
Complexity of Multi-Party Computation Functionalities

Hemanta K. Maji∗ Manoj Prabhakaran† Mike Rosulek‡

October 16, 2012

Abstract

The central objects of secure multiparty computation are the “multiparty functions” (or function-
alities) that it seeks to securely realize. In this chapter we survey a set of results that constitute a
Cryptographic Complexity Theory. This theory classifies and compares multiparty functions according
to their secure computability and reducibility to each other. The basic questions studied, under various
notions of security and reducibility, include:

• Which functionalities are securely realizable (or are “trivial” – i.e., can be reduced to any function-
ality)?

• Which functionalities are “complete” – i.e., those to which any functionality can be reduced?

• More generally, which functionalities are reducible to which? Outside of triviality and completeness,
this question is relatively less explored.

Reductions yield relative measures of complexity among various functionalities. In the information-
theoretic setting, absolute complexity measures have also been considered. In particular, we discuss
results regarding which functions have t-private protocols (in which security is required against a passive
adversary corrupting t out of n players) and how this set changes as t increases from 1 to n.

We treat separately the results on two-party functionalities, for which the cryptographic complexity is
much better understood. In particular, we present unified combinatorial characterizations of completeness
and triviality for secure function evaluation using notions of isomorphism and the common information
functionality (called the kernel) of a given functionality. Beyond completeness and triviality, we also
discuss results on general reducibility, and, in the computationally bounded setting, the connection
between these reductions and computational hardness assumptions.

We briefly discuss results on reactive functionalities, which are much less studied than non-reactive
(secure function evaluation) functionalities. Finally, we conclude with a selection of open problems.

∗Department of Computer Science, University of California, Los Angeles. hmaji@cs.ucla.edu.
†Department of Computer Science, University of Illinois, Urbana-Champaign, mmp@uiuc.edu. Supported by NSF grants CNS

07-47027 and CNS 12-28856.
‡Department of Computer Science, University of Montana. mikero@cs.umt.edu. Supported by NSF grant CCF-1149647

Contents
1 Introduction 1

2 Preliminaries 2
2.1 Functionalities . 3
2.2 Protocols and Reductions . 4
2.3 Security Models . 4
2.4 Cryptographic Complexity . 5

3 Information-Theoretic Results 6
3.1 Triviality of Functionalities . 6

3.1.1 Passive-Triviality and t-privacy . 6
3.1.2 Triviality for active security . 7

3.2 Complete Functionalities . 8
3.2.1 Completeness for Functionalities with Guaranteed Output Delivery 9

3.3 Intermediate Levels of Complexity . 10

4 Results in the Computational Setting 10
4.1 Trivial Functionalities in the PPT Setting . 10
4.2 Completeness in the PPT Setting . 11

5 The Universe of Two Party Functionalities 12
5.1 Complexity of SFE in the Information-Theoretic Setting . 14

5.1.1 Complete SFE functionalities . 15
5.1.2 Passive Trivial SFE . 16
5.1.3 Standalone Trivial SFE Functionalities . 17
5.1.4 UC Trivial SFE Functionalities . 18
5.1.5 Functionalities of Intermediate Complexity . 19
5.1.6 Finer Classification . 19

5.2 Complexity of 2-Party SFE in the Computationally Bounded Setting 20

6 Reactive Functionalities 22

7 Open Problems 22

1 Introduction
Computational complexity studies the amount of computational resources needed for a computing device to
evaluate various functions. In this setting, a function takes a single input and produces a single output.
(Indeed, multiple input and output values can simply be encoded as a single values.) However, in the
cryptographic context of multiparty computation, it is also significant which inputs are provided by which
parties, and which outputs are delivered to which parties. Quite apart from the question of computational
complexity, new interesting parameters emerge — regarding how the various inputs and outputs are related
to each other. Some important aspects of multiparty functions are studied, for instance, under the umbrella
of communication complexity (number of bits, rounds of interaction, etc. required for evaluating the function).
In this chapter we survey cryptographic complexity of multiparty functions that deals with yet another aspect
of how intricately the inputs and outputs are related to each other.

We illustrate cryptographic complexity with an example. Consider two 2-party functions, xor and or,
both of which take two bits of input — x from Alice and y from Bob — and output a single bit to both
parties; xor outputs x⊕y, and or outputs x∨y. In terms of communication complexity, both these functions
are of similar complexity, requiring (in the worst case) the parties to exchange their inputs with each other.
If anything, or is slightly simpler, as the average amount of communication needed over random inputs is
lesser. However, in a cryptographic sense or is much more complex than xor: xor hides no information
about the parties’ inputs from each other, in that Alice can infer Bob’s input y from (x, x⊕y); similarly Bob
can infer Alice’s input x. However or hides information in a peculiar manner: if Alice’s input is 1, she does
not learn Bob’s input; but if her input is 0, she does learn Bob’s input; but note that Bob (if his input is 1)
should not learn whether Alice learned this information or not! As it turns out, there is no way1 for Alice
and Bob to carry out the computation of or, such that they learn nothing but the value of the function (in
addition to their own respective inputs). That is to say, or is not computable in a cryptographic sense. On
the other hand, xor is computable using a straightforward protocol in which the parties simply exchange
their bits.2

