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We use the complexity ¼ volume (CV) prescription to study the effect of a magnetic field on the
computational complexity for states in the gauge theories dual to two different gravitational models. In one
of these theories the complexity increases with the intensity of the magnetic field, while in the other a more
interesting behavior is discovered, resulting in a phenomenon that we term magnetic simplification. The
relevant difference between the two theories is that the content of the second includes a scalar operator with
a nonvanishing vacuum expectation value. This leads us to conclude that the direct impact of the magnetic
field is to increase the complexity of a state, but it can indirectly lower it by diminishing the complexity
associated to additional degrees of freedom when these do not vanish across the space. We additionally
compare the results obtained working in the full ten-dimensional backgrounds and in their effective five-
dimensional truncations, exhibiting that the question is still current about which surface, whether the uplift
of the 5D extremal hypersurface or the extremal surface in 10D, should be used in the CV prescription.
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I. INTRODUCTION

Recent studies on the emergence of spacetime, in the
context of the AdS=CFT correspondence [1], have relied on
the geometrization of quantum information quantities.
Examples of this include entanglement entropy, whose
holographic dual is the area of an extremal surface in the
bulk [2–5], the entanglement of purification, which is dual
to the area of the minimal cross section of the entanglement
wedge [6], and computational complexity [7–11] (or
quantum circuit complexity), which is the main focus of
this manuscript. Roughly speaking, the complexity C of a
given state jψi is the minimum number of quantum gates
required to produce said state from a particular reference
state jRi.
There are two main holographic candidates to be dual to

the computational complexity of the gauge theory state
(although recently it has been argued that there are many

other possible candidates [12,13]). The first one is the
“complexity ¼ action” (CA) conjecture [9–11], which
relates the complexity to the on-shell action of the
gravitational theory evaluated in a bulk region known as
the Wheeler-DeWitt patch. The second one is the
“complexity ¼ volume” (CV) conjecture [7,8], in which
the complexity of the state is related to the volume of a
certain extremal region in the bulk. More precisely, if we
are interested in the computational complexity C of a given
gauge theory state jψðτÞi at a time τ, we can obtain it from
the expression

CðjψðτÞiÞ ¼ maxΣ
volðΣÞ
GNL

; ð1Þ

where Σ is a codimension-1 hypersurface in the bulk that
intersects the boundary in the time slice τ, GN is the
Newton constant, and L is an arbitrary length scale which
we will take to be the AdS radius.
Much progress has been made to better understand both

recipes for holographic complexity, such as studying the
time evolution of complexity [14–19] and its relation to the
so-called Lloyd’s bound [20], inspecting the UV divergen-
ces that arise in the bulk computation [21,22], the inclusion
of quantum bulk effects [23], noncommutative gauge
theory [24], the effects of the presence of a conformal
anomaly [25], and many other works.
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However, several aspects of the holographic complexity
remain ambiguous. One such aspect is the choice of the
reference state jRi in the definition of the CV conjecture (1).
It would be natural to consider the vacuum j0i as reference
state, but direct bulk computations show that, in general,
Cðj0iÞ is nonvanishing, so this is not such an obvious
candidate. Nonetheless, it is possible to get a measure of
the complexity of creating a given state jψi from the vacuum
j0i by computing the so-called complexity of formation,
which is a vacuum-subtracted version of the complexity

CFðjψiÞ ¼ CðjψiÞ − Cðj0iÞ; ð2Þ

when both states are defined at τ ¼ 0.
The holographic complexity of formation was first

studied in Ref. [26]. In that work, the authors investigated
what is the additional complexity involved in forming an
entangled thermofield double state (TFD):

jTFDi ¼ 1

Z
1
2

X
n

e−
βEn
2 e−EnðtLþtRÞjEniLjEniR; ð3Þ

compared to preparing each of the two individual CFTs in
their vacuum state. According to the holographic dictionary
[27], the bulk dual to a TFD state is a two-sided eternal
black hole. The authors of Ref. [26] compute the holo-
graphic complexity of AdS black holes in different dimen-
sions and with different horizon topologies using both the
CVand CA prescriptions. In all the cases studied there, CF
turned out to be positive or zero, never negative.
In fact, one could argue that the complexity of formation

needs to satisfy

CF ≥ 0; ð4Þ

as the vacuum should be the “simplest” state on any theory,
with the equality occurring only if jψi ¼ j0i. The positivity
of CF was investigated in particular spacetimes [28,29] and
perturbations thereof [30,31], and it was proven to be true
in Ref. [32] for the CV conjecture if the bulk geometry
meets certain conditions. More specifically, if the state jψi
is dual to an asymptotically AdSdþ1 spacetime and the
latter satisfies the weak curvature condition (WCC)

tμtν
�
Rμν −

1

2
gμνR −

dðd − 1Þ
L2

gμν

�
≥ 0; ∀ timelike tμ;

ð5Þ
which in Einstein gravity is equivalent to the weak energy
condition (WEC)

tμtνTμν ≥ 0; ∀ timelike tμ; ð6Þ
with Tμν the stress energy tensor of the theory, then the
vacuum is the least CV complex state. The WCC require-
ment is essential, as the examples found in Refs. [29,31]

that give CF < 0 also violate it. However, it was later shown
in Ref. [33] that any solution to type IIB and eleven-
dimensional supergravity (SUGRA) satisfies the WCC. In
other words, even if the dimensional reduction of a specific
asymptotically AdSdþ1 × K spacetime over the compact
manifold K violates the WCC, the inclusion of this
directions restores it. While at first glance this may suggest
that the positivity of CF always should hold from the
higher-dimensional point of view, this is not the case.
The first point to consider is that there is not an obvious

and unique way to extend the CV prescription to include
the compact directions. We have at the very least two
natural generalizations:
(1) the volume of the maximal hypersurface Σfull in the

full AdSdþ1 × K spacetime and
(2) the volume of the hypersurface Σup defined in

the full AdSdþ1 × K spacetime as the uplift of the
hypersurface Σ which has maximal volume in the
asymptotically AdSdþ1 part of the bulk.

Note that, in general, Σfull ≠ Σup, as the uplifted hypersur-
face that was maximal in AdSdþ1 does not need to still be
maximal in AdSdþ1 × K. Hence, in general,

volðΣfullÞ ≠ volðΣupÞ; ð7Þ

and these generalizations can yield different results. The
positivity of the complexity of formation coming from
these two candidates was studied in Ref. [33] in a special
scenario where they coincide and in which they conclude
that neither can reliably avoid negative values of CF even
when the WCC is satisfied from the high-dimensional point
of view. The reason is that the inclusion of the compact
directions violates the assumption of asymptotically
AdSdþ1 boundary conditions used in the proof given in
Ref. [32]. The gravitational asymptotically AdS4 × S7

backgrounds considered in Ref. [33] are all part of a
consistent truncation of eleven-dimensional SUGRA over
the S7. The truncated theory features a tachyonic scalar
field with mass above the Breitenlohner-Freedman (BF)
bound, which causes the violation of the WCC (equivalent
to the WEC in this case) from the lower-dimensional point
of view. The complexity of formation coming from both the
truncated theory and the full eleven-dimensional one turns
out to be negative.
Motivated by the findings in Ref. [33], here we study the

positivity of the complexity of formation from both the
lower- and higher-dimensional points of view in two
particular gravitational models. We do this by analyzing
the vacuum-subtracted complexity when the states are
defined not only at τ ¼ 0, but at any finite time, with a
quantity that we term “evolving complexity.” Both gravi-
tational models come from the consistent truncation ansatz
of SUGRA IIB solutions given in Ref. [34], making both
optimal candidates to include the compact directions in the
computation of the holographic complexity. The first of
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these is the D’Hoker and Kraus [35] model, which we will
refer as DK for short, dual to finite temperature super Yang-
Mills (SYM) N ¼ 4 in the presence of an external
magnetic field. The second one is the Ávila and Patiño
[36] model, which we will refer as AP for short, also dual to
finite temperature SYM N ¼ 4 in the presence of an
external magnetic field, but with the addition of a nonzero
vacuum expectation value (VEV) for a single trace scalar
operator of scaling dimension equal to 2. An important
feature of the AP model is that, at any given value for the
source of the scalar operator, there exists a maximum
magnetic field intensity Bc that the plasma can tolerate,
becoming unstable for higher values. Below Bc, there are
two branches of solutions for any given magnetic field
intensity, with one of them thermodynamically preferred
over the other.
We will show below that, in the DK model, the uplift of

the hypersurface in the five-dimensional truncation is also
extremal in the full ten-dimensional background, and,
therefore, the two manners described above to include
the compact directions are equivalent, and, furthermore, the
result of applying the CV prescription in either the five- or
ten-dimensional theories is the same up to a constant factor
of no consequence. On the contrary, in the AP model, the
uplift of the extremal hypersurface in five dimensions is not
only not extremal in ten dimensions, giving place to the
discussion about how to incorporate the compact space, but
also the complexity obtained using the uplift in ten
dimensions is not simply proportional to the one extracted
from the five-dimensional truncation, providing no argu-
ment to prefer this strategy over the other.
Our results show that, while in the case of the DK model

the complexity of the state increases with the magnetic field,
which is consistent with the intuition that it is harder to create
a state with a finiteB compared to one with a vanishingB, in
the case of the APmodel, the story is not so simple. As could
be arguably expected, the states in the thermodynamically
unstable branch are less complex than the one without a
magnetic field (but identical in every other aspect to any state
of the branch). Surprisingly, though, there are states in the
stable branch that are less complex than the B ¼ 0 state,
occurring at a range of magnetic field intensities Bs < B <
Bc close to maximum that the background can bear. We call
this phenomenon “magnetic simplification,” and in order to
study it we introduce a vanishing magnetic-field-subtracted
version of the complexity, which we call “complexity of
magnetization,” defined as the complexity associated to
magnetizing a given state. Given that the main difference
between the DK and APmodels is the inclusion of the scalar
operator with a nonvanishing VEVon the latter, this leads us
to conclude that the direct impact of the magnetic field is
to increase the complexity of a state, but it can indirectly
lower it by diminishing the complexity associated to addi-
tional degrees of freedom when these do not vanish across
the space.

