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Abstract. The exponent of periodicity is an important factor in estimates of complexity of word-
unification algorithms. We prove that the exponent of periodicity of a minimal solution of a word
equation is of order 21.07d, where d is the length of the equation. We also give a lower bound 20.29d,
so our upper bound is almost optimal and exponentially better than the original bound (6d)2

2d4

1 2.
Consequently, our result implies an exponential improvement of known upper bounds on complexity
of word-unification algorithms.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—computations on discrete structures; I.1.2 [Algebraic Manip-
ulation]: Algorithms—algebraic algorithms
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1. Introduction

The problem of whether the set of all equations that are satisfiable in some free
group—or, equivalently, in all groups—is recursive (usually called the satisfiabil-
ity problem for group equations), and the analogous problem for semigroups
(usually called the satisfiability problem for semigroup equations) were first
formulated by A. A. Markov in the early sixties (see Adyan and Makanin
[1984/1986]). Special cases of the problem were solved affirmatively by A. A.
Markov (see Adyan and Makanin [1984/1986]), Yu.I Khmelevskiı̆ [1967], G.
Plotkin [1972], and A. Lentin [1972]. But the full solution turned out to be
extremely difficult and eluded researchers for many years.
The breakthrough came in a series of papers by Makanin [1977; 1982/1983;

1984/1985]. The first of these, which is long and very technical, gave a positive
solution to the satisfiability problem for semigroup equations. The second, which
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appeared a few years later, together with corrections published in the third
paper, established the analogous and much more difficult result for groups.
Makanin’s decision procedure for equational satisfiability in semigroups has

received a lot of attention in the literature, mainly from computer scientists.
Undoubtedly, this is because the notion of a free semigroup—in other words, of
an algebra of words (or strings) with the operation of concatenation—is of
fundamental importance in computer science: most algorithms and data struc-
tures refer to words. Thus, several improvements of Makanin’s algorithm have
been given,1 and attempts have even been made to implement the algorithm (see
Abdulrab [1987]). Moreover, related unification problems have been studied. In
particular, Jaffar [1980] describes an algorithm for generating a minimal and
complete set of unifiers for any satisfiable semigroup equation.
Despite the fact that Makanin’s algorithm has been intensively studied, and

despite its obvious potential for important applications, no systematic investiga-
tion of its complexity has yet been undertaken. A possible reason for this is the
complicated nature of the algorithm itself. It consists of a series of involved
transformations applied to complex data structures. At each step of the algo-
rithm, the transformation to be applied is chosen from a set of several possible
transformations, and depends on the form of the data structure to which it is to
be applied. The data structures themselves are called generalized equations.
In this paper, we undertake the investigation of the complexity of Makanin’s

algorithm for semi-groups. To facilitate this, we give here a brief sketch of the
structure of the algorithm. For simplicity, we refer only to equations and not to
generalized equations.
The algorithm consists of the repeated application of certain basic procedures.

The first of these determines whether or not an equation is simple. The second, a
nondeterministic reduction procedure, when applied to a nonsimple equation,
generates a member of a finite set of “reduced” equations such that the original
equation is satisfiable if and only if one of its reduced equations is satisfiable.
The third procedure, when applied to a simple equation, generates a solution of
the equation or determines that it has no solution.
The search tree of the algorithm can now be described as follows. Starting with

an equation %, whose satisfiability we wish to determine, we first apply procedure
1. If % is not simple, then we apply procedure 2 and obtain a finite set of reduced
equations. To each of the reduced equations $, we again apply procedure 1.
Whenever $ is not simple, in the next round we apply procedure 2 to construct a
new set of (still further) reduced equations that are equisatisfiable with $. If $ is
simple, we apply procedure 3 to check whether or not it has a solution.
Continuing in this fashion, we generate a possibly infinite tree. The root is
labeled with %, the internal nodes with reduced equations, and the leaves with
simple equations. Each parent equation is satisfiable if and only if one of its
children is.
In case the starting equation % is satisfiable, the algorithm is guaranteed to

produce a leaf, that is, a simple equation, that has a solution. We can terminate
the algorithm as soon as such a leaf is encountered. In case the equation is not
satisfiable, the algorithm can run indefinitely, generating arbitrarily long equa-
tions. To handle this situation, a bound n is computed a priori such that, if a

1 See, for example, Pecuchet [1984], Abdulrab and Pecuchet [1989], Jaffar [1990], and Schultz [1993].
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solution to % exists at all, then a simple, satisfiable, reduced equation will be
generated before the tree reaches the depth n. The bound n can be computed
directly from the length of % and the “exponent of periodicity” of its “minimal”
solution (see below for an explanation of these notions). In the semigroup case,
this bound is of the order of the twice-iterated exponential function.2 So, the
problem of satisfiability of word equations is in NTIME(22

cp(d)