As it turns out, most of the interesting 2-party functions are not “trivial” (i.e., securely computable)
unless corrupt parties’ computational resources are limited. Then, to distinguish among cryptographically
uncomputable functions, one needs a finer gradation of complexity. Following the lead of Turing, who
introduced the notion of oracles and (what is now called) Turing reductions, it is possible to differentiate
between cryptographically uncomputable functions using an appropriate notions of a reduction. We shall
say that a multiparty function F “reduces to” another multiparty function G (written F v G), if there is
a protocol that securely computes F , in which the parties have access to an “oracle” for G. Typically, the
parties are allowed to access the oracle any number of times during the protocol; each time they access the
oracle, they feed inputs of their choice to the oracle (without seeing the other parties’ inputs), and the oracle
returns to each party its prescribed G-output alone. Intuitively, if F reduces to G, then F is no more complex
than G is. Technically, we can choose a few different but natural notions of reductions, corresponding to the
security requirements on the protocols (analogous to how reductions in computational complexity theory can
be deterministic, non-deterministic, probabilistic etc.), and classify the functions into different complexity
classes accordingly.

We offer a simple description of the subject of this chapter:

Cryptographic Complexity Theory is the study of multiparty functionalities, classified according
to their cryptographic computability and reducibility to each other.

Note that we consider the objects of study in this theory to be multiparty functionalities, which are more
general than multiparty functions as described above. In particular, we shall be interested in the following
cryptographic tasks:

• Securely sampling values for two or more parties, that are correlated with each other. More generally
this falls under the scope of securely evaluating randomized functions.

1This refers to the information-theoretic setting.
2This protocol is secure in the “honest but curious” adversary model. In stronger security models, xor too becomes an

uncomputable function.

1

• Computations that involve persistent state being maintained across several calls, where parties provide
inputs over multiple rounds and outputs may depend on the inputs from past rounds. In the language of
multi-party computation, such objects are called reactive functionalities. The “canonical” nonreactive
functionality is the two-round “commitment” function: in the first round only Alice has an input x, and
no party gets any output; in the second round, neither party has an input, and Bob receives x as an
output. The significance of this function is that the parties get to schedule other interaction between
these two rounds, during which Alice stays “committed” to her input x without Bob learning anything
about it. Such reactive functionalities, apart from being interesting in their own right, turn out to be
important in understanding the complexity of single-round functions too.

In general, a functionality is defined by the code of a possibly interactive “oracle” who receives inputs, carries
out the computation, and gives outputs.

A Brief History of Cryptographic Complexity. While cryptographic computation of multiparty
functions (more commonly referred to as secure multiparty computation) was studied starting in late
1970’s [SRA79, Rab81, Blu81, Yao82], perhaps the first explicit reference to a cryptographic complex-
ity aspect of a function was not until Kilian’s work that identified a “complete” function [Kil88]. Pre-
vious works focused on studying which multiparty functions are computable under various definitions of
cryptographic computability prevalent then, and under suitable computational intractability assumptions
[Yao86, GMW87, BGW88, CCD88]. Indeed, in the settings in these works, all functions were computable
and hence all were complete too, blurring any distinctions in complexity of the different functions. Since
Kilian’s result, completeness was more fully investigated [Kil91, KKMO00, Kil00, FGMO05, KM11, Ros12].
Meanwhile the characterization of cryptographically computable functions was also carried out for several
more settings [CK89, Kus89, Bea89, CKL03, PR08, KMR09, MPR09]. However, functions of interme-
diate complexity — those which are neither computable, nor complete — were known to exist in some
settings [Bea89, Kus89] but by and large not explored until recently. The term cryptographic complexity was
introduced in [PR08].

The above works on cryptographic complexity deal with the computationally unbounded setting. The
computational aspect of cryptographic complexity was investigated more recently. Beimel et al. [BMM99]
were perhaps the first to investigate the computational intractability requirements necessary and sufficient
for cryptographic computation of multiparty functions. For a certain interesting class of 2-party functions,
they show that any function that is information-theoretically uncomputable is computable against compu-
tationally bounded adversaries if and only if there exists a semi-honest oblivious transfer protocol (what we
call the sh-OT assumption in this survey). Since then, this problem has been extended in several dimen-
sions: class of functions, types of security, and reducibility rather than just computability (for instance, in
[MPR10a, MPR10b, MOPR11, MP11]).

2 Preliminaries
As described in earlier chapters, the security of a multi-party computation protocol is defined by comparison
to an ideal functionality. A functionality is a trusted party that takes inputs from a fixed number of parties,3
P1, . . . , Pn, carries out a computation, and gives output to parties. A reactive functionality can interact with
the parties over multiple rounds, sending them outputs at each round computed from the inputs and outputs
in all previous rounds. Invariably, we will consider functionalities which take time at most polynomial in
their input and a security parameter. The real-ideal paradigm for security [GMW87] is used to define security
for multi-party computation. Informally, a protocol securely realizes a functionality if for every adversary
attacking the protocol, there is an adversary which can achieve the same effect when the computation is
carried out (honestly) by the functionality. Depending on the type of the security required, the capabilities
of the adversary vary. A functionality’s specification (say, as an interactive Turing machine) plus the security

3This number is called the cardinality of the functionality. While it is possible to consider functionalities with variable
cardinality, all the results we survey concern themselves with fixed cardinality functionalities.