The manuscript is organized as follows. In Sec. II, we
review the construction of the DK and AP models, explain-
ing how both are part of the same general truncation ansatz.
In Sec. III, we show how to compute the complexity by
means of the CV prescription for both models from the
five-dimensional perspective and present the numerical
results, while in Sec. IV we do the same from the ten-
dimensional point of view. We close by discussing our
results in Sec. V. Some of the more technical details of our
computations are contained in a series of appendixes.

II. GRAVITY SETUP

A. General truncation ansatz

The family of solutions that we consider in this work are
part of the general truncation ansatz given in Ref. [34]. We
consider solutions to ten-dimensional SUGRA IIB in which
the metric and the self-dual five-form are the only fields that
are turned on. Upon reduction, the five-dimensional fields
are the metric gμν, three Maxwell fields Ai, and two scalar
fields φj. The explicit form of the self-dual five-form is
irrelevant for the present work, while the ten-dimensional
line element is given by

ds210 ¼ Δ1
2ds25 þ

L2

Δ1
2

X3
i¼1

X−1
i

�
dμ2i þ μ2i

�
dϕi þ

Ai

L

�
2
�
;

ð8Þ
where ds25 is the line element of the truncated theory, L is a
parameter with units of length that corresponds to the AdS5
radius, the μi coefficients are given by

μ1 ¼ sin θ; μ2 ¼ cos θ sinψ ; μ3 ¼ cos θ cosψ ð9Þ

and the wrapping factor Δ by

Δ ¼
X3
i¼1

Xiμ
2
i ; ð10Þ

with

Xi ¼ e−
1
2
a⃗i·φ⃗; a⃗i ¼ ðað1Þi ; að2Þi Þ; φ⃗ ¼ ðφ1;φ2Þ; ð11Þ

and the a⃗i must satisfy

a⃗i · a⃗j ¼ 4δij −
4

3
: ð12Þ

We are using Hopf (toroidal) coordinates [37,38] on the
compact directions, which means that

0 ≤ θ; ψ ≤
π

2
; 0 ≤ ϕi ≤ 2π: ð13Þ

Substitution of the reduction ansatz in the SUGRA IIB
equations of motion gives five-dimensional equations of
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motion that can be derived from the five-dimensional
effective action

S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2

X2
j¼1

ð∂φjÞ2

þ 4

L2

X3
i¼1

�
X−1
i −

1

4
X−2
i ðFiÞ2

�
þ 1

4
ϵμνρσλF1

μνF2
ρσA3

λ

�
:

ð14Þ

Next, we list the solutions to Eq. (14) that we will study
in this paper. In what follows, we will set L ¼ 1 without
loss of generality.

B. Vacuum

The first solution is AdS5 × S5, which is dual to the
vacuum state of SYMN ¼ 4. As such, we will refer to it as
the “vacuum solution.” In this background, all the scalar
and Maxwell fields are turned off:

φ2 ¼ φ1 ¼ 0; A1 ¼ A2 ¼ A3 ¼ 0; ð15Þ

while the ten-dimensional line element is taken to be

ds210 ¼ ds25 þ dθ2 þ sin2θdϕ2
1 þ cos2θdΩ2

3: ð16Þ

In Hopf coordinates, the S3 line element is written as

dΩ2
3 ¼ dψ2 þ sin2ψdϕ2

2 þ cos2ψdϕ2
3; ð17Þ

while the Poincaré AdS5 line element is

ds25 ¼
dr2

r2
þ r2ð−dt2 þ dx2 þ dy2 þ dz2Þ: ð18Þ

We have chosen coordinates such that ðt; x; y; zÞ are the
SYM theory directions and r is the AdS5 radial coordinate,
with the boundary located at r → ∞.

C. Finite temperature

Another important solution is the black D3-brane geom-
etry, which is dual to SYM N ¼ 4 at finite temperature T.
Once again the scalar and Maxwell fields are turned off,
and the ten-dimensional line element is given by Eqs. (16)
and (17). The difference is that the five-dimensional line
element is now

ds25 ¼
dr2

UBBðrÞ
−UBBðrÞdt2

þ
�
rþ rh

2

�
2

ðdx2 þ dy2 þ dz2Þ; ð19Þ

where

UBBðrÞ ¼
�
rþ rh

2

�
2
�
1 −

ð3
2
rhÞ4

ðrþ rh
2
Þ4
�
: ð20Þ

This geometry features a black hole whose event horizon is
located at r ¼ rh, and its temperature, given by

T ¼ U0ðrÞjrh ¼
3rh
2π

; ð21Þ

dictates the one of the quantum state as well.
We are not using the standard r̃ radial coordinate, and

instead we employ a scaled and translated version r defined
by the relation r̃ ¼ rþ rh

2
. The reason is that the next two

families of solutions are naturally written in this coordinate.
Of course, Eq. (19) reduces to the vacuum solution (18)
when we take T ¼ 0.

D. DK model

Next is the family of solutions constructed by D’Hoker
and Kraus [35], which we will refer as the DK model
for short. This model is dual to SYM N ¼ 4 at a finite
temperature T in the presence of a magnetic field B. This
can be recovered from the general truncation ansatz by
setting

φ2 ¼ φ1 ¼ 0; A1 ¼ A2 ¼ A3 ¼ 2
Affiffiffi
3

p ; ð22Þ

and, thus, the ten-dimensional line element takes the form

ds210 ¼ ds25 þ dθ2 þ sin2θ

�
dϕ1 þ

2ffiffiffi
3

p A

�
2

þ cos2θdσ23ðAÞ:

ð23Þ

The presence of the Maxwell field A deforms the 3-sphere
in such a way that a 3-cycle with line element

dσ23ðAÞ ¼ dψ2 þ sin2ψ

�
dϕ2 þ

2ffiffiffi
3

p A

�
2

þ cos2ψ

�
dϕ3 þ

2ffiffiffi
3

p A

�
2

ð24Þ

is obtained.
On the other hand, the ansatz for the line element of the

noncompact part of the spacetime is

ds25 ¼
dr2

UðrÞ − UðrÞdt2 þ VðrÞðdx2 þ dy2Þ þWðrÞdz2;

ð25Þ

while the only Maxwell field of the truncation is taken to be

F ¼ Bdx ∧ dy: ð26Þ
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We are using the same coordinates as in the vacuum and
black D3 solutions, and the construction is done so that,
like in those cases, every element of this latter family of
backgrounds features a horizon located at rh where the
metric function UðrÞ vanishes. The metric asymptotes
precisely AdS5 at the boundary r → ∞ for any B and T,
with the former matching the magnetic field intensity in the
dual gauge theory. Thus, every member of the family is
characterized by the values of its magnetic field intensity B
and temperature T, which suggests labeling each solution
by the dimensionless ratio B=T2. However, the DK model
features a conformal anomaly for any nonvanishing mag-
netic field intensity, which introduces another length scale
at the quantum level in the gauge theory side. As a
consequence, not all dimensionless physical observables
are functions of B=T2 alone. We have previously shown in
Ref. [39] that, when computed by means of the CA
conjecture, the holographic complexity is insensitive to
the conformal anomaly in the DK model. We will inves-
tigate if this is also the case for the CV conjecture in the
following sections.
The only known analytical members of the DK model

are the black D3-brane solution for B=T2 ¼ 0 and BTZ ×
R2 for precisely B=T2 ¼ ∞. For any intermediate values of
B=T2, it is necessary to resort to numerical methods to
solve the equations of motion. The explicit integration
procedure that we follow is explained in detail in Ref. [40]
for the solutions outside the event horizon and in
Refs. [39,41] for the solutions inside the horizon.