), where c is a
constant and p(d) is the bound on the exponent of periodicity of minimal
solutions of equations of the length d. In fact, we conjecture that, using the ideas
present in Makanin [1977], this bound can be improved to single exponential in
the periodicity exponent.
The Makanin’s algorithm for semigroups, and the unification algorithms based

on it, use an important fact that the periodicity exponent of a minimal solution of
a word equation can be bounded by a recursive function of the length of the
equation. In fact, Makanin [1977] proved that if d is the length of an equation,
then the exponent of periodicity of its minimal solutions (see below) does not
exceed (6d)2

2d4

1 2. This result was announced by Bulitko [1970], but the proof
given there is not correct.
In Kościelski and Pacholski [1989], we forced this bound down to d2d

4

. Our
improvement, based on Makanin’s Reduction Lemma, was obtained by finding
better bounds than did Makanin on the size of the minimal positive integer
solutions of sets of linear Diophantine equations. In fact, the bounds we obtained
were close to the almost optimal bounds recently obtained by Bombieri and
Vaaler [1983]. We conjectured, however, that the exponent of periodicity could
actually be bounded by an exponential function 2cd, for some constant c. Thus, it
was evident to us that an optimal bound could not be obtained by an analysis of
the general linear Diophantine equations alone.
The principal goal of the present paper is to prove our conjecture. Namely, we

show that the exponent of periodicity of a minimal solution of a word equation of
the length d is bounded by the function of the order 21.07d. It is known (see
Benanav et al. [1985]) that the problem of deciding if a word equation has a
solution is NP-hard.
The paper is divided into three parts. In the first, we study presentations of

words in a special form, and prove the uniqueness of such presentations. Further,
we describe a function that, when given the representations of two words,
computes the representation of their concatenation. In the second part, we
establish a Reduction Lemma. Given a word equation %, we construct a set } of
linear Diophantine equations whose minimal solutions describe the periodicity
exponent of a minimal solution of %. In the third part, we provide an upper
bound on the size of minimal solutions of this set of linear Diophantine
equations, thus giving the final result. Finally, we prove a lower bound of 20.29d

for the exponent of periodicity of minimal solutions of a word equation of the
length d.
By Z, we denote the set of integers, and by N, the set of nonnegative integers,

N1 is the set of positive integers. Given any set S, by S* we denote the set of all
words in S. S1 is the set of nonempty words in S. If W is a word, then uW u

2 In some versions of the algorithm, the stopping mechanism is implemented into the data structure
and the procedure. However, what actually happens during the execution of the algorithm is
equivalent to using an a priori computed bound.
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denotes the length of W. « is the empty word. Let S, J be two disjoint, finite
alphabets. S 5 {a1, . . . , an} is the set of (constant) letters and J 5 { x1, . . . ,
xm} is the set of variables. A word equation in (S, J) is a pair % 5 (W1, W2) of
words in (S ø J)*, also denoted by W1 5 W2. uW1u 1 uW2u is the length of %
and is denoted by u%u. We assume that each letter of S ø J appears in W1W2. A
solution of % is a function S: J 3 S* such that

W1~S~ x1!/x1 , . . . , S~ xm!/xm!

5 W2~S~ x1!/x1 , . . . , S~ xm!/xm! , (1)

where W(S( xi)/xi) denotes the word obtained from W by replacing each
occurrence of xi by S( xi). It is well known (see, e.g., Mackanin [1977]), and easy
to check that in the study of upper bounds on the complexity of the satisfiability
problem for word equations the assumption of the nonemptiness of all coordi-
nates of a solution does not lead to any loss of generality. Therefore, to avoid
cumbersome special cases, by a solution of a word equation we shall understand
a solution whose all coordinates are nonempty. Given any function S: J 3 S*,
slightly abusing the notation, by the same letter S we shall denote the extension
of S to the homomorphism S: (S ø J)* 3 S*, which is the identity of S. Thus,
(1) can be rephrased as S(W1) 5 S(W2). Given a solution S, we put uS u 5 i51

m

uS( xi) u, and we call uS u the length of S. A solution is minimal if it has the
minimal length. The periodicity exponent of a non-empty word W is the maximal
integer p such that W 5 U1U

pU2, for some non-empty word U. The periodicity
exponent of a solution S of a word equation % is the maximum of the periodicity
exponents of the words S( xi), for i 5 1, 2, . . . , m.

2. Presentation of Words

We state here some facts necessary to obtain a reduction of a problem
concerning word equations to a problem concerning linear diophantine equa-
tions. The first two lemmas are well known.

LEMMA 2.1. For any words W1, W2, if W1W2 5 W2W1, then W1 5 Um, and W2
5 Un, for some word U and integers m, n.

Definition 2.2. A word U is primitive if U Þ Vn, for every word V and every
integer n $ 2.

LEMMA 2.3. If U is primitive and U2 5 U1UU2, then either U1 5 « and U2 5 U,
or U1 5 U and U2 5 «.

Definition 2.4. Let P be a nonempty word. A sequence (V0, . . . , Vv) is a
P-partition of W if W 5 V0 . . . Vv and

(i) for i , v, P is a suffix of Vi,
(ii) for 0 , i # v, P is a prefix of Vi.

