2
. (2.2)

Here, L denotes the AdS curvature scale while k = {+1, 0,−1} indicates the curvature of

the (d− 1)-dimensional line element dΣ2
k,d−1, which is given by

dΣ2
k,d−1 =



























dΩ2
d−1 = dθ2 + sin2 θ dΩ2

d−2 for k = +1 ,

dℓ2d−1 =

d−1
∑

i=1

dx2i /L
2 for k = 0 ,

dΞ2
d−1 = dθ2 + sinh2 θ dΩ2

d−2 for k = −1 .

(2.3)

Hence, with k = +1, we have dΩ2
d−1, the standard round metric on a unit (d− 1)-sphere;

while for k = 0, dℓ2d−1 is the flat metric on Rd−1 (normalized by 1/L2); and for k = −1,

dΞ2
d−1 is the metric on a (d − 1)-dimensional hyperbolic ‘plane’ with unit curvature. In

particular then, the black holes corresponding to k = {+1, 0,−1} have spherical, planar,

and hyperbolic horizons, respectively. The position of the horizon rh is determined by the

‘mass’ parameter ω with

ωd−2 = rd−2
h

(

r2h
L2

+ k

)

. (2.4)

Each of these solutions (2.1) of the (d+1)-dimensional Einstein equations can be represented

by the same Penrose diagram shown in figure 1.3 Of course, these geometries are also static

with the Killing vector ∂t.

In the context of the AdS/CFT correspondence, these AdS black holes provide a holo-

graphic description of a uniform thermal bath in the dual CFT in the corresponding d-

dimensional boundary geometry:

ds2boundary = −dt2 + L2 dΣ2
k,d−1 . (2.5)

The temperature of the thermal ensemble is given by

T =
1

4π

∂f

∂r

∣

∣

∣

∣

r=rh

=
1

4πrh

(

d
r2h
L2

+ (d− 2) k

)

, (2.6)

2Here, we will assume that the boundary dimension satisfies d > 2. The special case of the BTZ black

hole [19, 20] with d = 2 will be treated in section 4.
3‘Small’ hyperbolic black holes (with k = −1) require some extra consideration — see comments below,

as well as appendix C.
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Figure 1. Penrose diagram for black holes in more than three bulk dimensions (d > 2). We define

surfaces of constant r to regulate the action both near the asymptotic boundary (r = rmax) and

near the past and future singularities (r = ǫ0). We identify the Wheeler-DeWitt patch as the area

of the bulk bounded by the four null sheets which originate from the boundary at t = 0. The joints

between the null sheets and the regulating surfaces are indicated by red dots.

where we have used eq. (2.4) to substitute for ωd−2 in the above expression. The total

energy is given by [21, 22]

M =
(d− 1)Ωk,d−1

16πGN

ωd−2 , (2.7)

where Ωk,d−1 denotes the dimensionless volume of the relevant spatial geometry in eq. (2.3).

For instance, for k = +1, we have the volume of a (d−1)-dimensional unit sphere: Ω1,d−1 =

2πd/2/Γ (d/2). For the hyperbolic and planar geometries, we must introduce an infrared

regulator to produce a finite volume, e.g., for k = 0, we could simply identify the spatial

coordinates with xi ∼ xi + Ri.
4 The entropy of the system is determined by the usual

Bekenstein-Hawking entropy of the event horizon:

S =
Ahorizon

4GN

=
Ωk,d−1

4GN

rd−1
h . (2.8)

In using the language of a thermal ensemble, we are describing the physics of the CFT

dual to a single asymptotic boundary of the black hole geometry (2.1). As described in

the introduction, the full geometry illustrated in figure 1 can be interpreted as the dual of

the thermofield double state (1.2), which provides a purification of the thermal ensemble

with the second asymptotic boundary being dual to the thermofield double of the original

4This choice then yields the dimensionless volume Ω0,d−1 =
∏d−1

i=1Ri/L
d−1, while the dimensionful

spatial volume of the boundary geometry (2.5) would be simply V 0,d−1 = Ld−1 Ω0,d−1 =
∏d−1

i=1Ri.
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(a) k = +1 (b) k = 0 (c) k = −1

Figure 2. Penrose diagrams of the Wheeler-DeWitt patch in vacuum AdS for the different values

k = {+1, 0,−1}.

CFT [17]. Now the central question, which we wish to address here, is what is the additional

complexity involved in forming this entangled thermofield double state (1.2) compared to

preparing each of the two individual CFTs in their vacuum state. In the nomenclature

of [1, 2], we wish to evaluate the ‘complexity of formation.’

Hence applying the complexity=action proposal [1, 2], we begin by evaluating the

action of the WDW patch with tL = 0 = tR, shown in figure 1, to determine the complexity

of the thermofield double state (1.2). Then for comparison, we evaluate the action of the

WDW patch in the vacuum AdS spacetime, corresponding to the metric (2.1) with ω = 0,

i.e., replacing f(r) with

f0(r) =
r2

L2
+ k . (2.9)

While the evaluation of the action in the black hole backgrounds is essentially the same

for the three different geometries corresponding to k = {+1, 0,−1}, there are small differ-

ences for the vacuum geometries which should be accounted for. We will describe these

subtleties here, i.e., various singularities in the geometry. However, we defer evaluating

their contributions to the gravitational action to appendix B, because our final conclusion

will be that in fact these singularities do not affect the final value of the WDW action in

the vacuum spacetimes. The WDW patches for the AdS vacua are shown in figure 2.

(a) Spherical geometry: with k = +1, the vacuum metric in the bulk is the AdS

geometry in global coordinates. In particular then, these coordinates cover the entire AdS

spacetime. Choosing a constant time slice, the corresponding WDW patch is the causal

diamond shown in figure 2(a). The only point to note here is that the past and future tips of

the causal diamond are caustics, i.e., all of the null rays in the associated null boundaries

cross each other at these points. Singular features like this were not considered in the

recent discussion of boundary terms for the gravitational action [16] and so will require

some special attention.

– 6 –
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(b) Planar geometry: with k = 0, the vacuum bulk metric is the AdS space in Poincaré

coordinates, which only cover a portion of the full AdS geometry. We note that in these

coordinates, the t = 0 time slice covers the entire Cauchy surface at t = 0 in global

coordinates.5 In the present context, however, we are compactifying the spatial coordinates

— as described below eq. (2.7) — and as a result, the Poincaré horizon becomes a null

orbifold or ‘conical’ singularity. That is, the proper volume of the spatial geometry shrinks

to zero along this null line. Further, the null generators of the corresponding WDW patch

all intersect when they hit this null spacetime singularity, as shown in figure 2(b). Hence

both this caustic and the null singularity will require special attention in evaluating the

action of the WDW patch.

(c) Hyperbolic geometry: with k = −1, the vacuum bulk metric is AdS space in the

so-called ‘AdS-Rindler’ coordinates. Again these coordinates only cover a portion of the

full AdS geometry, and in particular, the infinite hyperbolic geometry only covers a portion

of the boundary time slice at t = 0 and r → ∞ — see figure 2 in [23]. Examining f0(r)

in eq. (2.9) with k = −1, we see that there is still a horizon at rh = L even when ω = 0.

Further, eq. (2.6) then yields a finite temperature T = 1/(2πL) in this case. Hence the

vacuum metric still has the form of an AdS black hole and it can be interpreted in terms

of an entangled state of two copies of the CFT on a hyperbolic hyperplane. This curious

interpretation of the ‘AdS vacuum’ can be understood from the discussion of [24]. The

hyperbolic boundary geometry, i.e., eq. (2.5) with k = −1, can be mapped to the spherical

or planar boundary geometry with a conformal transformation. However, this mapping

takes the t = 0 time slice in the k = −1 geometry to the interior of a finite spherical region

in either of the other two geometries. While the CFT vacuum is a pure state on the global

time slice of either of the latter backgrounds, it becomes a mixed state when reduced to

this spherical region. The entangled state of two copies of the CFT on a hyperbolic plane

appearing above can then be understood as a conformally transformed description of the

global vacuum state which entangles the CFT degrees of freedom on the interior with those

on the exterior of the sphere. Since the vacuum already contains two copies of the CFT in

the hyperbolic case, we only need to consider a single copy of the vacuum AdS geometry

when evaluating the complexity of formation.

We should also add that since we are compactifying the spatial geometry, the volume

of the spatial sections shrinks to zero at r = 0 producing an orbifold singularity. However,

for k = −1, this singularity lies behind the horizon and as shown in figure 2(c), the tips

of the WDW patch just touch this singular surface. Again this singularity requires special

attention in evaluating the action of the WDW patch.

At this point, we might also mention that with k = −1, the event horizon persists

when ωd−2 takes on negative values and the black hole mass (2.7) becomes negative [25].

In this case, eq. (2.4) yields two real positive solutions for rh and the causal structure of

the geometry takes a form similar to that of a charged black hole — see figure 14. Hence

the evaluation of the action in this case demands some extra attention, as described in

appendix C.

5We must include an extra point at infinity, i.e., at xi, r → ∞.
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Finally, let us close here by observing that we can follow the procedure outlined below

to evaluate the complexity of formation for any value of rh. However, in the case of

spherical horizons, we should recall the Hawking-Page phase transition [26–28], which

occurs for small black holes.6 That is, when rh < L, the saddle point which dominates the

bulk partition function is still vacuum AdS space. This implies then that the complexity of

formation is only an order one quantity in the large N (or large central charge) expansion

of the boundary CFT — see section 6.

2.1 Evaluating the action

Next, we describe in detail the evaluation of the gravitational action for the Wheeler-

DeWitt patch. Including all of the various boundary terms, the gravitational action can

be written as [16],7

I =
1

16πGN

∫

M
dd+1x

√−g
(

R+
d(d− 1)

L2

)

+
1

8πGN

∫

B
ddx
√

|h|K

− 1

8πGN

∫

B′

dλ dd−1θ
√
γ κ+

1

8πGN

∫

Σ
dd−1x

√
σ η +

1

8πGN

∫

Σ′

dd−1x
√
σ a .

(2.10)

The various terms include: the Einstein-Hilbert and cosmological constant terms (with

Λ = −d(d − 1)/(2L2)) integrated over the d + 1-dimensional volume M; the Gibbons-

Hawking-York extrinsic curvature term [30, 31] integrated over the timelike and spacelike

boundary surfaces, denoted by B; the κ boundary contribution [16] (see also [32]) integrated

over d-dimensional null boundary surfaces, denoted by B′; the Hayward joint terms [33, 34]

which are included at the intersections Σ of two boundaries which are either timelike or

spacelike; and finally the a joint terms [16] which are included at the intersections Σ′ of two

boundary surfaces where either or both are null surfaces. In the following, we consider the

contribution of each of these terms to the action of the WDW patch in the static black hole

background (2.1) at tL = 0 = tR, as well as in the corresponding AdS vacuum geometries.

We will examine the full time evolution of the complexity elsewhere [35].

However, before proceeding with these calculations, we first observe that the action

of the WDW patch is divergent because this spacetime region extends all the way to the

asymptotic boundary of the bulk geometry. This divergence would naturally be associated

with a UV divergence in the complexity related to establishing correlations between the

CFT degrees of freedom at arbitrarily short distance scales, e.g., see [29]. Hence to make

sense of the calculation, we regulate with the standard approach of truncating the region

on which the action is evaluated by a cutoff surface at r = rmax, see, e.g., [22, 36, 37].8 A

6Recall that there is no analogous phase transition for the planar or hyperbolic black holes [28].
7We will be using slightly modified conventions from those given in [16] — see [29].
8The standard approach is to eliminate the corresponding divergences in the regulated action by adding

surface counterterms, e.g., [22, 36, 37]. The ‘renormalized’ action is then evaluated by taking the limit

rmax → ∞ (or δ → 0). We do not apply this approach here in evaluating the action of the WDW patch

for two reasons: first, the same surface counterterms simply do not remove the divergences in the WDW

action [29]. Second, the UV divergences have a physical interpretation in terms of the complexity, as

described above. Note, however, that the UV divergences will cancel below in the difference of the WDW

actions for the black hole and vacuum, and hence the complexity of formation is finite, i.e., independent of

the details of the UV regulator.

– 8 –
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potential subtlety here is that we wish to compare the WDW actions in the two different

spacetimes (i.e., the AdS black hole and vacuum AdS space) and so we need to choose our

cutoff surfaces in a consistent way. As described in appendix A, we do so by describing both

geometries with the corresponding metric in the canonical form given by the Fefferman-

Graham expansion [38, 39] and then we set the radial cutoff surface at z = δ in both cases.

As usual, δ plays the role of a short-distance cutoff in the dual boundary theory. The final

result is given by

rBH
max − rvacmax =

ωd−2

2dL2(d−2)
δd−1 + O

(

δd+1
)

. (2.11)

It turns out that this difference appears at a sufficiently high order that, in fact, the

complexity of formation is not affected — see appendix A. Note that the (timelike) UV

cutoff surfaces at r = rmax are shown in the Penrose diagrams in figures 1 and 2.9

Next we need to define the (null) boundaries of the WDW patch. For this purpose, it

will be useful to define the tortoise coordinate,

r∗ =

∫

dr

f(r)
, (2.12)

with which we construct the Eddington-Finkelstein outgoing and infalling coordinates,

u = t− r∗(r) and v = t+ r∗(r) , (2.13)

respectively. In terms of these coordinates, the metric (2.1) becomes

ds2 = −f(r) du2 − 2 du dr + r2dΣ2
k,d−1 (2.14)

= −f(r) dv2 + 2 dv dr + r2dΣ2
k,d−1 ,

which are well-behaved on the past and future event horizons, respectively. Now let us

focus our attention on the right-hand side of the Penrose diagram in figure 1. We are

interested in the WDW patch corresponding to the time slice t = 0 (i.e., tR = 0) and so

the past null boundary can be defined as

u = u∞ with u∞ = − lim
r→∞

r∗(r) . (2.15)

Similarly, the future null boundary is given by

v = v∞ with v∞ = lim
r→∞

r∗(r) . (2.16)

Note that the two constants are the same up to a sign, i.e., u∞ = −v∞.

Analogous boundaries can be constructed for the left-hand side of the Penrose diagram,

however, the details for these will not be needed. In particular, there is a four-fold symmetry

in the case of interest (i.e., the WDW patch corresponding to tR = 0 = tL) consisting of the

left-right symmetry in the Penrose diagram and the time reflection symmetry, i.e., t→ −t.
Hence for simplicity, our calculations of the action focus only on the upper right quadrant

in figure 1, i.e., the region between t = 0 and v = v∞.

9We have also shown various other regulator surfaces, e.g., near the spacetime singularity in the black

hole geometry. These will appear in the discussion below and in appendix B.

