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Trees have played a key role in the study of constraint 

satisfaction problems because problems with tree 

structure can be solved efficiently. It is shown here that a 

family of generalized trees, k-trees, can offer increasing 

representational complexity for constraint satisfaction 

problems, while maintaining a bound on computational 

complexity linear in the number of variables and 

exponential in k. Additional results are obtained for 

larger classes of graphs known as partial k-trees. These 

methods may be helpful even when the original problem 

does not have k-tree or partial k-tree structure. Specific 

tradeoffs are suggested between representational power 

and computational complexity. 

1 Introduction 

A constraint satisfaction problem (CSP) involves 

finding values for variables subject to constraints on what 

combinations of values are allowed. Constraint 

satisfaction problems occur widely in artificial 

intelligence. Recently they have received particular 

attention in the domains of scheduling and temporal 

reasoning. 

Judea Pearl has observed that a primary advantage of 

viewing AI problems in CSP terms is our ability to 

identify certain “islands of tractability”  among CSP 

problems, classes of problems that admit efficient 

solution. The significance of such classes is increased by 

techniques for “massaging” problems outside these classes 

to fit into or utilize these classes. 

Up until now there has been one major tractable island, 

the class of tree structured problems. In this paper I 

identify a “chain” of such islands, generalizations of tree 

structures, which considerably expand the “tractable 

topography” of the CSP world. The tractability of these 

classes varies inversely with the representational 

complexity of the problems in the class, but the solution 

effort is always linear in the number of problem variables. 

We will restrict our attention here to binary constraint 

satisfaction problems, in which the given constraints 

involve two variables. (Non-binary CSPs are shown to 
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be “reducible”  to binary CSPs in mossi, Dhar, Petrie, 

891.) A binary CSP can be represented by a constraint 

network, in which the nodes represent variables and the 

links represent constraints. 

The general constraint satisfaction problem is NP- 

complete. However, tree structured problems (those with 

tree structured constraint networks) have a worst case 

complexity bound that is linear in the number of problem 

variables [Mackworth and Freuder, 841. If there are n 

variables, and no variable has more than d values to 

choose from, a tree structured CSP can be solved in 

O(nd2) time [Dechter and Pearl, $81. 

K-trees [Beineke and Pippert, 71; Rose, 741 generalize 

trees. Trees are l-trees. The central result of this paper is 

the demonstration that CSPs whose constraint networks 

are k-trees can be solved in O(ndk+‘) time. Note that we 

are saying that the complexity of a k-tree structured CSP 

is bounded by a linear function in the number of variables 

as long as we maintain the original k-tree structure and d 

bound when increasing the size of the problem. 

Further results are described briefly for larger classes of 

graphs known as k-chordal graphs and partial k-trees. 

Partial k-trees are characterized in a manner that 

generalizes the characterization of forests in preuder, 821. 

Methods have been developed to utilize tree structures in 

solving general CSPs [Dechter and Pearl, 881. K-trees 

now provide us with a range of “target” structures of 

increasing complexity that we can consider utilizing in 

similar fashion. 

Jeavons has introduced the issue of the expressive power 

of constraint networks [Jeavons, 891. I show that the class 

of partial p-tree structured networks have less expressive 

power than the class of partial q-tree structured networks 

for p less than q. Combined with the complexity bounds 

indicated above, this suggests a tradeoff between 

computational complexity and expressive power [Levesque 

and Bra&man, 19851. 

Another tradeoff arises in utilizing k-trees as target 

structures in a partial constraint satisfaction process 

[Freuder, 891. Any CSP can be solved in time exponential 

in k by removing enough constraints to give the problem 

a k-tree structure. In the worst case this would necessitate 

removing a number of constraints equal to the number of 

edges in a complete graph of n-k vertices. 

The 2-tree case is of some special interest. “Minimum 
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IFI networks”  are 2-trees wald and Coburn, 83). “Regular 

width-2 constraint graphs” are partial 2-trees; this paper 

improves on the O(n 33 d ) complexity bound for regular 

width-2 CSPs reported in pechter and Pearl, 881. “Series- 

parallel graphs” are partial 2-trees [Arnborg, 851. 

