Annals of Discrete Mathematics 1 (1977) 343-362
© North-Holland Publishing Company

J.K. LENSTRA

Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam, The Netherlands

P. BRUCKER
Universitdat Oldenburg, G.F.R.

We survey and extend the results on the complexity of machine scheduling problems. After a
brief review of the central concept of NP-completeness we give a classification of scheduling
problems on single, different and identical machines and study the influence of various
parameters on their complexity. The problems for which a polynomial-bounded algorithm is
available are listed and NP-completeness is established for a large number of other machine
scheduling problems. We finally discuss some questions that remain unanswered.

1. Introduction

In this paper we study the complexity of machine scheduling problems. Section 2
contains a brief review of recent relevant developments in the theory of computa-
tional complexity, centering around the concept of NP-completeness. A classifica-
tion of machine scheduling problems is given in Section 3. In Section 4 we present
the results on the complexity of these problems: a large number of them turns out
to be NP-complete. Quite often a minor change in some parameter transforms an
NP-complete problem into one for which a polynomial-bounded algorithm is
available. Thus, we have obtained a reasonable Insight into the location of the
borderline between ‘““easy” and ‘“hard’ machine scheduling problems, although
some questions remain open. They are briefly discussed in Section 5.

2. Complexity theory

Recent developments in the theory of computational complexity as applied to
combinatorial problems have aroused the interest of many researchers. The main
credit for this must go to S.A. Cook [7] and R.M. Karp [25], who first explored the
relation between the classes ? and NP of (language recognition) problems
solvable by deterministic and non-deterministic Turing machines respectively, in a
aumber of steps bounded by a polynomial in the length of the input. With respect to

343

344 I.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

combinatorial optimization, we do not really require mathematically rigorous
definitions of these concepts; for our purposes we may safely identify 92 with the
class of problems for which a polynomial-bounded, good [8] or efficient algorithm
exists, whereas all problems in /P can be solved by polynomial-depth backtrack
search.

In this context, all problems are stated 1n terms ot recognition problems which
require a yes/no answer. In order to deal with the complexity of a combinatorial
minimization problem, we transform 1t into the problem of determining the
existence of a solution with value at most equal to y, for some threshold y.

It is clear that ? C NP, and the question arises if this inclusion is a proper one or
if, on the contrary, = A/?. Although this is still an open problem, the equality of
P and NP is considered to be very unlikely and most bets (e.g., in [28]) have been
going 1n the other direction. To examine the consequences of an affirmative answer
to the & = ¥P question, we introduce the following concepts.

Problem P’ 1s reducible to problem P (notation: P’ =« P)if for any instance of P’ an
instance of P can be constructed in polynomial-bounded time such that solving the
instance ot P will solve the instance of P’ as well.

P’ and P are equivalent if P'«< P and P o P’.

P is NP-complete [28] if PE NP and P’ « P for every P'€ ¥?. Informally, the
reducibility of P’ to P implies that P’ can be considered as a special case of P; the
NP-completeness of P indicates that P is, in a sense, the most difficult problem in
NP,

In a remarkable paper [7], NP-completeness was established with respect to the
so-called Satisfiability problem. This problem can be formulated as follows.

Given clauses C,, ..., C,, each being a disjunction of literals from the set X =
{X1,..0, X, X1, ..., X}, is the conjunction of the clauses satisfiable, i.e., does there exist a

subset S C X such that S does not contain a complementary pair of literals (x;, X;), and
SNGC#@B forj=1,...,u?

Cook proved this result by specifying a polynomial-bounded *‘master reduction”
which, given P& NP, constructs for any instance of P an equivalent boolean
expression in conjunctive normal form. By means of this reduction. a polynomial-
bounded algorithm for the Satisfiability problem could be used to construct a
polynomial-bounded algorithm for any problem in N#®. It follows that

P = NP if and only if Satisfiability € P.

The same argument applies if we replace Satisfiability by any NP-complete
problem. A large number of such problems has been identified by Karp [25; 26] and
others (e.g., [17]); Theorem 1 mentions some of them. Since they are all notorious
combinatorial problems for which typically no good algorithms have been found so

far, these results afford strong circumstantial evidence that @ is a proper subset
of NP,

Complexity of machine scheduling problems 345

'heorem 1. The following problems are NP-complete :

(a) Clique. Given an undirected graph G = (V, E) and an integer k, does G have
a clique (i.e., a complete subgraph) on k vertices?

(b) Linear arrangement. Given an undirected grapn G = (V, E) and an integer k.,
does there exist a one-to-one function 7:V —{1,...,| V '} such that 2 ep| 7m(i) —
m(j)| < k?

(c) Directed hamiltonian circuit. Given a directed graph G =(V,A), does G
have a hamiltonian circuit (i.e., a directed cycle passing through each vertex exactly

(d) Directed hamiltonian path. Given a directed graph G'=(V' A", does G’
have a hamiltonian path (i.e., a directed path passing through each vertex exactly
once)?

(e) Partition. Given positive integers a,, ..., a, does there exist a subset S C T =
{1,...,t} such that 2..caq, = Dicr s ?

(f) Knapsack. Given positive integers a,,..., a, b, does there exist a subset
SCT=A{1,...,t} such that 2,cca, = b?