E. AP model

Finally, we have the family of solutions constructed by
Ávila and Patiño [36], whichwewill refer to as theAPmodel
for short. This background is also dual to SYM N ¼ 4 at
finite temperature T in the presence of a magnetic fieldB but
with a nonvanishingVEV (which is a functionofB andT) for
a single trace scalar operator. The model is obtained from the
general truncation ansatz by taking

2ffiffiffi
3

p φ2 ¼ 2φ1 ¼ φ; A1 ¼ 0; A2 ¼ A3 ¼
ffiffiffi
2

p
A;

ð27Þ

with

a⃗1 ¼
�

2ffiffiffi
6

p ;
ffiffiffi
2

p �
; a⃗2 ¼

�
2ffiffiffi
6

p ;−
ffiffiffi
2

p �
; a⃗3 ¼

�
−

4ffiffiffi
6

p ;0

�
;

ð28Þ

which, in turn, means that

X ¼ X2 ¼ X3 ¼ e
1ffiffi
6

p φ; X1 ¼ X−2; ð29Þ

and the wrapping factor is given by

Δ ¼ X−2sin2θ þ Xcos2θ: ð30Þ

The ten-dimensional line element is given by

ds210 ¼ Δ1
2ds25 þ

1

Δ1
2

ðXΔdθ2 þ X2sin2θdϕ2
1

þ X−1cos2θdΣ2
3ðAÞÞ; ð31Þ

where the 3-cycle line element dΣ2
3ðAÞ depends on the one

Maxwell field of the truncation and is given by

dΣ2
3ðAÞ ¼ dψ2 þ sin2ψðdϕ2 þ

ffiffiffi
2

p
AÞ2

þ cos2ψðdϕ3 þ
ffiffiffi
2

p
AÞ2: ð32Þ

On the other hand, the ansatz for the line element of the
noncompact part of the spacetime is once again

ds25 ¼
dr2

UðrÞ − UðrÞdt2 þ VðrÞðdx2 þ dy2Þ þWðrÞdz2;

ð33Þ

while the Maxwell field is taken to be

F ¼ Bdx ∧ dy; ð34Þ

and the only scalar field of the truncation depends solely on
the radial coordinate

φ ¼ φðrÞ: ð35Þ

Every element of the family features a black hole, with a
horizon located at r ¼ rh where the metric function UðrÞ
vanishes, and asymptotes AdS5 at the boundary r → ∞.
Under this circumstance, the magnetic field intensity B
coincides with the one in the dual gauge theory. Given that
the equations of motion coming from Eq. (14) are highly
nonlinear, their solution must be obtained numerically
for any nonvanishing intensity of the magnetic field. The
general integration procedure in the region outside the hori-
zon is described in detail in Ref. [36], while for the inner
region we describe it in Appendix A. Notably, the equations
of motion require a nonconstant scalar field φðrÞ for any
nonvanishing magnetic field, which means that the DK
model cannot be recovered from the AP for B other than
zero, in which case both reduce to the black D3-brane.
The near-boundary behavior of the scalar field φ is

φ →
1

r2
ðφ0 þ ψ0 log rÞ; ð36Þ

which means that it saturates the BF bound [42,43] and it is
dual to a single trace scalar operator Oφ of scaling
dimension equal to 2. According to the holographic dic-
tionary, ψ0 is dual to the source of the operator and φ0 to its
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vacuum expectation value hOφi [43]. From the gauge
theory perspective, it makes sense to specify the source
of the operator and then compute the vacuum expectation
value that it generates in response to such a source.
It was shown in Ref. [36] that for any given source ψ0

there exists a critical magnetic field intensity Bc that the
plasma can tolerate, becoming unstable for higher values.
From the dual gravitational perspective, beyond this critical
value Bc, the geometries develop a naked singularity.
Below Bc, there exist two branches of solutions for any
given B=T2 that differ in the value that hOφi=T2 takes. One
of these branches was exhibit to be thermodynamically
preferred over the other [36], since the one with the higher
value for hOφi=T2 corresponds to a state with negative
specific heat, higher free energy, and lower entropy than the
other, showing that the solutions with smaller hOφi=T2 are
thermodynamically preferred. Throughout this manuscript,
we will fix the source ψ0 to 0, which means that the
maximum magnetic field intensity that the background can
bear is given by Bc=T2 ≃ 11.24.
The original motivation for the AP model was to find a

feasible way to easily add fundamental degrees of freedom
by means of the embedding of D7-branes in the probe limit.
This objective was achieved in Refs. [25,44], where it was
proven that the interplay between the magnetic and scalar
fields leads to a very interesting thermodynamic behavior
for the fundamental matter. The two properties of the metric
associated to Eq. (31) that permit an easy embedding of a
D7-brane on it are that its components do not depend on the
angular coordinate ϕ and that the direction that the latter
coordinate represents remains orthogonal to the rest of the
spacetime. The inclusion of the scalar field φ was crucial
for this to happen.
Finally, another important thing to note is that the AP

model, just like the DK model, possesses a conformal
anomaly for any B ≠ 0. We will investigate if this has any
effect on the CV computation in the following sections.

III. COMPLEXITY 5D

A. CV computation

In this section, we will discuss how to compute the
computational complexity for the two models described
above when studied from the perspective of the truncated
five-dimensional theories. First, we explain how to com-
pute the complexity by means of the CV prescription in this
class of bulk geometries. According to the CV conjecture,
the computational complexity C of a given gauge theory
state jψðτÞi at time τ is given by the volume of the maximal
codimension-one hypersurface Σ anchored at the time slice
defined by t ¼ τ at both the left and right boundaries. The
concrete expression is

CðjψðτÞiÞ ¼ maxΣ
volðΣÞ
GNL

; ð37Þ

where GN is the Newton constant and L is an arbitrary
length scale which we will take to be the AdS radius. In
Fig. 1, we show an example of one of these hypersurfaces
in the Penrose diagram for the class of geometries that we
consider. The details of how to construct said Penrose
diagram can be consulted in Appendix B.
The line element of every geometry in both the DK and

AP models can be written as

ds25 ¼
dr2

UðrÞ − UðrÞdt2 þ VðrÞðdx2 þ dy2Þ þWðrÞdz2:

ð38Þ

In this coordinate system, the desired codimension-one
hypersurface Σ can be parametrized as xμðξaÞ, where μ runs
across all five directions of the bulk and a runs across
the four coordinates on the hypersurface. While this
describes the most general embedding, the metric (38),
being diagonal with elements that depend on the radial
coordinate alone, allows one to chose the parametrization
ξa ¼ ðr; x; y; zÞ and xμðξaÞ ¼ ðtðrÞ; r; x; y; zÞ. With this
choice, the line element of the induced metric on the
hypersurface Σ is given by

ds2Σ ¼
�

1

UðrÞ − UðrÞt0ðrÞ2
�
dr2

þ VðrÞðdx2 þ dy2Þ þWðrÞdz2; ð39Þ

where the prime denotes the derivative with respect to r,
and the volume of Σ can be computed as

FIG. 1. Penrose diagram for the class of geometries that we
consider. The event horizon at r ¼ rh is displayed as the gray
continuous lines. The continuous red line denotes the codimen-
sion-one maximal hypersurface Σ anchored at the time slice t ¼ τ
at both the left and right boundaries. There is a radius rm
associated to any value of this τ given by the r at which the
embedding function tðrÞ of the hypersurface satisfies tðrmÞ ¼ 0.
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volðΣÞ ¼ 2Vx

Z
r∞

rm

VðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðrÞ

�
1

UðrÞ − UðrÞt0ðrÞ2
�s
dr

¼ 2Vx

Z
r∞

rm

Lðt; t0; rÞ; ð40Þ

where we have factorized the volume Vx coming from the
gauge theory spatial directions and the integration over r
runs from the minimal radius rm in the middle of the
Penrose diagram (at t ¼ 0) to a regulator at r∞ near
the boundary (hence the overall factor of 2). To obtain
the precise result, we will take the limit r∞ → ∞ at the end
of the calculation.
According to the CV prescription, we need to maximize

the volume (40). Extremization yields the following equa-
tion of motion for tðrÞ:

0 ¼ −∂r
�
∂L
∂t0

�
; ð41Þ

which can be integrated to give

E ¼ −
∂L
∂t0

¼ −
t0ðrÞUðrÞVðrÞ ffiffiffiffiffiffiffiffiffiffiffi

WðrÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

UðrÞ −UðrÞt0ðrÞ2
q ð42Þ

or, equivalently,

t0ðrÞ ¼ E

UðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ UðrÞVðrÞ2WðrÞ

p ; ð43Þ

where E is a conserved quantity. The hypersurface Σ needs
to connect the boundary at the left with the one on the right
without developing a conical singularity in the middle of
the Penrose diagram at r ¼ rm (see Fig. 1). This is achieved
by demanding that the derivative of tðrÞ diverges at rm,
which by means of Eq. (42) fixes the value of the constant
E to

