
Complexity of K-Tree Structurecl

Constraint Satisfaction Problems

Eugene C. Freuderl

Department of Computer Science

University of New Hampshire

Durham, New Hampshire 03824 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Trees have played a key role in the study of constraint

satisfaction problems because problems with tree

structure can be solved efficiently. It is shown here that a

family of generalized trees, k-trees, can offer increasing

representational complexity for constraint satisfaction

problems, while maintaining a bound on computational

complexity linear in the number of variables and

exponential in k. Additional results are obtained for

larger classes of graphs known as partial k-trees. These

methods may be helpful even when the original problem

does not have k-tree or partial k-tree structure. Specific

tradeoffs are suggested between representational power

and computational complexity.

1 Introduction

A constraint satisfaction problem (CSP) involves

finding values for variables subject to constraints on what

combinations of values are allowed. Constraint

satisfaction problems occur widely in artificial

intelligence. Recently they have received particular

attention in the domains of scheduling and temporal

reasoning.

Judea Pearl has observed that a primary advantage of

viewing AI problems in CSP terms is our ability to

identify certain “islands of tractability” among CSP

problems, classes of problems that admit efficient

solution. The significance of such classes is increased by

techniques for “massaging” problems outside these classes

to fit into or utilize these classes.

Up until now there has been one major tractable island,

the class of tree structured problems. In this paper I

identify a “chain” of such islands, generalizations of tree

structures, which considerably expand the “tractable

topography” of the CSP world. The tractability of these

classes varies inversely with the representational

complexity of the problems in the class, but the solution

effort is always linear in the number of problem variables.

We will restrict our attention here to binary constraint

satisfaction problems, in which the given constraints

involve two variables. (Non-binary CSPs are shown to

1. This material is based in part upon work supported by the

National Science Foundation under Grant No. IRI-8601209

and Grant No. IRI-8913040.

4 AUTOMATEDREASONING

be “reducible” to binary CSPs in mossi, Dhar, Petrie,

891.) A binary CSP can be represented by a constraint

network, in which the nodes represent variables and the

links represent constraints.

The general constraint satisfaction problem is NP-

complete. However, tree structured problems (those with

tree structured constraint networks) have a worst case

complexity bound that is linear in the number of problem

variables [Mackworth and Freuder, 841. If there are n

variables, and no variable has more than d values to

choose from, a tree structured CSP can be solved in

O(nd2) time [Dechter and Pearl, $81.

K-trees [Beineke and Pippert, 71; Rose, 741 generalize

trees. Trees are l-trees. The central result of this paper is

the demonstration that CSPs whose constraint networks

are k-trees can be solved in O(ndk+‘) time. Note that we

are saying that the complexity of a k-tree structured CSP

is bounded by a linear function in the number of variables

as long as we maintain the original k-tree structure and d

bound when increasing the size of the problem.

Further results are described briefly for larger classes of

graphs known as k-chordal graphs and partial k-trees.

Partial k-trees are characterized in a manner that

generalizes the characterization of forests in preuder, 821.

Methods have been developed to utilize tree structures in

solving general CSPs [Dechter and Pearl, 881. K-trees

now provide us with a range of “target” structures of

increasing complexity that we can consider utilizing in

similar fashion.

Jeavons has introduced the issue of the expressive power

of constraint networks [Jeavons, 891. I show that the class

of partial p-tree structured networks have less expressive

power than the class of partial q-tree structured networks

for p less than q. Combined with the complexity bounds

indicated above, this suggests a tradeoff between

computational complexity and expressive power [Levesque

and Bra&man, 19851.

Another tradeoff arises in utilizing k-trees as target

structures in a partial constraint satisfaction process

[Freuder, 891. Any CSP can be solved in time exponential

in k by removing enough constraints to give the problem

a k-tree structure. In the worst case this would necessitate

removing a number of constraints equal to the number of

edges in a complete graph of n-k vertices.

The 2-tree case is of some special interest. “Minimum

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

IFI networks” are 2-trees wald and Coburn, 83). “Regular

width-2 constraint graphs” are partial 2-trees; this paper

improves on the O(n 33 d) complexity bound for regular

width-2 CSPs reported in pechter and Pearl, 881. “Series-

parallel graphs” are partial 2-trees [Arnborg, 851.