Many of the basic concepts used here have been 

rediscovered in diffbrent forms in different fields at different 

times. This is a testimony to their importance, but makes 

issues of attribution and terminology difficult. [Dechter 

and Pearl, 881 provides useful background from an AI 

CSP perspective; [Arnborg, 851 provides useful 

background from the perspective of work on combinatorial 

graph algorithms. 

The complexity results exploit the connection between 

CSP theory and combinatorial graph theory. Some 

background material in these areas is presented in section 

2 along with examples of k-trees. The complexity bounds 

are derived in section 3. Section 4 discusses 

representational complexity and suggests how k-trees can 

be utilized even when the original problem does not have 

k-tree structure. Section 5 summarizes the results. 

2 Background 

2.1 Constraint Satisfaction Problems 

A binary constraint satisfaction problem (binary CSP) 

consists of a set of variables, each with a domain of 

potential values, and a set of binary constraints, which 

specify pairs of allowable variable values. In a constraint 

graph variables are represented as vertices and constraints 

as edges. 

The n-queens problem is often used as a CSP example. 

This problem involves placing n queens on an n by n 

chessboard such that no two queens attack one another. In 

the constraint graph for this problem each pair of vertices 

is connected by an edge. 

A soEution to a CSP is an assignment of one value to 

each of the problem variables such that any pair of values 

satisfies (is allowed by) the constraint between the 

corresponding variables. A constraint graph for a CSP 

represents the set of solutions to the CSP. Two 

constraint graphs are equivaEent if they represent the same 

set of solutions. 

An ordered constraint graph [Freuder, 821 is a 

constraint graph together with an ordering of the vertices, 

V1...Vn. The width [Freuder, 821 of a vertex in an 

ordered constraint graph is the number of edges from that 

vertex back to vertices preceding it in the ordering. The 

width of an ordered constraint graph is the maximal 

width of its vertices and the width of a constraint graph 

is the minimal width of all the ordered constraint graphs 

obtained by utilizing every ordering of the vertices. 

The well-known backtrack search process is a standard 

method for solving CSPs. An ordering of the variables of 

a CSP is backtrack-$-et! [Freuder, 821 if backtrack search 

using that variable order can always find a value for a 

variable consistent with previous choices of values for 

variables. 
Dechter and Pearl present an adaptive-consistency 

procedure [Dechter and Pearl, 881, which transforms an 

ordered constraint graph, 0, into an equivalent ordered 

constraint graph, I, with a backtrack-free variable order. I 

is called the induced graph of 0. The width of I is called 

the induced width of the ordered constraint graph 0. 

Define the induced width of a constraint graph G to be 

the minimal induced width of all the ordered constraint 

graphs of G. 

The adaptive-consistency procedure from [Dechter and 

Pearl, 881 is shown below: 

Adaptive-consistency(Xl,...J&) 

1. begin 

2. forr=nto 1 by-l do 

3. compute PARENTS 

4. perform ConsistencyQ$., PARENTS( 

5. connect by arcs 

all elements in PARENTS&) 

(if they are not yet connected) 

6 end 

The X, are variables in an ordered constraint graph. 
1 

PARENTS returns the set of variables preceding Xi in 

the ordering that are connected to Xi by an edge in the 

graph, (Notice that the procedure may add edges to the 

graph.) The procedure Consistency(v,S) records a 

constraint on all the variables of S (if S has j variables, 

this will be a j-ary constraint). The constraint permits an 

assignment of values to the variables of S only if the 

assignment is consistent with at least one (consistent) 

value for v. To determine consistency Dechter and Pearl 

specify that all constraints be used (old or new) that 

involve v and a subset (possibly empty) of variables from 

S. The algorithm basically works to enforce a backtrack- 

free ordering by adding constraints that prevent one from 

making choices that will lead to inconsistency. 

Define the adaptive-consistency level achieved by the 

adaptive-consistency procedure to be one greater than the 

maximum size of the PARENTS sets encountered during 

the running of the algorithm. 