E2 ¼ −UðrmÞWðrmÞVðrmÞ2: ð44Þ

For any given rm, there is only one solution with the
constant E set by Eq. (44) that satisfies tðr∞Þ ¼ τ on both
sides of the geometry; hence, effectively, we haveE ¼ EðτÞ
and rm ¼ rmðτÞ. After substitution of Eq. (42) in Eq. (40),
we obtain the volume of the maximal hypersurface Σ as a
function of τ:

volðΣÞ ¼ 2Vx

Z
r∞

rmðτÞ

VðrÞ2WðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðτÞ2 þUðrÞV2ðrÞWðrÞ

p dr; ð45Þ

where the limit r∞ → ∞ is meant to be taken.
In order to obtain the explicit dependence of volðΣÞ on τ,

we need to solve Eq. (42) for tðrÞ. Given that, as explained
in Sec. II, in general, the backgrounds that are part of either

the DK and AP models are constructed numerically, the
solution for tðrÞ for τ ≠ 0 needs to also be computed by
numerical methods [with tðrÞ ¼ 0 for all r being the only
analytical solution]. The integration procedure that we
followed in practice began by solving Eq. (41) as a
Frobenius expansions around rm. Given that we look for
solutions that satisfy tðrmÞ ¼ 0 and t0ðrmÞ ¼ ∞, the series
turns out to be

tðrÞ ¼ ðr − rmÞ12
X∞
i¼0

tðmÞ
i ðr − rmÞi; ð46Þ

where any coefficient tðmÞ
i can be determined using the

equation of motion up to the necessary order. Of particular

importance is the explicit expression for tðmÞ
0 :

tðmÞ
0 ¼ 2

ffiffiffiffiffiffiffiffi
VW

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Uð2UWV 0 þ VðWUÞ0Þp ����

rm

; ð47Þ

because from it, and given that UðrmÞ < 0, we can
conclude that obtaining a real-valued solution restricts
rm to the interval rmin < rm ≤ rh, where the minimal
possible radius rmin is given by the solution to the equation

0 ¼ ð2UWV 0 þ VðWUÞ0Þjrmin
: ð48Þ

In the case of the DK and AP models, this minimal radius is
a function of both the magnetic field intensity B and the
temperature T.

Once the coefficients tðmÞ
i are known to the desired order,

Eq. (46) can be used to provide initial conditions for the
numerical integration of Eq. (41) starting at r ¼ rm þ ϵ,
with ϵ ≪ rm, and only up to r ¼ rh − ϵ, as the horizon is
another singular point of the equation of motion. A series
expansion of Eq. (41) near rh reveals that tðrÞ goes like

tðrÞ ¼ −
1

6rh
logðjr − rhjÞ þ

X∞
j¼0

tðhÞj ðr − rhÞj; ð49Þ

where any tðhÞj for j ≥ 2 can be written in terms of tðhÞ0 and

tðhÞ1 . In practice, we extracted tðhÞ0 and tðhÞ1 from the behavior
of the numerical interior solution tðrÞ near rh, substituted
these values in Eq. (49), and used the resulting series to
provide initial conditions for the exterior numerical inte-
gration starting at r ¼ rh þ ϵ and up to r ¼ r∞. After
mirroring this result for the left side of the Penrose diagram,
this procedure allows us to piecewise construct the solution
tðrÞ for any r. Finally, we extracted τ from the numerical
solution as tðr∞Þ ¼ τ and then obtained the relations rmðτÞ
and EðτÞ.
The computation for the vacuum state requires its own

discussion, as the integration procedure we just described
does not apply even if Eq. (42) does. Obtaining the
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complexity of preparing both the left and right gauge
theories in their vacuum state requires working with two
separate copies of the Poincaré AdS5 bulk geometry, where
the maximal hypersurfaces Σ0 are those with constant time,
given by tðrÞ ¼ τ, which is equivalent to setting E ¼ 0 for
any τ in Eq. (42). This, in turn, implies that the maximal
volume (45) for the vacuum state is given by

volðΣ0Þ ¼ 2Vx

Z
r∞

0

r2dr ¼ 2Vx

3
r3∞; ð50Þ

showing that the volume is independent of the boundary
time τ. In Fig. 2, we present one copy of the Poincaré AdS5
bulk geometry with an example of a maximal hypersur-
face Σ0.
It is important to note that, for any of the geometries in

both the DK and AP models, volðΣÞ is divergent when the
boundary regulator r∞ is removed. Substitution of the near-
boundary expansions of the metric fields given in
Appendix C for either the DK or AP models in Eq. (45)
gives

volðΣÞ ¼ 2Vx

�
r3∞
3

þ U1r2∞
2

þ U2
1r∞
4

þOðr−1Þ
�
; ð51Þ

which diverges in the limit r∞ → ∞. Note, however, that
the previous expression can be rewritten as

volðΣÞ ¼ 2Vx

�
r̃3∞
3

þU3
1

24
þOðr−1Þ

�
; ð52Þ

with r̃∞ ¼ r∞ þ U1=2. Given that when r∞ → ∞ we have
r̃∞ ¼ r∞, formally using either regulator at the boundary
will give the same result for volðΣÞ once the limit has been
taken. Using r̃∞ in volðΣÞ and r∞ in volðΣ0Þ explicitly
shows that the vacuum-subtracted volume volðΣÞ −
volðΣ0Þ is finite in the limit r∞ → ∞, that is, when both
regulators are removed. This mathematical trick is neces-
sary because of the choice of radial coordinate for both the
DK and AP models.

B. Results

The numerical procedure detailed above allows us to use
Eqs. (45) and (2) to find the computational complexity C of
any state in the gauge theory dual to either the DK or AP
models as a function of the three independent gauge theory
parameters B, T, and τ as

CðB; T; τÞ ¼ volðΣÞ
GN

: ð53Þ

However, our numerical results show that the dimension-
less ratio C=T3 depends only on the dimensionless quan-
tities B=T2 and Tτ, in terms of which the results ahead will
be reported. Although at first sight this might seem trivial,
this is not the case, because, as explained in Sec. I, both
models feature a conformal anomaly that introduces an
arbitrary energy scale μ at the quantum level. In other
words, our results explicitly show that the complexity
computed by means of the CV prescription is insensitive
to the conformal anomaly, at the very least for these specific
models. We have previously shown in Ref. [39] that this is
also the case when using the CA prescription for the DK
and the Mateos-Trancanelli anisotropic models.
As previously explained, we are interested in the

vacuum-subtracted version of the complexity defined at
any given τ, a quantity that we call the evolving complexity
CE, which is given by

CEðB=T2; TτÞ
T3

¼ volðΣÞ − volðΣ0Þ
T3GN

: ð54Þ

Note that this quantity remains finite in the r∞ → ∞ limit
by virtue of Eq. (52) and that it reduces to the well-known
complexity of formation for τ ¼ 0. In Fig. 3, we show CE
for the DK model as a function of B=T2 for two different
fixed values of Tτ. It can be seen that CE is a monotonically
increasing function of B=T2 and that it is always positive
CE > 0 for the two values of Tτ that we display. The
interpretation of this result is that, at least intuitively, it
becomes harder to create a state with a magnetic field
starting from the vacuum as B=T2 increases.
From Fig. 3, we can also see that the evolving complex-

ity increases as the boundary time passes, as CE is larger for
Tτ ¼ 1 than it is for Tτ ¼ 0. This effect can be better
appreciated in Fig. 4, where we show CE as a function

FIG. 2. Penrose diagram for one copy of the Poincaré AdS5
background dual to the vacuum state in both the DK and AP
models. The continuous red line denotes the codimension-one
maximal hypersurface Σ anchored at the time slice t ¼ τ at the
boundary. For this background, Σ is given by constant t hyper-
surfaces.
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of Tτ for various values of B=T2. It can be seen how CE
monotonically increases when Tτ grows, in such a way that
for late times it does it at a constant rate. With higher
magnetic fields, the complexity grows even more but keeps
the same behavior, always increasing at a constant rate
when Tτ goes to infinity, which is the expected late-time
behavior of the computational complexity [7,8,14–19,39].
While we arrived to this conclusion by inspecting the full
time dependence of CV , as a confirmation of our numerical
procedure we present an alternative derivation of the
τ → ∞ limit of dCV=dτ explicitly Appendix D.
In Fig. 5, we show CE as a function of B=T2 at fixed

values of Tτ for the AP model. As explained in Sec. I, in
the AP model two branches of solutions exist for any
0 < B < Bc, with one being thermodynamically preferred
over the other. In the following plots, we will denote the
thermodynamically stable branch of states as a continuous
line, while we will use a dashed line to indicate the latter.
From Fig. 5, it can immediately be seen that CE is not a
monotonic function of the magnetic field. As we increase

the dimensionless quantity B=T2, both the complexity of
formation (Tτ ¼ 0) and its evolution at Tτ ¼ 1 grow until
they reach a maximum value. Interestingly, this maximum
occurs for a magnetic field intensity lower than the critical
one Bc=T2 ≈ 11.24 for the two values of Tτ displayed.
Further increasing the magnetic field intensity causes CE to
decrease in such a way that there are some states that satisfy
CEðB; T; τÞ < CEð0; T; τÞ still within the stable branch,
which can be stated as the system ongoing a “simplifica-
tion” of sorts. In contrast to the DK model, in the AP model
it is easier to create a state with a very intense magnetic
field starting from the vacuum than it is to create one with a
less intense magnetic field.
In Fig. 6, we show CE as a function of Tτ for various

B=T2. First of all, it can be seen that, just like in the case of

FIG. 3. Evolving complexity GNCE=VxT3 for the DK model as
a function of B=T2 with Tτ ¼ 0 (red, bottom line) and Tτ ¼ 1
(blue, top line). Both have a similar behavior, monotonically
increasing as B=T2 grows.