(g) 3-Partition. Given positive integers a,, ..., as, b, does there exist a partition
(T, ..., T.) of T={1,...,3t} such that | T;|=3 and Z,cra, =b forj=1,... 12

Proof. (a) See [7;25].
(b) See [17].
(c,e, f) See [25].
(d) NP-completeness of this problem is implied by two observations:
(A) Directed hamiltonian path € ¥P:
(B) P x Directed hamiltonian path for some NP-complete problem P.
(A) is trivially true, and (B) is proved by the following reduction.
Directed hamiltonian circuit « Directed hamiltonian path.
Given G =(V,A), we choose v' € V and construct G’ = (V',A') with

Vi=Vui{v,
A'={v,w)|(o,w)E A, w# v} U{(v, v")|(v,v')E A}

G has a hamiltonian circuit if and only if G’ has a hamiltonian path.
(g) See [12]. O '

Karp’s work has led to a large amount of research on the location of the
borderline separating the “‘easy” problems (in 2) from the ‘“‘hard”’ (NP-complete)
ones. It turns out that a minor change in a problem parameter (notably —for some
as yet mystical reason——an increase from two to three) often transforms an easy
problem into a hard one. Not only does knowledge of the borderline lead to fresh
insights as to what characteristics of a problem determine its complexity, but there
are also important consequences with respect to the solution of these problems.
Establishing NP-completeness of a problem can be interpreted as a formal

346 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

justification to use enumerative methods such as branch-and-bound, since no
substantially better method is likely to exist. Embarrassing incidents such as the
presentation in a standard text-book of an enumerative approach to the undirected
Chinese postman problem, for which a good algorithm had already been developed
in [9], will then occur less readily.

The class of machine scheduling problems seems an especially attractive object for
this type of research, since their structure is relatively simple and there exist
standard problem parameters that have demonstrated their usefulness in previous
research.

Betore describing this class of problems, let us emphasize that membership of 2
versus NP-completeness only yields a very coarse measure of complexity. On one
hand, the question has been raised whether polynomial-bounded algorithms are
really good [2]. On the other hand, there are significant differences in complexity
within the class of NP-complete problems.

One possible refinement of the complexity measure may be introduced at this
stage. It 1s based on the way in which the problem data are encoded. Taking the
Knapsack and 3-Partition problems as examples and defining a, = max;cr{a:}, we
observe that the length of the input is O(tloga «) 1n the standard binary encoding,
and O(ta,) if a unary encoding is allowed. 3-Partition has been proved NP-
complete even with respect to a unary encoding [12]. Knapsack is NP-complete
with respect to a binary encoding [25], but solution by dynamic programmming
requires O (tb) steps and thus yields a polynomial-bounded algorithm with respect
t0 a unary encoding; similar situations exist for several machine scheduling
problems. Such “pseudopolynomial’ algorithms [35] need not necessarily be
‘good” in the practical sense of the word, but it may pay none the less to distinguish
between complexity results with respect to unary and binary encodings (cf. [16]).
Unary NP-completeness or binary membership of would then be the strongest
possible result, and it is quite feasible for a problem to be binary NP-complete and
to allow a unary polynomial-bounded solution. The results in this paper hold with

respect to the standard binary encoding; some consequences of using a unary
encoding will be pointed out as well.

3. Classification

Machine scheduling problems can be verbally formulated as follows [6: 45]:

A job J; (i=1,...,n) consists of a sequence of operations, each of which
corresponds to the uninterrupted processing of J; on some machine M, (k =
1,...,m)during a given period of time. Each machine can handle at most one job at

a time. What is according to some overall criterion the optimal processing order on
each machine? |

The following data can be specified for each J.:
a number of operations n,:

Complexity of machine scheduling problems 347

a machine order v, 1.e. an ordered n;-tuple of machines:

a processing time py of 1ts k th operation, k = I,...,n (if n, = 1 forall J. we shall
usually write p; instead of p;));

a weight w;;

a release date or ready timer, i.e. its earliest possible starting time (unless stated
otherwise, we assume that r, =0 for all J,);

a due date or deadline d,:

a cost function f, :N—R, indicating the costs incurred as a nondecreasing
function of the completion time of J.

We assume that all data (except v, and f,) are nonnegative integers. Given a
processing order on each M,, we can compute for each J :

the starting time S;;

the completion time C;;

the lateness L, = C, — d,;

the tardiness T, = max{0, C, — d,}:

U =if C.=<d then 0 else 1.
Machine scheduling problems are traditionally classified by means of four param-
eters n, m, I, k. The first two parameters are integer variables, denoting the
numbers of jobs and machines respectively; the cases in which m is constant and
equal to 1, 2, or 3 will be studied separately. If m > 1, the third parameter takes on
one of the following values:

I =F in a flow-shop where n, =m and v, = (M,,...,M,,) for each J:

l = P in a permutation flow-shop, i.e. a flow-shop where passing is not permitted
so that each machine has to process the jobs in the same order:

l =G in a (general) job-shop where n; and v, may vary per job;

[=1 in a parallel-shop where each job has to be processed on just one of m
identical machines, i.e. n;, = 1 for all J, and the v, are not defined.
Extensions to the more general situation where several groups of parallel (possibly
non-identical) machines are available will not be considered.

The fourth parameter indicates the optimality criterion. We will only deal with
regular criteria, i.e., monotone functions « of the completion times C,, ..., C, such
that

C<Ciforalli = «(C,...,C)<k(Cl...,CL.

T'hese functions are usually of one of the following types:
K = fmax = Max, {fi(C)};
K — Ef; — E?mlf:(C)
T'he following specific criteria have frequently been chosen to be minimized:
K = Cmax = max; {C};
K =2 w.C, = 2?m1 w,C; ;
= L max = max; {L;};
K = EWfTi = 2?-=1Wi7} ;
K = 2 w,U;, = 2::;1 w; U..