– 9 –
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As a final note here, it will be useful for the following calculations to evaluate the

tortoise coordinate (2.12). In general, the blackening factor can be written in the form:

f(r) = (r − rh)F (r) (2.17)

where F (r) has no positive real roots.10 Hence the inverse of f(r) can be decomposed as:

1

f(r)
=

1

F (rh)(r − rh)
+

F (rh)− F (r)

F (r)F (rh)(r − rh)
. (2.18)

Note that while the first term contains a pole at r = rh, the second term above is regular

at the horizon. Integrating with respect to r, we obtain the tortoise coordinate:

r∗(r) =
log |r − rh|
F (rh)

+G(r) where G(r) =

∫

F (rh)− F (r)

F (r)F (rh)(r − rh)
dr . (2.19)

Again, the function G(r) is completely regular at r = rh. Eq. (2.19) will be useful to

explicitly evaluate the tortoise coordinate (2.12) for the specific examples presented in the

following section.

We now turn to the evaluation of each of the contributions in the gravitational ac-

tion (2.10) for the WDW patch shown in figure 1.

2.1.1 Bulk contribution

We start by evaluating the Einstein-Hilbert and cosmological constant terms in eq. (2.10):

Ibulk =
1

16πGN

∫

M
dd+1x

√−g
(

R+
d(d− 1)

L2

)

. (2.20)

Einstein’s equations yield R = −d(d+ 1)/L2 and so the above can be written as11

Ibulk = − Ωk,d−1 d

2πGNL2

∫ rmax

0
dr rd−1

(

v∞ − r∗(r)
)

, (2.21)

where v∞ is the constant defining the null boundary for this quadrant, as in eq. (2.16).

Further, as described above, we have multiplied by a factor of 4 and we are only performing

the integral over the upper right quadrant of the WDW patch.

We might note that the same expression can be applied for the vacuum AdS spacetime.

The latter only requires that we replace f(r) by f0(r) from eq. (2.9), which is used in the

definition of r∗(r) in eq. (2.12) — as well as v∞ then in eq. (2.16). In this case, the factor

of 4 in eq. (2.21) automatically includes the contribution of two vacuum AdS geometries.

10The only exception is the case of small hyperbolic black holes, where the blackening factor has two

positive real roots. We will deal with this case separately in appendix C.
11We are evaluating eq. (2.20) using the original (t, r) coordinates in eq. (2.1). For the upper right

quadrant described above, we integrate over the time coordinate as:
∫ v∞−r∗(r)

0
dt = v∞ − r∗(r).

– 10 –
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2.1.2 Surface contributions

Next we have the GHY extrinsic curvature term [30, 31], which is integrated over the

timelike or spacelike boundary surfaces,

IGHY =
1

8πGN

∫

B
ddx
√

|h|K . (2.22)

There are two pairs of such surfaces for the WDW patch in figure 1: the timelike surfaces

at r = rmax, which are introduced in both of the asymptotic regions to provide a UV cutoff,

as discussed above eq. (2.11); and the spacelike surfaces at r = ǫ0, which are inserted to

regulate the geometry of the WDW patch where it touches the future and past curvature

singularities behind the horizon, following [2] — see figure 3. As described above, we will

only focus on the contribution of the GHY terms in the upper right quadrant. We can

write the unit normal vectors to these surfaces as

r = rmax : s = sµ dx
µ =

dr
√

f(rmax)
,

r = ǫ0 : t = tµ dx
µ = − dr

√

−f(ǫ0)
.

(2.23)

Note that our convention here is that these normals (as one-forms) point outward from the

spacetime volume of interest. The trace of the extrinsic curvature is then given by

K =
nr
2

(

∂rf(r) +
2(d− 1)

r
f(r)

)

, (2.24)

where nµ denotes the unit normal of interest. Substituting the appropriate normals from

eq. (2.23) into this expression then yields for (2.22):

IGHY(r = ǫ0) = −Ωk,d−1 r
d−1

4πGN

(

∂rf(r) +
2(d− 1)

r
f(r)

)(

v∞ − r∗(r)

)∣

∣

∣

∣

r=ǫ0

, (2.25)

IGHY(r = rmax) =
Ωk,d−1 r

d−1

4πGN

(

∂rf(r) +
2(d− 1)

r
f(r)

)(

v∞ − r∗(r)

)∣

∣

∣

∣

r=rmax

, (2.26)

where we have included an additional factor of 4 to include the contributions from all four

quadrants of the Penrose diagram.

Note that eq. (2.26) for the contribution of the UV cutoff surface can also be used for

the vacuum AdS spaces upon replacing f(r) with f0(r) from eq. (2.9). Recall that there

is a small difference in the value of rmax for the black hole and vacuum AdS geometries, as

shown in eq. (2.11). However, a detailed analysis shows that the difference between these

surface contributions in the two geometries vanishes. That is, when the corresponding

contribution for vacuum AdS is subtracted from eq. (2.26) for the black hole geometry,

the result is proportional to a single power of δ and so vanishes in the limit δ → 0 — see

appendix A.2 for details.

On the other hand, the contribution (2.25) coming from the singularity has no coun-

terpart in the vacuum AdS geometry. Examining this expression in more detail, we find

– 11 –
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Figure 3. The top of the WDW patch for black holes in d > 2. The GHY surface term evaluated

on the regulator surface at r = ǫ0 makes a finite contribution to the action.

that the black hole geometry yields a finite result,

IGHY(r = ǫ0) =
dΩk,d−1 ω

d−2

4πGN

(

v∞ − r∗(0)
)

+O(ǫ0) . (2.27)

Hence this is the only contribution which the GHY surface terms make to the complexity

of formation.12

We also have the surface term introduced in [16] for null boundary surfaces,

Inull surface = − 1

8πGN

∫

B′

dλ dd−1θ
√
γ κ , (2.28)

where the hypersurface is described parametrically by xµ = xµ(λ, θA) with λ, the parameter

along the null generators spanning the boundary surface and θA constant on each generator.

Then κ measures the failure of λ to be an affine parameter on the null generators of the

surface, i.e.,

kµ∇µkν = κ kν with kµ =
∂xµ

∂λ
. (2.29)

Hence this contribution can be easily dismissed by using the ambiguity in the null normals

to choose them to be affinely parameterized and so setting κ = 0, as discussed in [16].13

This is easily achieved here using the definition of the null boundaries in terms of the

Eddington-Finkelstein coordinates (2.15) and (2.16). In particular for the null boundary

in the upper right quadrant, we set

k = dv
∣

∣

v=v∞
=

(

dt+
dr

f(r)

) ∣

∣

∣

∣

v=v∞

. (2.30)

Implicitly, we have normalized this null normal at the asymptotic AdS boundary such that

k · t̂ = 1 where t̂ = ∂t, as suggested in [16].

12We note that the computation for small hyperbolic black holes is slightly different and there is no

contribution from the spacetime singularity inside the event horizon — see appendix C for details.
13In appendix D, we consider a different parameterization of the null surfaces yielding κ = constant and

we find that our results for the complexity of formation do not change.
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2.1.3 Joint contributions

This leaves the joint terms in the gravitational action (2.10) which are needed where two

of the boundary surfaces intersect. First, we have the Hayward terms [33, 34]

IHay =
1

8πGN

∫

Σ
dd−1x

√
σ η , (2.31)

but these are not relevant here since all of the joints in figure 1 involve at least one null

surface. Hence we only need to consider the last term in the gravitational action (2.10)

Ijnt =
1

8πGN

∫

Σ′

dd−1x
√
σ a , (2.32)

where a is defined as [16],

a =







ǫ log |k · t| for spacelike-null joint with ǫ = −sign(k · t) sign(k · ŝ) ,

ǫ log |k · s| for timelike-null joint with ǫ = −sign(k · s) sign(k · t̂) .
(2.33)

and ŝ and t̂ are auxiliary unit vectors in the tangent space of the spacelike/timelike bound-

ary surface, which are orthogonal to the junction and point outwards from the boundary

region of interest — see figure 17 and reference [29].

Again focusing our attention on the upper right quadrant of the WDW patch, we have

a spacelike-null joint where the null boundary (2.16) meets the regulator surface r = ǫ0.
14

Using the corresponding normals in eqs. (2.23) and (2.30) and ŝ = ŝµ ∂µ = ∂t/
√

−f(r),
the null joint term (2.32) yields

Ijnt,sing = −Ωk,d−1

4πGN
rd−1 log |f(r)|

∣

∣

∣

r=ǫ0
(2.34)

≃ Ωk,d−1

4πGN
ǫd−1
0 log(ǫd−2

0 /ωd−2) ,

where as usual we have included a factor of 4 to include the contributions of all of the joints

near the future and past singularities. However, the key observation about this result is

that this contribution vanishes in the limit ǫ0 → 0.

We also have a timelike-null joint where the null boundary (2.16) meets the cut-off

surface r = rmax. In this case t̂ = t̂µ ∂µ = ∂t/
√

f(r) and the corresponding contribution

(including the usual factor of 4) is

Ijnt,cut =
Ωk,d−1

4πGN
rd−1 log f(r)

∣

∣

∣

r=rmax

. (2.35)

Again, this contribution from the UV cutoff surface appears in the vacuum AdS calculation

as well but with f(r) replaced by f0(r), given in eq. (2.9). Further analysis shows that the

difference between these contributions in the black hole and vacuum AdS geometries again

vanishes in the limit δ → 0 — see appendix A.2 for details.

14Again, we note that the computation for small hyperbolic black holes is slightly different — see ap-

pendix C for details.

– 13 –



J
H
E
P
0
1
(
2
0
1
7
)
0
6
2

At this point, let us reiterate that there are certain subtleties, e.g., caustics and orbifold

singularities, in the case of the AdS vacua, which should be accounted for in evaluating

the gravitational action. However, as described in appendix B, we find that in fact they do

not produce any additional nonvanishing contributions to the gravitational action of the

vacuum WDW patch.

3 Complexity of formation

We can combine the various results of section 2 to evaluate the desired complexity of

formation,

∆C =
1

π

[

I(BH)− 2 I(AdS)
]

. (3.1)

We already established that the surface and joint contributions associated with the cutoff

surface at r = rmax precisely cancel between the two geometries. Hence the only non-

vanishing contributions that need to be considered are the bulk contributions (2.21) for

both geometries and the GHY surface contribution (2.27) at the black hole singularity.

Combining the various results above then, we arrive at

∆C =
1

π

[

∆Ibulk + IBH,sing
GHY

]

(3.2)

where

∆Ibulk = − Ωk,d−1 d

2πGNL2

∫ rmax

0
dr rd−1

[

v∞ − v′∞ −
(

r∗(r)− r∗0(r)
)

]

,

IBH,sing
GHY =

Ωk,d−1 d

4πGN
ωd−2

(

v∞ − r∗(0)
)

. (3.3)

In the expression for ∆Ibulk, we use r∗0(r) and v′∞ to denote the tortoise coordinate and

the null boundary in the AdS vacuum — see eq. (3.12) below.

As mentioned previously, the computation for “small’ hyperbolic black holes with

k = −1 and rh < L is slightly different. The full details are described in appendix C.

The essential difference is that f(r) has two positive real roots and the Penrose diagram

resembles that of a charged black hole — see figure 14. In this case, the null boundaries

from the two asymptotic regions meet between the two horizons at r∗(rmeet) = v∞ and

hence the surface term near the singularity is replaced by a null joint term (2.32). The

complexity of formation then becomes:

small hyperbolic BH: ∆C =
1

π

[

∆Ibulk + Ijnt
]

(3.4)

where

∆Ibulk = −Ω−1,d−1 d

2πGNL2

[∫ rmax

rmeet

dr rd−1
[

v∞ − r∗(r)
]

−
∫ rmax

0
dr rd−1

[

v′∞ − r∗0(r)
]

]

,

Ijnt = −Ω−1,d−1

4πGN
rd−1
meet log |f(rmeet)| . (3.5)

However, we should add that this result will change with redefinitions allowed by the

ambiguities in the definition of the gravitational action [16] — for further discussion, see

section 6 and appendix D.

We now evaluate the above results for some specific examples.
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3.1 d = 4

For d = 4, i.e., a five-dimensional AdS black hole, the blackening factor (2.2) becomes

f(r) =
r2

L2
+ k − r2h

r2

(

r2h
L2

+ k

)

, (3.6)

while for vacuum AdS, we have f0(r) in eq. (2.9). From the results in appendix A, we fix

the UV cutoff surface at

rmax =
L2

δ
− k

4
δ +

r2h(r
2
h + k L2)

8L6
δ3 +O(δ5) . (3.7)

Setting rh = 0 in the above expression yields the cutoff for the vacuum spacetime, but

in accord with eq. (2.11), we see the difference is O(δ3). To evaluate the tortoise coordi-

nate (2.12), we use eq. (2.18) to first write:

1

f(r)
=

L2 rh

2
(

2r2h + k L2
)

(r − rh)
− L2

2r2h + k L2

(

rh
2(r + rh)

− r2h + k L2

r2 + r2h + k L2

)

. (3.8)

Eq. (2.12) then yields

r∗(r) =
L2
√

r2h + k L2

(

2r2h + k L2
) tan−1





r
√

r2h + k L2



+
L2 rh

2
(

2r2h + k L2
) log

|r − rh|
r + rh

, (3.9)

which leads to:15

v∞ =
πL2

2

√

r2h + k L2

2r2h + k L2
. (3.10)

For k = +1, it is straightforward to substitute rh = 0 into the above expressions to recover

the vacuum results, i.e., r∗0(r) and v
′
∞ as given in eqs. (B.1) and (B.2). Unfortunately, this

substitution is more subtle for k = 0 and −1 but one can calculate the desired quantities

directly. From appendix B, the results are

k = +1 : r∗0(r) = L tan−1(r/L) , v′∞ = Lπ/2 , (3.11)

k = 0 : r∗0(r) = − L2/r , v′∞ = 0 , (3.12)

k = −1 : r∗0(r) =
L

2
log

|r − L|
r + L

, v′∞ = 0 .

Now it is straightforward to evaluate the expressions in eq. (3.3):

∆Ibulk = − Ωk,3

4GN

[

(r2h + k L2)5/2

2r2h + k L2
− L3 δk,1

]

, (3.13)

IBH,sing

GHY =
Ωk,3

2GN

r2h (r
2
h + k L2)3/2

2r2h + k L2
. (3.14)

15Note that we have chosen an (arbitrary) integration constant in eq. (3.9) but this choice cancels in the

difference v∞ − r∗(r) appearing, e.g., in eq. (3.3).
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Combining these results in eq. (3.2) then yields

∆C =
Ωk,3

4πGN

[

(r2h + kL2)3/2
(

r2h − kL2
)

(

2r2h + kL2
) + L3 δk,1

]

. (3.15)

With an expansion in large horizon radius, this result becomes

∆C =
Ωk,3 L

3

8πGN

[

r3h
L3

+ 2δk,1 −
9 k2

8

L

rh
+
k3

8

L3

r3h
+O(L5/r5h)

]

. (3.16)

or expressed as a function of entropy (2.8):

∆C =
S

2π
+
Ωk,3 π

2

20
CT δk,1−9π3k2

(

Ωk,3

160

)4/3 C
4/3
T

S1/3
+π5k

(

Ωk,3

80

)2 C2
T

S
+O(S−5/3) . (3.17)

where we have introduced the central charge in the boundary theory [40]: CT = 5
π3

L3

GN
.