FIG. 4. Evolving complexity GNCE=VxT3 for the DK model as
a function of Tτ for (bottom to top) B=T2 ¼ 0 (blue line),
B=T2 ¼ 8.5 (red line), and B=T2 ¼ 18 (green line).

FIG. 5. Evolving complexity GNCE=VxT3 for the AP model as
a function of B=T2 with Tτ ¼ 0 (red, bottom line) and Tτ ¼ 1
(blue, top line). The solid lines represent states in the stable
branch, while the dashed ones correspond to states in the unstable
one. The horizontal dot-dashed lines denotes CE for B=T2 ¼ 0
but the same Tτ as the corresponding color.

FIG. 6. Evolving complexity GNCE=VxT3 for the AP model as
a function of Tτ with B=T2 ¼ 0 as reference (black, fourth line
down) and then (from top to bottom for solid lines and bottom to
top for dashed ones) B=T2 ≈ 8.08 (blue lines), 10.37 (green
lines), 11.04 (purple lines), 11.18 (orange lines), and 11.24 (red
lines). The solid lines represent states in the stable branch, while
the dashed ones correspond to states in the unstable one.
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the DK model, the evolving complexity monotonically
increases with Tτ, in such a way that for late times it does at
a constant rate for all the intensities of the magnetic field
used in the plots, which is the expected behavior. Second,
we confirm that indeed some of the states in the stable
branch are such that some Tτ satisfy CEðB=T2; TτÞ <
CEð0; TτÞ as, for example, the orange continuous curve
corresponding to the stable state with B=T2 ¼ 11.18 is
below the black curve corresponding to B=T2 ¼ 0 for
late Tτ.
This puzzling behavior raises the following question: Is

this simplification effect caused by the presence of the
magnetic field alone, or can it be attributed to the interplay
that it has with the scalar field? In order to answer this, we
would like to subtract the contribution coming from the
temperature from the complexity. We call this quantity the
“complexity of magnetization” CM of the state jB; T; τi,
defined as

CMðjB; T; τiÞ ≔ CðjB; T; τiÞ − Cðj0; T; τiÞ: ð55Þ

Intuitively, CM measures how difficult it is to prepare a state
with a certain magnetic field and temperature at time τ
starting from a state with the same temperature and at the
same time but with no magnetic field.
In terms of the CV prescription, the gravity formula for

CM is

CMðB=T2; TτÞ
T3

¼ volðΣÞ − volðΣTÞ
T3GN

; ð56Þ

where ΣT is the maximal hypersurface anchored at fixed
boundary time Tτ in the black D3-brane background,
which corresponds to the B=T2 ¼ 0 solution for both the
DK and AP models. Note that, just like the evolving
complexity, CM is finite in the limit r∞ → ∞ by virtue
of Eq. (52).

We show the complexity of magnetization for the DK
model as a function of B=T2 at fixed Tτ in Fig. 7 and as a
function of Tτ at fixed B=T2 in Fig. 8. From the first one,
we can see that CM is a monotonically increasing function
of the magnetic field intensity for fixed Tτ and that it is a
positive quantity for all the explored values of B=T2. From
the latter, we can see a similar behavior, meaning that the
complexity of magnetization always increases as Tτ grows.
Also note that, for the magnetic field intensities displayed
in Fig. 8, CM remains positive as Tτ grows and that it
increases at a constant rate as Tτ goes to infinity.
In the case of the AP model, the complexity of

magnetization reveals a more interesting behavior. In
Fig. 9, we show CM as a function of B=T2 for two values
of Tτ, from which we can see that in both cases every state
in the unstable branch is less complex than the thermal
B ¼ 0 state, as for these we have that CM < 0. However, as
anticipated from the previous analysis of the evolving

FIG. 7. Complexity of magnetization GNCM=VxT3 for the DK
model as a function of B=T2 for fixed Tτ ¼ 0 (red, bottom line)
and Tτ ¼ 1 (blue, top line). Both have a similar behavior,
monotonically increasing as B=T2 grows.

FIG. 8. Complexity of magnetization GNCM=VxT3 for the DK
model as a function of Tτ for B=T2 ¼ 8.5 (red, top line) and
B=T2 ¼ 18 (green, bottom line).

FIG. 9. Complexity of magnetization GNCM=VxT3 for the AP
model as a function of B=T2 with Tτ ¼ 0 (red lines, closer to
zero) and Tτ ¼ 1 (blue lines, farther from zero). The solid lines
represent states in the stable branch, while the dashed ones
correspond to states in the unstable one. We present an inset of the
large B=T2 region in order to better visualize the magnetic
simplification phenomenon.
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complexity, some of the states on the thermodynamically
preferred branch also satisfy CM < 0.
While the previous behavior is shown explicitly for the

two values of Tτ considered in Fig. 9, we can see that it is
shared for other boundary times as well. In Fig. 10, we
show the complexity of magnetization as a function of Tτ
for various values of the magnetic field. From this, it can be
seen that the states on the unstable branch have negative CM
for any Tτ and that the complexity of magnetization grows
at a constant rate as Tτ increases. Notably, the same is true
for some of the states in the stable branch. For example, the
continuous orange (bottom) curve in Fig. 10 corresponding
to the stable state at B=T2 ¼ 11.18 satisfies CM < 0
for Tτ > 0.6.
From the previous discussion, we can conclude that

indeed the interplay between the magnetic field and the
scalar field leads to a negative complexity of magnetization
CM, a phenomenon that we call magnetic simplification.
This occurs for states with a magnetic field intensity such
that Bs=T2 < B=T2 < Bc=T2, where the simplification
intensity Bs depends on the time Tτ at which we are
defining the state.

IV. COMPLEXITY 10D

As we previously mentioned, there is no obvious
generalization of the CV prescription to allow the inclusion
of the compact directions in ten dimensions. However, two
natural options are (i) uplift the maximal volume Σ in 5D to
Σup in 10D and (ii) find the maximal volume slice in the full
10D geometry Σfull.
The volume of the hypersurface Σ10 can be computed in

a similar way to the five-dimensional case. Now the
coordinate system for the codimension-one hypersurface

will be parametrized as xμðξaÞ, where μ runs across the full
ten dimensions of the bulk and a across the nine directions
of the hypersurface. We will again use the symmetries of
the system to simplify the embedding.
We consider the DK model first and notice that the

first term on the right side of Eq. (23) depends solely on r,
while in the others only the compact directions appear.
This separation allows us to choose the parametrization
ξa ¼ ðr; x; y; z; θ;ψ ;ϕ1;ϕ2;ϕ3Þ and xμðξaÞ ¼ ðtðrÞ; r; x; y;
z; θ;ψ ;ϕ1;ϕ2;ϕ3Þ in terms of which the volume of Σ10 is

volðΣ10Þ ¼ 2

Z
L10d9x; ð57Þ

where L10 is given by

L10 ¼ ΛVðrÞ
ffiffiffiffiffiffiffiffiffiffiffi
WðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

UðrÞ −UðrÞt0ðrÞ2
s

; ð58Þ

with

Λ ¼ sinðθÞcos3ðθÞ sinðψÞ cosðψÞ: ð59Þ

It is because of this factorization of the compact directions
that we can integrate them immediately, leading to a π3

constant factor that does no affect the extremization process
of the hypersurface. This factor accounts for the complexity
associated to the internal degrees of freedom encoded in the
compact part of the space, not included in the effective five-
dimensional treatment, that in this particular case turn out
to be independent of the energy scale given by the radial
coordinate. The explicit expression we obtain is

volðΣ10Þ ¼ 2π3Vx

Z
r∞

rm

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W

�
1

U
−Ut02

�s
dr; ð60Þ

where we have again factorized the volume Vx coming
from the gauge theory spatial directions exhibiting that this
volume is equal to the one obtained in Eq. (40) times π3.
This is an interesting result, as it shows that, in this
particular case, the CV conjecture yields the same behavior
using either the 5D truncation or the full ten-dimensional
background. This is explicitly seen by computing both Σup

and Σfull.
We find Σup by substituting in Eq. (60) the tðrÞ obtained

in the five-dimensional case (43). Since this expression is
proportional to Eq. (40), we will find the same behavior as
in five dimensions. On the other hand, we compute Σfull by
looking for the tðrÞ which extremizes (60). However, we
already know that the solution found in Sec. III A is the one
that takes Eq. (60) to its extremal value. We conclude that,
for the DK model, Σfull ¼ Σup and, given that the volume of
both is just the volume of Σ times π3, the results for the
complexity in ten dimensions can be trivially read from the