An O(exp(W*(rr)+l)) bound is given in [Dechter and 

Pearl, 881 for adaptive-consistency, where W*(n) is the 

induced width of the constraint graph with ordering 7t. The 

bound on the algorithm can be expressed as 

O(ndw*(rc)+l). 0 n each of n-l passes through the outer 

loop the consistency procedure needs to check that there is 

a value for Xr consistent with any consistent assignment 

of values to the parents of Xr. There are at most W*(n) 

parents. There are at most dw*(‘r)+l combinations of 

values for the parents together with Xr. For each of these 

there are at most 2W*(n) constraints to check that involve 

Xr and some (possibly empty) set of parents. 
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2.2 Combinatorial Graph Theory 

A graph, G=(V,E), consists of a set of vertices, V, and a 

set of edges, E, where each edge is a two-element subset 

of V. An edge is incident to the two vertices in the edge. 

Two vertices are adjacent if they belong to the same edge. 

A complete graph is one that contains all possible edges. 

The subgraph of a graph G induced by a subset of 

vertices V’ from G, written G(V), consists of the vertices 

V’ together with all edges in G incident only to vertices in 

v. 

Define the neighborhood of a vertex v as the set of 

vertices adjacent to v, and the degree of v as the number 

of vertices in its neighborhood. 

A graph G is a k-tree [Beineke and Pippert, 71; Rose, 

743 if: 

1. G has k vertices and is complete 

or 

2.a. there is a vertex, v, of degree k, whose 

neighborhood induces a complete graph 

ad 

b. the graph obtained by removing v and all edges 

incident to it from G is a k-tree. 

A simplicial vertex of a k-tree is one that satisfies part 

2 of the definition. Call the complete graph of k vertices 

t& trivial k-tree. 

K-trees are structures that can be built as follows: start 

with a complete graph of k vertices; each time you add a 

new vertex add an edge between it and k previous vertices 

that already form a complete subgraph (each pair of 
vertices is joined by an edge). For example, l-trees are 

just trees, and can be built as follows: start with a single 

vertex, connect each new vertex to one of the previous 

vertices. 

The constraint graph for the n-queens problem is an n- 

tree; it is also an (n-1)-tree. For example the constraint 

graph for the $-queens problem (place 4 non-attacking 

queens on a 4 by 4 board) is a 3-tree: it can be viewed as 

a complete graph of 3 vertices (a triangle) plus a fourth 

vertex connected to each of those three. 

Now consider the following variation on the n-queens 

problem, which I will call the n/m-queens problem. The 

n/m-queens problem requires only that a given queen 

cannot attack (or be attacked by) any queen in the previous 

m rows. The n/m-queens problem has an m-tree constraint 

graph. The 4/2-queens problem has a 2-tree constraint 

graph. 

A partial graph of G consists of the vertices of G and a 

subset of the edges of G. A subgraph of G is a partial 

graph of an induced subgraph of G. A partial k-tree 

[Arnborg, 861, is a subgraph of a k-tree; the k-tree is 

termed an embedding of the partial k-tree. Partial l-trees 

are forests. Any graph is a partial k-tree for sufficiently 

large k. 

I define a weak k-tree as the class of graphs that result 

when “k” is replaced by ‘Xk” and “k-tree”  by “weak k-tree”  

in the k-tree definition. The weak k-trees are the k-chordal 
graphs [Chandrasekharan and Hedetniemi, $81. 

3 Comprdational Complexity 

Tree structured problems have been solved with backtrack- 
free search by achieving a consistency level greater than 

their width. (Partial) k-tree structured problems are solved 

here with backtrack-free search by achieving an adaptive 

consistency level greater than their induced width. 

3.1 K-Trees 

Dechter and Pearl point out, citing [Amborg, Comeil and 

Proskurowski, 87J, that determing the induced width, W*, 

of a constraint graph is an NP-complete problem. 