2

model (say, security against active adversaries) completely determines all of the implicit and explicit security
requirements of a multi-party computation task.

2.1 Functionalities
We briefly summarize the different kinds of functionalities in this survey. There are a few important classes
of functionalities that have been studied significantly more than the others. Secure function evaluation
(SFE) functionalities accept inputs from all parties, then performs a computation and gives outputs to all
parties. An SFE functionality F of cardinality n is defined by n functions f1, . . . , fn; this functionality,
denoted more explicitly as F(f1, . . . , fn), accepts inputs (x1, . . . , xn) from the n parties respectively, (op-
tionally) randomly samples an element r from some domain, and then provides fi(x1, . . . , xn; r) to the Pi.
The following classification of SFE functionalities is useful to describe the results in the literature:

• Symmetric SFE (SSFE), for which f1 = · · · = fn. That is, all parties get the same output.

• Asymmetric SFE, for which (say) f1 = · · · = fn−1 are constant functions. In other words, only Pn

gets an output. This is of most interest when n = 2.

• There are SFE functionalities which fall into neither of these classes. Sometimes we will use the term
general SFE to stress that we are considering an SFE which is not necessarily of the above two types.

The universe of functionalities considered is that of “well-behaved” and “regular” functionalities: a well-
behaved functionality does not behave differently based on which parties are corrupt (except possibly in
allowing the adversary some control over the timing of message delivery to the honest parties); a regular
functionality does not communicate with the adversary directly (except via corrupt parties).4 We make the
following distinctions based on how the adversary can control the delivery of messages from the functionality.

• An unfair functionality will deliver the output first to the corrupt parties, and then deliver output
to remaining honest parties only if the adversary instructs it to (and only to the subset of honest parties
specified by the adversary).

• In a fair functionality the adversary can instruct the functionality to deliver the output to all parties
or to none, without first seeing the corrupt parties’ outputs.

• Functionalities with guaranteed output delivery offer an even stronger notion of fairness: the adversary
cannot control the output delivery at all; even if the adversary refuses to provide an input to the functionality,
it will be replaced by a pre-determined dummy input, and the functionality proceeds to carry out the
computation and deliver the output to all parties.
Among 2-party functionalities, the literature pre-dominantly deals with unfair functionalities; among func-
tionalities with larger cardinality, when information-theoretic security is considered, often functionalities
with guaranteed output delivery are considered.

Many of the results we consider are for the universe of finite functionalities. In a finite functionality,
the input and output spaces and (in the case of reactive functionalities) the state-space of the functionality
are all finite — that is, have size O(1) as a function of the security parameter. In particular, the maximum
number of bits needed to represent the input to the parties (and, in the case of randomized functionalities,
the number of bits in the random tape of the functionality) does not grow with the security parameter.

For clarity, we shall also define bounded functionalities wherein for each value of the security parameter
(or more generally, some common parameter in the input), the functionality restricted to that security
parameter is finite.5 Note that as the security parameter grows, the input space of the functionality could
grow with it, and so a bounded functionality need not be a finite functionality as defined above. Most of the
secure protocols in the literature are for bounded functionalities. We shall always require that for bounded

4It is often useful to securely realize functionalities that are not well-behaved or regular and use them in realizing other
functionalities. However, the universe of functionalities dealt with in complexity classifications is invariably that of well-behaved
and regular functionalities. For instance, for a functionality F to be complete, it is enough that every well-behaved and regular
functionality reduces to F .

5Thus, a bounded functionality can be implemented by a circuit family.

3

functionalities that can be implemented in polynomial time (polynomial in the security parameter) the secure
protocols be polynomial time themselves. In particular, note that the input domain and state space of such
a functionality should be at most exponential in the security parameter. On the other hand, many of the
negative results for finite functionalities in fact extend to bounded functionalities where the input domain
and state space are polynomially bounded in the security parameter. A few characterizations that deal with
non-finite 2-party functionalities are discussed in Section 5.2.

2.2 Protocols and Reductions
In a protocol for a functionality F , the participating parties receive inputs (from the input domain of F)
from an external environment, interact with each other, and produce outputs for the environment. If F
is a reactive functionality, the parties in the protocol may accept inputs from and produce outputs for
the environment at multiple points in the protocol. In Section 2.3 we briefly mention the various security
definitions dealt with in this survey.

Two standard models for communication among the parties provide a public-discussion medium (in which
case the adversary can listen to all the messages) and private point-to-point channels, respectively. In either
model, the adversary fully controls the scheduling of the delivery of messages. An important exception to
this is the standard model used for protocols that securely realize fair functionalities or functionalities with
guaranteed output delivery: in this case the communication is “synchronous” (proceeding in rounds, allowing
a party to time-out when a message does not arrive in its specified round), but with a “rushing adversary”
(which allows the corrupt parties to receive messages sent to them in a round, before sending out their own
messages in that round).

A protocol π for a functionality F may use a functionality G as a setup:6 in such a protocol the parties
can invoke one or more instances of the ideal functionality G (implemented by an uncorruptible external
party) and interact with it (i.e., send inputs and obtain outputs). The instantiation of the protocol with
access to G will be indicated as πG . If there is a protocol πG that securely realizes a functionality F , then we
say F reduces to G (written as F v G); the exact notion of reduction corresponds to the specific notion of
security provided by the protocol. Among non-reactive functionalities, v is a transitive relation; for passive
security and UC security, it remains transitive even when considering reactive functionalities.