FIG. 10. Complexity of magnetization GNCM=VxT3 for the AP
model as a function of Tτ with B=T2 ¼ 0 (black line, at zero) as a
reference and then (from top to bottom for solid lines and bottom
to top for dashed ones) B=T2 ≈ 8.08 (blue lines), B=T2 ≈ 10.37
(green lines), B=T2 ≈ 11.04 (purple lines), B=T2 ≈ 11.18 (orange
lines), and B=T2 ≈ 11.24 (red lines). The solid lines represent
states in the stable branch, while the dashed ones correspond to
states in the unstable one.
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ones in five dimensions presented in Sec. III B. We will
omit the corresponding plots, as they provide no new
information.
It is worth noticing that this is not a general behavior for

the complexity, as exemplified by the AP model where
Σfull ≠ Σup. This is because in the line element (31) the
compact and noncompact directions mix in a nontrivial
manner, preventing the dependence on θ, in particular, from
being integrated out and making an exclusively r-dependent
embedding not general enough to reach a true extremal value
for the volume of Σ10. Thus, the parametrization cannot be
the same as in the DK model. In its place, we choose ξa ¼
ðr; x; y; z; θ;ψ ;ϕ1;ϕ2;ϕ3Þ and xμðξaÞ ¼ ðtðr; θÞ; r; x; y; z;
θ;ψ ;ϕ1;ϕ2;ϕ3Þ, noticing that now t is a function of r and θ.
With this selection, we obtain

L10 ¼ ΛVðrÞ
ffiffiffiffiffiffiffiffiffiffiffi
WðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

p ð1 − t2rU2Þ − t2θUX−1

UðrÞ

s
; ð61Þ

where tr and tθ, respectively, represent the derivatives of t
with respect to r and θ. We see that the expression for L10 in
the AP model is relevantly different from the one in the DK
model (40). As anticipated, there is now an explicit depend-
ence of the compact direction θ inside the integral, that, in
general, cannot be integrated on its own as in Eq. (60). In
view of the above, we cannot expect the ten-dimensional
behavior to be the same as the five-dimensional one, and
computing both Σup and Σfull will exhibit the details in the
discrepancy. In order to compute Σup, we uplift the hyper-
surface obtained in the consistent truncation, substituting our
five-dimensional solution for tðrÞ, given by Eq. (43), result-
ing in the following volume:

volðΣupÞ ¼ 2Vx

Z
r∞

rm

FðXÞ VðrÞ2WðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ UðrÞV2ðrÞWðrÞ

p dr;

ð62Þ

where

FðXÞ ¼ 8π3ð4þ X15=4ð5X3 − 9ÞÞ
45X1=2ðX3 − 1Þ2 : ð63Þ

Determining Σfull requires the extremization of volðΣ10Þ;
however, as can be seen in Appendix E, the partial
differential equation for the embedding that appears as
part of the process is nonlinear, second order, and not
separable and has eluded all our efforts, analytic, numeric,
or hybrid, to solve it. Nonetheless, it seems like the physical
conclusion that matters the most is that the current back-
ground is such that Σfull differs from Σup. To prove this, it
suffices to postulate tðt; θÞ as a function tðrÞ of r alone,
which reduces the embedding equation to

0 ¼ 12ΔEOM5

þ
ffiffiffi
6

p
UVWt0φ0ð2Δ − 3Xcos2ðθÞÞðU2t02 − 1Þ; ð64Þ

where EOM5 can be read from Eq. (42) as the quantity that
must vanish to satisfy the equation of motion in the five-
dimensional case. We see now that the five-dimensional
solution given by EOM5 ¼ 0 would solve the ten-dimen-
sional equation only if either t0 ¼ 0 or t0 ¼ 1=U, which is,
respectively, equivalent to taking E ¼ 0 or E → ∞ in
Eq. (43). According to the CV conjecture, neither of these
two solutions lead to hypersurfaces that can be used to
compute the complexity, since the one described by t0 ¼ 0
does not connect the two boundaries smoothly, except for
the very particular case t ¼ 0 ⇒ τ ¼ 0, while the one
generated by t0 ¼ 1=U is null and, therefore, fails the
requirement to be spacelike. This explicitly shows that in
the AP model Σfull cannot be simply obtained by uplifting
the five-dimensional result, making it different from Σup

and leading us to conclude that the complexity computed
with one of these two hypersurfaces will not coincide with
the one that results from using the other, except for τ ¼ 0.
Furthermore, and from a wider perspective, since Δ and

cos2ðθÞ are linearly independent as functions of θ, Eq. (64)
shows that the only functions of r alone that solve the
complete embedding equation are those we already men-
tion, and, therefore, any other must also depend on θ.
Finding this larger family of solutions is beyond the scope
of this paper, and, consequently, in what follows we will
limit our analysis to the volume of the Σup hypersurfaces.

A. AP model: Results for Σup

The numerical calculations in this case show once again
that the dimensionless ratio C=T3 depends only on the two
dimensionless parameters B=T2 and Tτ, indicating that our
results are still insensitive to the conformal anomaly. To do
any further comparison, it is necessary to divide out the
factor of π3 by which the volume of the ten- and five-
dimensional hypersurfaces differ at B ¼ 0 and that, as
previously stated, is associated with the complexity of the
internal degrees of freedom encoded in the volume of
the compact dimensions. In Fig. 11, we plot the evolving
complexity computed using the volume of Σup in the ten-
dimensional AP model once this scaling has been done. We
see that, despite the small, but existing, quantitative dif-
ferences, the general behavior is very similar to the one we
obtained in the five-dimensional treatment, included in
Fig. 11 as transparent lines. Just like in the five-dimensional
case, the evolving complexity displayed in Fig. 11 increases
with B=T2 until it peaks at a value of this dimensionless
parameter below the critical one, decreasing from that point
onward. This means that, for certain intensities, it is easier to
start from the vacuum and create a state with a very intense
magnetic field than a state with a lower one.
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In Fig. 12, we explore the behavior of the evolving
complexity while keeping B=T2 fixed. From this, it can be
seen that CE is a monotonically increasing function of Tτ
and that when Tτ goes to infinity it does it at a constant rate.
While this general behavior is the same for all the explored
values of B=T2, it is important to note that for large enough
B=T2 the evolving complexity is smaller than the one
obtained at vanishing magnetic field for every value of Tτ
that we checked, that is, CEðB=T2; TτÞ < CEð0; TτÞ for
states that are part of the stable branch. To better present
this effect, it is again convenient to study the complexity of
magnetization CM that, as stated, isolates the magnetic
contribution to the complexity.

As can be seen in Fig. 13, CM at Tτ ¼ 1 becomes
negative for values of the dimensionless ratio B=T2 that are
below the critical magnetic field intensity and are still part
of the thermodynamically stable branch. This explicitly
shows that forming a state in which the magnetic field has
an intensity in this range of values is simpler than forming a
state with the same physical parameters and no magnetic
field. This is the magnetic simplification phenomenon that
we encountered when studying the complexity in the
consistent truncation of the theory: There exists a certain
magnetic field intensity Bs=T2 above which the complexity
of magnetization becomes negative for a given Tτ.
However, as can be appreciated in Fig. 13, Bs for the
ten-dimensional theory is larger than its five-dimensional
counterpart: A stronger magnetic field is necessary to
reduce the complexity of the internal degrees of freedom
appearing in the ten-dimensional scenario. This effect is
such that, in contrast to what we found for the five-
dimensional truncated theory, for Tτ ¼ 0 there is no
magnetic simplification phenomenon when working with
the ten-dimensional theory.
This behavior can be better appreciated in Fig. 14, where

we plot CM as a function of Tτ for different values of B=T2.
We can see that, in contrast to what we found in the five-
dimensional theory, the complexity of magnetization of the
stable state with B=T2 ≈ 11.18 remains positive for
Tτ > 0.6, although it still becomes negative for late enough
times. We also see that, for small values of B=T2, CM for the
states in the stable branch increases with Tτ. On the other
hand, for high enough values of B=T2, the behavior
changes, and the complexity of magnetization decreases
as Tτ grows. It is important to clarify that the impression

FIG. 11. Evolving complexityGNCE=Vxπ
3T3 for the AP model

in ten dimensions using Σup and reported as a function of B=T2

with Tτ ¼ 0 (red, bottom lines) and Tτ ¼ 1 (blue, top lines). The
solid lines represent the stable branches, while the dashed ones
are the unstable branches. The transparent lines show the results
previously found using the five-dimensional truncation. The
horizontal dot-dashed lines denotes CE for B=T2 ¼ 0 but the
same Tτ as the corresponding color.

FIG. 12. Evolving complexityGNCE=Vxπ
3T3 for the AP model

in ten dimensions using Σup and reported as a function of Tτ with
B=T2 ¼ 0 as reference (black, fifth line down) and then (from top
to bottom for solid lines and bottom to top for dashed ones)
B=T2 ≈ 8.08 (blue lines), B=T2 ≈ 10.37 (green lines), B=T2 ≈
11.04 (purple lines), B=T2 ≈ 11.18 (orange lines), and B=T2 ≈
11.24 (red lines). The solid lines represent the stable branches,
while the dashed ones are the unstable branches.

FIG. 13. Complexity of magnetization GNCM=Vxπ
3T3 for the

AP model in ten dimensions using Σup and reported as a function
of B=T2 with Tτ ¼ 0 (red lines, closer to zero) and Tτ ¼ 1 (blue
lines, farther from zero). The solid lines represent the stable
branches, while the dashed ones are the unstable branches. The
transparent lines show the results previously found using the five-
dimensional truncation. We present an inset of the large B=T2

region in order to better visualize the magnetic simplification
phenomenon.
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left by Fig. 14 about how increasing B=T2 will reduce the
complexity for all Tτ is due to the range of values for B=T2

and was purposefully done to highlight the magnetic
simplification phenomenon that is one of our more inter-
esting results.