Hence we see that to leading order in this large entropy expansion (i.e., implicitly a high

temperature expansion), the complexity of formation grows linearly with the entropy. Fur-

ther, eq. (3.17) shows that this expansion is an expansion for large values of S/CT . Finally,

the coefficient of the leading behavior in ∆C is independent of the spatial geometry. In

section 3.3, we derive an analytic expression for this leading coefficient as a function of the

boundary dimension d.

The “small” hyperbolic black holes are discussed in detail in appendix C. Using the

results presented there, eq. (3.4) yields the following complexity of formation

∆C =− Ω−1,3

4π2GN

(

r2
r4meet − r42
2r2h − L2

log

[

rmeet + r2
rmeet − r2

]

+ rh
r4h − r4meet

2r2h − L2
log

[

rh + rmeet

rh − rmeet

]

−2

3
rmeet

(

3L2 + r2meet

)

+ r3meet log |f(rmeet)|
)

.

(3.18)

for small hyperbolic black holes, with

r2 =
√

L2 − r2h and r∗(rmeet) = 0 . (3.19)

Here, r2 is the second root of f(r) = 0, which defines the position of the inner horizon

— see figure 14. Further, rmeet is the coordinate radius where the null surfaces from the

left and right asymptotic regions meet behind the horizon. Since rmeet is the solution to

a transcendental equation, evaluating the expression in eq. (3.18) requires some numerical

treatment. Finally, as we mentioned above, this result is also ambiguous — see further

discussion in section 6 and appendix D.

Figure 4 summarizes the results of this subsection.

3.2 d = 3

For d = 3 (four-dimensional bulk), the blackening factor (2.2) becomes

f(r) =
r2

L2
+ k − rh

r

(

r2h
L2

+ k

)

, (3.20)
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Figure 4. Complexity of formation for the different geometries in four boundary (five bulk) di-

mensions: large hyperbolic (blue), small hyperbolic (orange), planar (dashed green) and spherical

(dot-dashed red). In the inset, a larger range of horizon radii is presented demonstrating that the

leading behavior at large rh is the same for the three different horizon geometries. The two vertical

dashed lines are: (1) rh = L/
√
2, where the (small) hyperbolic black holes become extremal; (2)

rh = L, where the Hawking-Page phase transition takes place for the spherical black holes (planar

and hyperbolic black holes do not admit a similar transition).

and as before for vacuum AdS, we have f0(r) in eq. (2.9). In appendix A, the UV cutoff

surface is set at

rmax =
L2

δ
− k

4
δ +

rh
6L2

(

r2h
L2

+ k

)

δ2 +O(δ4) , (3.21)

which also fixes the vacuum cutoff with rh = 0. To evaluate the tortoise coordinate (2.12),

we first use eq. (2.18) to write

1

f(r)
=

L2rh

(r − rh)
(

3r2h + kL2
) +

L2
(

r2h − rrh + kL2
)

(

r2 + rrh + r2h + kL2
) (

3r2h + kL2
) . (3.22)

Eq. (2.12) then yields16

r∗(r) =
L2 rh

3r2h + kL2



log





∣

∣r − rh
∣

∣

√

r2+rrh+r
2
h+kL

2



+
3r2h + 2kL2

rh

√

3r2h+4kL2
tan−1





2r + rh
√

3r2h+4kL2







 ,

(3.23)

16Here and below, we assume rh > 2L/
√
3 for the hyperbolic case with k = −1. In the range L ≤ rh ≤

2L/
√
3 , f(r) has two additional negative real roots. While these do not signify the presence of additional

horizons, this case has some similarities to that of small hyperbolic black holes, i.e., rh < L. Hence it will

be treated separately in appendix C.
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which in eq. (2.16) yields

v∞ =
πL2

(

3r2h + 2kL2
)

2
(

3r2h + kL2
)

√

3r2h + 4kL2
. (3.24)

The vacuum results, r∗0(r) and v
′
∞, are identical to those shown in eq. (3.11).

Using these results to evaluate the expressions in eq. (3.3), the complexity of forma-

tion (3.2) becomes

∆C =
Ωk,2

8π2GN

(

3r2h + kL2
)

√

3r2h + 4kL2

×
[

2rh
(

3r4h + 5kL2r2h + 4k2L4
)





π

2
− tan−1





rh
√

3r2h + 4kL2







 (3.25)

+
√

3r2h + 4kL2

(

(

r4h − 3kL2r2h − 2k2L4
)

log

[

r2h
L2

+ k

]

− 2
(

r4h + 3kL2r2h
)

log
rh
L

)

]

.

An expansion in large rh/L then yields

∆C =
Ωk,2 L

2

8π2GN

[

2π

3
√
3

r2h
L2

− 4 k log
rh
L

+
2 k (9 + 2

√
3π)

27
− 4 k2

27

(

9−
√
3π
) L2

r2h
+O(r−4

h )

]

,

(3.26)

or alternatively, an expansion for large entropy (2.8) gives

∆C =
S

3
√
3π

− kπΩk,2

12
CT log

[

12

Ωk,2 π3
S

CT

]

(3.27)

+
kπΩk,2

324
CT

(

9 + 2
√
3π
)

−
k2 π4Ω2

k,2

1944

C2
T

S
(9−

√
3π) +O(S−2) ,

where we used CT = 3L2/(π3GN ) for the boundary central charge. As in the previous case,

the coefficient of the leading order term matches with the general d argument in section 3.3.

The “small” hyperbolic black holes for d = 3 are discussed in detail in appendix C,

and the complexity of formation is given by

∆C =
Ω−1,2

4π2GN (r2 − r3)(rh − r2)(rh − r3)

[

2rh (r2 − r3)
(

r3h − r3meet

)

log

(

rh − rmeet

L

)

+ 2r2 (rh − r3)
(

r3meet − r32
)

log

(

rmeet − r2
L

)

−2r3 (rh − r2)
(

r3meet − r33
)

log

(

rmeet − r3
L

)]

+
Ω−1,2

4π2GN

[

rmeet (2rh + 2r2 + 2r3 + rmeet)− r2meet log |f(rmeet)|
]

(3.28)

where

r2 =
1

2

(

√

4L2 − 3r2h − rh

)

and r3 = −1

2

(

√

4L2 − 3r2h + rh

)

. (3.29)
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Figure 5. Complexity of formation for the different geometries in three boundary (four bulk)

dimensions: large hyperbolic (blue), small hyperbolic (orange), planar (dashed green) and spherical

(dot-dashed red). In the inset, a larger range of horizon radii is presented demonstrating that the

leading behavior at large rh is the same for the three different horizon geometries. The two vertical

dashed lines are: (1) rh = L/
√
3, where the (small) hyperbolic black holes become extremal; (2)

rh = L, where the Hawking-Page phase transition takes place for the spherical black holes (planar

and hyperbolic black holes do not admit a similar transition).

Here r2 denotes the second positive root of f(r) = 0, which specifies the position of the

inner horizon, while r3 is a third real but negative root (which does not correspond to

the location of a horizon). As before, rmeet is the radius of the meeting point of the null

surfaces behind the horizon, which satisfies r∗(rmeet) = 0.

We show the results of this subsection in figure 5.

3.3 Planar case for general d

In the previous subsections, we saw that our results for d = 4 and 3 reduce to a single term

proportional to rd−1
h for the planar black holes. Therefore, up to an overall coefficient,

the complexity of formation is given by the horizon entropy in these cases. Further, for

hyperbolic and spherical black holes this same term appears as the leading behavior for

large black holes, irrespective of the sign of k. In this section, we compute the complexity

of formation for planar black holes in general dimension (d > 2) and find a similar result,

i.e., ∆C = kd S where the proportionality constant kd is a relatively simple function of the

dimension d.

With k = 0, the blacking factor (2.2) reduces to

f(r) =
r2

L2
− rdh
L2rd−2

, (3.30)
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and for vacuum AdS, we have f0(r) = r2/L2. Following the calculations from appendix A,

the UV cutoff surface is

rmax =
L2

δ
+

rdh δ
d−1

2dL2(d−1)
+O

(

δd+1
)

, (3.31)

while the cutoff for vacuum AdS is given by taking the limit rh → 0 in this expression. As

usual, the tortoise coordinate is given by integrating 1/f(r) with the result17

r∗in(r) =
L2

r

[

2F1

(

1,−1

d
; 1− 1

d
;

(

r

rh

)d
)

− 1

]

,

r∗out(r) =
L2

rh

[

π

d
cot
(π

d

)

−
(

rdh
rd − rdh

)1/d

2F1

(

1

d
,
1

d
; 1 +

1

d
;

rdh
rdh − rd

)

]

.

(3.33)

where the subscripts in/out indicate inside (r < rh) and outside (r > rh) of the horizon,

respectively. Note that we have to impose that the nonlogarithmic part of these functions

is continuous across the horizon, i.e.,

lim
r→r+

h

(

r∗out(r)−
L2

drh
log(r − rh)

)

= lim
r→r−

h

(

r∗in(r)−
L2

drh
log(rh − r)

)

(3.34)

to fix the relative integration constant between the two hypergeometric functions. This

condition is responsible for the appearance of the constant (L2π)/(drh) cot(π/d) in r
∗
out(r).

This also yields:

v∞ =
πL2

drh
cot
(π

d

)

. (3.35)

The vacuum expressions are the same as in eq. (3.12). Now, the bulk contribution in

eq. (3.3) yields

∆Ibulk = −Ω0,d−1

2πGN

d

d− 1

[

(rd − rdh)
d−1
d 2F1

(

1

d
− 1,

1

d
; 1 +

1

d
;

rdh
rdh − rd

) ∣

∣

∣

∣

rmax

rh

+rd−1

[

π(d− 1)

d2
r

rh
cot
(π

d

)

− 2F1

(

1,−1

d
; 2− 1

d
;

(

r

rh

)d
)

+ 1

]rh

0

− rd−1
max

]

= −Ω0,d−1

2 dGN
cot

(

π

d

)

rd−1
h . (3.36)

The corresponding surface contribution is also easily evaluated

IBH,sing

GHY =
Ω0,d−1

4GN
cot

(

π

d

)

rd−1
h , (3.37)

17Note that the inverse blackening factor can be decomposed as follows:

1

f(r)
=

L2

d rh

(

1

r − rh
+

−rd−2 +
∑d−3

n=0(n+ 1)rnrd−2−n
h

∑d−1
m=0 r

mrd−1−m
h

)

, (3.32)

where all of the terms in the sum are regular at the location of the horizon and the first term leads to a

contribution in the tortoise coordinate of the form r∗(r) = L2/(drh) log |r − rh|+ · · · .
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Figure 6. Coefficient of entropy in eq. (3.39), kd ≡ ∆C/S, plotted as a function of the bound-

ary dimension d, for planar AdS black holes. The orange line shows the linear approximation in

eq. (3.40).

and the total complexity of formation becomes

∆C =
1

π

[

∆Ibulk + IBH,sing

GHY

]

=
d− 2

d
cot

(

π

d

)

Ω0,d−1 r
d−1
h

4πGN
. (3.38)

Therefore, the complexity of formation has a simple form in terms of the horizon en-

tropy (2.8)

∆C =
d− 2

d π
cot

(

π

d

)

S ≡ kd S . (3.39)

Note that for large d, the coefficient kd approaches a linear function of d, i.e.,

kd ≃ d− 2

π2
+O(1/d) . (3.40)

In figure 6, we plot the coefficient kd as a function of the dimension and show that it

rapidly approaches the linear approximation above. Note that kd vanishes for d = 2.

Strictly speaking, however, our calculations above only apply for d > 2 and d = 2 is a

special case which we discuss in the next section. Nevertheless, we will confirm there that

the complexity of formation is independent of the entropy for d = 2.

4 Complexity of BTZ black holes

Of course, the case of two dimensions in the boundary theory is special. In this situation,

the corresponding BTZ black hole [19, 20] can be seen as an orbifold of the vacuum AdS3
solution. The corresponding calculation of the complexity of formation is slightly different

from that for its higher dimensional counterparts. The main difference is that the null

surfaces from the two asymptotic boundaries now meet each other at a joint precisely on
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Figure 7. Penrose diagram of the WDW patch in the BTZ black hole background (with zero

angular momentum). Note that unlike the higher dimensional case, the null sheets originating from

the t = 0 slices on the left and right boundaries meet with each other in a joint, precisely at r = 0.

the (orbifold) singularity, instead of ending separately on the singularity. The metric can

still be written in the form given in eq. (2.1) with dΣ2
k,d−1 replaced by dφ2 and with the

blackening factor

f(r) =
r2 − r2h
L2

. (4.1)

For the vacuum solution, we take eq. (2.9) with k = +1,18 i.e.,

f0(r) =
r2

L2
+ 1 . (4.2)

The Penrose diagram representing the BTZ black hole is shown in figure 7. The corre-

sponding mass, temperature and entropy are given by

M =
r2h

8GNL2
, T =

rh
2πL2

, and S =
π r2h
2GN

. (4.3)

The cutoff surfaces follow again from the near boundary expansion in appendix A,

rBTZ
max =

L2

δ
+

r2h
4L2

δ and rvacmax =
L2

δ
− δ

4
. (4.4)

The vacuum AdS calculation follows immediately from previous examples and the bulk

integral (2.21) becomes for d = 2:

Ivac
bulk = − L2

GN δ
+

πL

4GN
+O(δ) . (4.5)

18We could also choose k = −1 or 0. However, the k = −1 solution is precisely the BTZ black hole with

rh = L and the k = 0 vacuum will be discussed at the end of this section.
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Next, we evaluate the action for the BTZ black hole. The tortoise coordinate (2.12) is

r∗(r) =
L2

2 rh
log

|r − rh|
r + rh

, (4.6)

and from eq. (2.16), v∞ = 0. The bulk integral result is

IBTZ
bulk = − 2L2

GN δ
+O(δ) . (4.7)

Of course, the divergence cancels when subtracting twice the action of vacuum AdS. There

is no contribution from a surface term near the singularity, as the null boundaries meet as

described above, and the joint contribution there vanishes. Therefore, the complexity of

formation is simply given by

∆C =
1

π

[

IBTZ
bulk − 2Ivacbulk

]

= − L

2GN
= − c

3
, (4.8)

where we have introduced the central charge of the boundary theory c = 3L/(2GN ) [41].

Hence ∆C is a fixed constant, independent of the temperature or horizon radius.

One notable fact about the above expression is that it does not vanish when the mass

(or rh) vanishes. At a pragmatic level, this occurs because in the limit rh → 0, the

blackening factor (4.1) does not become f0(r) in eq. (4.2) for the vacuum AdS3 spacetime.

Implicitly, in choosing eq. (4.2), we are choosing to consider the Neveu-Schwarz vacuum

of the boundary theory [42]. Alternatively, we could have chosen f0(r) = r2/L2 (i.e.,

the rh → 0 limit of the BTZ blackening factor), but this choice would correspond to the

Ramond vacuum of the boundary theory. In this case, we find that the complexity of

formation vanishes, i.e., ∆C = 0.