A P-partition (V0, . . . , Vv) of W is finer than a P-partition (U0, . . . , Uu) of
W if v . u, and there exists a sequence 0 5 j21 , j0 , j1 , . . . , ju 5 v 1
1 such that, for each k, (0 # k # u), Uk 5 Vjk21

Vjk2111
. . . Vjk21.
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A P-partition ( V0, . . . , Vv) of W is maximal if there is no P-partition of W
which is finer than (V0, . . . , Vv). A P-partition of W is the greatest partition of
W, if it is finer than any other P-partition of W.
It is not difficult to check, that a partition (V0, . . . , Vv) is maximal if none of

the words Vi, for i # v, contains P2 as a subword.

LEMMA 2.5. Let P be a primitive word.

(i) If (V0, . . . , Vv) and (U0, . . . , Uu) are maximal P-partitions of W , then v 5
u and for each i # v, Vi 5 Ui.

(ii) If W is a prefix of T , (V0, . . . , Vv) is a maximal P-partition of W and
(U0, . . . , Uu) is a maximal P-partition of T , then v # u and for i , v, Ui 5
Vi.

(iii) If W is a suffix of T, (Vv, . . . , V0) is a maximal P-partition of W , (Uu, . . . ,
U0) is a maximal P-partition of T , then v # u, and for i , v, Ui 5 Vi.

(iv) For each W , there exists the greatest P-partition of W.

PROOF. We shall prove only part (i) and part (iv). To prove (i) assume that P
is a primitive word, and that (V0, . . . , Vv), (U0, . . . , Uu) are maximal
P-partitions of W. The thesis is obvious if v 5 0. Clearly, it suffices to prove,
that if u, v . 0, then uU0u 5 uV0u. So, assume that u, v . 0, and suppose that
uU0u 5y uV0u. By symmetry, we can assume that uU0u , uV0u. We have U0 5 UP
and V0 5 VP, for some words U, V. Since u, v . 0, VP2 and UP2 are subwords
of W, so VP2 has a prefix UP2, and uU u , uV u. We also have uV0u , uU0P u. In
fact, otherwise, V0 5 U0V9, uV9 u $ uP u, and therefore V9 has a prefix and a
suffix P, which contradicts the assumption of maximality of (V0, . . . , Vv).
Consequently V 5 UV0, where uV0 u , uP u. But V0P2 has a prefix P2, so P2 has a
prefix V0P. Now, by Lemma 2.3, either V0 5 « or V0 5 P, so, we have arrived at
a contradiction.
To prove (iv) assume that P is a primitive word. Clearly, the one element

sequence (W) is a P-partition, so the finite set of P-partitions is non empty.
Therefore, it has a maximal element. By part (i), there is only one maximal
P-partition. e

Definition 2.6. Let u be a nonnegative integer and let P be a nonempty word.
A sequence (U0, . . . , Uu) is P-stable if

(i) for i # u, P2 is not a subword of Ui,
(ii) for 0 , i , u, Ui Þ P,
(iii) for i , u, P is a suffix of Ui,
(iv) for 0 , i # u, P is a prefix of Ui.

Assume that a sequence (U0, . . . , Uu) is P-stable. Then clearly, any subse-
quence of it is P-stable. Moreover, uUiu . uP u, for 0 , i , u, and if u . 0, then
uU0u $ uP u and uUuu $ uP u.

Definition 2.7

(i) Let w [ N, W0, . . . , Ww, P [ S*. Then [W0, . . . , Ww]P: Nw 3 S* is the
function such that

@W0, . . . , Ww#P~k1, . . . , kw! 5 W0Pk1W1Pk2 · · · Pkw21Ww21PkwWw.
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(ii) A P-presentation of a word W is a P-stable sequence (U0, . . . , Uu) such
that W 5 [U0, . . . , Uu]P(l1, . . . , lu), for some l1, . . . , lu [ N.

(iii) The length of the P-presentation (U0, . . . , Uu) is u. A word W is of
P-order u if it has a P-presentation of the length u.

LEMMA 2.8. Let P [ S* be a primitive word.

(i) Assume that u, v [ N, k1, . . . , ku, l1, . . . , lv [ N, and that sequences UW
5 (U0, . . . , Uu) and VW 5 (V0, . . . , Vv) are P-stable. If

W5 @U0, . . . , Uu#P~k1, . . . , ku! 5 @V0, . . . , Vv#P~l1, . . . , lv!, (2)

then u 5 v, ki 5 l i, for each i 5 1, 2, . . . , u, and Ui 5 Vi, for each i 5 0,
1, . . . , u.

(ii) Each word W has the unique P-presentation.

PROOF. Clearly (2) defines two P-partitions of W, which by the assumption of
P-stability of UW and VW are maximal. Now, the conclusion of (i) easily follows from
Lemma 2.5. To get (ii) notice that a P-presentation of W can easily be obtained
from a maximal P-partition of W. e

Definition 2.9. If (U0, . . . , Uu) is a P-presentation of W, then we write
(U0, . . . , Uu) 5 [W]P

21.