348 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

We refer to [45] for relations between these and other objective functions.
Some relevant problem variations are characterized by the presence of one or
more elements from a parameter set A, such as

prec (precedence constraints between the jobs, where **J, precedes J;”” (notation:
Ji < J;) implies C, < §;);

tree (precedence constraints between the jobs such that the associated prece-
dence graph can be given as a branching, i.e. a set of directed trees with either
Indegree or outdegree at most one for all vertices);

r. =0 (possibly non-equal release dates for the jobs):

Ci=<d; (all jobs have to meet their deadlines: in this case we assume that
kK € {Craxs 2 WiCi}); |

no wait (no waiting time for the jobs between their starting and completion
times; hence, C, = S, + 2, px for each Ji);

n. < n, (a constant upper bound on the number of operations per job);

pi = p, (a constant upper bound on the processing times);

pi«x = 1 (unit processing times);

w; =1 (equality of the weights; we indicate this case also by writing
2C, 2T, 2 U).
In view of the above discussion, we can use the notation n | m
specific machine scheduling problems.

[, A | k to indicate

4. Complexity of machine scheduling problems

All machine scheduling problems of the type defined in Section 3 can be solved
by polynomial-depth backtrack search and thus are members of A’P. The results on
their complexity are summarized in Table 1.

The problems which are marked by an asterisk (*) are solvable in polynomial-
bounded time. In Table 2 we provide for most of these problems references where
the algorithm in question can be found: we give also the order of the number of
steps 1n the currently best implementations. The problems marked by a note of
exclamation (!) are NP-complete. The reductions to these problems are listed in
Table 3. Question-marks (?) indicate open problems. We will return to them in

dection 5 to motivate our typographical suggestion that these problems are likely to
be NP-complete.

Table 1 contains the ‘“‘hardest” problems that are known to be in @ and the
“easiest’ ones that have been proved to be NP-complete. In this respect, Table 1

Indicates to the best of our knowledge the location of the borderline between easy
and hard machine scheduling problems.

Betore proving the theorems mentioned in Table 3, we will give a simple example
of the interaction between tables and theorems by examining the status of the
general job-shop problem, indicated by n|m |G | Coa.

Complexity of machine scheduling problems 349

Table 1. Complexity of machine scheduling problems

) — il VP - e ’ ——— T —n ——
-ﬂ_‘ bl Ll baa sl LLEa . '_m‘

n jobs I machine 2 machines m machines
C nax * prec, r;, = () * F ' m =3 F
* F, no wait ?m =3:F, no wait
' F, tree bV F, no wait
V' E orn=0
*Gani“{‘“z * n=2:(
L G, n, <3 ' m=3:G,n <2
| * I, tree, p, = 1
* I, prec, r, 20,C < d,p, =1 ?m=3:1 prec, p, = 1
U1, prec, p, <2 VI, prec, p, = 1
> w,C * lree | ' F, w, =1 U F, no wait, w, =1
! prec, p, = 1 ? F, no wait, w, = 1
! prec, w, =] e . et — _
' r =0, w, =1 U I * I, =0, p, = 1
* Co=d, w, =1 * I, prec, pp=1, w, = 1 ¥ 1w, =1
' C =d, U I, prec, p, =2, w, = 1 VI prec, pp =1, w, = 1
L . * prec ' F
* prec, r; =0, p, =1 o .
b =0 1
Ewi'f; x* 20, pp =1 VEF,ow, =1
I, wl — 1 — i —
r V' L o w, =1
b prec, p, =1, w, =1
V=0, w, =1
2 w,U, ¥ =0, p =1 | F.ow, =1
e W, = 1 -
! VI ow, =]
U prec, p, =1, w;, =1

*: problem in &; see Table 2.
?: open problem; see Section 5.
. NP-complete problem; see Table 3.

350 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

Table 2. References to polynomial-bounded algorithms

PP ik —— e A
—————

Problem References Order
n|l| prec, r, 20| Caan — O(n?)

n|1| tree | = wC [20; 1; 46]° O(nlog n)
n|1]C<d |ZC [47) O(nlog n)
n|1|prec| L. [33] O(n”)
n|1|prec, r,=0, p,=1|L... [30] O(n”)
n|l|lrn=0p=12wT [32] O(n”)
n|llrn=0 p =12 wU [29] O(n%)
n|1|Z U [41]° O(n log n)
n|2|F|Ch [24] O(n log n)
n|2|F, no wait | Ce, [18; 44] O(n*)

n|2| G, n <2|Coa [23] O(nlogn)
n|2|1I prec, =0, C,<d, p=1| Cpan [14]° O(n?)
n|2| 1 prec, p, = 1,2 C [5; 11] O(n?)
2{m | G| Coax [48; 19] O(m?)
niml|lI tree, p, = 1| C,.. [22] O(n)
nim|lL r.=0, p = I,Ew,-C} [32] O(n”)

n m*I’EC} [6]° O(nlog n)

"An O(n log n) algorithm for the more general case of series parallel precedence
constraints is given in [36].

"An O(nlogn) algorithm for the more general case of agreeable weights (i.e.
pi <p; = w;, =w;) is given in [34].

“O(n”) and O(n?) algorithms for the n |2| I, prec, p, = 1| Crmax problem are given
in [10] and [5] respectively; see also [13].

“Polynomial-bounded algorithms for the more general case of parallel non-
identical machines are given in [21;4].