5 Comparison with complexity = volume

In the previous sections, we were investigating the conjectured duality between complexity

and action (CA) [1, 2]. However, it was previously conjectured that the complexity of states

in a holographic theory should be dual to the volume of the extremal codimension-one bulk

hypersurface which meets the asymptotic boundary on the desired time slice [10].19 More

precisely, the complexity = volume (CV) duality states that the complexity of the state on

a time slice denoted Ω is given by:

CV(Ω) = max
Ω=∂B

[V(B)
GN ℓ

]

, (5.1)

where B is the corresponding bulk surface and ℓ is some length scale associated with the

bulk geometry, e.g., the AdS radius for large black holes and rh for small black holes, see,

e.g., [2]. The ambiguity in defining the latter is somewhat unsatisfactory and provided

some motivation for developing the CA duality, since this choice is naturally eliminated in

this framework. For simplicity, we will set ℓ = L in all of the following calculations. In this
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Figure 8. The maximal volume slice B connecting the two boundaries at tL = tR = 0 through the

Einstein-Rosen bridge.

section, we compare our previous results for the complexity of formation obtained from the

CA duality to those obtained by the CV duality.

We are interested in evaluating the complexity for the thermal state defined on the

time slice at tL = tR = 0. By symmetry, the maximal volume is given by the bulk t = 0

slice, i.e., the straight line connecting the two boundaries through the bifurcation surface

in the Penrose diagram shown in figure 8. The volume integral then simplifies to:

V = 2Ωk,d−1

∫ rmax

rh

rd−1

√

f(r)
dr . (5.2)

To evaluate the complexity of formation, we will subtract from this integral, the corre-

sponding contribution from (two copies of) the vacuum AdS background:

V0 = 2Ωk,d−1

∫ rmax

rmin

rd−1

√

f0(r)
dr . (5.3)

Here we have introduced the minimum radius rmin because while the integration starts at

rmin = 0 for k = +1 and 0, we must set rmin = L for k = −1. Hence in this framework,

the complexity of formation becomes20

∆CV =
2Ωk,d−1

GN L

[

∫ rmax

rh

rd−1dr
√

f(r)
−
∫ rmax

rmin

rd−1dr
√

f0(r)

]

. (5.4)

19An alternative proposal related to complexity=volume was recently put forward by [43]. See also [44, 45]

for proposed generalizations for subregions.
20Using the methods of appendix A, we confirmed that the difference between rmax evaluated for the

vacuum AdS and the black hole backgrounds will not contribute to ∆CV when we send δ → 0.
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5.1 Planar geometry

It is easiest to evaluate this expression (5.4) for planar black holes with k = 0. The volume

integral (5.2) can be evaluated analytically for any d:

V =
4Ω0,d−1 L

d
r

d
2
−1

h

√

rd − rdh 2F1

(

1

2
,
1

d
− 1

2
;
3

2
; 1− (r/rh)

d

) ∣

∣

∣

∣

rmax

rh

. (5.5)

The cutoff rmax is given in appendix A — see eq. (A.13). In the limit of a small short

distance cutoff δ, the volume integral becomes

V =
2Ω0,d−1 L

2d−1

(d− 1) δd−1
+

2Ω0,d−1
√
π Γ(−1 + 1

d)

dΓ(−1
2 + 1

d)
Lrd−1

h +O(δ) . (5.6)

The leading (divergent) term above is exactly canceled when subtracting the volume of

the maximal slice in the vacuum AdS geometry. The complexity of formation (5.4) can be

written as

∆CV =

√
πΩ0,d−1

GN

(d− 2) Γ(1 + 1
d)

(d− 1) Γ(12 + 1
d)
rd−1
h . (5.7)

Again, this result for the complexity of formation can be expressed in terms of the

entropy (2.8)

∆CV = 4
√
π
(d− 2) Γ(1 + 1

d)

(d− 1) Γ(12 + 1
d)
S ≡ k̃d S . (5.8)

Note that in this case, the coefficient k̃d approaches a constant for large d, i.e.,

k̃d ≃ 4 +O(1/d) . (5.9)

It is interesting, of course, to compare these results to the analogous results found using

the CA duality — see eqs. (3.39) and (3.40). It is perhaps notable that in both approaches,

the coefficient vanishes for d = 2. However, otherwise the coefficients kd and k̃d seem to

bear little resemblance to each other. For example, we saw that for large d, the coefficient

k̃d approaches a constant for the CV duality while kd grows linearly with d for the CA

duality. The two coefficients are roughly equal in the vicinity of d = 42.

However, one should be aware that the definition of complexity is not completely precise

and different choices of, e.g., the universal gate set may lead to changing the complexity of

a given family of states by a multiplicative constant — see discussions in [2, 16]. Hence an

interesting approach is to combine the above comparison with a comparison of the late time

growth of complexity from the CV and CA dualities. In particular, examining the growth

of complexity for an uncharged AdS black hole using the two conjectures yields [1, 2, 10]21

dCV
dt

∣

∣

∣

∣

t→∞
=

8π

d− 1
M and

dCA
dt

∣

∣

∣

∣

t→∞
=

2M

π
. (5.10)

21Recall that it was suggested in [1, 2] that the late time limit of dCA/dt was related to Loyd’s bound

for the rate of computation for a system of energy M [46]. Recently, ref. [47] considered conditions under

which this bound is compatible with the CA duality conjecture.
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Figure 9. The two ratios Rform (blue) and Rrate (red) as a function of d.

We note that the late time growth rate above from the CV duality is only valid in the

limit of large temperatures for k = ±1 [10]. Of course, our results for the complexity

of formation ∆CA,V only apply for high temperatures, as well. Now let us compare the

two ratios22

Rform =
∆CA
∆CV

=
d− 1

4π3/2
Γ
(

1− 1
d

)

Γ
(

1
2 − 1

d

) ,

Rrate =
dCA/dt
dCV /dt

=
d− 1

4π2
. (5.11)

Now it is straightforward to see that in the limit of large d, both ratios grow linearly with

d and further we may write

Rrate −Rform =
log 2

2π2
+O(1/d) . (5.12)

However, from figure 9, we can see that apart from the constant shift in eq. (5.12), the

two ratios agree very well for all values of d. This comparison then suggests that the

two holographic approaches to complexity are more or less consistent up to an overall

multiplicative factor.

5.2 Spherical and hyperbolic geometries

Here we evaluate the complexity of formation (5.4) using the CV duality for the spherical

and hyperbolic black holes. In the following, it is convenient to define the dimensionless

coordinate x ≡ r/L, as well as xh ≡ rh/L and xmin = 0 or 1 for k = +1 or −1, respectively.

Then eq. (5.4) may be expressed as

∆CV = 2Ωk,d−1
Ld−1

GN

[

∫ ∞

xh

(

xd−1

√

f(x)
− xd−1

√
x2 + k

)

dx−
∫ xh

xmin

xd−1 dx√
x2 + k

]

, (5.13)

22We have simplified the first ratio using cot(πx) = Γ(1−x)Γ(x)

Γ( 1

2
−x)Γ( 1

2
+x)

.
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Figure 10. Complexity calculated from the CV duality for the three different geometries in d = 4—

large hyperbolic (blue), small hyperbolic (orange), planar (dashed green) and spherical (dot-dashed

red). In the inset, a larger range of horizon radii is presented demonstrating that the leading

behavior at large rh is the same for the three different horizon geometries. The dashed vertical line

at rh = L denotes the position of the Hawking-Page transition for the spherical black holes, while

the one at rh = L/
√
2 indicates where the (small) hyperbolic black holes become extremal. The

volume, and hence the complexity of formation, diverges for these extremal black holes.

where f(x) is the usual blackening factor (2.2), i.e., f(x) = x2 + k − (xh/x)
d−2(x2h + k).

Note that in extending the upper limit of integration to infinity in the first integral, we

have allowed for the cancellation of the divergences which appear individually in eqs. (5.2)

and (5.3). Again, the small hyperbolic black holes are a special case and eq. (5.13) must

be modified slightly in this situation since with ωd−2 < 0, one finds that xh < xmin = 1.

Hence for small hyperbolic black holes, we write instead

∆CV = 2Ω−1,d−1
Ld−1

GN

[

∫ ∞

1

(

xd−1

√

f(x)
− xd−1

√
x2 − 1

)

dx+

∫ 1

xh

xd−1 dx
√

f(x)

]

, (5.14)

The above expressions can be evaluated in terms of elliptic integrals (at least for certain

dimensions), however, these are not particularly enlightening. Therefore, we evaluate these

expressions numerically instead to study their behavior. Figures 10 and 11 show the results

for ∆CV in d = 4 and d = 3, respectively. There are many features found in common with

the CA results shown in figures 4 and 5, but there are some differences as well.

For instance, for large horizon radius, the result for the spherical and hyperbolic ge-

ometries approaches eq. (5.7) for the planar case, as expected, i.e., ∆CV ≃ k̃d S as in

eq. (5.8). We can subtract this leading behavior and fit the residual numerical result to
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Figure 11. Complexity calculated from the CV duality for the three different geometries in d = 3—

large hyperbolic (blue), small hyperbolic (orange), planar (dashed green) and spherical (dot-dashed

red). In the inset, a larger range of horizon radii is presented demonstrating that the leading

behavior at large rh is the same for the three different horizon geometries. The dashed vertical line

at rh = L denotes the position of the Hawking-Page transition for the spherical black holes, while

the one at rh = L/
√
3 indicates where the (small) hyperbolic black holes become extremal. The

volume, and hence the complexity of formation, diverges for these extremal black holes.

find

d = 4, k = +1 :
G

Ω1,3L3

(

∆CV − k̃4 S
)

= 1.55
rh
L

− 1.33 + 0.55
L

rh
+ · · · ,

d = 4, k = −1 :
G

Ω−1,3L3

(

∆CV − k̃4 S
)

= −1.55
rh
L

+ 0.00 + 0.55
L

rh
+ · · · ,

d = 3, k = +1 :
G

Ω1,2L2

(

∆CV − k̃3 S
)

= 1.00 log
(rh
L

)

+ 0.865 + 0.14
L2

r2h
+ · · · ,

d = 3, k = −1 :
G

Ω−1,2L2

(

∆CV − k̃3 S
)

= −1.00 log
(rh
L

)

− 0.865 + 0.14
L2

r2h
+ · · · .

(5.15)

We observe that in many respects, the structure here is very similar to that found in

eqs. (3.16) and (3.26) for the CA duality. For example, there are clearly factors of k

multiplying the various terms; a special δk,1 constant contribution appears in d = 4; and a

logarithmic contribution appears in d = 3. Note, however, that the first term for d = 4 is

proportional to rh/L above, whereas the term at this order vanishes for ∆CA in eq. (3.16).

Further, note that the first term for d = 3 above seems to be k log(rh/L) whereas the first

subleading contribution in eq. (3.26) has the same form but the opposite sign. As a result,

the curves in figure 5 cross in the vicinity of rh/L ∼ 1.4, but no such crossing appears in

figure 11.
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Another interesting difference is that in both figures, ∆CV diverges as T approaches

zero for k = −1, i.e., as the small hyperbolic black holes approach the extremal limit.23

This divergence arises because the throat of the black hole grows to have infinite (proper)

length in this limit. In contrast with the CA duality, ∆CA remains finite in this limit, but

recall that the results for small hyperbolic black holes are ambiguous in this approach —

see appendix D.

Special case of d = 2: recall that d = 2 is a special case, which is described by the BTZ

black hole in the bulk. In this case, it is possible to evaluate the complexity of formation

for the CV duality analytically. We use the blackening factors f(r) and f0(r) given by

eqs. (4.1) and (4.2), respectively, as well as rmax given by eq. (4.4) and rmin = 0. The

required volumes in eqs. (5.2) and (5.3) are then given by

V =
4πL3

δ
+O(δ) , V0 =

4πL3

δ
− 4πL2 +O(δ) . (5.16)

Hence the complexity of formation for the BTZ black hole becomes

∆CV =
4πL

GN
=

8π

3
c , (5.17)

where c = 3L/(2GN ) is the boundary central charge. As before, we are implicitly consid-

ering the Neveu-Schwarz vacuum in choosing f0(r) in eq. (4.2). If instead we consider the

Ramond vacuum with f0(r) = r2/L2, we find ∆C = 0.

In any event, we find that the complexity of formation is a fixed constant, independent

of the temperature. Of course, this result for d = 2 agrees with that found in section 4

using the CA duality. One curious difference is that the sign of ∆CV in eq. (5.17) is positive

while the corresponding result for ∆CA in eq. (4.8) is negative.

6 Discussion

In this paper, we considered the conjectured duality between complexity and action [1, 2] to

evaluate the complexity of formation, i.e., the additional complexity involved in preparing

an entangled thermofield double state between two boundary CFTs compared to preparing

each of the individual CFTs in their vacuum state. Using the results of [16] to account for

the contributions of null hypersurfaces and joints to the gravitational action, we were able to

evaluate the action of the WDW patch for the dual AdS black holes and vacuum spacetimes.

While the individual actions need to be regulated because of divergences coming from the

asymptotic boundary, these divergences cancel in the difference of the actions in eq. (3.1)

and hence the complexity of formation remains finite in the δ → 0 limit.

We evaluated ∆C for three horizon geometries (i.e., for the three different spatial

geometries (2.5) in the boundary theory) — spherical, planar and hyperbolic. For high

temperatures, this geometry is unimportant and as indicated in eq. (3.39), the leading

contribution is proportional to the entropy, i.e.,

∆C = kd S + · · · with kd =
d− 2

d π
cot

(

π

d

)

. (6.1)

23Note that choosing ℓ = rh (rather than ℓ = L) in eq. (5.1) for these ‘small’ hyperbolic black holes does

not remedy this divergence, since rh remains finite in the extremal limit, e.g., rh = L/
√
2 for d = 4.
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The ellipsis indicates the presence of subleading terms for k = ±1. From the explicit

examples in eqs. (3.17) and (3.27), we can see that for curved horizons, eq. (6.1) is the

leading term in an expansion for large values of S/CT where CT is the central charge in the

boundary theory. Above, we referred to this as a high temperature expansion because up

to numerical factors, S/CT ∼ V T d−1 at high temperatures, where V is the spatial volume

in the boundary theory. This explains why the spatial curvature was unimportant in this

limit and the leading result in eq. (6.1) is independent of the parameter k. Let us note that

more generally, the results for d = 4 and 3 show that we can write ∆C = CT f(S/CT ).

Hence at least for high temperatures, the additional complexity required in preparing

the entangled thermofield double state is proportional to the entanglement entropy between

the two boundary CFTs in this state. It is perhaps useful to think of the description of

analogous CFT states with MERA tensor networks [48–50] to gain some insight into this

result. The interested reader may find a more detailed discussion in appendix E, however,

we describe some of the salient points here. If we compare the tensor networks describing

the individual ground states and the entangled thermofield double state, a large portion

of the circuits are in fact identical and prepare the short range entanglements in the final

UV state from a coarse-grained IR state. In the holographic context, this is reflected in

the fact that the asymptotic AdS regions are nearly identical in both cases and make the

same UV divergent contributions to the individual WDW actions. The difference between

the MERA tensor networks at high temperatures is that the IR portion of the two vacuum

circuits is removed and replaced with a layer of distinct tensors which entangles the two

CFTs and introduces the appropriate thermal spectrum of eigenvalues — see figure 21(a)

in appendix E or figure 2c in [51]. Of course, this central layer of tensors can be thought of

as representing the Einstein-Rosen bridge connecting the two asymptotic AdS regions [51].