From now on, we fix a primitive word P [ S1. We sometimes omit the
subscript P and write [W0, . . . , Ww] instead of [W0, . . . , Ww]P, and [X]

21

instead of [X]P
21. Moreover, we write order and presentation for P-order and

P-presentation respectively. By ord(W) we denote the P-order of W.

LEMMA 2.10. If X, Y are of order 0, then either

(i) XY has order 0, or
(ii) XY has order 1 and XY 5 [[XY]21](c), for some c # 1, or
(iii) XY has order 2 and XY 5 [[XY]21](0, 0).

If moreover uX u 5 1 or uY u 5 1, then XY has order 0, or has order 1 and XY 5
[[XY]21](0).

PROOF. It can be easily checked that if none of conditions (i)–(iii) holds, then
either P2 is a subword of X or P2 is a subword of Y, so either X or Y have
order . 0. e

Below, we give an example that shows that case (iii) of Lemma 2.10 can
happen.

Example 2.11. Let P 5 aabaa, X 5 aabaaaaba 5 Paaba, Y 5
abaaaabaa 5 abaaP. Then X, Y are of order 0 and XY 5 PaabaabaaP has
order 2, since aabaabaa 5 Pbaa 5 aabP.

LEMMA 2.12. Suppose that X [ S* and ord(X) 5 u. Then

(i) If a [ S, then either

@@X#21#~ g1, . . . , gu!a 5 @@Xa#21#~ g1, . . . , gu! , or
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@@X# 2 1#~ g1, . . . ,gu!a 5 @@Xa# 2 1#~ g1, . . . ,gu 2 1,gu 1 1! , or

@@X# 2 1#~ g1, . . . ,gu!a 5 @@Xa# 2 1#~ g1, . . . ,gu,0! .

(ii) If Y [ S*, and ord(Y) 5 v, then [[X]21]( g1, . . . , gu)[[Y]
21](h1, . . . , hv)

equals to one of the following expressions:

(1) [[XY]21]( g1, . . . , gu 1 c 1 2 1 h1, . . . , hv), with c # 1,
(2) [[XY]21]( g1, . . . , gu 1 c, h1 1 c9, . . . , hv), with c 1 c9 # 2,
(3) [[XY]21]( g1, . . . , gu 1 c, c9, h1 1 c0, . . . , hv), with c 1 c9 1 c0 #

1,
(4) [[XY]21]( g1, . . . , gu21, gu, 0, 0, h1, . . . , hv).

PROOF. An easy proof of part (i) is omitted. To prove (ii) notice, that if [X]21

5 (U0, . . . , Uu) and [Y]
21 5 (V0, . . . , Vv), then we have

@@X#21#~ g1, . . . , gu!@@Y#21#~h1, . . . , hv!

5 U0Pg1 · · · Uu21PguZPh1V1 · · · PhvVv,

for Z 5 UuV0. Since Uu, V0 are of order 0, a P-presentation of Z is described by
one of the cases (i)–(iii) of Lemma 2.10. So, we consider three cases.

Case 1. Z has order 0. Then clearly (U0, . . . , Uu21, UuV0, V1, . . . , Vv) is a
stable sequence and the equality (2) with c 5 c9 5 0 holds.

Case 2. Z has order 1. Then for d # 1, Z 5 Z0P
dZ1, (Z0, Z1) is a

P-presentation of Z and we have four cases, depending on whether or not Zi 5
P. If Z0 5 Z1 5 P, then (U0, . . . , Uu21, V1, . . . , Vv) is a presentation of XY
and the equality (1) holds with c 5 d. If Z0 Þ P Þ Z1, then (U0, . . . , Uu21,
Z0, Z1, V1, . . . , Vv) is a presentation of XY and (3) with c 5 c0 5 0 and c9 5
d holds. If Z0 5 P Þ Z1, then (U0, . . . , Uu21, Z1, V1, . . . , Vv) is a
presentation of XY, and (2) with c 5 d 1 1, c9 5 0 holds. We get (2) with c 5
0, c9 5 d 1 1 in the symmetric case.

Case 3. Z has order 2. Then Z has a presentation (Z0, Z1, Z2) with Z1 Þ P.
Again four subcases are possible depending on logical values of formulas Z0 5
P, Z2 5 P. If Z0 Þ P Þ Z2, then we get (4), if Z0 5 P 5 Z2, then we get (2)
with c 5 c9 5 1, and if Z0 Þ P 5 Z2, then we get (3) with c 5 c9 5 0, c0 5
1. Finally, we get (3) with c 5 1, c9 5 c0 5 0 in the symmetric case. e

3. Main Reduction

In this chapter, we shall reduce the problem of finding upper bounds for the
exponent of periodicity of a minimal solution of word equations to the problem
of computing upper bounds on minimal positive integer solutions of systems of
linear Diophantine equations.

Definition 3.1. Let aW , bW [ Nn, and aW 5 (a1, . . . , an), bW 5 (b1, . . . , bn).
Then aW # bW iff ai # bi, for each i such that 0 , i # n. A solution aW [ Nn of a
set + of linear Diophantine equations is minimal if aW is a minimal element of the
set of all nonzero solutions of + ordered by #.
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We are now going to state the main result of this chapter.