2.3 Security Models
As mentioned above, a protocol is said to securely realize a functionality F if, informally, for every adversary
attacking the protocol, there is an adversary (called a simulator) which corrupts the same set of parties
can achieve an indistinguishable effect (from the point of view of the environment) when the computation
is carried out by the functionality. The advantage in distinguishing is typically required to be negligible in
the security parameter. (In perfect security, this advantage is required to be 0.) The actual security notion
depends on the adversary’s capabilities, as discussed below.

There are three main dimensions to security definitions that we consider.

• Adversarial behavior: The adversary could be passive (a.k.a. honest-but-curious) or active (a.k.a. byzan-
tine, or malicious). In the latter case, the adversary could be standalone (does not interact with the
environment during the course of the protocol, except via protocol input/output for reactive function-
alities), or not. Correspondingly, we have three notions of security: passive security, standalone
security and UC security.

• Computational power: We consider either the information-theoretic (a.k.a. statistical, or computation-
ally unbounded) setting or the probabilistic polynomial time (PPT) (a.k.a. computationally bounded,
or, simply, computational) setting. Typically all entities (in particular, the adversary, simulator, and

6In many works in the PPT setting, when π has a setup like the “common random string” (which takes no inputs), π can
access only a single instance of the setup functionality, and further, polynomially many instances of π should access this same
instance. While there are important positive results in such a model, it is outside the scope of this survey.

4

environment) have the same kind of computational power, except the functionalities and the protocols
(honest parties) which are required to be PPT (w.r.t. the security parameter and inputs).

• Adversary structures: The set of parties that are allowed to be corrupted at once could be restricted
(especially when results in the information-theoretic setting are desired). In particular, in a thresh-
old adversary structure with a threshold t, no more than t parties can be corrupted at once. Such
restrictions are typically considered in the information-theoretic setting.

Any combination of choices in each dimension is possible, though some combinations have received more
attention in literature than the others.

Above we introduced the symbol v to indicate reducibility (without being specific about the security
model). By default we use this symbol to denote reducibility in the information-theoretic setting, and write
vppt for the PPT setting. The relations for reducibility in the passive, standalone and UC security models
will be denoted by vsh, vsa and vuc respectively, and (vuc

ppt etc. in the PPT setting).

Omitted Security Models. Apart from the above dimensions, another dimension of the security def-
inition is whether the adversary is allowed to corrupt parties over the course of the protocol (adaptive
corruption) or only at the beginning (static corruption). In this survey, we focus on the static corruption
setting, though many of the results do extend to the adaptive corruption setting. Also, along the first di-
mension, several models intermediate to standalone security and UC security are considered in the literature
(e.g. concurrent security and non-malleability); the known positive results (existence of reductions) in this
case are often specialized for specific functionalities (e.g. zero-knowledge proofs and commitment), and oth-
erwise often the negative results (separations) for UC security extend to these security notions. For the sake
of focus, we omit these intermediate notions of security from this survey.

2.4 Cryptographic Complexity
The cryptographic complexity of a multi-party computation functionality can be thought of as either “the
difficulty of creating a secure protocol for the functionality” (hardness) or “how much does access to the
functionality help in creating secure protocols for other functionalities” (usefulness). Quantitative measures
of complexity like privacy-threshold (see Section 3.1.1) are best interpreted in the former manner;7 the
qualitative, reduction-based notion of complexity, on the other hand, explicitly relates the usefulness of one
functionality to the hardness of another.

We highlight two natural extremes of complexity, where the two interpretations — hardness and usefulness
— coincide. Firstly, if a functionality has a secure protocol (in some security model) without any setup (i.e.,
the functionality is realizable in that security model), then it is of no value as a setup, as the access to such
an ideal functionality can be replaced by an implementation. We shall refer to such functionalities as trivial
functionalities (for the corresponding security model or reduction). Trivial functionalities are neither
hard nor useful in the sense defined above. In terms of reducibility, a trivial functionality reduces to every
functionality. At the other extreme, we can consider functionalities to which every functionality reduces.
Such functionalities, any of which can replace any other setup, are called complete functionalities (for the
corresponding security model or reduction). These most useful functionalities are also essentially the hardest
functionalities to realize, since once a complete functionality is realized somehow, any other functionality can
be realized using a reduction to the former (provided that the security model allows secure composition).
Of course, other intermediate levels of complexity are possible between triviality and completeness, and we
shall see results regarding them as well. But much of the current literature on cryptographic complexity
focuses on these two natural extremes.

For brevity, we shall write “passive-trivial,” “UC-complete,” etc. to stand for “trivial w.r.t. reductions
that are secure against passive adversaries,” “complete w.r.t. reductions that are UC-secure” etc.

7Though not covered in this survey, there are also useful quantitative complexity measures related to reducibility. In
particular, one can measure complexity in terms of how many instances of a setup G are needed per copy of F in a protocol
that reduces F to G— a complexity measure that has connections with circuit complexity.

5

3 Information-Theoretic Results
In this section we discuss several results in the computationally unbounded setting — that is, when information-
theoretic security is required. In general, unless otherwise specified we assume point-to-point channels be-
tween all pairs of parties.