Hence in considering the complexity of formation, there is a competition between the

additional complexity of preparing these bridge tensors and the simplification coming from

removing the IR components of the vacuum circuits. At high temperatures, our holographic

results indicate that the former dominates since ∆C > 0. Examining the corresponding

MERA circuits in appendix E, we argue that the complexity of the bridge tensors and of

the corresponding IR vacuum circuits should both be proportional to the entanglement

entropy between the two copies of the CFT. Hence the complexity of formation should be

proportional to this entropy, in accord with our holographic results in higher dimensions —

see comments on d = 2 below. Unfortunately, these arguments do not allow us to determine

the sign of ∆C, which requires a more detailed knowledge of the precise tensors appearing

in these constructions. In the future, it would, of course, be of interest to investigate this

question, at least for some simple models.

In section 5, a similar result was obtained for the complexity of formation using the

previously proposed duality relating complexity to the volume of an extremal bulk sur-

face [10]. For high temperatures, the leading contribution is independent of the geometry

and given by eq. (5.8),

∆CV = k̃d S + · · · with k̃d = 4
√
π
(d− 2) Γ(1 + 1

d)

(d− 1) Γ(12 + 1
d)
. (6.2)
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Again this leading term is the complete result of the planar case while the ellipsis indicates

subleading terms which appear with a spherical or hyperbolic horizon. Comparing eqs. (6.1)

and (6.2) shows that both of the proposed dualities yield more or less the same complexity

of formation up to an overall multiplicative factor. In fact, comparing the growth of

complexity at late times found with the two different approaches yields essentially the same

multiplicative factor — see eq. (5.11). Now as emphasized in [1, 2], the circuit complexity

of a given quantum state can only be assigned a precise value once the algorithm for

constructing the state is defined. For example, the value will depend on the choice of an

initial reference state and the specific set of quantum gates with which one acts to construct

the desired state. In particular, the complexity would be expected to change by an overall

multiplicative factor with different gate choices. This may then provide an explanation of

the multiplicative factor relating the complexities found using the CA and CV dualities.

For example, as shown in eq. (3.40) and figure 6, the coefficient kd appearing in ∆CA (see

eq. (6.1)) grows linearly with the boundary dimension d, while the corresponding coefficient

k̃d appearing in ∆CA (see eq. (6.2)) quickly saturates to a constant with growing d, as shown

in eq. (5.9). One can imagine that the former behavior would arise if one chose gates which

only act on, e.g., pairs of neighboring qubits.24 On the other hand, the latter behavior

might emerge if the gate set was expanded to include (d− 1)-local gates as d increases. In

any event, our holographic results suggest that the CA and CV dualities may both provide

a consistent description of the complexity of holographic boundary states, however, the

microscopic details of the algorithms used to define the complexity differs in each case.

As noted previously, the coefficients kd and k̃d both vanish for d = 2. Hence in the case

of two boundary dimensions, the complexity of formation is a fixed constant, independent

of the temperature. Referring back to the discussion of MERA above (see also appendix E),

this result indicates that the complexity associated with constructing the layer of bridge

tensors is essentially the same as for the IR portion of the vacuum network. This result is

likely related to the recent discussion of MERA tensor networks in the context of kinematic

space [52–54]. In particular, it was found that for the special case of d = 2, the bridge

tensors can be constructed from the standard isometries and disentanglers appearing in the

UV portion of the MERA [53]. In the holographic context, the fact that ∆C is independent

of the temperature is related to the fact that in three bulk dimensions, the BTZ black hole

geometry is still locally the same as the vacuum AdS3 space [19, 20]. Comparing to the

Neveu-Schwarz vacuum in the boundary theory [42], our holographic results in eqs. (4.8)

and (5.17) indicated that the complexity of formation is

d = 2 : ∆CA = − c
3

and ∆CV = +
8π

3
c , (6.3)

where c is the central charge of the boundary theory. Further, considering the Ramond

vacuum instead, we find ∆C = 0 with both the CA and CV dualities. Naively, the difference

in the sign of the two results in eq. (6.3) might indicate some tension between the two

24For example, with a simple square lattice filling d − 1 spatial dimensions, one would have to act with

2(d − 1) two-qubit gates to simply establish correlations between a particular qubit and all of its nearest

neighbors.
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holographic approaches to evaluating complexity. However, it seems more likely that the

different microscopic details in the definition of the complexity, e.g., the reference state,

for the two approaches is simply producing different results at this fine-grained level. That

is, the precise value (or even sign) of the complexity of formation is not robust against the

ambiguities appearing in the definition of the complexity.

At this point, we note that, as discussed in [16], the boundary terms on the null bound-

ary surfaces (2.28) and null joints (2.32) are ambiguous. That is, evaluating the gravita-

tional action for a particular spacetime geometry generally produces different numerical

values depending on different choices that can be made in constructing the boundary

terms. However, we show in appendix D that our results for the complexity of formation

are not effected by these ambiguities. The one exception to this statement is for the small

hyperbolic black holes, i.e., with k = −1 and ωd−2 < 0. In this case, we find that the

complexity of formation is ambiguous due to the possibility of shifting a in the joint con-

tributions (2.32) by an extra (arbitrary) function [16]. In particular, ∆C is modified by

such a shift through the joint terms where the null sheets from the opposite asymptotic

boundaries meet between the inner and outer horizons — see appendix D for a detailed

discussion. Hence our results for the complexity of formation are not universal in this case.

It is interesting that in this regime, we observed a discrepancy between the CA and CV

approaches. Namely, ∆CV diverges as T approaches zero for k = −1, while ∆CA remains

finite. The CA duality also yields the curious result dCA/dt = 0 for small hyperbolic black

holes — see appendix C. All of these results highlight the exotic nature of these states, as

was first commented by [25].

We also observe that the complexity of formation appears well-behaved, for small

spherical black holes, i.e., with k = +1 and rh < L, as shown in figures 4 and 5. However,

these black holes are thermodynamically unstable [26, 27] and the correct saddle point

which dominates the bulk partition function is actually still the vacuum AdS space. Of

course, with this saddle to represent the thermofield double, our calculations would yield a

vanishing complexity of formation. However, this simply indicates that there is no leading

order contribution to ∆C in the large central charge (or large N) expansion of the boundary

CFT. That is, there is no contribution to ∆C of the magnitude of the central charge CT , just

as there is no entropy of this order. However, the thermofield double state still entangles the

two CFTs and it is simply that the entanglement entropy is an order one quantity. Hence

we expect that the complexity of formation is also nonvanishing but only an order one

quantity. It would be interesting to understand how to evaluate this contribution to ∆C.
There are a variety of questions which we leave for future work. One interesting ques-

tion is to compute the full time dependence of the complexity [35], which in a certain sense

would interpolate between the complexity of formation (at tL = 0 = tR), considered here,

and the late-time growth rate, considered in [1, 2, 16]. It would also be interesting to gener-

alize the present calculations to charged and rotating black holes, where an analysis similar

to that for the small hyperbolic black holes would apply. Finally, it would be instructive

to investigate the complexity of formation for higher curvature theories of gravity [55, 56],

although this would require first a better understanding of the boundary terms for the

corresponding gravitational actions.

– 32 –



J
H
E
P
0
1
(
2
0
1
7
)
0
6
2

Acknowledgments

We would like to thank Adam Brown, Dean Carmi, Bartek Czech, Lampros Lamprou,

Djordje Radicevic, Dan Roberts, Sotaro Sugishita, Jamie Sully, Lenny Susskind, Brian
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A Fefferman-Graham near boundary expansions

The action on the WDW patch is divergent since this region of the bulk spacetime extends

all the way up to spatial infinity. In this appendix, we discuss how to regulate these

divergences by introducing a UV cutoff surface at r = rmax, following the standard approach

in holographic calculations, see, e.g., [22, 36, 37]. To make meaningful comparison between

the two different spacetimes (i.e., black hole and vacuum AdS) we need to be able to relate

the cutoffs in the two geometries. We do this by choosing rmax to correspond to the surface

of z = δ in the asymptotic Fefferman Graham (FG) expansion for both cases.

A.1 Relating the cutoffs

We begin by writing the metric (2.1) in the FG form:

ds2 =
dr2

f(r)
− f(r)dt2 + r2dΣk,d−1 =

L2

z2
(

dz2 + gij(z, x
i)dxidxj

)

(A.1)

where

z =
L2

r
+
c1
r2

+ · · ·+ cd
rd+1

+
cd+1

rd+2
+ · · · (A.2)

goes to zero at the boundary and gij(z → 0, xi) is the finite boundary metric (2.5). We fix

the different coefficients ci to obtain:

L

z
dz =

dr
√

f(r)
, (A.3)

where, as is implicit in eq. (A.2), we work in a series expansion for large r. We can invert

the series (A.2) to obtain rmax corresponding to the surface of constant z = δ:

rmax =
L2

δ
+ c̃1 + · · ·+ c̃dδ

d−1 + c̃d+1δ
d + . . . . (A.4)

The first coefficient to depend on rh (and so, the first coefficient which differs from the FG

expansion of vacuum AdS) is cd (or equivalently c̃d). This follows immediately from the
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form of the blackening factor in which the dependence on rh starts at the d-th subleading

order in the boundary expansion. In general, we can prove that

rBH
max − rvacmax =

ωd−2

2dL2(d−2)
δd−1 + O

(

δd+1
)

, (A.5)

as given in eq. (2.11). The proof goes as follows: integrating eq. (A.3), we obtain

− L log
δ

L2
=

∫ rmax dr
√

f(r)
. (A.6)

The integration constant was fixed here by assuming that to leading order z = L2

r . Further

we understand the left-hand side of eq. (A.6) to be defined by a large-r power series, i.e.,
∫ rmax dr

√

f(r)
=

∫ rmax

dr

(

L

r
+

∞
∑

n=2

an
rn

)

= L log(rmax)−
∞
∑

n=2

an
(n− 1)rn−1

max

. (A.7)

Now putting the UV cutoff surface at the z = δ surface in both the black hole and vacuum

AdS backgrounds, we can subtract the corresponding equations to obtain

0 =

∫ rBH
max dr

√

f(r)
−
∫ rvacmax dr

√

f0(r)
, (A.8)

where the upper limits are slightly different in the two integrals. If we substitute rBH
max =

rvacmax+δrmax into the first integral, the leading order contribution in the shift δrmax becomes

0 ≃ 1
√

f(rvacmax)
(rBH

max − rvacmax) +

∫ rvacmax

dr

(

1
√

f(r)
− 1
√

f0(r)

)

. (A.9)

This integral is convergent and we can expand this expression for large r,

0 ≃ L

rvacmax

(rBH
max − rvacmax) +

∫ rvacmax

dr
ωd−2L3

2 rd+1
. (A.10)

Integrating the last expression and using the leading order result rmax = L2/δ (which

applies for both geometries), we recover eq. (A.5).

Finally, we compute rmax in the various vacuum AdS geometries by evaluating eq. (A.6)

to obtain

z =
2L2

r +
√
kL2 + r2

(A.11)

and

rvacmax =
L2

δ
− kδ

4
. (A.12)

As a consequence, eq. (A.5) yields

rBH
max =

L2

δ
− kδ

4
+

ωd−2

2dL2(d−2)
δd−1 + O

(

δd+1
)

. (A.13)

Finally for the BTZ case, eq. (A.6) can be evaluated explicitly using the blackening fac-

tor (4.1) which leads to:

r +
√

r2 − r2h =
2L2

z
, r =

L2

z
+
zr2h
4L2

, (A.14)

and

rBTZ
max =

L2

δ
+
δr2h
4L2

. (A.15)
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A.2 Cutoff independence of the action

In this subsection we provide details for the various cancellations encountered in the main

text when subtracting the vacuum AdS results from those of the black holes in the process

of evaluating the action. It will be useful in our discussion to use the following relation

v∞ − r∗(rmax) = δ + · · ·+ w(rh)δ
d+1 +O(δd+2). (A.16)

where due to the form of the blackening factor (2.2) the rh dependence first appears at order

δd+1. Note that v∞ cancels a possible integration constant and the expansion therefore

starts at order δ. It is further possible to show25

v∞ − r∗(rBH
max)−

(

v′∞ − r∗0(r
vac
max)

)

= w(rh)− w(0) =
(d− 1)

2d(d+ 1)

ωd−2

L2(d−1)
δd+1 + O

(

δd+2
)

.

(A.17)

The arguments are similar to those in the previous section and the leading contribu-

tion reads

v∞ − r∗(rBH
max)−

(

v′∞ − r∗0(r
vac
max)

)

=

∫ ∞

rBH
max

dr

f(r)
−
∫ ∞

rvacmax

dr

f0(r)

=

∫ ∞

rvacmax

f0(r)− f(r)

f0(r)f(r)
− 1

f(rvacmax)
(rBH

max − rvacmax)

=
(d− 1)

2d(d+ 1)

ωd−2

L2(d−1)
δd+1 + O

(

δd+2
)

,

(A.18)

where we have used eq. (2.11).

With all this in hand, we are ready to prove some of the claims quoted in the main

text regarding cancellations between vacuum and black hole contributions to the action

of the WDW patch. The first claim is related to the bulk integrals. It explains why

eq. (2.21) reduces to eq. (3.3) after subtracting the vacuum AdS contribution and why we

can choose rmax in eq. (3.3) to be either of the two cutoffs. We start with the difference of

the bulk actions

∆Ibulk = − Ωk,d−1 d

2πGNL2

∫ rBH
max

0
dr rd−1

(

v∞ − r∗(r)
)

+
Ωk,d−1 d

2πGNL2

∫ rvacmax

0
dr rd−1

(

v′∞ − r∗0(r)
)

. (A.19)

In particular, if we denote rBH
max = rvacmax +X δd−1 where X was given in eq. (A.5) we recover

eq. (3.3), with rmax being the vacuum AdS cutoff, plus an addition

δIbulk,BH = − Ωk,d−1 d

2πGNL2
X δd−1

[

rd−1
(

v∞ − r∗(r)
)]

r=rmax

. (A.20)

Now to leading order, rd−1 = rd−1
max = L2(d−1)/δd−1 which is canceled by the factor δd−1 in

the pre-factor. But then v′∞ − r∗0(L
2/δ) ≃ δ and so we find δIbulk,vac ∝ δ.