THEOREM 3.2 (REDUCTION LEMMA). Let % be a word equation of the length d
that has at least two appearances of constants. If p . 2 is the exponent of periodicity
of a minimal solution of %, then p 2 2 is a coordinate of a minimal solution of a set

} 5 $M1~uW , wW ! 5 v91, . . . , Mm~uW , wW ! 5 v9m%

of linear Diophantine equations with nonnegative coefficients mi, j, m9i, j, mi, such
that

Mi 5 O
j

mi, juj 1 O
j

m9i, jwj 1 mi,

and moreover

(i) 2 i,j mi,j 1 i,j m9i,j # 2d 2 4,
(ii) m9i,j # 1,
(iii) i mi # 3d 2 5,
(iv) m # 2d 2 2,
(v) there are at most 4d 2 6 variables in }.

PROOF. The proof of Theorem 3.2 will be divided into several lemmas. We
first need some additional definitions.
Recall that S is a set of constant letters and J 5 { x1, . . . , xm} is a set of

variables. For the rest of this chapter, we assume that a fixed function S: J 3
S1 and a primitive word P are given.

Definition 3.3. If x [ J, and ord(S( x)) 5 m, then x is called a (word)
variable of order m.

To simplify notation, we assume that variables in J are ordered in a
nondecreasing ord-order.
In the remaining part of this chapter and in the formulation of the Reduction

Lemma above we distinguish several types of integer variables. To help the
reader to understand the distinction, we first give an intuitive and informal
description of the notation introduced in the definition below. The integer
variables uj correspond to word variables of order 1, and the integer variables wj,
v j to word variables of order . 1. If U 5 U0P

k1U1P
k2 . . . PkuUu, with P-stable

(U0, . . . , Uu), then we say that P
k1 and Pku are in boundary nesting and

Pk2, . . . , Pku21 are in internal nesting. The variables wj correspond to boundary
nesting of P, and the variables v j correspond to internal nesting of P. In the
definition below, jk denotes the number of integer variables corresponding to
internal nesting of P in word variables x1, . . . , xk. By t, we denote the number of
integer variables, ui is the integer variable corresponding to xi1m0

(the ith word
variable of order 1), and wi911, wi912 are integer variables corresponding to
boundary nesting of P in S( xi), for a word variable xi of order . 1.

Definition 3.4. Let m0 (m1) be the number of word variables in J of order 0
(order 1) respectively. Let j0 5 0, and for k 5 1, . . . , m, let jk 5 l51

k max(0,
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ord(S( xl)) 2 2), finally let t 5 jm 1 m1 1 2(m 2 m0 2 m1). For every word
W [ (S ø J)*, we define a function {W}: Nt 3 S* as follows:

(i) for xi [ J, { xi}(uW , wW , vW ) 5

5S~ xi! ,
@@S~ xi!#21#~ui2m0

! ,
@@S~ xi!#21#~wi911, v j i2111, v j i2112, . . . , v j i, wi912! ,

if ord~S~ xi!! 5 0,
if ord~S~ xi!! 5 1,
if ord~S~ xi!! . 1,

where i9 5 2(i 2 m0 2 m1 2 1).
(ii) for a [ S ø {%}, {a}(uW , wW , vW ) 5 a,
(iii) for W [ (S ø J)* and b [ (S ø J), {Wb}(uW , wW , vW) 5 {W}(uW , wW , vW )

{b}(uW , wW , vW ).

LEMMA 3.5. If W 5 W1W2, then {W}(uW , wW , vW) 5 {W1}(uW , wW , vW){W2}(uW , wW , vW).

PROOF. The lemma follows by a straightforward induction. e

Definition 3.6. Assume we are given an equation % 5 (W, W9) in (S, J).
(Recall that each letter in (S ø J) appears in %).

(i) If i 5 0 or i 5 1, then di (d9i) is the number of appearances of variable
letters of order i in W (in W9),
d2 (d92) is the number of appearances of variable letters of order . 1 in W
(in W9), and
dc (d9c) is the number of appearances of constant letters in W (in W9).

(ii) We put d0
1 5 d0 1 d90, d1

1 5 d1 1 d91, d2
1 5 d2 1 d92, dc

1 5 dc 1 d9c.

Clearly uW u 5 d0 1 d1 1 d2 1 dc and uW9 u 5 d90 1 d91 1 d92 1 d9c.

LEMMA 3.7. For every W [ (S ø J)1, every primitive P [ S1, and every
function S: J 3 S*, there exists a sequence (L1, . . . , Ll) of linear functions Li(uW, wW , vT)
5 j ci, juj 1 j c9i, jwj 1 j c 0i, jvj 1 ci with nonnegative integer coefficients such that

(i) {W}(uW , wW , vW ) 5 [[S(W)]21](L1(uW , wW , vW ), . . . , Ll(uW , wW , vW )),
(ii) i, j ci, j 5 d1, i, j c9i, j 5 2d2, c9i, j # 1,
(iii) for each i we have card{ j: c9i, j . 0} # 2,
(iv) if for some i , j, c 0i, j . 0, then Li 5 v j,
(v) i ci , 2d0 1 3(d1 1 d2) 1 dc.