However, we will see that for k-trees W*=k (except for the 

trivial k-tree with k vertices, for which W*=k-1). If the 

constraint graph is a k-tree it can be recognized as such, if 

necessary, and an ordered constraint graph with induced 

width k can be obtained, in O(n) time (regarding k as a 

constant). Adaptive-consistency can then obtain an 

equivalent ordered constraint graph with a backtrack-free 

variable ordering in O(ndk+‘) time. The backtrack-free 

search can be completed in O(nd) time. Taken together 

this provides the promised O(ndk+‘) bound for solving k- 

tree structured CSPs. 

Amborg (citing [Rose, 701) states that k-trees “are 

easily recognized by a procedure which successively 

deletes vertices with completely connected neighborhoods”  

[Amborg, $51. I present here an algorithm that performs 

this recognition for a graph 6, and returns an ordering of 

G with induced width k (k-l if G is the trivial k-tree) in 

time linear in the number of vertices, n, for a fixed k. 

Algorithm w: 

Input: A constraint graph G and an integer k. 

Output: If G is a k-tree, the algorithm returns an 

ordering of G with induced width k (k-l for the trivial k- 

tree); if G is not a k-tree the algorithm reports failure. 

1. Determine the degree of each vertex, store that 

number with the vertex, and place all the degree k 

vertices in a queue K. Sum the vertex degrees as you 

proceed; if and when the sum exceeds 2n-k-k2 (twice 

the number of edges in a k-tree), report failure. 

2. For i = 1 to n-k 

If PC is empty, report failure. 

If K is not empty: 

Take a vertex v from K. 

If the graph G(N) induced by the neighborhood 

N of v is not complete, report failure. 

If G(N) is complete: 

record v as the (n-i+l)th vertex in the ordering, 

remove v and its incident edges from G, 

subtract one from the degree count associated 

with the vertices in N and place vertices that 

now have degree k in the K queue. 

3. If G is now a complete graph (of k vertices) choose 

the remaining vertices in any order to complete the 

vertex ordering. If G is not complete, report failure. 

Theorem 1. A k-tree constraint graph with n vertices 
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can be recognized as a k-tree, and an ordered constraint 

graph of induced width k found (k-l for the trivial k-tree), 

in O(n) time. 

Proof. Algorithm W does the job. If G is the trivial k- 

tree, step 3 produces a width k-l ordering. Adaptive- 

consistency will not change this width (there are no edges 

to add). If G is a k-tree with more than k vertices, for any 

vertex v with degree k the graph induced by the 

neighborhood of v must be complete, because the 

definition of k-trees implies that every vertex in a k-tree of 

more than k nodes is connected to at least k others that 

induce a complete graph. Any k-tree vertex with a 

neighborhood that induces the complete graph of k 

vertices is simplicial [Arnborg, 85; Rose, 701. Therefore, 

by part 2 of the k-tree definition, if G is a k-tree it 

remains one after each pass through step 2. If G is a k-tree 

after step 2 it must satisfy part 1 of the definition and be 

the complete graph of k vertices. The ordering produced is 

such that the parent set of each vertex will already induce a 

complete graph, therefore adaptive-consistency does not 

change the width, which remains k. 

A k-tree has k(k-1)/2+(n-k)k edges (count the edges as 

you apply the definition). That and the use of the K queue 

are the keys to maintaining an O(nk2) complexity bound 

for the algorithm. 0 

Theorem 2. The induced width, W*, of a non-trivial k- 

tree is k; for the trivial k-tree, W*=k-1. The induced width 

of a k-tree is equal to its width. 

Proof. The trivial k-tree is the complete graph with k 

vertices, for which the width and the induced width are 

obviously equal to k-l. Now consider the non-trivial case. 

Theorem 1 demonstrates that W*5k. The width of a graph 

is obviously I its induced width and thus I k. A k-tree 

with more than k vertices includes a complete graph of 

k+l vertices, and regardless of how they are ordered the 

last one will have k parents. This demonstrates that the 

width and therefore the induced width are both 2 k. Thus 

the width equals the induced width equals k. 0 

Theorem 3. Given an induced graph I, with induced 

width k, of an ordered constraint graph of a k-tree 

structured CSP; the CSP has n variables each with a 

domain of at most d values. A backtrack-free search using 

the ordering of I can be conducted with time bound O(nd). 