In Table 1, we see that the n|2| G, n, <2| C.,. problem is a member of # and
that two minor extensions of this problem, n|2|G,n <3| Cmnsx and n 13| G,
N < 2| Chax, are NP-complete. By Theorem 2(c, h), these problems are special cases
of the general job-shop problem, which is thus shown to be NP-complete by
Theorem 2(b). Table 2 refers to an O(n log n) algorithm [23] for the n|2|G,
M <2| Crnax problem. Table 3 tells us that reductions of Knapsack to both
NP-complete problems are presented in Theorem 4(a, b); the NP-completeness of
Knapsack has been mentioned in Theorem 1(f).

Theorem 2 gives some elementary results on reducibility among machine
scheduling problems. It can be used to establish either membership of ? or
NP-completeness for problems that are, roughly speaking, either not harder than
the polynomially solvable ones or not easier than the NP-complete ones in Table 1.

Theorem 2. (a) If n'|m'|I',\'| k'« n|m LAk and n|m|l Ak E P, then
n'ilm’'|l', A'|k'e P.

Complexity of machine scheduling problems 351

Table 3. Reductions to NP-complete machine scheduling problems

a T o P S— il T RO — . B N ——

Reduction References

Linear arrangement « n | 1| prec, p;, = 1 ' 2 w,C, [36; 38; 40]

Linear arrangement < n | 1| prec IZQ * [36; 38; 40]

3-Partition < n|1]r, =0| 2 C h.lL, Theorem 5
Knapsack x n|1| C, = d, l >2w.C h.l., Theorem 4(j)
Knapsack x n|[1|r,=0]| L. h.l., Theorem 4(g)
Knapsack « n|1[| 2 w,T, h.l., Theorem 4(1)
Clique x n| 1| prec, p; = 1 I 2T [38; 40]
n|llrn=0|La.xn|1|r %O] 2T h.l., Theorem 2(j)
Knapsack = n |1]| 2 w,U, ‘ [25]; h.lL, Theorem 4(h)
Clique « n | 1| prec, p, = 1 I 2 U [13; 38; 40]
n{l|r=0|Lo,xn|l|lr=0/2U, h.l., Theorem 2(j)
Knapsack « n 2| F, tree | Coax h.l., Theorem 4(f)
Knapsack x n |2 | F, r, 20| Coax h.l., Theorem 4(d)
Knapsack « n |2| G, n, <3| C,.. h.l., Theorem 4(a)
Partition % n | 2| I | Cax h.l., Theorem 3(a); cf. [4]
Clique « n |2| I, prec, pi <2| Chax [40]; cf. [49]

3-Partition x n|2| F | 2 C, [16]

Partition =« n |2|I |2 w,C, h.l., Theorem 3(b); cf. [4]
n'|2]1, prec, py 2| Cpax < n |2 I, prec, pi <2 l > C h.l., Theorem 2(1); cf. [40]
Knapsack « n (2| F| L., h.l., Theorem 4(e)

n 21| Con |21 L. h.L, Theorem 2(i)
R|2|F|Lpx*n|2|F|2T h.l, Theorem 2(j)
n|2|I|Lyw*n|2|I|2T h.l., Theorem 2(j)

|2 F|Lp*n|2|F|2U h.l., Theorem 2(j)

N 2| I | Lyae = n|2]1| 2 U h.l, Theorem 2(j)
Knapsack « n|3| F| Cpax h.l., Theorem 4(c)
Directed hamiltonian path x n|m | F, no wait | Caa, h.l., Theorem 6(a)
Knapsack x n|3| G, n, <2|C,.. h.l.,, Theorem 4(b)
Clique <« n|m | I, prec, p; = 1} Cua [40]; cf. [49]

Directed hamiltonian path « n|m | F, no wait | 2 C, h.l., Theorem 6(b)

n'|m| I prec, pp = 1| Comx < n|m |1 prec, p, =1|2C, h.l, Theorem 2(1); cf. [40]

= TP i - > - T T e y -_ > oy L -y y . i arbiniiniisiniphinii il sl iyl o TN o A A L —— " ioprperes ety o i P

) If n'|m’'| ', M'|k'cn|m|L Alkand n'|m’|l', A'| k" is NP-complete, then
nim|l Ak is NP-complete.
(c) n|m'|LA|kxn|m|LA|xifm’'<morifm'isconstantand m is variable.
(d) n|2|F |k and n|2| P |k are equivalent.
(€) n|3|F| Cmx and n|3| P | Cnax are equivalent.
|

) n|lm|F, Ak xn|m|G, Ak

g n|lm|lL Ak xn|m|lL AUX|k if \'C{prec, tree, r, =0, C; < d}.

W)y n|lm|L AUA|koxen|m|L Alcif A'C{ni<n,, pxk Spy px =1, wi =1}
D) nlm|L A|Coaxxn|m|L A| L.

) nlm|lL A|Loaxcn|m|lL A|kifc €T, 2 U}

k) n|m|LA|ZwC cn|m|l A |ZwT.
() n'|m|1L prec, pi<py|Cusx < n|m|I, prec, p. <p.|ZC.

352 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

roof. Let P’ and P denote the problems on the left-hand side and right-hand side
respectively.

(a,b) Clear from the definition of reducibility.

(¢) Trivial.

(d,e) P’ has an optimal solution with the same processing order on each machine
16;45].

(f,g,h) In each case P’ obviously is a special case of P.