Many of the basic concepts used here have been

rediscovered in diffbrent forms in different fields at different

times. This is a testimony to their importance, but makes

issues of attribution and terminology difficult. [Dechter

and Pearl, 881 provides useful background from an AI

CSP perspective; [Arnborg, 851 provides useful

background from the perspective of work on combinatorial

graph algorithms.

The complexity results exploit the connection between

CSP theory and combinatorial graph theory. Some

background material in these areas is presented in section

2 along with examples of k-trees. The complexity bounds

are derived in section 3. Section 4 discusses

representational complexity and suggests how k-trees can

be utilized even when the original problem does not have

k-tree structure. Section 5 summarizes the results.

2 Background

2.1 Constraint Satisfaction Problems

A binary constraint satisfaction problem (binary CSP)

consists of a set of variables, each with a domain of

potential values, and a set of binary constraints, which

specify pairs of allowable variable values. In a constraint

graph variables are represented as vertices and constraints

as edges.

The n-queens problem is often used as a CSP example.

This problem involves placing n queens on an n by n

chessboard such that no two queens attack one another. In

the constraint graph for this problem each pair of vertices

is connected by an edge.

A soEution to a CSP is an assignment of one value to

each of the problem variables such that any pair of values

satisfies (is allowed by) the constraint between the

corresponding variables. A constraint graph for a CSP

represents the set of solutions to the CSP. Two

constraint graphs are equivaEent if they represent the same

set of solutions.

An ordered constraint graph [Freuder, 821 is a

constraint graph together with an ordering of the vertices,

V1...Vn. The width [Freuder, 821 of a vertex in an

ordered constraint graph is the number of edges from that

vertex back to vertices preceding it in the ordering. The

width of an ordered constraint graph is the maximal

width of its vertices and the width of a constraint graph

is the minimal width of all the ordered constraint graphs

obtained by utilizing every ordering of the vertices.

The well-known backtrack search process is a standard

method for solving CSPs. An ordering of the variables of

a CSP is backtrack-$-et! [Freuder, 821 if backtrack search

using that variable order can always find a value for a

variable consistent with previous choices of values for

variables.
Dechter and Pearl present an adaptive-consistency

procedure [Dechter and Pearl, 881, which transforms an

ordered constraint graph, 0, into an equivalent ordered

constraint graph, I, with a backtrack-free variable order. I

is called the induced graph of 0. The width of I is called

the induced width of the ordered constraint graph 0.

Define the induced width of a constraint graph G to be

the minimal induced width of all the ordered constraint

graphs of G.

The adaptive-consistency procedure from [Dechter and

Pearl, 881 is shown below:

Adaptive-consistency(Xl,...J&)

1. begin

2. forr=nto 1 by-l do

3. compute PARENTS

4. perform ConsistencyQ$., PARENTS(

5. connect by arcs

all elements in PARENTS&)

(if they are not yet connected)

6 end

The X, are variables in an ordered constraint graph.
1

PARENTS returns the set of variables preceding Xi in

the ordering that are connected to Xi by an edge in the

graph, (Notice that the procedure may add edges to the

graph.) The procedure Consistency(v,S) records a

constraint on all the variables of S (if S has j variables,

this will be a j-ary constraint). The constraint permits an

assignment of values to the variables of S only if the

assignment is consistent with at least one (consistent)

value for v. To determine consistency Dechter and Pearl

specify that all constraints be used (old or new) that

involve v and a subset (possibly empty) of variables from

S. The algorithm basically works to enforce a backtrack-

free ordering by adding constraints that prevent one from

making choices that will lead to inconsistency.

Define the adaptive-consistency level achieved by the

adaptive-consistency procedure to be one greater than the

maximum size of the PARENTS sets encountered during

the running of the algorithm.

An O(exp(W*(rr)+l)) bound is given in [Dechter and

Pearl, 881 for adaptive-consistency, where W*(n) is the

induced width of the constraint graph with ordering 7t. The

bound on the algorithm can be expressed as

O(ndw*(rc)+l). 0 n each of n-l passes through the outer

loop the consistency procedure needs to check that there is

a value for Xr consistent with any consistent assignment

of values to the parents of Xr. There are at most W*(n)

parents. There are at most dw*(‘r)+l combinations of

values for the parents together with Xr. For each of these

there are at most 2W*(n) constraints to check that involve

Xr and some (possibly empty) set of parents.