Proof. The adaptive consistency procedure ensures that 

the ordering of the induced graph is backtrack-free [Dechter 

and Pearl, 881. Thus to instantiate each of the n variables, 

we need at worst try each of the d possible values. For 

each value we need check at most 2k constraints 

that variable and subsets of its parents. 0 

involving 

Theorem 4. A k-tree structured CSP can be solved in 

time O(ndk+‘) . 

Proof. Given a constraint graph G for the CSP we can 

use algorithm W to obtain an ordered constraint graph 0 

with induced width k in O(n) time (Theorem 1). We can 

then apply adaptive-consistency to obtain an equivalent 

induced graph in O(ndk+’ ) time, as discussed in section 2. 

FinalIy we can carry out a backtrack-free search in O(nd) 

time (Theorem 3). 0 

If we do not assume k to be a constant, we can derive an 

Q(n(2d)k+l) bound, taking into account the analysis of 

adaptive consistency presented in section 2.1. 

3.2 Partial K-Trees 

This section will sketch some extensions of the k-tree 

results to partial k-trees. It also contains a characterization 

of partial k-trees in terms of induced width. 

Theorem 4 holds for weak k-trees. (As we will see 

below weak k-trees are partial k-trees; see also 

[Chandrasekharan and Hedetniemi, 19881) The key 

observation (similar to one made by Arnborg, citing Rose 

[Arnborg, 85; Rose, 701) is that the basic idea behind 

Theorem 1 of deleting vertices whose neighborhoods 

induce a complete graph still works. We can obtain an 

O(n) bound by modifying Algorithm W to maintain in 

place of the queue K a queue C of vertices whose adjacent 

vertices induce a complete graph of Ik vertices. 

If we have an embedding of a partial k-tree in a k-tree, 

we can go on to use the above methods on the embedding. 

Every partial k-tree with at least k vertices can be 

embedded in a k-tree without adding vertices [Arnborg, 

861. Even if we are given an embedding with more 

vertices than we started with we can simply throw away 

the extra and still have a weak k-tree (picture an ordering 

with induced width k, now throw away the extra vertices). 

There is unfortunately no similar analog of Algorithm 

W known for easily recognizing partial k-trees and finding 

an embedding. There is an O(n k+2) algorithm for doing so 

[Arnborg, 871, and more efficient methods are known for 

k=2 [Wald and Coburn, 831 and k=3 [Amborg, 861 (and, of 

course, for k=l). 

Theorem 2 can be extended to the following 

characterization of partial k-trees, which generalizes the 

characterization in [Freuder, 821 of forest-structured 

constraint graphs (partial 1 -trees) as those with widthll. 

Forests are l-trees and the width of a l-tree is equal to its 

induced width. (Compare with Arnborg’s Theorem 3.l(iv) 

involving the “dimension” concept in [Arnborg, 851.) 

The following theorem also serves to identify exactly 

when we can “induce” width I k, namely when we start 

with a partial k-tree. K-tree embedding in that case 

provides a method for obtaining au ordered constraint 

graph with this induced width. Adaptive consistency, 

obtained with no more than O(ndk+l) effort, then leads to 

backtrack-Eree search. 

Theorem 5. A constraint graph has induced width& iff 

it is a partial k-tree. 

Proof. If the graph has fewer than k vertices the theorem 

is trivial: assume there are at least k vertices. Suppose the 

graph, 6, is a partial k-tree. It can be embedded in a k-tree 

with the same vertices. The k-tree will have width k. The 

partial k-tree’s width will be, if anything, less. 

Suppose G has induced width w5k. Let I be an induced 

graph of an ordered constraint graph of G with induced 
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width w. G is a partial graph of I. I is a weak k-tree. We 

will see that it can be extended to a k-tree by adding 

further edges (if necessary), i.e that weak k-trees are partial 

graphs of k-trees. 