PROOF. The sequence (L1, . . . , Ll) such that l is the order of S(W) and (i)
holds is constructed by induction on the length of W using Lemma 2.12 and
Lemma 3.5. Properties (ii)–(v) easily follow from the construction. For example,
(iii) and (iv) describe the fact that either Li 5 v j, for some j, or Li 5 c9i, jwj 1
c9i, j9wj9 1 ci 1 j ci, juj, where j, j9 correspond respectively to the left and right
boundary nesting in variables of order . 1. To prove (v) notice, that adding a
variable of order $ 1 at the end of a word will contribute at most 3 to i ci (if
case (1) of Lemma 2.12 (ii) for c 5 1 holds). A word variable of order 0 can
contribute at most 2, when case (2) holds, and a constant letter can contribute at
most 1 (the second case of (i)). e
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CONTINUATION OF THE PROOF OF THEOREM 3.2. Let S be a solution of %, and
let V 5 S(W) and V9 5 S(W9). Let p . 2 be the exponent of periodicity of S,
and let P be a primitive word such that for some i # m, and some U, U9 we have
S( xi) 5 UPpU9. Let (u¢ , w¢ , v¢) be a sequence of integers such that for each i # n,
we have

S~ xi! 5 $ xi%~u¢ , w¢ , v¢ ! . (3)

By Lemma 3.5, V 5 {W}(u¢ , w¢ , v¢) and V9 5 {W9}(u¢ , w¢ , v¢). Consequently, by
Lemma 3.7, there exist two sequences (L1, . . . , Ll) and (L91, . . . , L9l9) of linear
functions, such that

$W%~u¢ , w¢ , v¢ ! 5 @@V#P
21#P~L1~u¢ , w¢ , v¢ ! , . . . , Ll~u¢ , w¢ , v¢ !! ,

and

$W9%~u¢ , w¢ , v¢ ! 5 @@V9#P
21#P~L91~u¢ , w¢ , v¢ ! , . . . , L9l9~u¢ , w¢ , v¢ !! .

Since V 5 V9, by Lemma 2.8, we get l 5 l9 and Li(u¢ , w¢ , v¢) 5 L9i(u¢ , w¢ , v¢), for
0 , i # l. Let

+ 5 $L1 5 L91, . . . , Ll 5 L9l% . (4)

It is obvious that + is a consistent system of linear Diophantine equations, and
that p 2 2 is a coordinate of a solution (u¢ , w¢ , v¢) of +. We shall analyze +, but
first we need one more definition and a lemma.

Definition 3.8. A linear form L is called proper unless L 5 c, for a constant
c # 1, or L 5 v i, where v i corresponds to an internal nesting of P.

LEMMA 3.9. There is at most d0 1 d1 1 2d2 1 1
2 dc proper forms in the set

{L1, . . . , Ll} and at most d90 1 d91 1 2d92 1 1
2 d9c in the set {L91, . . . , L9l}.

PROOF. Clearly, in {L1, . . . , Ll}, there is at most d1 forms containing
variables of order 1, and there is at most 2d2 forms containing variables
corresponding to boundary nesting of P. Moreover, there is at most d0 1 1/ 2dc
forms of the form c, for c . 1. In fact, by Lemma 2.12 it follows that, if two
variables (both of order . 0) are concatenated, then the constant form c can be
created only for c # 1. Moreover, the forms so obtained will not be changed by
any further concatenation. Therefore, the constant forms c with c $ 2 can be
divided into two categories. The ones in the first category are obtained using
variables of order 0, and the ones in the second are obtained without variables of
order 0. Note that there is at most d0 forms of the first category. To get a
constant form of the second category, a word containing P4 as a subword must be
obtained from, at most, two words not containing P2, and from any number of
letters. It is easy to check that for this at least two letters are necessary. e

END OF THE PROOF OF THEOREM 3.2. Assume, in addition to the assumptions
made earlier, that S is a minimal solution of %. Let + be the system of equations
defined by (4), and let (u¢ , w¢ , v¢) be a solution of + that satisfies (3). It is easy to
check that (u¢ , w¢ , v¢) is a minimal solution of +.
Now, we are going to transform + into a system } of linear Diophantine

equations that satisfies the conclusion of Theorem 3.2. By Lemma 3.9, the
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number of equations L 5 L9 in +, such that either L or L9 is proper, is bounded
by d0

1 1 d1
1 1 2d2

1 1 1
2 dc

1. We, however, do not have any bounds on the
number of other equations in +. First, we are going to define a system +9 by
elimination from + of all equations whose both sides are nonproper. We denote
by [+ the smallest equivalence relation in the set of variables of order . 1 in
internal nesting such that if either (v i 5 v j) [ +, or (L 5 v i) [ + and (L 5
v j) [ +, with proper L, then v i [+ v j.
Let v9 be a new variable. Let [v] be a [+-equivalence class. To define +9, we

consider three cases.