FREUDER 5

2.2 Combinatorial Graph Theory

A graph, G=(V,E), consists of a set of vertices, V, and a

set of edges, E, where each edge is a two-element subset

of V. An edge is incident to the two vertices in the edge.

Two vertices are adjacent if they belong to the same edge.

A complete graph is one that contains all possible edges.

The subgraph of a graph G induced by a subset of

vertices V’ from G, written G(V), consists of the vertices

V’ together with all edges in G incident only to vertices in

v.

Define the neighborhood of a vertex v as the set of

vertices adjacent to v, and the degree of v as the number

of vertices in its neighborhood.

A graph G is a k-tree [Beineke and Pippert, 71; Rose,

743 if:

1. G has k vertices and is complete

or

2.a. there is a vertex, v, of degree k, whose

neighborhood induces a complete graph

ad

b. the graph obtained by removing v and all edges

incident to it from G is a k-tree.

A simplicial vertex of a k-tree is one that satisfies part

2 of the definition. Call the complete graph of k vertices

t& trivial k-tree.

K-trees are structures that can be built as follows: start

with a complete graph of k vertices; each time you add a

new vertex add an edge between it and k previous vertices

that already form a complete subgraph (each pair of
vertices is joined by an edge). For example, l-trees are

just trees, and can be built as follows: start with a single

vertex, connect each new vertex to one of the previous

vertices.

The constraint graph for the n-queens problem is an n-

tree; it is also an (n-1)-tree. For example the constraint

graph for the $-queens problem (place 4 non-attacking

queens on a 4 by 4 board) is a 3-tree: it can be viewed as

a complete graph of 3 vertices (a triangle) plus a fourth

vertex connected to each of those three.

Now consider the following variation on the n-queens

problem, which I will call the n/m-queens problem. The

n/m-queens problem requires only that a given queen

cannot attack (or be attacked by) any queen in the previous

m rows. The n/m-queens problem has an m-tree constraint

graph. The 4/2-queens problem has a 2-tree constraint

graph.

A partial graph of G consists of the vertices of G and a

subset of the edges of G. A subgraph of G is a partial

graph of an induced subgraph of G. A partial k-tree

[Arnborg, 861, is a subgraph of a k-tree; the k-tree is

termed an embedding of the partial k-tree. Partial l-trees

are forests. Any graph is a partial k-tree for sufficiently

large k.

I define a weak k-tree as the class of graphs that result

when “k” is replaced by ‘Xk” and “k-tree” by “weak k-tree”

in the k-tree definition. The weak k-trees are the k-chordal
graphs [Chandrasekharan and Hedetniemi, $81.

3 Comprdational Complexity

Tree structured problems have been solved with backtrack-
free search by achieving a consistency level greater than

their width. (Partial) k-tree structured problems are solved

here with backtrack-free search by achieving an adaptive

consistency level greater than their induced width.

3.1 K-Trees

Dechter and Pearl point out, citing [Amborg, Comeil and

Proskurowski, 87J, that determing the induced width, W*,

of a constraint graph is an NP-complete problem.

However, we will see that for k-trees W*=k (except for the

trivial k-tree with k vertices, for which W*=k-1). If the

constraint graph is a k-tree it can be recognized as such, if

necessary, and an ordered constraint graph with induced

width k can be obtained, in O(n) time (regarding k as a

constant). Adaptive-consistency can then obtain an

equivalent ordered constraint graph with a backtrack-free

variable ordering in O(ndk+‘) time. The backtrack-free

search can be completed in O(nd) time. Taken together

this provides the promised O(ndk+‘) bound for solving k-

tree structured CSPs.

Amborg (citing [Rose, 701) states that k-trees “are

easily recognized by a procedure which successively

deletes vertices with completely connected neighborhoods”

[Amborg, $51. I present here an algorithm that performs

this recognition for a graph 6, and returns an ordering of

G with induced width k (k-l if G is the trivial k-tree) in

time linear in the number of vertices, n, for a fixed k.

Algorithm w:

Input: A constraint graph G and an integer k.