First add edges as needed so that the first k vertices in 

the ordering wilI induce a complete graph. If the graph has 

only k vertices we are done. If not add edges to connect the 

next vertex to the first k, if necessary. This k+lst vertex 

wilI now have a parent set that induces the complete graph 

of k vertices. I will demonstrate inductively that edges can 

be added as needed so that any remaining vertices will have 

such parent sets. The resulting graph will clearly satisfy 

the k-tree definition. 

Assume that edges have been added as needed so that the 

first i vertices in the ordering after the initial k each have a 

set of parents that induces the complete graph of k 

vertices. Consider the i+lst vertex, v. Its parent set 

induces a complete graph (we have a weak k-tree). If its 

parent set contains k vertices, this step is complete. If its 

parents all lie within the first k vertices, simply add edges 

to connect v to all of the first k vertices. Otherwise, 

consider the parent set of the parent vertex, p, of v that is 

closest to v in the ordering. The vertex p will have a 

parent set that induces a complete graph of k vertices, and 

that parent set will already include the other parents of v. 

Simply add edges to connect v with as many of the 

parents of p as needed to bring the total number of parents 

of v up to k, The resulting set of parents for v will induce 

a complete graph of k vertices, as they are all in the 

complete graph of k+l vertices induced by p and its 

parents. 0 

4 Representational Complexity 

The representational complexity of k-trees can be analyzed 

in ways that suggest tradeoffs between representational 

power and computational complexity. Problems that do 

not have (partial) k-tree structure for a given k may still 
be viewed, in whole or in part, in (partial) k-tree terms. 

4.1 Representational Power 

It is of course in some sense obvious that 2-trees are more 

“representationally complex”  than trees (l-trees), that 

representational complexity increases with increasing k. 

Thus the complexity bounds obtained for (partial) k-trees 

can be viewed as either a) expanding the range of problems 

for which we can guarantee a relatively efficient solution 

or b) expanding the representational complexity we can 

permit in formulating our problems while still 

maintaining relatively efficient bounds on the effort 

required to solve the problems. 

In temporal reasoning, consideration has been given to 

restricting the expressive power of the relational language 

in order to guarantee computational tractability [van Beek, 

891. The results in this paper suggest another means of 

trading expressivity for tractability, namely restricting 

expressibility to k-tree structures. For example, by 

analogy with the n/m-queens example, one could ensure a 

partial k-tree structure in the constraint graph of the 

temporal relations in a narrative by insisting that no event 

could be temporally compared with any event more than k 

events previous in the narrative. Similar restrictions could 

be imposed to ensure tractability in scheduling problems. 

A more precise notion of representational power permits 

a more formal analysis. Jeavons [Jeavons, 891 has raised 

the issue of the “expressive power” of constraint 

networks. He develops methods for actually counting the 

number of different solution sets that certain classes of 

constraint graphs can represent. The following theorem 

makes a qualitative rather than quantitative statement 

about the expressive power of partial k-trees. 

Theorem 6. Let Sk be the set of solution sets 

represented by partial k-tree structured constraint graphs. 

Sp is a proper subset of Sq for pcq. 

Proof. Since a partial p-tree is a partial q-tree (Theorem 

5) clearly Sp is a subset of Sq. I will construct a partial q- 

tree structured constraint graph that represents a solution 

set that cannot be represented by a partial p-tree structured 

constraint graph. 

Consider the following constraint graph, G, with q+l 

vertices. G is complete. The complete graph with q+l 

vertices is a q-tree. Each variable represented has a domain 

of q+l values, the numbers 1 through q+l. A constraint 

C(Vi,vj) between variables Vi and Vj specifies that any pair 

of values is allowed except the pair (i,j). 

I will show that the complete graph with q+l vertices is 

the only graph that can be used to represent the solution 

set, S, of this CSP. Therefore, since the complete graph 

of q+l vertices cannot be a partial p-tree no partial p-tree 

can represent S. 