3.1 Triviality of Functionalities
Recall that we say that a functionality is trivial (under a certain reduction) if it is securely realizable
without any setups (under the corresponding security model). In the information-theoretic setting, one
studies the constraints on adversarial structures (see Section 2) under which a functionality becomes trivial.
In Section 3.1.1 we survey results in the passive corruption model, and in Section 3.1.2, those in the active
corruption model.

3.1.1 Passive-Triviality and t-privacy

In the passive corruption model with point-to-point channels, the most commonly studied complexity measure
of functionalities is called t-privacy. (In this context, the term privacy signifies security against passive
corruption.) Unlike the notion of complexity based on reductions, this is an absolute measure rather than a
relative measure of complexity. A functionality f is t-private if there exists a protocol for f that is secure
against any passive corruption of at most t parties. In other words, the combined view of any coalition of
t parties reveals no more information about the honest parties’ inputs than the prescribed output to the
coalition.

For convenience, we shall say that a functionality has privacy-threshold t if it is t-private, but not
(t+1)-private. Note that every n-party functionality has a well defined privacy-threshold t, with 0 ≤ t ≤ n.
(Throughout this section, we let n denote the cardinality of a functionality.) A higher value of the privacy-
threshold indicates the functionality is less complex: in particular, functionalities with privacy-threshold n
are precisely the ones which are passive-trivial (i.e., passive-securely realizable, without any restriction on the
number of parties that can be corrupted). Lower values of privacy-threshold indicate difficulty to securely
realize the functionalities (rather than usefulness as a setup in realizing other functionalities).

The privacy hierarchy, for each value of n, refers to the ordering of n-party functionalities according to
their privacy-threshold. The primary question regarding privacy-threshold has been the structure of the
privacy hierarchy. We point out that (n− 1)-privacy implies n-privacy, and hence no functionality can have
privacy-threshold (n− 1).

The results on the privacy hierarchy have largely focused on symmetric SFE functionalities (SSFE). Such
functionalities are completely described by a deterministic function f : Xn → Y , where X is the input space
and Y is the output space. Each party i has input xi, and all parties learn f(x1, . . . , xn).

The first broad characterizations for t-privacy were by Ben-Or, Goldwasser, and Wigderson [BGW88], and
independently Chaum, Crépau, and Damgård [CCD88], who showed that all bounded n-party deterministic
SFE functionalities are bn−12 c-private. That is, all such functionalities have secure protocols against passive
adversaries in the presence of an honest (strict) majority. The restriction to bounded functionalities is
necessary; Chor, Geréb-Graus, and Kushilevitz [CGK95] showed that if the input domain is allowed to be
unbounded, then there are functionalities (e.g., the n-argument addition function over Z) which are not
even 1-private. (In contrast, addition over non-negative integers is bn−12 c-private, albeit using an inefficient
protocol.)

The restriction to deterministic SFE functionalities can be removed. Any randomized reactive function-
ality (with possibly different outputs to the different parties) can be passive-securely (in fact, UC-securely)
reduced to a deterministic SSFE functionality, using standard techniques.8 Thus we have the following

8A randomized SFE can be reduced to deterministic SFE which accepts shares of random-tapes for the original functionality
as input from the n parties. A general SFE can be reduced to a symmetric SFE in which each party inputs an additional
string that is used as a one-time pad to mask its part of the output. A reactive functionality can be reduced to a non-reactive
functionality by secret-sharing the internal state of the functionality among all n parties. (For standalone and UC-security this

6

theorem.

Theorem 1 All bounded n-party functionalities are bn−12 c-private.

Effect of the size of the output space. Characterizations of privacy-threshold depend on the output
space of the functionalities in question. At one extreme, among functionalities with a binary output space
(i.e., 2 possible outputs), the privacy hierarchy is not dense but has only two non-empty levels [CK89].
Kreitz [Kre11] showed that this holds for ternary output spaces as well.

Theorem 2 Every bounded deterministic n-party SSFE functionality with a ternary output space has privacy-
threshold either bn−12 c or n.

Further, [CK89, Kre11] also gave combinatorial characterizations of the functionalities in the two levels
of the privacy hierarchy in these cases. In particular, in the case of binary outputs, the n-private SSFE
functionalities have a particularly simple form: they are exactly those which evaluate functions of the form
B1(x1) ⊕ · · · ⊕ Bn(xn), where each Bi is a boolean predicate, and xi is the input of party Pi. If the input
space is unbounded and the output space is binary, then in addition to the above two classes, there is exactly
one additional possible level of privacy: functionalities which have privacy-threshold 0 (i.e., which are not
even 1-private) [CGK95]. Chor and Shani [CS95] showed that the above privacy dichotomy extends to a
subset (called “dense symmetric functions”) of the class of functions in which each party’s input space is
binary and the output is a function of the Hamming weight of the set of inputs (and hence the output space
is {0, . . . , n}).

In the case that the output space is unrestricted, complete characterizations of t-privacy are not known.
However, it is known that Theorem 2 does not hold in general: Chor, Geréb-Graus, and Kushilevitz [CGK94]
showed that for every n and every t ∈ {bn−12 c, . . . , n−2}, there exists an n-party SFE functionality that has
privacy-threshold t. (The functionality that is constructed in [CGK94] has an output space of 2t+2 elements.
In particular, there is a 4 party functionality with an output space of size 16 with privacy-threshold 2.)