Case 1. For some v i [ [v], (v i 5 1) [ +. Then all occurrences in + of
variables in [v] are replaced by v9.

Case 2. For some v i [ [v], (v i 5 0) [ +. Then all occurrences in + of
variables in [v] are replaced by 0. Since we have assumed that p . 2, the
variable corresponding to p 2 2 will not be eliminated in this way.

Case 3. For any v i [ [v], and for each constant c # 1, (v i 5 c) [y +. Then
we choose an element v i [ [v], and for each v j [ [v] we replace all occurrences
of v j in + by v i.

Let +9 denote the system of equations obtained in this way. To obtain }, we
first eliminate from +9 all equations of the forms v i 5 v i and c 5 c. Moreover,
if L is proper and L 5 1 [ +9, then L 5 1 is replaced by two equations L 5 v9
and v9 5 1, where v9 is the distinguished variable, that have been previously
chosen. Finally, if Li and L9i are proper and Li 5 L9i [ +9, then we introduce a
new variable v9i, and replace Li 5 L9i by two equations Li 5 v9i and L9i 5 v9i.
We say that a sequence u¢ , w¢ is the main part of a solution of + (respectively

}) if there exists a sequence v¢ (v¢*, respectively) such that (u¢ , w¢ , v¢) is a solution of
+ ((u¢ , w¢ , v¢*) is a solution of }). Clearly the systems + and } are equivalent in
the sense that (u¢ , w¢ ) is the main part of a solution of + if and only if (u¢ , w¢ ) is the
main part of a solution of }. Moreover, if p 2 2 is a coordinate of a minimal
solution of }, then it is a coordinate of a minimal solution of +. Thus, to finish
the proof, it suffices to check that conditions (i)–(v) hold.
By Lemma 3.9 and the assumption that dc

1 $ 2, the number of equations in }
is not greater than d0

1 1 d1
1 1 2d2

1 1 1
2 dc

1 1 1 # 2d 2 2, so (iv) holds. To
prove (v) notice, that the number of variables in } can be bounded by the sum
of: d1

1 2 the number of word variables of order 1, 2d2
1 2 the doubled number of

variables of order at least two, and the number of variables that appear at the
right hand side of equations in }, that is, the number of equations. So, the
number of variables in } is at most (d1

1 1 2d2
1) 1 (d0

1 1 d1
1 1 2d2

1 1 1
2 dc

1 1
1) # 4d 2 6. Moreover, it is easy to notice that Lemma 3.7 (ii) and (v) implies
(i), (ii), and (iii) of Theorem 3.2, so, the proof is completed. e

4. Upper Bounds

In this part using the result of Section 3, we shall prove an upper bound on the
exponent of periodicity of minimal solutions of word equations. To obtain this
bound, we use an upper bound on coordinates of minimal solutions of linear
Diophantine equations, which is a variant of a bound given in Von Zur Gathan
and Sieveking [1978] and Lambert [1987].
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THEOREM 4.1. Let 1 5 {nW i z qW 1 ni 5 0: i 5 1, . . . , n} be a system of linear
Diophantine equations with nW i 5 (ni,1, . . . , ni,r) [ Zr, let i51

n uniu 5 w, and let D be
the upper bound on the absolute values of the determinants of square submatrices of
the matrix (ni, j). Then for each minimal solution (q0,1, . . . , q0,r) of 1, and each i, 1
# i # r, we have q0,i # (w 1 r)D.

A Note on a Proof. Let A denote the upper bound of the absolute values of
the determinants of square submatrices of the matrix obtained from (ni, j) by
adjoining the vector (ni) to it, (sometimes denoted by ((ni, j)(ni)) and called a
full matrix of the system 1). Von Zur Gathan and Sieveking [1978] and Lambert
[1987] agreed3 that q0,i # rA, so a direct application of the bounds given in these
two papers gives q0,i # (wr)D. However, by a modification of their proofs, this
slight improvement can be obtained.

LEMMA 4.2. For any n 3 k-matrix (ci, j), if c 5 i51
n

j51
k uci, ju, then we have

P
j51

k O
i51

n

uci, ju # S O i51
n O j51

k uci, ju

k D k 5 S ckD
k

, ~e1/e!c.

PROOF. Routine. e

Below, we recall the well-known Hadamard inequality.

LEMMA 4.3. For any n 3 n-matrix C 5 (ci, j), we have

det2~C! # P
j51

n O
i51

n

ci, j
2 .

COROLLARY 4.4. Let 1 5 {nW i z qW 1 ni 5 0: i 5 1, . . . , n} be a system of linear
Diophantine equations. Let nW i 5 (ni,1, . . . , ni,r) [ Zr, w 5 i51

n uniu, and c 5 i51
n

j51
r uni, ju. If (q0,1, . . . , q0,r) is a minimal solution of 1, then q0,i # (w 1 r)(e1/e)c.

PROOF. Routine application of Theorem 4.1, Lemmas 4.2, and 4.3, and the
obvious inequality i51

n ai
2 # ( i51

n uaiu)
2. e

Now, we are ready to prove the main result of this paper.