25The notation v′∞ and r∗0(r) refers to the vacuum AdS geometry — see appendix B.
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The second claim we want to prove is that the surface contributions at the cutoff

surfaces cancel between the black hole and vacuum AdS backgrounds. We find it convenient

to define a function

g(r) = ∂rf(r) +
2(d− 1)

r
f(r), (A.21)

and a function g0(r) defined by replacing f(r) by the vacuum blackening factor f0(r) in

the expression above. Using eq. (2.26) and subtracting the vacuum AdS result we obtain

δIGHY(r = rmax) = δ1 + δ2 + δ3 + . . . (A.22)

where the ellipsis stands for higher orders in δ and we have defined the following expressions

δ1 ≡
Ωk,d−1 δr

d−1
max

4πGN
g0(r

vac
max)

(

v′∞ − r∗0(r
vac
max)

)

,

δ2 ≡
Ωk,d−1 (r

vac
max)

d−1

4πGN
δg(rmax)

(

v′∞ − r∗0(r
vac
max)

)

,

δ3 ≡
Ωk,d−1 (r

vac
max)

d−1

4πGN
g0(r

vac
max)

[

v∞ − r∗(rBH
max)− (v′∞ − r∗0(r

vac
max)

]

,

(A.23)

as well as

δrd−1
max ≡ (rBH

max)
d−1 − (rvacmax)

d−1 ≃ (d− 1)(rvacmax)
d−2 (rBH

max − rvacmax) ≃
d− 1

2d
ωd−2δ , (A.24)

and

δg(rmax) ≡ g(rBH
max)− g0(r

vac
max) = g(rBH

max)− g(rvacmax) + g(rvacmax)− g0(r
vac
max)

≃ g′(rvacmax) (r
BH
max − rvacmax)− d

ωd−2

(rvacmax)
d−1

≃ −(d− 1)
ωd−2

L2(d−1)
δd−1 ,

(A.25)

and simplified the expressions using eq. (2.11). We can now show that all the contributions

in eq. (A.23) are of order δ. For δ1 we use eq. (A.24) together with

g0(r
vac
max) ≃

2drvacmax

L2
≃ 2d

δ
(A.26)

and eq. (A.16). For δ2 we use again eq. (A.16) together with eq. (A.25) and (rvacmax)
d−1 =

L2(d−1)/δd−1. For δ3 we use in addition eq. (A.17). Therefore, we conclude that δIGHY(r =

rmax) ∝ δ.

The last claim which we want to show is that the joint terms at the cutoff surfaces

cancel between the black hole background and vacuum AdS. We use eq. (2.35) which we

reiterate here for convenience:

Ijnt,cut =
Ωk,d−1

4πGN
rd−1
max log f(rmax) . (2.35)

Dependence on rh comes either from the cutoff, as in eq. (A.13), or from the explicit

ωd−2 that appears in f(r). Expanding the above expression for small δ we see that the

dependence on the horizon radius is at most of order δ log δ. Therefore, the joint terms

near the boundary cancel between the black hole background and vacuum AdS when we

take the δ → 0 limit.
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Figure 12. The future caustic of the Wheeler-DeWitt patch in the vacuum global AdS geometry

(left figure). The tip contribution can be effectively calculated by a regulator surface t = v′
∞

− ǫ1
(represented in the right figure) with well defined ǫ1 → 0 limit.

B Details for vacuum AdS actions

As explained in section 2, there are subtle differences for the vacuum geometries corre-

sponding to k = {+1, 0,−1}. In particular, various caustics appear in the boundary of the

WDW patch and there are also ‘mild’ orbifold singularities in the planar and hyperbolic

geometries. The WDW patches for the vacuum AdS geometries are shown in figure 2. In

the following, we carefully consider these new singularities in calculating the WDW action

but our conclusion is that they do not affect the final result. That is, the only nonvanishing

contributions for the vacuum actions are those already calculated in section 2, i.e., the bulk

action (2.21), as well as the GHY surface terms (2.26) and null joint terms (2.35) associated

with the UV cutoff surface r = rmax.

(a) Spherical geometry: as noted before in section 2, the WDW patch terminates

with a caustic at the past and future tips of the causal diamond shown in figure 2(a) for

k = +1. These points are located at (t, r) = (±v∞, 0). To determine the latter, we must

first evaluate the tortoise coordinate (2.12) using f0(r), which yields

r∗0(r) = L tan−1(r/L) , (B.1)

and eq. (2.16) then gives

v′∞ = Lπ/2 . (B.2)

As mentioned in the previous section, boundary terms for such caustics were not considered

in the recent discussion of [16] but we will argue that in fact, they do not contribute to the

gravitational action as follows: focusing on the future tip, we introduce a regulator surface

at t = v′∞− ǫ1, which cuts off the future tip and produces a flat cap on the WDW patch —

see figure 12. The gravitational action can then be evaluated for this regulated geometry

using the standard boundary terms, and the contribution of the caustic is recovered with

the limit ǫ1 → 0.

In evaluating the gravitational action with the new regulator surface, we must consider

potential extra contributions of the GHY term (2.22) integrated over this cap and of the

joint term (2.32) where this additional boundary intersects the null boundary v = v′∞.

Hence, we introduce the (outward-pointing) unit normal to the regulator surface

t′ = t′µ dx
µ =

√

f0(r) dt . (B.3)
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Now one can easily verify that on this surface, the trace of the extrinsic curvature vanishes

and so the GHY term (2.22) makes no contribution. Next we can combine eq. (B.3) with

eq. (2.30) — after replacing f(r) by f0(r) — to evaluate the corresponding joint term (2.32),

Ijnt,cap =
Ω1,d−1

16πGN
ǫd−1
1 log

(

1 +
ǫ21
L2

)

. (B.4)

From this expression, we can easily see that the joint contribution vanishes in the limit

ǫ1 → 0. Hence our conclusion is that the caustic at the future tip of the WDW patch

does not contribute to the gravitational action and, of course, the same is true for the past

tip by symmetry. In the presence of the regulator surface, the bulk contribution is also

modified but of course, this change vanishes in the limit ǫ1 → 0.

(b) Planar geometry: as described in section 2 with k = 0, a ‘conical’ or orbifold

singularity appears in the vacuum geometry along the Poincaré horizon, due to the com-

pactification of the spatial geometry. To carefully evaluate the corresponding gravitational

action, we introduce a timelike regulator surface at r = ǫ0, as shown in figure 2(b).26

We evaluate the contributions due to this regulator to the gravitational action and

demonstrate that they vanish in the ǫ0 → 0 limit. For the vacuum planar AdS space, we

have f0(r) = r2/L2 and the corresponding tortoise coordinate (2.12) is simply

r∗0(r) = −L2/r . (B.5)

In turn, using eq. (2.16), the future null boundary of the WDW patch is given by

v = v′∞ = 0.

In evaluating the gravitational action, the new surface term on the regulator surface

takes the form in eq. (2.25), with the appropriate substitutions of f0(r), v
′
∞ and r∗0(r),

which yields

IGHY = −dΩ0,d−1

2πGN
ǫd−1
0 . (B.6)

Similarly, the joint contribution where the null boundary intersects the regulator surface

takes the form in the first line of eq. (2.34), with f(r) replaced by f0(r), which yields

Ijnt,sing = −Ω0,d−1

4πGN
ǫd−1
0 log(ǫ20/L

2) . (B.7)

Of course, both of these expressions vanish in the limit ǫ0 → 0. Further, the change in the

bulk action produced by cutting off the radial integral at r = ǫ0 is proportional to ǫd−1
0 ,

which again vanishes in the limit ǫ0 → 0.

(c) Hyperbolic geometry: recall that the k = −1 vacuum actually describes an entan-

gled state of two copies of the CFT on a hyperbolic geometry. With f0(r) = r2/L2 − 1,

there is a horizon at rh = L and even though locally the geometry corresponds to that

of vacuum AdS space, the Penrose diagram looks essentially the same as for the black

26An alternative approach is to introduce spacelike regulator surfaces at t = v′∞ − r∗0(ǫ1) and t = u′
∞ +

r∗0(ǫ1). We have confirmed that one arrives at the same conclusion with this approach. That is, there are

no additional contributions to the gravitational action coming from the orbifold singularity at r = 0.
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Figure 13. Penrose diagram for the vacuum hyperbolic AdS space.

hole metric — see figure 13. In particular, because we have compactified the hyperbolic

geometry, there is an orbifold singularity at r = 0. The tortoise coordinate (2.12) becomes

r∗0(r) =
L

2
log

|r − L|
r + L

, (B.8)

and from eqs. (2.15) and (2.16), we see that the boundaries of the WDW patch are given

by v′∞ = 0 = u′∞. One can readily confirm that the null surfaces future boundaries on

the left and right sides of the Penrose diagram meet at precisely r = 0.27 This joint

is a particularly singular feature in the boundary of the WDW patch and so as before,

we regulate the boundary geometry by cutting it off on the spacelike surface r = ǫ0, as

shown in figure 13. The gravitational action then receives extra contributions from the

GHY term (2.22) integrated along this regulator surface and from the joint term (2.32)

where this new boundary intersects the null boundary v = v′∞ = 0. However, following

calculations identical to those given previously, we find that both of these contributions

vanish in the limit ǫ1 → 0. Essentially the size of the relevant integration region shrinks

to zero as ǫd−1
1 and there is no compensating singularity in the other geometric factors —

consider eqs. (2.25) and (2.34), with the appropriate substitutions of f0(r), v
′
∞ and r∗0(r).

As in the previous cases, introducing the regulator surface changes the lower limit in the

radial integration in the bulk contribution to produce a small modification, δIbulk ∝ ǫd+1
1 ,

which vanishes in the limit ǫ1 → 0.

In addition, it is possible to write general expressions for the bulk contribution to the

WDW action in general dimension. For d even we obtain:

2Ivac
bulk = −Ω1,d−1 d

2πGN





rd−1
max

(d− 1)
+

d−2
2
∑

n=1

(−k)n L2nrd−1−2n
max

(2n+ 1)(d− 1− 2n)
+ δk,1(−1)

d
2
πLd−1

2d



 ,

(B.9)

27As usual the tortoise coordinate (B.8) diverges at the horizon (i.e., r∗0(r → L) → −∞), but then returns

zero at r = 0. Hence the null-ray v = 0 hits the singularity r = 0 at precisely t = 0.
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while for d odd:

2Ivac
bulk = −Ω1,d−1 d

2πGN





rd−1
max

(d− 1)
+

d−3
2
∑

n=1

(−k)n L2nrd−1−2n
max

(2n+ 1)(d− 1− 2n)

+ (−k) d−1
2
Ld−1

d2

(

1 + d log
rmax

L

)

)

.

(B.10)

Note, that for odd dimensions, there is a logarithmic divergence while for even dimensions,

there is an additional constant term for the spherical geometry. This is the origin of the

δk,1 term in the bulk action appearing in eq. (3.13).

C Small hyperbolic black holes

The ‘small’ hyperbolic black holes (i.e., k = −1 and rh < L) have a causal structure

similar to that encountered for charged AdS black holes [57]. In this case, the blackening

factor f(r) in eq. (2.2) admits two positive real roots. This means that the black hole

has two horizons, an inner one which we will denote by r = r− and an outer one with

r = rh = r+. The relevant Penrose diagram is shown in figure 14. One feature which can

be noticed right away is that the null surfaces bounding the WDW patch do not fall into

the singularity. Instead, they meet at some point between the two horizons which we will

denote by r = rmeet (of course r− < rmeet < r+). For this reason, instead of the surface

term that we have encountered in the previous cases discussed in this paper we will have

two new joint contributions. The joint contributions can be computed according to the

rules of [16].28 The total contribution from the two joints at r = rmeet becomes

Ijnt = −Ω−1,d−1

4πGN
rd−1
meet log |f(rmeet)| . (C.1)

The point in which the null rays meet r = rmeet can be calculated from the following

equation for the tortoise coordinate (2.12):

r∗(rmeet) =
v∞ − u∞

2
= v∞ . (C.2)

We will have to solve for rmeet numerically since this equation is usually transcendental. In

addition, the bulk contribution for the small hyperbolic black holes is modified, since the

volume integral only goes as low as rmeet now:

∆Ibulk =− Ω−1,d−1 d

2πGNL2

[∫ rmax

rmeet

dr rd−1
[

v∞ − r∗(r)
]

−
∫ rmax

0
dr rd−1

[

v′∞ − r∗0(r)
]

]

. (C.3)

Combining these results, we obtain the complexity of formation for small hyperbolic

black holes:

∆C =
1

π

[

∆Ibulk + Ijnt
]

. (3.4)

28In this case, we have a null-null joint for which the function a is given in eq. (D.1).
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Figure 14. Penrose diagram for small hyperbolic black holes with rh < L. The outer horizon is

drawn in dark blue and labeled r+ and the inner horizon is drawn in lighter blue and labeled r−.

The two ingoing null rays meet in the region between the inner and outer horizon, and the joint

term between them has a non vanishing contribution to the action.

In the following, we study the cases of d = 3 and d = 4 in more detail. We also chose to

include in this appendix the results for hyperbolic black holes in d = 3 with L < rh <
2L√
3

since these black holes have a blackening factor with three real roots, analogously to the

case of small hyperbolic black holes, and so parts of the computation overlap. Note however

that out of these three roots, only one is positive in this case, and so we have a single horizon

and the same causal structure as the one for large hyperbolic black holes.

C.1 d = 4

In d = 4, the blackening factor (2.2),

f(r) =
r2

L2
− 1− r2h

r2

(

r2h
L2

− 1

)

, (C.4)

has two positive real roots:

r1 = rh, r2 =
√

L2 − r2h . (C.5)

For rh = L we should recover the results of hyperbolic vacuum AdS. The problem is

completely symmetric under the redefinition r̃h =
√

L2 − r2h and so no loss of generality
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Figure 15. The meeting point of the two ingoing null rays as a function of rh. The meeting point is

always between the inner and outer horizons. In particular, when the black hole becomes extremal

the rays meet at rmeet = rh = L/
√
2.

is involved in assuming rh > r2. For the special case rh = L/
√
2 the two horizons become

degenerate which results in an extremal black hole. To obtain the tortoise coordinate one

has to factorize the inverse blackening factor with respect to both roots. After integration

we obtain:

r∗(r) =
L2

2(r2h − r22)

(

rh log

[ |r − rh|
r + rh

]

− r2 log

[ |r − r2|
r + r2

])

. (C.6)

The point where the ingoing null rays meet inside the black hole can be calculated numer-

ically using eq. (C.6) and the meeting condition (C.2) which reads in this case

r∗(rmeet) = 0 . (C.7)

Since the rays meet between the two horizons one has to choose the appropriate branches

of the logs in eq. (C.6) when solving this equation. We show the result for rmeet in figure 15.

For the bulk integral, we evaluate eq. (C.3) and obtain:

∆Ibulk =
Ω−1,3

12πGN (r2h − r22)

[

3r2
(

r4meet − r42
)

log

[

rmeet − r2
rmeet + r2

]

+2rmeet

(

r2h − r22
) (

3L2 + r2meet

)

+ 3rh(r
4
h − r4meet) log

[

rh − rmeet

rh + rmeet

]]

,

(C.8)

and the joint contribution (C.1):

Ijnt = − Ω−1,3

4πGN
r3meet log |f(rmeet)| . (C.9)

Substituting the numerical solution for rmeet, we obtain the result plotted in orange in

figure 4.