Output: If G is a k-tree, the algorithm returns an

ordering of G with induced width k (k-l for the trivial k-

tree); if G is not a k-tree the algorithm reports failure.

1. Determine the degree of each vertex, store that

number with the vertex, and place all the degree k

vertices in a queue K. Sum the vertex degrees as you

proceed; if and when the sum exceeds 2n-k-k2 (twice

the number of edges in a k-tree), report failure.

2. For i = 1 to n-k

If PC is empty, report failure.

If K is not empty:

Take a vertex v from K.

If the graph G(N) induced by the neighborhood

N of v is not complete, report failure.

If G(N) is complete:

record v as the (n-i+l)th vertex in the ordering,

remove v and its incident edges from G,

subtract one from the degree count associated

with the vertices in N and place vertices that

now have degree k in the K queue.

3. If G is now a complete graph (of k vertices) choose

the remaining vertices in any order to complete the

vertex ordering. If G is not complete, report failure.

Theorem 1. A k-tree constraint graph with n vertices

6 AUTOMATEDREASONING

can be recognized as a k-tree, and an ordered constraint

graph of induced width k found (k-l for the trivial k-tree),

in O(n) time.

Proof. Algorithm W does the job. If G is the trivial k-

tree, step 3 produces a width k-l ordering. Adaptive-

consistency will not change this width (there are no edges

to add). If G is a k-tree with more than k vertices, for any

vertex v with degree k the graph induced by the

neighborhood of v must be complete, because the

definition of k-trees implies that every vertex in a k-tree of

more than k nodes is connected to at least k others that

induce a complete graph. Any k-tree vertex with a

neighborhood that induces the complete graph of k

vertices is simplicial [Arnborg, 85; Rose, 701. Therefore,

by part 2 of the k-tree definition, if G is a k-tree it

remains one after each pass through step 2. If G is a k-tree

after step 2 it must satisfy part 1 of the definition and be

the complete graph of k vertices. The ordering produced is

such that the parent set of each vertex will already induce a

complete graph, therefore adaptive-consistency does not

change the width, which remains k.

A k-tree has k(k-1)/2+(n-k)k edges (count the edges as

you apply the definition). That and the use of the K queue

are the keys to maintaining an O(nk2) complexity bound

for the algorithm. 0

Theorem 2. The induced width, W*, of a non-trivial k-

tree is k; for the trivial k-tree, W*=k-1. The induced width

of a k-tree is equal to its width.

Proof. The trivial k-tree is the complete graph with k

vertices, for which the width and the induced width are

obviously equal to k-l. Now consider the non-trivial case.

Theorem 1 demonstrates that W*5k. The width of a graph

is obviously I its induced width and thus I k. A k-tree

with more than k vertices includes a complete graph of

k+l vertices, and regardless of how they are ordered the

last one will have k parents. This demonstrates that the

width and therefore the induced width are both 2 k. Thus

the width equals the induced width equals k. 0

Theorem 3. Given an induced graph I, with induced

width k, of an ordered constraint graph of a k-tree

structured CSP; the CSP has n variables each with a

domain of at most d values. A backtrack-free search using

the ordering of I can be conducted with time bound O(nd).

Proof. The adaptive consistency procedure ensures that

the ordering of the induced graph is backtrack-free [Dechter

and Pearl, 881. Thus to instantiate each of the n variables,

we need at worst try each of the d possible values. For

each value we need check at most 2k constraints

that variable and subsets of its parents. 0

involving

Theorem 4. A k-tree structured CSP can be solved in

time O(ndk+‘) .

Proof. Given a constraint graph G for the CSP we can

use algorithm W to obtain an ordered constraint graph 0

with induced width k in O(n) time (Theorem 1). We can

then apply adaptive-consistency to obtain an equivalent

induced graph in O(ndk+’) time, as discussed in section 2.

FinalIy we can carry out a backtrack-free search in O(nd)

time (Theorem 3). 0

If we do not assume k to be a constant, we can derive an

Q(n(2d)k+l) bound, taking into account the analysis of

adaptive consistency presented in section 2.1.

3.2 Partial K-Trees

This section will sketch some extensions of the k-tree

results to partial k-trees. It also contains a characterization

of partial k-trees in terms of induced width.