(1) Given any instance of P’ and a threshold value y', we construct a correspond-
Ing instance of P by defining d, = y (i=1,...,n). P has asolution with value <y’
it and only if P has a solution with value < 0.

(J) Given any instance of P’ with due dates d’ (i=1,...,n)and a threshold value
y', we construct a corresponding instance of P by defining d, =di+y'(i=1,...,n).
P"has a solution with value < y'if and only if P has a solution with value < 0.

(k) Take d; =0 (i=1,...,n) in P.

() Given any instance of P’anda y’, 0 < y'<n'p,, we construct a corresponding
instance of P by defining

n"ﬁ(n'“l)y',
n =n'+n",
y et nyf+%nu(nrr+ 1),

and adding n" jobs J..; (j =1,...,n") to P’ with
Pr+ji = 1,
Ji<Jor; (i=1,..,n"+j—-1)
Now P" has a solution with value =< y’if and only if P has a solution with value < y:

Co<y =>ZCsn'y +2_,(y'+j)=y;
Coux>y => 2C>y'+2_(y/'+1+/)=y. [

Remark. The proof of Theorem 2(c) involves processing times equal to 0, implying
that the operations in question require an infinitesimally small amount of time.
Whenever these reductions are applied, the processing times can be transformed
Into strictly positive integers by sufficiently (but polynomially) inflating the problem

data. Examples of such constructions can be found in the proots of Theorem
4(c, d, e, f).

In Theorems 3 to 6 we present a large number of reductions of the form
Pon|m]|l Ak byspecifying n|m |l A |« and some y such that P has a solution
if and only if n[m [l A |k has a solution with value k <y. This equivalence is
proved for some principal reductions; in other cases, it is trivial or clear from the
analogy to a reduction given previously. The NP-completeness of n | m |l A |k then
follows from the NP-completeness of P as established in Theorem 1.

Complexity of machine scheduling problems 353

First, we briefly deal with the problems on identical machines. Theorem 3
presents two reductions which are simplified versions of the reductions given in [4].

Theorem 3. Partition is reducible to the following problems :
(a) n|2|1|Cuu;
(b) n|2|1|2 wC.

Proof. Deﬁne A = zie'rai.
(a) Partition < n |2 | I'| Cuus:

n =t;
p=a (i€ T);
y =:

(b) Partition o« n |21 , 2 w,C:

n =t:
pp=w =a, 1€T);

y — 2 a,'a}'""iAz.

l=si=j=

A
i

Suppose that {J; |i € S} is assigned to M, and {J i€ T~S} to My; let ¢ =
2iesa; —3A. Since p, = w, for all i, the value of = w,C, is not influenced by the
ordering of the jobs on the machines and only depends on the choice of S [6]:

Z W,'Cf — K(S)
It 1s easily seen (cf. Fig. 1) that

()= (Ze) 3.

e S i

— E afajm(%A+C)(%A“C)=y+C2,

l=i=j=1

and it follows that Partition has a solution if and only if thisn |2] I l 2 w;C: problem
has a solution with value <y. [

S T-S S
AF T S R M I _
__I-5 .
I\’!2 I . i M2 - 1
value x(T) value K(S)
Fig. 1

Most of our results on different machines involve the Knapsack problem, as
demonstrated by Theorem 4.

354 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

iheﬂfeﬁ%

@ n

4. Knapsack is reducible to the following problems:

2| G, nf$3’me;
(b) n|3|G, n, $2ICmax;
(¢) n|3|F|Cau;
(d) n|2|F, r=0| Cua:

(€) n|2|F| L. u;

(f) n|2|F, rree’Cmax;
(&) n|1|rn=0]|Ln;
(h) n|1||2Z w,U,;

(i) n|1]2wT:

G) n|1|C <d |2 wC.

Proof. Define A = 2,c7a. We may assume that 0< b < A.
(@) Knapsack < n|2| G, n; <3| Cuu:

n=t+1;

v, = (M), ph=a (i€ T);

v, = (Mo, M,, M), Pn1 = b, Pr2=1, p.s=A — b;
y =A + 1.

If Knapsack has a solution, then there exists a schedule with value C,., =y, as
illustrated in Fig. 2. If Knapsack has no solution, then 2Zcsa;, — b = ¢ 0 for each
S CT, and we have for a processing order ({J; f e S}, T, {J ’iE T'—S}) on M,
that

C>O$ Cmax—"}””zpil"l_pnz—’-panA+C+l>y;

€S
¢ <0 => CounxZpuit P2t > pi=A—-c+1>y.
ieT—8
It follows that Knapsack has a solution if and only if this n|2| G, n <3| Cpan
problem has a solution with value < y.

Complexity of machine scheduling problems 355
If Knapsack has a solution, then there exists a schedule with value Cp. =y, as
illustrated 1n Fig. 3. If Knapsack has no solution. then 2iesa — b = c#0 for each
S C 7, and we have for a processing order ({J; | i € S}, J,,,{J, | i € T - S}) on M
that R

c >0 = C,.,= E Pi1 T Dn_1. TPn2=2A+¢ > Y,

1E€S

c <0 = Cmax2miﬂ{2Pn+pn~1,1+1,pn1 '+ Pna Tt E Piz =2A + 1>y,

tES i€T~S

which completes the equivalence proof.

(c) Knapsack « n |3 | F | Cuax:

n=t+1;

pi =1, pi» = ta, pis =1 (i € T)§
Pn1 = th, Prn2 =1, Pus = t(A — b)§
y =t(A+1)+1.