– 42 –



J
H
E
P
0
1
(
2
0
1
7
)
0
6
2

C.2 d = 3

In d = 3 when rh <
2√
3
L the blackening factor (2.2),

f(r) =
r2

L2
− 1− rh

r

(

r2h
L2

− 1

)

, (C.10)

has three real roots which we denote by

r1 = rh, r2 =
1

2

(

√

4L2 − 3r2h − rh

)

, r3 = −1

2

(

√

4L2 − 3r2h + rh

)

. (C.11)

For small hyperbolic black holes (rh < L), r2 becomes positive and there are two event

horizons (see figure 14). The root r3 is always negative and so does not indicate the presence

of a third horizon. We study in this subsection both the case of r2 < 0, L < rh <
2√
3
L

, i.e., large hyperbolic black holes and the case of r2 > 0, rh < L, i.e., small hyperbolic

black holes. Once again for rh = L, we recover vacuum AdS while for rh = L/
√
3, our

two horizons become degenerate. As before, we can assume without loss of generality that

rh > r2. The inverse blackening factor can be decomposed as follows:

1

f(r)
=

L2

(rh − r2)(rh − r3)(r2 − r3)

[

rh(r2 − r3)

(r − rh)
− r2(rh − r3)

(r − r2)
+
r3(rh − r2)

(r − r3)

]

(C.12)

leading to the following tortoise coordinate:

r∗(r) =
L2

(rh − r2)(rh − r3)(r2 − r3)

[

r3r2 log
|r−r2|
|r−r3|

+ rhr2 log
|r−rh|
|r−r2|

+ r3rh log
|r−r3|
|r−rh|

]

(C.13)

which implies v∞ = 0.

rh < L: for this range of parameters, we have that r2 > 0 and the black hole has

two horizons. The absolute values inside the logarithms differentiates the regions inside,

outside, and between the inner and outer horizons. Evaluating eq. (C.3), we obtain:

∆Ibulk = − Ω−1,2

4πGN (r2−r3)(rh−r2)(rh−r3)

[

−2r2
(

r3meet − r32
)

(rh − r3) log

(

rmeet − r2
L

)

+ 2r3(rh − r2)
(

r3meet − r33
)

log

(

rmeet − r3
L

)

−2rh(r2 − r3)
(

r3h − r3meet

)

log

(

rh − rmeet

L

)]

+
Ω−1,2(2r2 + 2r3 + 2rh + rmeet)rmeet

4πGN
, (C.14)

where rmeet can again be computed numerically using eq. (C.13) and the condition (C.2)

which reads in this case

r∗(rmeet) = 0 . (C.15)
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Figure 16. Meeting point of the two ingoing null rays for hyperbolic black holes in AdS4 as a

function of the horizon radius. Orange plot (right) indicates the region in which rh > r2.

Since the null sheets meet between the two horizons one has to choose the appropriate

branches of the logarithms in eq. (C.13) when solving this equation. We show the result

for rmeet in figure 16. The joint contribution (C.1) gives:

Ijnt = − Ω−1,2

4πGN
r2meet log |f(rmeet)| . (C.16)

The total action is the sum of the bulk (C.14) and joint (C.16) terms. Substituting the

numerical solution for rmeet we obtain the result plotted in orange in figure 5.

C.2.1 L < rh <
2L
√

3

The black holes for this region of parameter space only have one positive root, since r2 < 0.

Therefore, we should use the tortoise coordinate (C.13) to evaluate the contributions to

the action (3.2). We obtain:

∆Ibulk =
Ω−1,2

2πGN (r2 − r3)(rh − r2)(rh − r3)

[

−r42(rh − r3) log

(

− r2
L

)

+r43(rh − r2) log

(

− r3
L

)

+ r4h(r2 − r3) log

(

rh
L

)] (C.17)

and

IBH,sing
GHY = − 3rhΩ−1,2

(

r2h − L2
)

4πGN (r2 − r3)(rh − r2)(rh − r3)

[

−r2(rh − r3) log

(

− r2
L

)

+r3(rh − r2) log

(

− r3
L

)

+ rh(r2 − r3) log

(

rh
L

)]

.

(C.18)

Combining these results, we recover the last missing part of figure 5.
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C.3 Late-time growth of complexity

This subsection is a small aside in which we extend the results of [16] for the rate of

growth of complexity at late times to account for the possibility of small black holes with

hyperbolic horizons. In this case the blackening factor (2.2) reads:

f(r) =
r2

L2
− 1− rd−2

h

rd−2

(

r2h
L2

− 1

)

, (C.19)

and as mentioned before, it has two positive real roots representing two horizons with radii

which we labeled r+ and r− respectively.29

The computation parallels strongly the computation for a charged black hole described

in [16] and we will not repeat the full details here. The contribution from the volume

integral is most easily computed in the (r, v) and (r, u) coordinates and is given by:

Ibulk =
1

16πGN

∫

(R− 2Λ)
√−gdd+1x = − dΩk,d−1

8πGNL2

∫

dvdrrd−1

=− Ωk,d−1

8πGNL2
δt rd

∣

∣

∣

∣

r+

r−

.
(C.20)

The joint terms are given by equations (3.36) of [16] without any modification:

Ijnt =
Ωk,d−1

16πGN

(

rd−1 df

dr

)∣

∣

∣

∣

r+

r−

δt . (C.21)

Plugging the blackening factor and summing together eq. (C.20) and eq. (C.21) leads to:

δC
δt

=
1

π

(

δI

δt

)

= 0 (C.22)

which implies that the growth rate vanishes for rh < L. We would like to point out that

this does not provide evidence for a discontinuity in the complexity growth rate as rh
approaches L since in this limit the black hole mass vanishes — see eq. (2.7).

D Ambiguities in the action calculations

In this appendix, we recall that, as discussed in [16], the boundary terms on the null

boundary surfaces (2.28) and null joints (2.32) may introduce some ambiguities in the

gravitational action. By construction, the variation of these boundary terms is well-defined

and cancels the corresponding total derivative terms coming from the variation of the bulk

action. However, evaluating the gravitational action for a particular spacetime geometry

will generally yield different numerical values depending on different choices that can be

made in constructing the boundary terms. In particular, κ in eq. (2.28) depends on an

arbitrary choice of parameterization for the null generators. Further, in eq. (2.32), a

depends on the arbitrary normalization of the null tangent kα and in principle, we could

29By design, rh in eq. (C.19) is one of the horizon radii and we set r+ = rh.
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Figure 17. Various possible null junctions appearing in our action calculations. We show k, t and

s as outward-directed one-forms, following the convention of [29].

add an additional function a0 to a in eq. (2.32), which remains fixed when the action is

varied. For convenience, we reiterate the expressions used to evaluate a:30

a =























ǫ log |k · t| for spacelike-null joint with ǫ = −sign(k · t) sign(k · ŝ) ,

ǫ log |k · s| for timelike-null joint with ǫ = −sign(k · s) sign(k · t̂) ,

ǫ log |k · k̃/2| for null-null joint with ǫ = −sign(k · k̃)sign(k̂ · k̃) .

(D.1)

In the equation above, n̂ and ŝ (k̂) are unit vectors (null vector) that are in the tangent

space of the appropriate boundary region, orthogonal to the junction and pointing outward

from the boundary region — see figure 17. In this appendix, we will examine the influence

of all these ambiguities on our results and show that except for the small hyperbolic black

holes, our results are not effected by the different possible choices.

D.1 Redefinition of the function defining the null hypersurface

It was argued in [16] that it is possible to introduce an ambiguity in the joint terms without

redefining the null normal kα. This is done by modifying the function Φ that describes

the hypersurface (i.e., with Φ(x) = 0). In general kα = µ∂αΦ and therefore a in the joint

action depends on both µ and Φ. We can however redefine Φ → Φ̄(Φ) (where also Φ̄ is

required to vanish on the hypersurface) and choose µ̄ ≡ µdΦ/dΦ̄ in such a way that our

normal vector is left unchanged:

kα = µ∂αΦ = µ̄∂αΦ̄ . (D.2)

This implies that a is modified as follows:

anew = a+ a0 = a+ log

[

dΦ

dΦ̄

]

. (D.3)

30Here we use the conventions introduced in [29].
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In principle, there is no reason that a0 should be the same on all the joints nor does it have

to be a constant over a given joint.31 We will consider including a fixed constant a0 for all

joints as a simple test case. We will check how this addition influences our results.

We start from the joint contributions at infinity, eq. (2.35) will be modified by:

∆Ijnt,cut = Ijnt,cut = a0
Ωk,d−1

2πGN
rd−1
max . (D.4)

As discussed earlier (see eq. (2.11)), the difference in the cutoffs between vacuum AdS and

the black hole background is of order δd−1. The leading order divergence near infinity

is rmax = L2/δ + · · · , which implies that the subtraction of this term between the black

hole and vacuum AdS spacetimes will result in an order δ contribution. Of course, we are

assuming here that the same a0 appears for both spacetimes.

Moving to the joint terms near the singularity we have that these are modified by

∆Ijnt,sing = Ijnt,cut = a0
Ωk,d−1

2πGN
ǫd−1
0 , (D.5)

which vanishes in the limit ǫ0 → 0. This implies already that most of the results presented

in this paper are left unchanged under such a modification of the joint terms.

However, the small hyperbolic black holes are once again an exception. In this case we

have also the joint terms at rmeet — see eq. (C.1). These will be modified by

∆Ijnt,meet = a0
Ω−1,d−1

4πGN
rd−1
meet . (D.6)

There is no equivalent contribution in vacuum AdS and so we will be left with a finite

modification of the complexity of formation. The result for the small hyperbolic black

holes in d = 4 with a0 = {−3,−2,−1, 0, 1, 2, 3} is shown in figure 18.

D.2 Reparameterizations

In this subsection we demonstrate that our complexity of formation is invariant under a

certain class of reparameterizations of the null generators λ → λ̄(λ, θA). The behavior of

the various geometric quantities under reparameterizations was already studied in section

II.C.4 of [16] and we briefly review it here. We use λ to denote the parameter along

null generators and λ̄ for the one associated to the new parameterization. We also define

e−β = ∂λ̄/∂λ. The normal vectors can be defined using the surface embedding functional

xα = xα(λ, θA) where θA are the other intrinsic coordinates:

kα =
∂xα

∂λ
. (D.7)

Under a reparameterization, we have:

k̄α = eβkα, κ̄ = eβ(κ+ ∂λβ). (D.8)

31In principle, a0 could be any scalar function with vanishing variation. Note however, that to maintain

the additive character of the action, there are some restrictions that need to be imposed on a0 for different

kinds of joints — see section II.H of [16].
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Figure 18. Complexity of formation for the small hyperbolic black holes in d = 4 for different

choices of a0 ranging from a0 = −3 (lowest line) to a0 = 3 (highest line) in jumps of 1. We can

observe that for certain values of a0 the complexity becomes negative.

Let us look at the upper right normal in figure 1. In this case, the parametric representation

of the null sheet reads (t, r, θA) = (v∞ − r∗(r), r, θA) where λ = −r is the affine parameter

along the null generators (oriented towards the future) and the null normal is given by the

expression in eq. (2.30). We choose to look at a reparameterization with eβ = g(r) for the

upper right null sheet in figure 1. Applying the relations (D.8), we obtain:

k̄µdx
µ = g(r) kµdx

µ = g(r)

(

dt+
dr

f(r)

)

, κ̄ = −d g(r)
d r

. (D.9)

Recall that we require our normal forms to be pointing outwards and so we will as-

sume g(r) > 0 to maintain this condition. The other relevant normal forms are given

by eqs. (2.23) and (B.3). The change in the action for the upper right null hypersurface of

figure 1 is then:

∆Inull surface = −Ωk,d−1

8πGN

∫

rd−1 κ̄ dλ̄ =
Ωk,d−1

8πGN

∫ rmax

0
rd−1 ∂r log g(r) , (D.10)

where the integral in the first equality is taken with integration limits from past (r = rmax)

to future (r = 0). The difference in the action due to joint terms is:

∆Ijnt = −Ωk,d−1

8πGN
rd−1 log g(r)

∣

∣

∣

∣

rmax

0

. (D.11)

Summing the two contributions together, multiplying by four (assuming that we rescaled

all our null normals with the same function g(r)) and using integration by parts we obtain:

∆I = −(d− 1)Ωk,d−1

2πGN

∫ rmax

0
rd−2 log g(r) dr . (D.12)

We recall that from this difference we are to subtract that of vacuum AdS, and so it will

be enough for our purposes to demonstrate that the difference is independent of rh in the

limit δ → 0.
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Let us now focus on the example of κ̄ constant. This is achieved by choosing:

g(r) = 1 + κ̄(rmax − r) . (D.13)

where we chose an additive constant to guarantee that the normalization condition k̄·t̂ = ±1

at the cutoff surface is maintained.

If we are to compare the different spacetimes, the nontrivial difference is in the rmax de-

pendence on the horizon radius. Since g(r) is a known function, we can integrate eq. (D.12),

Īκ̄ − Iκ = − Ωk,d−1r
d−1

2πGN d(d+ 1)(κ̄rmax + 1)2

[

d r2κ̄2 2F1

(

1, d+ 1; d+ 2;
κ̄r

κ̄rmax + 1

)

+ (d+ 1)(κ̄rmax + 1)(κ̄r + d(κ̄rmax + 1) log (1 + κ̄(rmax − r))

]∣

∣

∣

∣

rmax

0

. (D.14)

This integral has a simple analytic expression for several dimensions. Since we know from

eq. (2.11) that the difference in rmax between the black hole and vacuum AdS is of order

δd−1, the subtraction between the two spacetimes is of order δ log δ,

∆IBH −∆Ivac = O(δ log δ) . (D.15)

Therefore, if the surface gravity changes to a constant value, the difference in the action

between the two spacetimes can still be evaluated and the result in independent of κ̄ in the

limit δ → 0.32

D.3 Changing the normalization condition at the boundary

The last source of ambiguity which we chose to explore is the possibility to normalize

differently the null normals at the cutoff surface. Throughout the paper we have normalized

the null normal, e.g., in eq. (2.30), at the asymptotic AdS boundary such that k · t̂ = 1

where t̂ = ∂t. However, as suggested in [16], k · t̂ = c with c a positive constant would

be an equally natural choice. Let us explore the consequences of choosing such a constant

c > 0. This will lead to a rescaling of the null normal similar to the one in the previous

subsection eq. (D.9). However, since in this case g(r) is a constant, the surface gravity

remains zero and the only contribution is of the form (D.11) with g(r) = c:

∆Ijnt = −Ωk,d−1

8πGN
rd−1
max log c . (D.16)

We can now use again the fact that from eq. (2.11) the difference in rmax between the black

hole and vacuum AdS is of order δd−1. The expression (D.16) is therefore of order δ and

vanishes when subtracting the two backgrounds. The small hyperbolic black holes are again

different and will suffer ambiguities similar to those already discussed in subsection D.1.

32For small hyperbolic black holes, however, we have again an ambiguous result.
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Figure 19. Penrose diagram of a black hole in d > 2 representing a different way of regularizing

the WDW patch. In this case we shoot the null rays from r = rmax and not from the boundary as

in figure 1.