Theorem 4 holds for weak k-trees. (As we will see

below weak k-trees are partial k-trees; see also

[Chandrasekharan and Hedetniemi, 19881) The key

observation (similar to one made by Arnborg, citing Rose

[Arnborg, 85; Rose, 701) is that the basic idea behind

Theorem 1 of deleting vertices whose neighborhoods

induce a complete graph still works. We can obtain an

O(n) bound by modifying Algorithm W to maintain in

place of the queue K a queue C of vertices whose adjacent

vertices induce a complete graph of Ik vertices.

If we have an embedding of a partial k-tree in a k-tree,

we can go on to use the above methods on the embedding.

Every partial k-tree with at least k vertices can be

embedded in a k-tree without adding vertices [Arnborg,

861. Even if we are given an embedding with more

vertices than we started with we can simply throw away

the extra and still have a weak k-tree (picture an ordering

with induced width k, now throw away the extra vertices).

There is unfortunately no similar analog of Algorithm

W known for easily recognizing partial k-trees and finding

an embedding. There is an O(n k+2) algorithm for doing so

[Arnborg, 871, and more efficient methods are known for

k=2 [Wald and Coburn, 831 and k=3 [Amborg, 861 (and, of

course, for k=l).

Theorem 2 can be extended to the following

characterization of partial k-trees, which generalizes the

characterization in [Freuder, 821 of forest-structured

constraint graphs (partial 1 -trees) as those with widthll.

Forests are l-trees and the width of a l-tree is equal to its

induced width. (Compare with Arnborg’s Theorem 3.l(iv)

involving the “dimension” concept in [Arnborg, 851.)

The following theorem also serves to identify exactly

when we can “induce” width I k, namely when we start

with a partial k-tree. K-tree embedding in that case

provides a method for obtaining au ordered constraint

graph with this induced width. Adaptive consistency,

obtained with no more than O(ndk+l) effort, then leads to

backtrack-Eree search.

Theorem 5. A constraint graph has induced width& iff

it is a partial k-tree.

Proof. If the graph has fewer than k vertices the theorem

is trivial: assume there are at least k vertices. Suppose the

graph, 6, is a partial k-tree. It can be embedded in a k-tree

with the same vertices. The k-tree will have width k. The

partial k-tree’s width will be, if anything, less.

Suppose G has induced width w5k. Let I be an induced

graph of an ordered constraint graph of G with induced

FREXJDER 7

width w. G is a partial graph of I. I is a weak k-tree. We

will see that it can be extended to a k-tree by adding

further edges (if necessary), i.e that weak k-trees are partial

graphs of k-trees.

First add edges as needed so that the first k vertices in

the ordering wilI induce a complete graph. If the graph has

only k vertices we are done. If not add edges to connect the

next vertex to the first k, if necessary. This k+lst vertex

wilI now have a parent set that induces the complete graph

of k vertices. I will demonstrate inductively that edges can

be added as needed so that any remaining vertices will have

such parent sets. The resulting graph will clearly satisfy

the k-tree definition.

Assume that edges have been added as needed so that the

first i vertices in the ordering after the initial k each have a

set of parents that induces the complete graph of k

vertices. Consider the i+lst vertex, v. Its parent set

induces a complete graph (we have a weak k-tree). If its

parent set contains k vertices, this step is complete. If its

parents all lie within the first k vertices, simply add edges

to connect v to all of the first k vertices. Otherwise,

consider the parent set of the parent vertex, p, of v that is

closest to v in the ordering. The vertex p will have a

parent set that induces a complete graph of k vertices, and

that parent set will already include the other parents of v.

Simply add edges to connect v with as many of the

parents of p as needed to bring the total number of parents

of v up to k, The resulting set of parents for v will induce

a complete graph of k vertices, as they are all in the

complete graph of k+l vertices induced by p and its

parents. 0

4 Representational Complexity

The representational complexity of k-trees can be analyzed

in ways that suggest tradeoffs between representational

power and computational complexity. Problems that do

not have (partial) k-tree structure for a given k may still
be viewed, in whole or in part, in (partial) k-tree terms.

4.1 Representational Power

It is of course in some sense obvious that 2-trees are more

“representationally complex” than trees (l-trees), that

representational complexity increases with increasing k.