It Knapsack has a solution, then there exists a schedule with value C,..=y, as
illustrated in Fig. 4. If Knapsack has no solution, then 2,es a; — b = ¢ # 0 for each
S CT, and we have for a processing order ({J: |i € S}, J., {J;|i € T — S}) that

C>O $ Cmax>2pi2+pn2+pn3mt(A+C)+1.By;

A=Y

C<O:;Cmax>pnl+pn2+ z pnz“_“t(A“C)'}'l?}’-

i€T~S

Fig. 4

356 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

(d) Knapsack « n|2|F, r, 20| Cuu:

n=t+1;

=0, pyp=ta, p-=1(H&€T);
r = tb, p. =1, p..=t(A — b);
y=1(A +1).

Ct. reduction 4(c).
(e) Knapsack x n|2| F| L

pihn=1, po=ta, d =t(A+1) (i€ T);
D =tb, po=1, d, = t(b + 1);
= ().
Cf. reduction 4(c).
(f) Knapsack x n|2|F, tree | Cpas:

n==t+2;
pan=ta, p.=1({(€ET);
Prn-11 =1, Dn-12=1tb;
DPri =1, pa=t(A = b);
Jn—--1<Jn;
y=t(A+1)+1.

We have for a processing order ({J 'iE R}, J._., {J. I e Sy, J., {J ’ | €
T'—S — R}) on M, that

R#@ $ Cmax-—“\"‘"’"f+pn--1,1+an1,2+Pm+Pnzm t(A +1)+2>y

T'he remainder of the equivalence proof is analogous to that of reduction 4(c).
(g) Knapsack « n|1]r, 20| L.

n=t+1:
rimo,pi*a,-, d;mA"'l (ZET),

n=b p.=1,d,=b+1;
y = 0.

Ct. reduction 4(a) and Fig. 5.

T 1|u III-IIIP P b

n=rt:

pimwiﬂa;, d,mb(lET),
y=A —b.

Complexity of machine scheduling problems 357

Ct. |

N

5] and Fig. 6.

S =5

(i) Knapsack « n |12 wT;:

n=t¢t+1:;
pDi = W; = d, d,mO(ZET),
p.=1, w,=2,d,=b+1;

y = 2 a,‘aj"l"A"”b.
l=sisj=i

Cf. Fig. 5. We have for a processing order ({J; l e Sy, J., {J l i & T —S}) that
Yiesa; —b =L, Since p, = w, and d, =0 for all i € T, the value of 2,c+w,T, is not
influenced by the ordering of $ and T — S (cf. the proof of Theorem 3(b)), and we
have

> wT = >, aC +2T,

e T

a.d; + | 2 a; + ZmaX{O, Ln}

l=si=j=| ieT -8
=y+|L.|[=Y.

The equivalence follows immediately.
(j) Knapsack « n|1|C <d |ZwC:

n=t+1;

p=w=a,d=A+104&T);
p.=1, w, =0, d, = b+ 1;

y= > aa +A—b

Cf. reduction 4(i) and Fig. 5.
This completes the proof of Theorem 4. [

Theorem 5. 3-Partition is reducible to n|1|r =0 , 2 C.

Proof. A reduction 3-Partition <« n|1{r, =0 , 2. C; can be obtained by adapting
(a) the transformation of Knapsack to n|1|rp=0 l > C, presented in [45];
(b) the reduction 3-Partition « n|2| F| X C, presented in [16].

Both procedures can be carried out in a straightforward way and lead to essentially

the same construction. []

358 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

The NP-completeness proofs for the problems with a no wait assumption are based
on the well-known relation between these problems and the travelling salesman
problem (TSP) of finding a minimum weight hamiltonian circuit in the complete
directed graph on the vertex set V with weights on the arcs.

Given an n | m | F, no wait , k problem, we define ¢; to be the minimum length of
the time interval between §; and S; if J; is scheduled directly after J.. If we define

k
P, = z—-Z[Phi, (1)
it 1s easily proved [43;44; 50;39] that

Ci;j — Inax {Pfk — R:k“l}' (2)
l=k=m

Finding a schedule that minimizes C.., is now equivalent to solving the TSP with

V ={0,...,n} and weights c; defined by (2) and by c¢or =0, Ccho = P, tor h #0.

Theorem 6. Directed hamiltonian path is reducible to the following problems :
(a) n|m|F, no wait , Crax.
(b) n{m|F, no waitsz;.

Proof.

(a) Directed hamiltonian path < n|m |F, no wait , Crax. Gilven G'= (V' A'),
we define

n=|V',
m=n(n-—1)+2.

All jobs have the same machine order (M;, M>,....M,,_,, M.,). To each pair of jobs
JuJi) (,j=1,...,n i#j) there corresponds one machine M, = M,/
(k=2,...,m —1), such that for no J, some M. iry directly follows an M, ;,. Such
an ordering of the pairs (i, j) can easily be constructed. Due to this property of the
ordering, partial sums of the processing times can be defined unambiguously by

| ku + A if Kk =«k(h,j)and (h,j)E A’,
kuw +A +1 if kK =«(h,j)and (h,j)&Z A’,

P =94 kup — A if k+1=«(i,h)and (ih)E A",
kpu — A — 1 if k+1=«(i,h)and (i,h)E A",
| ku otherwise,

for k=1,...,.,m, h=1,..., n where
A =1,
mw=2A + 3.

The processing times are given by (cf. (1))

Complexity of machine scheduling problems 359

DPhi = Pux — Phr- (kmz,...,m).