THEOREM 4.5. If % is a word equation of the length d, dc
1 $ 2 and p is the

exponent of periodicity of a minimal solution of %, then p # (7d 2 11)(e1/e)2d23 1
2 # (3d 2 4)21.0615d 5 O(21.07d).

PROOF. Assume that % is a word equation of the length d and dc
1 $ 2. Let }

be the set of linear Diophantine equations given in Theorem 3.2. The main
matrix M of } has the form:

M 5 1
m1,1

m2,1
···

mm,1

· · ·
· · ·
· · ·
· · ·

m1,k

m2,k
···

mm,k

m 01,1
m 02,1
···

m 0m,1

· · ·
· · ·
· · ·
· · ·

m 01,l
m 02,l
···

m 0m,l
2 ,

3 The result in Von Zur Gathan and Sieveking [1978] is stated for one of solutions, but the proof
works without much change for all minimal solutions.
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The nonprimed entries of M correspond to non-primed coefficients mi, j of
equations in }, and double primed entries of M correspond to primed coeffi-
cients m9i, j of equations in }, and the right-sides of these equations. Clearly, we
have

(i) for 1 # i # m and 1 # j # l, um 0i, ju # 1, and
(ii) 2 i51

m
j51
k mi, j 1 i51

m
j51
l um 0i, ju # 2d 2 4 1 2d 2 2 5 4d 2 6.

Let C 5 (ci, j) be a square submatrix of M, and let k9, l9 denote the numbers
of columns of C consisting, respectively of nonprimed and double primed
elements. Let c be the sum of nonprimed elements of C, and let c0 be the sum of
absolute values of double primed elements of C. By Lemma 4.3 and (i), we have

det2~C! # S P
j51

k9 O
i51

n

ci, j
2 D S P

j5k911

k91l9 O
i51

n

ci, j
2 D # S P

j51

k9 O
i51

n U ci, jU D 2S P
j5k911

k91l9 O
i51

n U ci, jU D .
Consequently, by Lemma 4.2 and (ii), we obtain that

det2~C! # S ck9
D 2k9S c0l9 D

l9

# ~e1/e!2c1c0 # ~e1/e!4d26.

So, Theorem 4.1, and the estimates given in Theorem 3.2 imply, that for p . 2,

p # ~7d 2 11!~e1/e!2d23 1 2 # ~3d 2 4!21.0615d 5 O~21.07d! .

It is very easy to check that the inequality above is true also if p # 2. e

COROLLARY 4.6. The problem of satisfiability of word equations is in
NTIME(22

2cd

), where c is a constant, and d is the length of equation.

PROOF. The problem of satisfiability of word equations is in NTIME(22
c9p(d)

),
where c9 is a constant and p(d) is a bound on the exponent of periodicity of
minimal solutions of word equations of the length d (see Jaffar [1990] and
Schultz [1993]). Therefore, the claim follows by Theorem 4.5. e

For the completeness sake we should comment on the assumption that dc
1 $

2. It is known (see, e.g., Abdulrab and Pecuchet [1989]), that the problem of
satisfiability of word equations in the alphabet having only one constant letter
reduces to the problem of solving one linear Diophantine equation, and the
estimates for the periodicity exponent are, in this case, not needed for the
problem of satisfiability of word equations. However, using the above mentioned
fact and the estimates that can be found in Lambert [1987b], one can easily prove
that the periodicity exponents of minimal solution are in this case very small.

Fact 4.7. If % is a word equation in ({a}, J) and each letter appears in % at
most m times, then the exponent of periodicity of any minimal solution of % does
not exceed m.

Moreover, if Siegel’s Lemma [Siegel 1979] is used instead of the bound given
in Lambert [1987b], then for equations having a large number of distinct
variables the bound m above, can be replaced by a much smaller bound
1 1 2(n21=m), where n is the number of distinct variables in %.
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To conclude we give a simple result, which shows, that Theorem 4.1 can not be
substantially improved.

THEOREM 4.8. For each positive integer n, the equation

xnaxnbxn21b · · · bx2bx1 5 axnxn21
5 bxn22

5 b · · · bx1
5ba5 (5)

has the unique solution S whose periodicity exponent is 5(d22)/8 5 2((d22)/8)log25,
where d is the length of Eq. (5). Moreover, if n is large, then the periodicity exponent
is at least 20.29d.

PROOF. Let S be a solution of (5). By Lemma 2.1, S( xn) [ {a}*. An easy
calculation shows that uS( xn) u 5 5 1 4 i51

n21 uS( xi) u and 0 5 uS( xn) ub 5 4
i51
n21 uS( xi) ub, where for a word W, uW ub is the number of appearances of b in

W, so uS( xi) ub 5 0. This implies that uS( xn) u 5 5 uS( xn21) u and an easy
induction shows that for each i # n, uS( xi) u 5 5 uS( xi21) u. Since S( x1) [ {a}*,
it follows that S( x1) 5 a5, and consequently S( xn) 5 a5

n

, thus the exponent of
periodicity of (5) is equal 5(d22)/8 5 2((d22)/8)log25, which for large d is greater
than 20.29d. e
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