Thus the complexity bounds obtained for (partial) k-trees

can be viewed as either a) expanding the range of problems

for which we can guarantee a relatively efficient solution

or b) expanding the representational complexity we can

permit in formulating our problems while still

maintaining relatively efficient bounds on the effort

required to solve the problems.

In temporal reasoning, consideration has been given to

restricting the expressive power of the relational language

in order to guarantee computational tractability [van Beek,

891. The results in this paper suggest another means of

trading expressivity for tractability, namely restricting

expressibility to k-tree structures. For example, by

analogy with the n/m-queens example, one could ensure a

partial k-tree structure in the constraint graph of the

temporal relations in a narrative by insisting that no event

could be temporally compared with any event more than k

events previous in the narrative. Similar restrictions could

be imposed to ensure tractability in scheduling problems.

A more precise notion of representational power permits

a more formal analysis. Jeavons [Jeavons, 891 has raised

the issue of the “expressive power” of constraint

networks. He develops methods for actually counting the

number of different solution sets that certain classes of

constraint graphs can represent. The following theorem

makes a qualitative rather than quantitative statement

about the expressive power of partial k-trees.

Theorem 6. Let Sk be the set of solution sets

represented by partial k-tree structured constraint graphs.

Sp is a proper subset of Sq for pcq.

Proof. Since a partial p-tree is a partial q-tree (Theorem

5) clearly Sp is a subset of Sq. I will construct a partial q-

tree structured constraint graph that represents a solution

set that cannot be represented by a partial p-tree structured

constraint graph.

Consider the following constraint graph, G, with q+l

vertices. G is complete. The complete graph with q+l

vertices is a q-tree. Each variable represented has a domain

of q+l values, the numbers 1 through q+l. A constraint

C(Vi,vj) between variables Vi and Vj specifies that any pair

of values is allowed except the pair (i,j).

I will show that the complete graph with q+l vertices is

the only graph that can be used to represent the solution

set, S, of this CSP. Therefore, since the complete graph

of q+l vertices cannot be a partial p-tree no partial p-tree

can represent S.

Suppose we remove an edge, e, from G, between vi and

Vj for some i and j. Now the constraint c(i,j) cannot be

present to prevent solutions that include i for vi and j for

vj. HOW can we make up for that? We cannot. NO pairs

can be removed from the other constraints, as all those

pairs are allowed in solutions in the solution set. Adding

pairs, or removing other constraints (edges), can only, if

anything, increase the number of solutions; CSPs are

monotonic in that respect. There are no new constraints to

add. Thus the complete graph with q+l vertices is the

only constraint graph that can represent S. l

4.2 Reduction

Various methods have been proposed for expanding the

applicability of tree structures in constraint satisfaction

problem solving. These methods suggest analogous

techniques for utilizing (partial) k-tree structures, even

when the original problem does not have such structure.

(Of course, the additional complexity permitted by k-tree

structure, as opposed to tree structure, should decrease the

need for reduction techniques.)

For example, Dechter and Pearl have observed that if

we remove enough vertices from an arbitrary constraint

8 AUTOMATEDREASONING

graph (along with edges incident to the vertices) we will
be left with a tree or forest structure [Dechter and Pearl,

881. They have studied how arbitrary CSPs can thus be

reduced to CSPs with tree (or forest) structure by

removing or instantiating variables that comprise a

“cycle-cutset” for the constraint graph.

Analogous methods can be used to reduce arbitrary

CSPs to k-trees or partial k-trees. In particular, partial 2-

trees can be characterized as graphs that do not contrtm a

subgraph homeomorphic to Kq, the complete graph of 4

vertices (i.e. no subgraph is K4 or IQ plus additional

degree-two vertices) [Amborg, 851. Thus we could utilize

“Kq-cutsets” to reduce constraint graphs to partial 2-trees.

The cycle-cutset work can be viewed as providing

complexity bounds for CSPs in terms of how close their

constraint graphs are to having tree or forest structure. In

general the complexity of a CSP can be analyzed in terms

of the number of variables whose removal would leave a

(partial) k-tree structure. For example, the constraint graph

for the 4-queens problem can be reduced to a tree by

removing two of the four vertices; it can be reduced to a

2-tree by removing a single vertex.