Through the choice of w, these processing times are all strictly positive integers.
We can now compute the c¢;, as defined by (2). Through the choice of A, it is

immediate that Pyu — P, is maximal for k = « (i, j). Hence.
Ci: m{IJ« +2A it (,j)E A,
! w20 +2 if (L)HEA'

Since P,,, = mu for all J;, it now follows that G has a hamiltonian path if and only if
this n|m | F, no wait ’ Cmax problems has a solution with value

Coax=(n—1)(n +2A)+ mypu.

(b) Directed hamiltonian path « n|m |F, no wait |2 C,

?

G’ has a hamiltonian path if and only if the n|m |F, no wait |Z C, problem,
constructed as in (a), has a solution with value

2 C=ss:n(n—1(u+2A)+nmu. O

Let us finally point out some consequences of the use of a unary encoding with
respect to the binary NP-complete problems, appearing in Theorems 3 to 6.

The n|2|I| Cuux and n|2|I | Z w,C: problems, dealt with in Theorem 3, can be
solved in unary polynomial-bounded time by straightforward dynamic program-
ming techniques.

A similar situation exists for the n | 1||2 w,U, problem from Theorem 4(h), which
can be solved by an O (n X p;) algorithm [37]. For most other prbblems discussed 1n
Theorem 4, however, one can easily prove unary NP-completeness by converting
the Knapsack reduction to a 3-Partition reduction. The following adaptation of
reduction 4(1) might serve as a typical example (cf. the slightly different construction
given in [35]).

3-Partition « n | 1|2 w,T;:

n=4¢t—1;

p,-mwiﬂa;, d;mo (IET);

pp=1, w=2,d=>0-3t)(b+1) (i=3t+1,...,4t—1);
y — 2 a;a]"l'%t(t”l)b

I=<i=<j=3y

Furthermore, reductions of 3-Partition to n|2| G | Cma and n|3| F| Cmax can be
found in [16].

With respect to Theorem 5, the situation is different. In the reductions of
3-Partition to n|1|r=0|Z C, and n|2|F|Z C, the resulting numbers of jobs
are polynomials in both ¢ and b. The (unary) NP-completeness proofs theretore
depend essentially on the unary NP-completeness of 3-Partition and no truly
polynomial-bounded transformation of Knapsack to these problems is known.

360 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

The reductions presented in Theorem 6 clearly prove unary NP-completeness for
both no wait problems.

5. Concluding remaks

The results presented in Section 4 offer a reasonable insight into the location of
the borderline between ‘‘easy’ and ‘‘hard’ machine scheduling problems. Compu-
tational experience with many problems proved to be NP-complete confirms the
impression that a polynomial-bounded algorithm for one and thus for all of them is
highly unlikely to exist. As indicated previously, NP-completeness thus functions as
a formal justification to use enumerative methods of solution such as branch-and-
bound.

Most classical machine scheduling problems have now been shown to be
efliciently solvable or NP-complete. Some notable exceptions are indicated by
question-marks in Table 1. These open problem are briefly discussed below.

T'he most notorious one is the n | 1|2 T; problem. Extensive investigations have
failed to uncover either a polynomial-bounded algorithm or a reduction proving its
NP-completeness. The existence of an O(n*2 p;) algorithm [35] implies that the
problem is definitely not unary NP-complete. However, we conjecture that it is
binary NP-complete, which would indicate a major difference between the 2 T,
and 2 U, problems, as demonstrated by Table 1.

The complexity of the n |3 | F, no wait | C.., and n | 2| F, no wait | 2 C, problems
IS not clear; it is quite possible that both problems are in 2. To stimulate research in
this direction, we will award an authentic clog to the first scientist who finds a
polynomial-bounded algorithm for any one of these problems.

The question of the complexity of the n 13| I, prec, p; = 1 ’ Cmax problem has been
raised already in [49].

Finally, let us stress again that the complexity measure provided by the NP-
completeness concept does not capture certain intuitive variations In complexity
within the class of NP-complete problems. Note, for example, that an n|1|r =
O,Lmax algorithm has figured successfully in a lower bound computation for the
n|m|G | Cuam problem [3; 31], although both problems are NP-complete and thus
equivalent up to a polynomial-bounded transformation. One possible refinement of
the complexity measure by means of differentiation between unary and binary
encodings has already been discussed. Another indication of a problem’s complex-
ity may be based on the analysis of approximation algorithms [15; 27]. For relatively
simple NP-complete problems, there often exist heuristics whose performance is
arbitrarily close to optimal; on the other hand, there are situations in which even
the problem of finding a feasible solution within any fixed percentage from the
optimum has been proved NP-complete. Altogether, the development of a measure

that allows further distinction within the class of NP-complete problems remains a
major research challenge.

Complexity of machine scheduling problems 361

We gratefully acknowledge the valuable cooperation with B.J. Lageweg,

E.L. Lawler and H.W. Lenstra, Jr., and the useful comments by the referee and
D.S. Johnson.

References

[1] D. Adolphson and T.C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25 (1973) 403-423.
[2] J.M. Anthonisse and P. van Emde Boas, Are polynomial algorithms really good? Report BW 40,
Mathematisch Centrum, Amsterdam, 1974.

[3] P. Bratley, M. Florian and P. Robillard, On sequencing with earliest starts and due dates with

application to computing bounds for the (n/m/G/F,,,) problem, Naval Res. Logist. Quart. 20
(1973) 57-67.

[4] J. Bruno, E.G. Coffman, Jr. and R. Sethi, Scheduling independent tasks to reduce mean finishing
time, Comm. ACM 17 (1974) 382-387.