V. DISCUSSION

We computed the computational complexity using the
CV conjecture for two different gravitational models dual
to quantum field theories with a magnetic field, the DK
model and the AP model, and for both contrasted the five-
dimensional effective version with the full ten-dimensional
theory.
As a first result, we verified that the evolving complexity

and complexity of magnetization are both insensitive to the
conformal anomaly present in these theories in both the full
ten-dimensional setup and its consistent truncation. We
checked this by noticing that CE=T3 and CM=T3 depend
only on the dimensionless quantities B=T2 and Tτ. This had
already been proven to happen when the complexity is
computed by means of the CA conjecture [39].
For the DK model, it was found that the evolving

complexity of the state increases as the magnetic field
intensity grows. This is not an unexpected result, as we can
think of the evolving complexity as how difficult it is to
prepare a certain state from a reference one at any given
time. With this intuition, a state with a strong magnetic
field should be more difficult to prepare as the desired
field intensity reaches higher values. However, for the AP
model, the results were drastically different. The state
becomes more complex as the magnetic field increases
up to a value above which a phenomenon of magnetic sim-
plification occurs, meaning that the evolving complexity

starts decreasing, reaching values even below the one at
vanishing magnetic field.
To isolate the effect of the magnetic field on the

complexity of a state and the aforementioned phenomenon,
we introduced a new quantity that we term complexity of
magnetization, CM, defined as the difference in the com-
plexities of states that are identical to each other except for
the presence of the magnetic field in one of them. One
reason for this quantity to be useful is that it permits us to
identify the states that have been magnetically simplified as
those that satisfy CM < 0, which indeed happens for stable
states with intensities of the magnetic field above a certain
simplification value Bs.
The two systems we used to compute the complexity

seem ideal to understand the origin of the phenomenon of
magnetic simplification, since the only relevant difference is
the presence of one extra scalar field in one of them. The
observation that in the DKmodel, where no other field has a
nonvanishing VEV, the complexity increases with the
intensity of the magnetic field confirms our understanding
that a statewith amore intensemagnetic field would bemore
complex to prepare. In contrast, in the theory dual to the AP
model where the magnetic simplification occurs, there is a
single trace scalar operator of scaling dimension equal to 2,
with a nonvanishing VEV that, at fixed source, changes
with the intensity of the magnetic field. A coherent way to
encompass the above is to ascribe the simplification to
the scalar operator, in which case, what we present in
Figs. 9 and 13 is that, for intensities belowBs, the complexity
grows due to the magnetic field, but, starting at Bs, this
increment is smaller than the reduction due to the complexity
of the scalar operator, with the accumulated effect of the latter
eventually even surpassing the one of the former.
Concerning the comparison of the full ten-dimensional

theories and the effective five-dimensional ones, we dem-
onstrated that the results obtained from uplifting the extremal
hypersurface found in 5D and those derived after following
the extremization procedure in 10Dwere the same in the DK
model and different in the AP. Our results are not enough to
support the use of Σup or Σfull in the CV conjecture, but they
certainly position the dilemma as relevant.
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APPENDIX A: INTERIOR SOLUTIONS

In this appendix, we show the integration procedure
needed to obtain the interior solutions for the AP model.

FIG. 14. Complexity of magnetization GNCM=Vxπ
3T3 for the

AP model in ten dimensions using Σup and reported as a function
of Tτ, with B=T2 ¼ 0 (black line, at zero) as a reference and then
(from top to bottom for solid lines and bottom to top for dashed
ones) B=T2 ≈ 8.08 (blue lines), B=T2 ≈ 10.37 (green lines),
B=T2 ≈ 11.04 (purple lines), B=T2 ≈ 11.18 (orange lines), and
B=T2 ≈ 11.24 (red lines). The solid lines represent the stable
branches, while the dashed ones are the unstable branches.
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The treatment is analogous to the one for the DK model,
which can be consulted in Ref. [39]. The equations of
motion for the metric, scalar, and Maxwell fields come
from the variation of the five-dimensional truncated action
(14). After substitution of the general ansatz, the Maxwell
equations are automatically satisfied, and the Einstein and
scalar equations can be manipulated as

0 ¼ 2W2ð4B2X−2 þ VðU0V 0 þUV 00ÞÞ
− VWð2VðU0W0 þUW00Þ þUV 0W0Þ þ UV2W02;

0 ¼ 2W2ðV 02 − Vð2V 00 þ Vφ02ÞÞ − V2ð2WW00 −W02Þ;
0 ¼ Wð−8b2X−2 þ 2V2ð3U00 − 8ðX2 þ 2X−1ÞÞ

þ 6VU0V 0Þ þ 3V2U0W0;

0 ¼ Wð4
ffiffiffi
2

p
B2X−2 þ V2ð2

ffiffiffi
3

p
ðUφ0Þ0 þ 8

ffiffiffi
2

p
ðX2 − X−1ÞÞ

þ 2
ffiffiffi
3

p
UVφ0V 0Þ þ

ffiffiffi
3

p
UV2φ0W0;

0 ¼ Wð4B2X−2 þ 2VU0V 0 þUV 02Þ
−WV2ðUφ02 þ 8ðX2 þ 2X−1ÞÞ
þ VW0ðVU0 þ 2UV 0Þ: ðA1Þ

The first step is to numerically solve Eqs. (A1) is to
expand them in powers of r around rh using

U ¼ 6rhðr − rhÞ þ
X∞
i¼2

Uiðr − rhÞi;

V ¼ V0 þ
X∞
i¼1

Viðr − rhÞi;

W ¼ 3r2h þ
X∞
i¼1

Wiðr − rhÞi;

φ ¼ φh þ
X∞
i¼1

φiðr − rhÞi: ðA2Þ

This behavior near the horizon allows the family of
solutions to easily interpolate between the D3-black brane
for B=V0 ¼ 0 and φh ¼ 0 and the other members by
changing the value of B=V0 and φh. Additionally, this
also ensures that the temperature of every member of the
family is given by T ¼ 3rh=2π.
Substitution of Eqs. (A2) into Eqs. (A1) allows one to

solve for any of the undetermined coefficients in terms of
B=V0 and then use this to provide initial data for the
numerical integration performed from r ¼ rh þ ϵ to the
boundary at r ¼ ∞ for the exterior solutions and from r ¼
rh − ϵ to the singularity at r ¼ rs for the interior solutions,
with ϵ ≪ rh in both cases. The boundary behavior of the
solutions built with this procedure is

V ∼ Vbdryr2; W ∼Wbdryr2; U ∼ r2: ðA3Þ

Nonetheless, we can exploit the symmetries of the equa-
tions of motion (A1) to rescale them as

V →
V

Vbdry
; W →

W
Wbdry

; B →
B

Vbdry
; ðA4Þ

which, in turn, gives the desired AdS5 behavior at the
boundary. Note that this rescaling needs to be done
consistently for both the exterior and interior solutions
and that it is necessary to simultaneously scale the value of
B to preserve the solution. It is also important to mention
that the position of the singularity is not fixed at rs ¼
−rh=2 for every member of the family of solutions but only
for B=T2 ¼ 0. Instead, the location of the singularity in the
r coordinate turns out to be a function of the magnetic field
intensity. By rs we mean the radius at which the curvature
scalar RμναβRμναβ diverges. This behavior is shared for both
the AP and DK models.
Now, the family of solutions found with the procedure

just described depends on the three independent parameters
rh, B=V0, and φh. This coincides with the number of free
parameters from the perspective of the dual gauge theory:
the temperature T and the magnetic field intensity B on the
plasma and the source of the scalar operator Oφ dual to φ.
The latter is dual to the coefficient ψ0 that appears in the
boundary expansion of the scalar field

φ →
1

r2
ðφ0 þ ψ0 log rÞ: ðA5Þ

Given that from the perspective of the dual gauge theory it
makes sense to work at a fixed ψ0, in practice we solve
Eqs. (A1) for different values of rh, B=V0, and φh and then
use that to numerically determine the value of φh that fixes
ψ0 for any givenB and T. The family of solutions studied in
the main text corresponds to the one with the source term

FIG. 15. Metric functions for the AP model as functions of r for
B=T2 ¼ 11.24. The horizon, located at rh ¼ 1=2, is denoted as a
black vertical line, while the singularity, located at rs ¼ 0.1 for
this magnetic field intensity, is denoted as a dashed black
vertical line.
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turned off: ψ0 ¼ 0. We show the metric functions for the
critical magnetic field B=T2 ¼ 11.24 in the interior and
exterior regions in Fig. 15.