While complete characterizations are not known for the t-privacy of general multi-party functionalities,
some necessary conditions are known. Let f be an n-party, t-private function and denote its inputs as
(x1, . . . , xn). Consider a set S ⊆ {1, . . . , n} such that |S| ≤ t and |S| ≤ t (note that the question of t-privacy
in general is only interesting for t ≥ n/2), and let fS,S denote the interpretation of f as a 2-party function
of inputs {xi | i ∈ S} and {xi | i 6∈ S}. Then for any such S, fS,S must be 1-private. In general, one
may also consider partitions of the set of parties into any number of groups. While this technique yields a
necessary condition, Chor and Ishai [CI01] proved that it does not give a sufficient condition for t-privacy.
In particular, there are n-party functionalities f for which every partition into k parties, for all k < n, is
fully private (i.e., k-private), yet f itself is not fully private (i.e., n-private).

For the special case of two-party functionalities, there are only two levels of the privacy hierarchy:
privacy-threshold being 2 or 0, corresponding to functionalities that are passive-trivial or not. In fact, a
complete combinatorial characterization is known for the two-party functionalities that are 2-private [Kus89,
Bea89, KMR09, MPR09]. We discuss this further in Section 5.1.2. In the public discussion model, this
characterization generalizes to n-party functionalities as well (with no restriction on the number of parties
corrupted) [KMR09].

3.1.2 Triviality for active security

In this section we consider the standalone and UC security models in which corrupt parties are allowed to
arbitrarily (a.k.a. actively, or maliciously) deviate from the protocol.

When considering active adversaries, one of the most important considerations is ensuring that honest
parties can output consistent values, even when corrupt parties deviate from the protocol. The multi-
party results in this section consider a security model that includes the requirement of guaranteed output
delivery. In this model, honest parties in the ideal world always receive output from the functionality (i.e.,

must be done in a way that is robust to cheating parties; a non-malleable secret-sharing scheme can be used for this [IPS08].)

7

the adversary cannot block the functionality’s output message); thus, the real/ideal notion of security entails
that honest parties give consistent output when running the protocol as well.

Ben-Or, Goldwasser, andWigderson [BGW88], and indpendently Chaum, Crépau, and Damgård [CCD88]
showed that every bounded n-party SFE functionality with guaranteed output delivery is securely realizable
against active adversaries who corrupt strictly less than n/3 of the parties.9 In fact, the protocol in [BGW88]
achieves perfect security. Security of these protocols was proven in the standalone setting, and was later
extended to UC security by Canetti [Can01]. As in Footnote 8, the restriction to SFE functionalities can be
removed.

Theorem 3 All bounded n-party functionalities with guaranteed output delivery are UC-trivial against ad-
versaries that corrupt at most bn−13 c parties.

The above bn−13 c bound is tight, in the sense that there exist functionalities that are insecure against
adversaries who actively corrupt dn3 e parties. Pease, Shostak, and Lamport [PSL80] showed that perfectly
secure “Byzantine agreement” — and by extension, perfectly secure “broadcast”10 — is possible if and only
if less than one-third of the parties are actively corrupted. The impossibility was later extended to the case
of vanishing security error (in fact, any error less than 1/3) by Karlin and Yao [KY86] (cf. [GY89]).

Mixed & generalized adversaries. Standard security models consider adversaries who either corrupt a
set of parties passively, or corrupt a set of parties actively. In an attempt to gain a unified understanding
of the relationship between passive and active corruption, mixed adversaries have been considered. A mixed
(threshold) adversary is allowed to corrupt ta of the parties actively and additionally corrupt tp of the
parties passively. Additionally, a mixed adversary can corrupt tf additional parties in a fail-stop manner:
the adversary can make these parties stop responding at any time, but cannot see their view of the protocol
or make them deviate from the prescribed protocol.

Fitzi, Hirt, and Maurer [FHM98] showed that perfectly secure n-party computation is possible if and only
if 3ta +2tp + tf < n, with point-to-point channels. If a negligible error is allowed, then n-party computation
is possible if and only if 2(ta + tp) + tf < n and 3ta + tf < n. The second inequality is not needed if a
broadcast channel is available. As above, guaranteed output delivery is required.

Beyond adversaries that corrupt a threshold number of parties, we may also consider generalized adver-
saries. Let S denote a family of subsets of {1, . . . , n}. Then a generalized adversary parameterized by S can
corrupt a set S of parties, for any S ∈ S. Generalized adversaries can also be mixed, so that S is a set of
(say) triples of subsets of {1, . . . , n}, to indicate the allowable sets of parties that can be simultaneously ac-
tively, passively, and fail-stop corrupted. Several works have generalized the previous tight threshold bounds
described above to the setting of generalized adversaries [Cha89, HM00, FHM98, FHM99, HLMR12]. As an
illustrative example, consider an adversary who corrupts only actively (thus, tp = tf = 0). Then a threshold
condition of 3ta < n is translated into the analogous (generalized) condition that no three elements of S
cover the set of all parties. We leave the detailed characterizations outside the scope of this survey.