[5] E.G. Coffman, Jr. and R.L. Graham, Optimal scheduling for two-processor systems, Acta Informat.
1 (1972) 200-213.

[6] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley, Reading,
MA, 1967).

7] S.A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. Theory
Comput. (1971) 151-158.

[8] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.
[9] J. Edmonds, The Chinese postman’s problem, Operations Res. 13 Suppl. 1 (1965) B73.

[10] M. Fujii, T. Kasami and K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM J.
Appl. Math. 17 (1969) 784-789; Erratum, 20 (1971) 141.

[11] M.R. Garey, Private communication, 1975.

[12] M.R. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under resource
constraints, SIAM J. Comput. 4 (1975) 397-411.

[13] M.R. Garey and D.S. Johnson, Scheduling tasks with nonuniform deadlines on two processors, J.
Assoc. Comput. Mach. 23 (1976) 461-467.

[14] M.R. Garey and D.S. Johnson, Two-processor scheduling with start-times and deadlines, to appear.

[15] M.R. Garey and D.S. Johnson, Approximation algorithms for combinatorial problems: an
annotated bibliography, in: J.F. Traub, ed., Algorithms and Complexity : New Directions and Recent
Results. (Academic Press, New York, 1976) 41-52.

[16] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling,
Math. Operations Res. 1 (1976) 117-129.

[17}] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems,
Theoret. Comput. Sci. 1 (1976) 237-267.

[18] P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: a solvable case of the
traveling salesman problem, Operations Res. 12 (1964) 655-679.

[19] W.W. Hardgrave and G.L. Nemhauser, A geometric model and a graphical algorithm for a
sequencing problem, Operations Res. 11 (1963) 889-900.

[20] W.A. Horn, Single-machine job sequencing with treelike precedence ordering and linear delay
penalties, SIAM J. Appl. Math. 23 (1972) 189-202.

[21] W.A. Horn, Minimizing average flow time with parallel machines, Operations Res. 21 (1973)
846—-847.

[22] T.C. Hu, Parallel sequencing and assembly line problems, Operations Res. 9 (1961) 841-848.

[23] J.R. Jackson, An extension of Johnson’s results on job lot scheduling, Naval Res. Logist. Quart. 3
(1956) 201-203.

[24] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval

Res. Logist. Quart. 1 (1954) 61-68.

362 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

[25] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum Press, New York. 1972) 85-103.

[26] R.M. Karp, On the computational complexity of combinatorial problems. Networks S (1975) 45-68.

[27] R.M. Karp, The fast approximate solution of hard combinatorial problems, Proc. 6th Southeastern
Conf. Combinatorics, Graph Theory, and Computing (1976) 15-31.

[28] D.E. Knuth, A terminological proposal, SIGACT News 6.1 (1974) 12-18.

[29] B.J. Lageweg and E.L. Lawler, Private communication, 1975.

[30] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Minimizing maximum lateness on one
machine : computational experience and some applications, Statistica Neerlandica 30 (1976) 25-41.

[31] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Job-shop scheduling by implicit enumera-
tion, Management Sci., to appear.

[32] E.L. Lawler, On scheduling problems with deferral costs, Mangement Sci. 11 (1964) 280-288.

[33] E.L. Lawler, Optimal sequencing of a single machine subject to precedence constraints, Manage-
ment Sci. 19 (1973) 544-546.

[34] E.L. Lawler, Sequencing to minimize the weighted number of tardy jobs, Reuv. Frangaise Automat.
Informat. Recherche Opérationnelle 10.5 Suppl. (1976) 27-33.

[35] E.L. Lawler, A “pseudopolynomial’ algorithm for sequencing jobs to minimize total tardiness,
Ann. Discrete Math. 1 (1977) 331-342.

[36] E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence
constraints, Ann. Discrete Math., to appear.

[37] E.L. Lawler and J.M. Moore, A functional equation and its application to resource allocation and
seéquencing problems, Management Sci. 16 (1969) 77-84.

[38] J.K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract 69 (Mathematisch
Centrum, Amsterdam, 1977).

- [39] J.K. Lenstra and A H.G. Rinnooy Kan, Some simple applications of the travelling salesman
problem, Operational Res. Quart. 26 (1975) 717-733.

[40} J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under precedence constraints,
Operations Res., to appear.

[41] J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs,
Management Sci. 15 (1968) 102-109.

[42] H. Miiller-Merbach. Optimale Reihenfolgen (Springer, Berlin, 1970).

[43] J. Piehler, Ein Beitrag zum Reihenfolgeproblem, Unternehmensforschung 4 (1960) 138-142.

[44] S.S. Reddi and C.V. Ramamoorthy, On the flow-shop sequencing problem with no wait in process,
Operational Res. Quart. 23 (1972) 323-331.

[45] A.H.G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations
(Nijhoff, The Hague, 1976).

[46] J.B. Sidney, Decomposition algorithms for single-machine sequencing with precedence relations
and deferral costs, Operations Res. 23 (1975) 283-298.

[47] W.E. Smith, various optimizers for single-stage production, Naval Res. Logist. Quart. 3 (1956)
59-66.

[48] W. Szwarc, Solution of the Akers-Friedman scheduling problem, Operations Res. 8 (1960) 782-788.

[49] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975) 384-393.

[50] D.A. Wismer, Solution of the flowshop-scheduling problem with no intermediate queues,
Operations Res. 20 (1972) 689-697.