Closeness to k-tree structure can also be measured in

terms of constraints. Freuder [Freuder, 891 discusses

partial constraint satisfaction problems, which involve

weakening the original problem in order to solve an

overconstrained problem, or solve a properly constrained

problem faster. The following theorem provides an upper

bound on how many constraints we have to ignore in

order to force a problem into a k-tree structure, thus

ensuring that we can solve it in time linear in the number

of variables and only exponential in k.

Theorem 7. Any constraint graph, G, can be made into

a k-tree structured constraint graph by removing at most a

number of edges (constraints) equal to the number of edges

in a complete graph of n-k vertices.

Proof. As indicated earlier the number of edges in a k-

tree is k(k-1)/2+(n-k)k. Suppose G is a complete graph

with n vertices. It then has n(n-1)/2 edges. We can make

G into a k-tree by removing (n(n-1)/2)-(k(k-1)/2+(n-

k)k)=(n-k)(n-k-1)/2 edges, i.e. the number of edges in a

complete graph with n-k vertices. If G is not complete we

can first add edges to make it complete (these will

correspond to the trivial constraint that allows all pairs,

which is normally not included in the constraint graph).

We can form a k-tree by removing edges as before (only in

the worst case will they all be edges of the original

graph). l

For example, the constraint graph for the 4-queens

problem can be reduced to a tree by removing three edges.

It can be reduced to a 2-tree by removing a single edge.

5 Conclusion

1. The O(nd2) bound on the complexity of tree

structured CSPs generalizes to an O(ndk+l) bound for k-

trees.

2. CSPs with partial k-tree structure (and every CSP

has partial k-tree structure for some k) can be solved in

O(ndk+l) time once a k-tree embedding has been found

(which may require O(nk+2) time).

3. The identification of graphs with width <l as forests

generalizes to the identification of graphs with induced

width Sk as partial k-trees.

4. Representational power increases with increasing k

for partial k-trees.

5. Reduction methods can be used to broaden the

applicability of (partial) k-tree results.

Acknowledgments. This work profited from

discussion with Pilar de la Terre and Raymond Greenlaw.

References

[Amborg, 851 Efficient algorithms for combinatorial

problems on graphs with bounded decomposability - a

survey, BIT 25: 2-23.

[Arnborg and Proskurowski, 861 Characterization and

recognition of partial 3-trees, Siam J. Alg. Disc. Meth.

7(2).
[Arnborg, Corneil and Proskurowski, 871 Complexity

of finding embeddings in a k-tree, Siam J. Alg. Disc.

Meth. 8(2).

[Beineke and Pippert, 711 Properties and

characterizations of k-trees, Mathematika I8: 141-151.

[Chandrasekharan and Hedetniemi, 881 Fast parallel

algorithms for tree decomposing and parsing partial k-

trees, Proc. of the 26th Annual Allerton Conference on

Comm., Cont. and Comp., Urbana-Champaign, Illinois.

[Dechter and Pearl, 883 Network-based heuristics for

constraint-satisfaction problems, Art. Int. 34(1).

[Freuder, 821 A sufficient condition for backtrack-free

search, JACM 29(l).

prouder, 891 Partial constraint satisfaction, IJCAI-89.

[Jeavons, 891 The expressive power of constraint

networks, Dept. of C.S., Univ. of London, UK.

&evesque and Bra&man, 851 A fundamental tradeoff in

knowledge representation and reasoning (revised version),

in Readings in Knowledge Representation, Bra&man and

Levesque, editors, Morgau Kaufmaun, Los Altos, CA.

[Ma&worth and Freuder, 841 The complexity of some

polynomial network consistency algorithms for constraint

satisfaction problems, Art. Int. 25(1).

[Rose, 701 Triangulated graphs and the elimination

process, Journal of Mathematical Analysis and

Applications 32: 597-609.

Rose, 741 On simple characterizations of k-trees,

Discrete Math 7: 317-322.

[Rossi, Dhar and Petrie, 891 On the equivalence of

constraint satisfaction problems, MCC Technical Report

ACT-AI-222-89. MCC, Austin, Texas 78759.

[van Beek, 891 Approximation algorithms for temporal

reasoning, ZJCAI-89.

[Wald and Colb oum, 831 Steiner trees, partial 2-trees,

and minimum IFI networks, Networks 13: 159-167.

FREUDER 9