3.2 Complete Functionalities
First we shall consider completeness for functionalities without guaranteed output delivery. The case of
functionalities with guaranteed output delivery is considered in Section 3.2.1.

The first functionality to be identified as complete in the information-theoretic setting is the oblivious
transfer (OT) functionality. The simplest form of OT is the 1-out-of-2 variant [Wie83, EGL85]: A sender
prepares two bits x0, x1 as input, and a receiver prepares an input choice bit b. The receiver then learns xb.
The sender learns nothing about b, and the receiver learns nothing about x1−b. More generally, in k-out-of-n

9Here synchronous, point-to-point channels among all parties are assumed.
10The broadcast functionality simply accepts a message from one party and delivers it to all the other parties. Once the

functionality is invoked it is guaranteed that all the honest parties will get the output. While non-trivial, this is still a relatively
simple functionality (there are no secrecy requirements, for instance) and can often be physically implemented in a system. See
Section 3.2.1 for the completeness of this functionality.

8

OT, the sender prepares bits (or strings) x1, . . . , xn, the receiver prepares an input S ⊆ {1, . . . , n} with
|S| = k, and the receiver learns {xi | i ∈ S}.

To see why OT could be (passive) complete, consider the case of finite 2-party deterministic SFE func-
tionalities. It is easy to see that the following protocol passive-securely reduces any such functionality to
1-out-of-k OT (which in turn can be relatively easily reduced to 1-out-of-2 OT), where k is the size of the
input domain of P2. P1 prepares a vector (f(x, 1), . . . , f(x, k)) and P2 uses 1-out-of-k OT to receive f(x, y),
which he sends back to P1.

For more general functionalities, it follows from the protocol of [GMW87] (and simplifications from
[HM86, GV87]) that 1-out-of-2 OT is complete against passive adversaries, in the information theoretic
setting for any number of parties. These protocols proceed by performing a gate-by-gate evaluation of a
boolean circuit for the function, in which the parties maintain a secret sharing of the values of the wires
in the circuit. For AND and OR gates, a sharing of the output can be computed from the shares of the
input wires with the help of pairwise OT among the parties. For instance, in the 2-party setting, z1, z2 such
that z1 ⊕ z2 = (x1 ⊕ x2)(y1 ⊕ y2) is computed as follows: the party P1 picks a random bit r1, and uses
OT to transfer r2 = r1 ⊕ x1y2 to P2 (i.e., P1 inputs (r1, r1 ⊕ x1) as the sender in OT, and P2 inputs y2
as the receiver); similarly, they pick s1 and s2 respectively, such that s1 ⊕ s2 = y1x2; then the two parties
locally compute z1 = x1y1 + r1 + s1 and z2 = x2y2 + r2 + s2, which form a random share of the value
(x1⊕x2)(y1⊕ y2). To compute NOT gates, one of the parties can locally flip her share to obtain new shares
of the output wire.

In a seminal work, Kilian [Kil88] showed that the OT functionality is complete also against active adver-
saries, in the information-theoretic setting. The security of the protocol was shown in the standalone setting,
but does extend to a composable security setting [Kil89]. A simpler and more efficient construction, which
explicitly showed that OT is complete with respect to UC security was given in [IPS08].

Combinatorial Characterizations. Many varied relaxations of OT were known to be equivalent to
standard 1-out-of-2 OT under information-theoretic reductions [Rab81, EGL85, Cré87], and thus were shown
complete when OT was shown to be complete. Subsequently, detailed combinatorial characterizations of
complete two-party functionalities were developed [Kil88, Kil91, Kil00, KM11]. A unified description of
these results is presented in Section 5.

For SFE functionalities of larger cardinalities, characterizations of completeness are known for only certain
classes of functionalities. Kilian et al. [Kil91, KMO94, KKMO00] showed that every finite SSFE functionality
with boolean output is either fully n-private, or else passive-complete. This result complements the earlier
combinatorial characterizations of n- and bn−12 c-privacy of boolean-output SSFE functionalities by Chor and
Kushilevitz [CK89]. Thus, any SSFE functionality that evaluates a boolean function that is not of the form
B1(x1)⊕ · · · ⊕Bn(xn), where each Bi is a boolean predicate, is passive-complete.

3.2.1 Completeness for Functionalities with Guaranteed Output Delivery

Since all bounded functionalities with guaranteed output delivery are trivial (and hence complete) against
adversaries that corrupt at most bn−13 c parties, the question of completeness has primarily dealt with larger
corruption thresholds. The first such result showed that the broadcast functionality (see Footnote 10) is
standalone-complete (for the class of bounded functionalities with guaranteed output delivery) against adver-
saries that corrupt at most bn−12 c parties [RB89].

11 The threshold bn−12 c is tight: for instance, Cleve [Cle86]
showed that a multiparty coin-tossing functionality cannot be reduced to any communication functionality
(including broadcasts and multicasts) in the presence of dn/2e corrupt parties.

Fitzi and Maurer [FM00] later showed that a much simpler functionality is complete (for the same
threshold): this functionality lets a party broadcast to any two receivers (rather than broadcasting to all
other n − 1 parties). Further, Fitzi et al. [FGMO05] showed that for this threshold, it is necessary that
a complete functionality has cardinality (number of parties) of 3 or more: in fact, no functionality with

11Unlike in the case of the protocol in [BGW88], this is not a perfectly secure reduction. Indeed, when up to bn−1
2
c parties

can be corrupted, there is no perfectly secure reduction of every functionality to the broadcast functionality. citation?