D.4 A comment on the cutoff choice

We close this appendix with another nontrivial test of our results which is to check that

they would not change for a certain modified regularization scheme. Suppose that instead

of regularizing our action by a cutoff surface at r = rmax as we did in the text, we would

bound our region by null rays which are emitted at t = 0 at r = rmax, as depicted in

figure 19. In this appendix we demonstrate that our results do not change for such a

choice. To be more precise, we show that the change introduced in the black hole action

under our modified regularization scheme does not depend on rh when taking the limit

δ → 0 and so will cancel against that of vacuum AdS.

Let us start with the bulk contribution to the action. The sole modification to the

integral (2.21) is that v∞ would be replaced by:

ṽ∞ = r∗(rmax) (D.17)

which results in the following change of the bulk action:

∆Ibulk = − dΩk,d−1

2πGNL2

∫ rmax

0
(ṽ∞ − v∞) rd−1 dr = −Ωk,d−1r

d
max

2πGNL2
(ṽ∞ − v∞) . (D.18)

Using the definition (2.12) of the tortoise coordinate:

ṽ∞ − v∞ = −
∫ ∞

rmax

dr

f(r)
= − L2

rmax

+ · · · . (D.19)

This means that the bulk integral has a leading contribution proportional to rd−1
max when

rmax is large. Using again eq. (2.11) for the difference between the cutoffs of the black
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hole and vacuum AdS, we see that the rh dependence of this expression is of order δ and

vanishes in the limit δ → 0.

A similar argument holds for the surface contribution near the singularity (2.27) which

is modified by:

∆IGHY =
dΩk,d−1 ω

d−2

4πGN
(ṽ∞ − v∞) . (D.20)

From eq. (D.19) we see that the difference (ṽ∞ − v∞) has a leading 1/rmax contribution

and goes to zero when we take the δ → 0 limit.

One last contribution which has to be considered is that of the right joint near the

boundary (between the two null sheets):

Ijnt =
rd−1
max Ωk,d−1

8πGN
log f(rmax) . (D.21)

But notice that this (after a factor of 2 accounting for the two sides of the black hole) is

exactly the same as in eq. (2.35) and so ∆Ijnt = 0. This completes our argument that this

different regularization scheme would give the same result for the complexity of formation.

E Insights from MERA

We found that for high temperatures, the leading contribution to ∆C is proportional to the

entropy. This result arose for the complexity=action duality in eq. (3.39), but also using

the complexity=volume approach in eq. (5.8), with a different pre-factor. Hence our holo-

graphic calculations indicated that at least for high temperatures, the additional complexity

required in preparing the entangled thermofield double state (compared to preparing each

of the CFTs in its vacuum state) is proportional to the entanglement entropy between the

two boundary CFTs in this state — or the thermal entropy of the corresponding mixed

state (produced by tracing over one of the CFTs). Further, in the following it will be useful

to recall that in a CFT, the leading contribution to the entropy takes the form

S = CS V T d−1 , (E.1)

where V is the spatial volume and CS is a parameter characterizing the number of degrees

of freedom in the CFT, e.g., CS ∼ CT in a holographic CFT dual to Einstein gravity, e.g.,

see [58]. Of course, in the above expression, we have neglected the possibility of curvature

corrections to this leading result.

In this appendix, we would like get some insight into this result from the description of

analogous CFT states with MERA tensor networks [48–50].33 Of course, the key underlying

assumption here will be that the MERA network is comparable to the optimal circuit

of universal gates for preparing the desired states and so the complexity is proportional

33We thank Guifre Vidal for discussions on the material presented in this appendix. The interested

reader may also look at appendix E of [15], which suggests some ways of bounding complexity in thermal

states. While the discussion there considers systems defined by an ensemble of Hamiltonians, it may still

be interesting to gain further intuition for the complexity of formation.
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(a) Thermofield double state. (b) Vacuum state.

Figure 20. Tensor network representations of the Euclidean path integral giving (a) the thermofield

double state and (b) the vacuum state. In panel (a), both the top and bottom of the tensor network

correspond to open indices, while in panel (b), only the top of the tensor network has open indices.

(a) Thermofield double state. (b) Vacuum state.

Figure 21. MERA network representations of (a) the thermofield double state and (b) the vacuum

state. The aqua regions are composed of disentanglers and isometries. In panel (a), there remains

a single layer of fixed point tensors at the center of the tensor network.
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Figure 22. MERA network representing the vacuum state. The IR portion of the MERA denoted

by the green triangle gives a coarse-grained version of the vacuum state. The coarse graining is

suggested by the sparsity of vertical red bonds running through the horizontal cut of length L′.

to the number of gates in the MERA circuit. Let us first begin with a tensor network

representation of the Euclidean path integral giving the thermofield double (TFD) state

and the vacuum state [51, 59], as shown in figure 20. While the details will not be important

here, these networks are constructed with a Suzuki-Trotter decomposition to approximate

the Euclidean time evolution operator e−βH and here we will also assume that tensor

network renormalization (TNR) has been applied to identify the fixed point tensors, which

implicitly appear at each of the vertices in figure 20 — see further discussion below. Let

us note that in the TFD network, there are open indices both at the top and bottom of

the tensor network, while the network representing the vacuum only has open indices on

the top. For simplicity, we assume periodic boundary conditions and so indices on the

left and right sides of both networks are contracted with each other. Finally, although

our figures are two-dimensional, we can think of them as illustrating the network for a

d-dimensional CFT if each horizontal layer is an Ld−1 array of tensors and so the tensor

network corresponds to a d-dimensional Euclidean path integral.

Next, we apply TNR as in [51] to produce the corresponding MERA networks, as

shown in figure 21. Again, the TFD network has open indices on the top and bottom

while the vacuum circuit only has open indices on the top. In the figure, the angled (aqua)

regions represent networks constructed from the usual disentanglers and isometries found

in the MERA network [48–50]. Hence for the vacuum state in panel (b) of figure 21, the

entire tensor network in figure 20(b) has been replaced by these new tensors and we can

think of the resulting network as a quantum circuit of unitaries which maps a trivial state

to the CFT vacuum state [48–50]. Now in contrast to the vacuum MERA, not all of the

fixed point tensors are eliminated in the TFD state in figure 21(a). In particular, there is

a single layer of the fixed point tensors at the center of the network which bridges between

two MERA circuits above and below. We emphasize that this bridge layer is constructed

from the same tensors used to construct the original tensor network in figure 20(b) and we

recall that the latter are not unitary gates.

Now towards evaluating the complexity of formation, we realize in comparing the

MERA circuits for the TFD state and for (two copies of) the vacuum state that the UV
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portions of the circuits are identical. That is, the circuit represented by the trapezoid in

the top half of figure 21(a) is identical to that represented by the trapezoid in the upper

part of the vacuum MERA shown in figure 22. In the latter figure, the horizontal line

denoted by the length L′ is the same size as the central layer in the TFD circuit. That is,

there are just as many (vertical) bonds in this horizontal cut through the vacuum circuit as

run between the bridge layer and either of the MERA portions of the TFD circuit. We can

think of the IR portion of the MERA denoted by the bottom (green) triangle in figure 22

as giving a coarse-grained version of the vacuum state.

Now again, our key assumption is that the MERA circuits give some approximation of

the optimal preparation of the desired states and so the complexity is proportional to the

number of gates in the MERA circuit. It follows that the complexity of the vacuum state

can be separated as

C(vac) = CUV + Cc-g(vac) (E.2)

where CUV and Cc-g denote the complexities of the UV (top) and IR (bottom) parts of the

circuit in figure 22 — the subscript ‘c-g’ denotes coarse-grained. For the TFD state, we

make the further assumption that there is a similar addition of complexities, i.e.,

C(TFD) = 2 CUV + Cc-g(TFD) (E.3)

where CUV is precisely the same quantity as appears in eq. (E.2) and Cc-g(TFD) is the

complexity associated with the bridge layer of the TFD circuit — which we will argue in a

moment is simply a coarse-grained version of the TFD state. Hence with these assumptions,

the complexity of formation would be given by

∆C = C(TFD)− 2 C(vac) = Cc-g(TFD)− 2 Cc-g(vac) . (E.4)

The important point being, of course, that the complexities associated with the UV portions

of the circuits have precisely canceled in this difference.

A natural question is: what is the (linear) size of this middle layer in the TFD circuit?

Of course, by construction, this is also the size of the coarse-grained vacuum circuit in

figure 22. To begin, we consider the dimensions of the original circuit in figure 20(a) — see

figure 23. We assign the (linear) spatial dimension L = N δ where δ is some lattice spacing

between sites. This tensor network describes a path integral in a CFT and so this lattice

spacing is arbitrarily chosen and then corresponds to our resolution of the wavefunction in

the spatial direction. Again, for a d-dimensional CFT, each layer has the spatial volume

Ld−1 and, e.g., there are Nd−1 open indices at the top and bottom of the network. The size

of the Euclidean time direction is β/2 = M δ. We are considering the high temperature

regime and so we have L ≫ β or N ≫ M . Now let us assume that each step of the TNR

reduces each of the dimensions by a factor of 2. That is, acting on the networks in figures 20

or 23, we group the tensor network into blocks of 2d tensors and applying one step of TNR,

then reduces each of these blocks to a single tensor. With our assumption that we have

already identified the fixed point tensors for the CFT, the tensors appearing in the network

before and after this step are the same and this simply produces a coarse-graining of the
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(a) Thermofield double state.

(b) ‘Coarse-grained’ TFD.

Figure 23. Two different versions of the thermofield double state, shown in figure 20(a), with

different coarse-graining. The blue dots represent the fixed point tensors for the CFT.

original network.34 Now if we assume that M = 2m, then after m steps the Euclidean

time direction is reduced to one layer, i.e., β′/2 = δ. Similarly, the spatial dimension is

reduced by the same factor and so L′ = N ′ δ with N ′ = N/M = L/(β/2). That is, the

number of tensors in the TFD bridge is N ′d−1 = (2L/β)d−1 ≃ V T d−1. In other words, the

number of fixed point tensors in the bridge layer is proportional to the entropy (E.1) of

the thermofield double state!

Now to evaluate the complexity of formation (E.4), let us begin with Cc-g(vac). By

construction, the volume of the top layer of this coarse-grained vacuum MERA is also

L′d−1 = Ñ δd−1 with Ñ = N ′d−1 ≃ V T d−1. One of the remarkable features of MERA is

that the total number of gates in the entire circuit is also proportional to Ñ . Hence we

expect that the complexity satisfies Cc-g(vac) ∝ V T d−1. One might go further to argue for

a factor of CT in the limit of a large central charge. In this case, we expect that there are

CT degrees of freedom associated with each bond and so the complexity of the individual

gates in the MERA circuit should be proportional to the central charge. Then we arrive at

Cc-g(vac) = k̃0(d)CT V T d−1 = k0(d)S , (E.5)

where S is the thermal entropy in eq. (E.1) and k0(d) is some order one factor, which can

depend on the spacetime dimension d.

Now we would like to consider Cc-g(TFD), the complexity of the coarse-grained TFD

state. Above, we found that the total number of tensors in this network was Ñ = N ′d−1 ≃
V T d−1 and we would like to argue that the complexity is proportional to this number.

34For example, evaluating the partition function with either of the circuits in figure 23 will give the same

result — up to small numerical errors from properly representing the fixed point tensors.
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Figure 24. The coarse-grained TFD state is similar to an MPS description of a gapped ground

state, in that both exhibit only short-range correlations.

Recall that here the individual fixed point tensors are not unitaries. However, looking back

to figure 23(b), we can think of this circuit as describing a high temperature TFD state

with temperature T ≃ 1/δ and so it will only have short-range correlations in the spatial

direction. In this regard, this tensor network is like a matrix product state [60] describing

the ground state of a massive or gapped theory — see figure 24. Therefore it is natural to

think that only a circuit with a fixed finite depth (independent of L′) is needed to prepare

this state.35 Of course, this implies Cc-g(TFD) ∝ V T d−1 as desired. As above, in the

limit of a large central charge, we can also argue for a factor of CT. That is, we expect

that there are CT degrees of freedom associated with each bond and so the complexity of

the individual fixed point tensors should be proportional to the central charge. Then we

conclude that

Cc-g(TFD) = k̃T (d)CT V T d−1 = kT (d)S , (E.6)

where again S is the thermal entropy in eq. (E.1) and kT (d) is some new order one factor,

which again can depend on the spacetime dimension d.

Substituting these results into eq. (E.4) now yields

∆C = (kT (d)− 2 k0(d)) S . (E.7)

That is, the complexity of formation is proportional to the thermal entropy, as in our

holographic result (6.1), and the pre-factor is simply given by the difference of the numerical

factors appearing in eqs. (E.5) and (E.6). Our holographic calculations produce a positive

pre-factor for d > 2, which then suggests that kT (d) > 2 k0(d) at least for those holographic

CFTs. Of course, in our holographic calculations, the coefficients kd and k̃d both vanished

for d = 2 and ∆C became a fixed constant. Hence in this special case, kT (d = 2) = 2 k0(d =

2). Now it was found that for the special case of d = 2, the central layer of fixed point

tensors can be replaced by a network involving the standard isometries and disentanglers

appearing in the UV portion of the MERA [53]. However, we should note that this new

circuit does not respect the ‘time flow’ of the rest of the circuit, which is usually a part of

the definition of complexity. Further it appears that a naive comparison yields ∆C which

grows as the size of the horizon.36 However, it still seems that this construction may be

useful in understanding kT (d = 2) = 2 k0(d = 2). Of course, the construction in [53] relies

on the local conformal invariance of the underlying d = 2 CFT and so it will not apply

in higher dimensions, which is consistent with the holographic result kT (d) > 2 k0(d) for

d > 2.

35In higher dimensions (d > 2), gapped states may be topologically ordered and this statement would

not apply for such states. However, the assumption here is that (the purification of) the thermal state for

the CFT only contains short-range correlations and is not topologically ordered.
36We would like to thank Bartek Czech and Jamie Sully for discussions on this point.
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To close, a few more words on that central layer of the TFD state: as mentioned above,

it can be regarded as the tensor network describing a high temperature state (with T ≃ 1/δ)

with only short-range spatial correlations. One suggestion [61, 62] was to replace the bridge

layer with trivial identity tensors, raising the temperature to infinity and eliminating the

spatial correlations altogether — see also [63]. While this picture provides useful intuition,

it seems to be an oversimplification when considering the complexity, e.g., a consequence

would be ∆C < 0. As emphasized above, this central layer is just a coarse-grained version

of the original TFD state. It is constructed from the same fixed point tensors used to build

the original tensor networks in figure 20 and contains much of the same information. Hence

there are very specific correlations controlled by the conformal dimensions of the primary

operators — and up to an overall rescaling (and numerical errors), one reproduces the

correlation functions in the original TFD state for which the spatial separation is chosen

as some multiple of β. Hence the correlations established by the central bridge of the TFD

state are short-range but they are definitely not trivial.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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