Suppose we remove an edge, e, from G, between vi and 

Vj for some i and j. Now the constraint c(i,j) cannot be 

present to prevent solutions that include i for vi and j for 

vj. HOW can we make up for that? We cannot. NO pairs 

can be removed from the other constraints, as all those 

pairs are allowed in solutions in the solution set. Adding 

pairs, or removing other constraints (edges), can only, if 

anything, increase the number of solutions; CSPs are 

monotonic in that respect. There are no new constraints to 

add. Thus the complete graph with q+l vertices is the 

only constraint graph that can represent S. l 

4.2 Reduction 

Various methods have been proposed for expanding the 

applicability of tree structures in constraint satisfaction 

problem solving. These methods suggest analogous 

techniques for utilizing (partial) k-tree structures, even 

when the original problem does not have such structure. 

(Of course, the additional complexity permitted by k-tree 

structure, as opposed to tree structure, should decrease the 

need for reduction techniques.) 

For example, Dechter and Pearl have observed that if 

we remove enough vertices from an arbitrary constraint 
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graph (along with edges incident to the vertices) we will 
be left with a tree or forest structure [Dechter and Pearl, 

881. They have studied how arbitrary CSPs can thus be 

reduced to CSPs with tree (or forest) structure by 

removing or instantiating variables that comprise a 

“cycle-cutset”  for the constraint graph. 

Analogous methods can be used to reduce arbitrary 

CSPs to k-trees or partial k-trees. In particular, partial 2- 

trees can be characterized as graphs that do not contrtm a 

subgraph homeomorphic to Kq, the complete graph of 4 

vertices (i.e. no subgraph is K4 or IQ plus additional 

degree-two vertices) [Amborg, 851. Thus we could utilize 

“Kq-cutsets”  to reduce constraint graphs to partial 2-trees. 

The cycle-cutset work can be viewed as providing 

complexity bounds for CSPs in terms of how close their 

constraint graphs are to having tree or forest structure. In 

general the complexity of a CSP can be analyzed in terms 

of the number of variables whose removal would leave a 

(partial) k-tree structure. For example, the constraint graph 

for the 4-queens problem can be reduced to a tree by 

removing two of the four vertices; it can be reduced to a 

2-tree by removing a single vertex. 

Closeness to k-tree structure can also be measured in 

terms of constraints. Freuder [Freuder, 891 discusses 

partial constraint satisfaction problems, which involve 

weakening the original problem in order to solve an 

overconstrained problem, or solve a properly constrained 

problem faster. The following theorem provides an upper 

bound on how many constraints we have to ignore in 

order to force a problem into a k-tree structure, thus 

ensuring that we can solve it in time linear in the number 

of variables and only exponential in k. 

Theorem 7. Any constraint graph, G, can be made into 

a k-tree structured constraint graph by removing at most a 

number of edges (constraints) equal to the number of edges 

in a complete graph of n-k vertices. 

Proof. As indicated earlier the number of edges in a k- 

tree is k(k-1)/2+(n-k)k. Suppose G is a complete graph 

with n vertices. It then has n(n-1)/2 edges. We can make 

G into a k-tree by removing (n(n-1)/2)-(k(k-1)/2+(n- 

k)k)=(n-k)(n-k-1)/2 edges, i.e. the number of edges in a 

complete graph with n-k vertices. If G is not complete we 

can first add edges to make it complete (these will 

correspond to the trivial constraint that allows all pairs, 

which is normally not included in the constraint graph). 

We can form a k-tree by removing edges as before (only in 

the worst case will they all be edges of the original 

graph). l 

For example, the constraint graph for the 4-queens 

problem can be reduced to a tree by removing three edges. 

It can be reduced to a 2-tree by removing a single edge. 

5 Conclusion 

1. The O(nd2) bound on the complexity of tree 

structured CSPs generalizes to an O(ndk+l) bound for k- 

trees. 

2. CSPs with partial k-tree structure (and every CSP 

has partial k-tree structure for some k) can be solved in 

O(ndk+l) time once a k-tree embedding has been found 

(which may require O(nk+2) time). 

3. The identification of graphs with width <l as forests 

generalizes to the identification of graphs with induced 

width Sk as partial k-trees. 

4. Representational power increases with increasing k 

for partial k-trees. 

5. Reduction methods can be used to broaden the 

applicability of (partial) k-tree results. 
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