APPENDIX B: PENROSE DIAGRAM

In this appendix, we show how to construct the Penrose
diagram for the two-sided black hole geometries studied in
the main text. Starting from the general ansatz for the line
element (38), we first change to the tortoise coordinate r⋆
given by the solution to the equation

dr⋆
dr

¼ 1

UðrÞ ðB1Þ

that satisfies the boundary condition r⋆ð∞Þ ¼ 0. Note that
near the horizon we have

r⋆ ≃
logðr − rhÞ

4πT
ðB2Þ

because of the behavior of the metric function UðrÞ given
in Eqs. (A2). Next, we transform to the Kruskal-Szekeres
coordinates, given by

U ¼ þe−2πTðt−r⋆Þ; V ¼ −e2πTðtþr⋆Þ left exterior;

U ¼ −e−2πTðt−r⋆Þ; V ¼ þe2πTðtþr⋆Þ right exterior;

U ¼ þe−2πTðt−r⋆Þ; V ¼ þe2πTðtþr⋆Þ future interior;

U ¼ −e−2πTðt−r⋆Þ; V ¼ −e2πTðtþr⋆Þ past interior;

ðB3Þ

and, finally, we change to the compact coordinates

X ¼ arctan V − arctan U
2

; Y ¼ arctan V þ arctan U
2

;

ðB4Þ

which are globally spacelike and timelike, respectively.
These are the coordinates in which we plot the Penrose
diagram in Fig. 1 presented in the main text.

APPENDIX C: BOUNDARY EXPANSIONS

The near-boundary behavior of the geometries that are
part of the DK or AP models can be obtained by solving the
equations of motion coming from Eq. (14) as a power series
in r around infinity. The only restrictions we impose are
that the metric asymptotes exactly the metric of AdS5 and,
in the case of the AP model, that the non-normalizable
mode of the scalar field is turned off. The result for the DK
model reads

UðrÞ ¼ r2 þ U1rþ
U2

1

4
þ 1

r2

�
U4 −

2

3
b2 log r

�
þO

�
1

r4

�
;

ðC1Þ

VðrÞ ¼ r2 þ U1rþ
U2

1

4

þ 1

r2

�
−
1

2
W4 þ

1

3
b2 log r

�
þO

�
1

r4

�
; ðC2Þ

WðrÞ ¼ r2 þU1rþ
U2

1

4
þ 1

r2

�
W4 −

2

3
b2 log r

�
þO

�
1

r4

�
;

ðC3Þ

while for the AP model we have that

UðrÞ ¼ r2 þU1rþ
U2

1

4
þ 1

r2

�
U4 −

2

3
b2 log r

�
þO

�
1

r4

�
;

VðrÞ ¼ r2 þU1rþ
U2

1

4

þ 1

r2

�
−
1

2
W4 −

1

6
φ2
0 þ

1

3
b2 log r

�
þO

�
1

r4

�
;

WðrÞ ¼ r2 þU1rþ
U2

1

4
þ 1

r2

�
W4 −

2

3
b2 log r

�
þO

�
1

r4

�
;

φðrÞ ¼ φ0

r2
−
U1φ0

r3
þ 1

12r4
ð−2

ffiffiffi
6

p
b2

þφ0ð9U2
1 −

ffiffiffi
6

p
φ0ÞÞ þO

�
1

r5

�
; ðC4Þ

where U1, U4, W4, and φ0 are coefficients that are not
determined by the equations of motion but can be read as
functions of the magnetic field intensity b and the temper-
ature T once a particular numerical solution is known.
Physically, φ0 is dual to the VEV of the scalar operator
hOφi, whileU4 andW4 are both related to the stress-energy
tensor [36,39].

APPENDIX D: RATE OF CHANGE
OF THE COMPLEXITY

In this appendix, we present the computation of the rate
of change of the complexity dC=dτ for the five-dimensional
models studied in the main text. We begin by noting that by
means of Eq. (43) we can relate τ and rmðτÞ implicitly by

τ ¼
Z

r∞

rmðτÞ
t0ðrÞdr

¼
Z

r∞

rmðτÞ

EðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðτÞ2 þ UðrÞV2ðrÞWðrÞ

p dr ðD1Þ

as by definition tðr∞Þ ¼ τ and tðrmÞ ¼ 0.
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Using the previous expression, we can rewrite Eq. (45) as

volðΣÞ
2Vx

¼
Z

r∞

rmðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðτÞ2þUðrÞV2ðrÞWðrÞ

p
UðrÞ −EðτÞτ; ðD2Þ

which is suitable to compute the derivative of the volume
with respect to τ. Indeed, a direct computation yields

1

2Vx

dvolðΣÞ
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðτÞ2 þ UðrmÞV2ðrmÞWðrmÞ

p
UðrmÞ

drm
dτ

þ dE
dτ

�Z
r∞

rmðτÞ

EðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðτÞ2 þ UðrÞV2ðrÞWðrÞ

p dr − τ

�
− E:

ðD3Þ

The first term vanishes by the definition of E given in
Eq. (44), while the second does by virtue of Eq. (D1).
Hence, we are left with

dCV
dτ

¼ −
2Vx

GN
EðτÞ ¼ 2Vx

GN
UðrmÞWðrmÞVðrmÞ2: ðD4Þ

This expression holds for any value of the boundary time
τ. However, in the limit τ → ∞ we have that rm → rmin,
with rmin defined in Eq. (48). Thus, the late-time behavior
of the rate of change of the complexity is given by

lim
τ→∞

dCV
dτ

¼ 2Vx

GN
UðrminÞWðrminÞVðrminÞ2: ðD5Þ

For B ¼ 0, which corresponds to the black D3-brane
solution, Eq. (48) can be solved analytically. For this
specific case, we have

lim
τ→∞

dCV
dτ

¼ Vx

GN
π2T4; ðD6Þ

which corresponds to the expected constant behavior
consistent with Lloyd’s bound [7,8,14], as the energy

density of the state at temperature T is proportional
to T4.
Given that there is no analytical way to compute rmin for

any of the solutions with B ≠ 0 in either the DK and AP
models, Eq. (D5) needs to be evaluated numerically. In all
the cases that we explored, said evaluation revealed that CV
grows at a constant rate as τ → ∞, which is consistent with
the results presented in the main text. Given that the same
conclusion was obtained by two different methods, this
gives confirmation on the validity of our numerical pro-
cedures. The question of whether Lloyd’s bound is satisfied
for states at B ≠ 0 in the DK or AP models is a complicated
one, as, because of the conformal anomaly present in
both, the specification of the energy density requires fixing
a renormalization scheme (see Refs. [36,45]). We have
previously showed that, when working using the CA
holographic prescription, it is possible to use the saturation
of Lloyd’s bound at late times to fix said renormalization
scheme for the DK and Mateos-Trancanelli models. We
expect that the same conclusion also applies for the CV
prescription.

APPENDIX E: Σfull EQUATIONS

It was shown in Sec. IV that, in the AP model, Σup and
Σfull are different hypersurfaces except for certain particular
cases. We claimed back then that, in general, Σfull is given
by an embedding function tðr; θÞ that necessarily depends
on both coordinates r and θ, and we will see now that
assuming a sole dependence in r is inconsistent with the
embedding equation. To prove this, we need to extremize
the volume of an hypersurface described by tðr; θÞ that
connects the boundaries dual to both theories in the double
thermofield setup for the full ten-dimensional theory. Such
volume is given by

volðΣfullÞ ¼ 2

Z
L10d9x; ðE1Þ

where L10 is defined by Eq. (61) and its variation with
respect to the embedding function results in the partial
nonlinear differential equation

0 ¼ 6Δ sinð2θÞUe
ffiffi
3
2

p
φtrð2WV 0 þ VW0ÞðU2e

φffiffi
6

p
t2r þ Ut2θ − e

φffiffi
6

p Þ
þ 3UVWtθð6sin2ðθÞð3 cosð2θÞ − 1Þ þ 2ð9 cosð2θÞ − 5Þcos2ðθÞe

ffiffi
3
2

p
φÞðt2θ þUe

φffiffi
6

p
t2rÞ

þ 3 sinð2θÞe
ffiffi
3
2

p
φVWtθð7 sinð2θÞe

φffiffi
6

p − 8ΔU2trtrθÞ þ 6sin2ðθÞð1 − 3 cosð2θÞÞ − 8cos4ðθÞe
ffiffi
3
2

p
φ

þ 3 sinðθÞ cosðθÞUe
ffiffi
3
2

p
φVWt2θð8ΔU0tr þ Uð8Δtrr þ

ffiffiffi
6

p
cos2ðθÞe φffiffi

6
p
φ0trÞÞ

þ 12Δe
ffiffi
2
3

p
φðU0trðU2t2r − 3Þ þ sinð2θÞe φffiffi

6
p
VWtθθðU2t2r − 1ÞÞ

þ sinðθÞ cosðθÞUe
ffiffi
2
3

p
φVWð

ffiffiffi
6

p
φ0trðU2t2r − 1Þðcos2ðθÞe

ffiffi
3
2

p
φ − 2sin2ðθÞÞ − 24Δe

ffiffi
2
3

p
φtrrÞ; ðE2Þ
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where U, V, W, and φ are functions of the coordinate r alone, the primes represent the derivative with respect to r, the
wrapping factor Δ is the function of both r and θ defined by Eq. (30), and

tr ¼
∂t
∂r

; tθ ¼
∂t
∂θ

;

trr ¼
∂
2t

∂r2
tθθ ¼

∂
2t

∂θ2
;

trθ ¼
∂
2t

∂r∂θ
: ðE3Þ

We see by direct substitution that setting to zero all derivatives of t with respect to θ in the above leads to an inconsistent
equation except for the two cases listed in Sec. IV.
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