9

cardinality two is complete if t ≥ n/3 parties could be corrupt. They conjecture that a functionality must
have cardinality n to be complete for secure computation against dn/2e or more corrupt parties (they prove
this when security is required against corruption of n − 2 players). Further, they point out that for any
threshold, one can indeed construct a complete function with cardinality n, namely a “Universal Black-Box”
function.

3.3 Intermediate Levels of Complexity
By comparing the characterizations of complete and trivial functionalities (for the settings where they are
known), it can be seen that there are functionalities that do not fall into either of these classes. Concrete
examples of such 2-party functionalities are discussed in Section 5.1.5. There is relatively less work trying to
differentiate among the various functionalities of intermediate complexity. Section 5.1.6 describes some known
structure including the existence of infinitely many distinct “degrees” of reduction for 2-party functionalities.
Functionalities of intermediate complexity with more than two parties have not been well-studied.

4 Results in the Computational Setting
The results in the computational or PPT setting (which do not hold in the information theoretic setting)
depend on assumptions regarding what computational problems can be solved by PPT machines. While
these assumptions are widely believed, given the state-of-the-art in computational complexity theory, we do
not have the means to prove any of them (all these assumptions typically imply P 6= NP). Two assumptions
in particular are important to our discussion.

1. OWF assumption: There exists a one-way function (see [Gol01]).

2. sh-OT assumption: There exists a semi-honest OT protocol. That is, in the PPT setting, there is a
passive-secure protocol for the oblivious transfer functionality Fot.

These are increasingly stronger assumptions: i.e., sh-OT assumption ⇒ OWF assumption [IL89].12 In fact,
in a formal sense — namely that of “fully black-box reductions” [IR89, RTV04] — these assumptions are
“distinct;” i.e., the reverse implication does not hold.

The high-level complexity question in the PPT setting, which bridges cryptographic complexity and
computational complexity, is how the “cryptographic complexity landscape” changes as we go from assuming
no computational hardness (say, P = PSPACE), through making relatively weak hardness assumptions
(like the OWF assumption) to stronger ones like the sh-OT assumption.

4.1 Trivial Functionalities in the PPT Setting
Early motivating examples of secure multiparty computation problems included “mental poker” [SRA79],
coin flipping by telephone [Blu81] and the “millionaires’ problem” [Yao82]. Moving beyond such specific
problems, a few years later Yao showed that any bounded two party SFE functionality is passive-trivial in
the PPT setting, under specific computational assumptions (originally, the hardness of factoring) [Yao86].13
In fact, this construction, called the Yao’s Garbled Circuit construction, could be seen as a passive-secure
reduction of any SFE to the oblivious transfer functionality Fot, assuming only the existence of a pseudo-
random generator (or, equivalently, under the OWF assumption [HILL99]). In other words, under the
OWF assumption, Yao’s Garbled Circuit construction shows that in the PPT setting, Fot is complete for

12[IL89] shows that the existence of a private-key protocol for agreeing on a longer key implies the OWF assumption. On the
other hand, the sh-OT assumption yields a key agreement protocol (which does not even use a private-key).

13The proceedings version of [Yao86] does not include a description of this protocol; later works described this construction
based on Yao’s presentations. Detailed descriptions and proofs of security of various versions of this construction appear in
[Rog91, TX03, AIK06, LP09].

10

passive-security.14 Further, under the sh-OT assumption, this shows that all SFE functionalities are passive-
trivial in the PPT setting.

For the standalone security case, Goldreich, Micali and Wigderson [GMW87] showed that all bounded
functionalities are standalone-trivial if the sh-OT assumption holds.15 These results, also implied by the
later result of [Kil88], can be summarized as follows.

Theorem 4 All bounded functionalities are passive-trivial as well as standalone-trivial in the PPT setting,
if the sh-OT assumption holds.

The sh-OT assumption is also necessary, because Fot being passive-trivial is the sh-OT assumption, and
if Fot is standalone-trivial it can be seen that the same protocol would establish it to be passive-trivial as
well.16 The usage of sh-OT assumption as a hardness assumption in Theorem 4 can be made black-box
without loss of generality [HIK+11].

It remains open how the sets of passive-trivial and standalone-trivial functionalities change with the
various assumptions made in the PPT setting. In Section 5.2 we discuss this for finite 2-party deterministic
SFE functionalities. In brief, we know that under the OWF assumption the set of standalone-trivial func-
tionalities does expand compared to that in the information-theoretic setting; but the set of passive-trivial
functionalities in this class remains unchanged, as long as the protocols use the one-way function in a “fully
blackbox manner.” Further restricted to asymmetric SFE, neither the set of passive-trivial functionalities
nor that of standalone-trivial functionalities changes, unless the sh-OT assumption holds.

A result such as Theorem 4 does not extend to UC-triviality, even under stronger computational assump-
tions. Indeed, in the case of finite two-party SFE functionalities, the set of UC-trivial functionalities remains
identical in the PPT and information-theoretic settings (see Theorem 11).

4.2 Completeness in the PPT Setting
Under the sh-OT assumption, since all functionalities are passive- and standalone-trivial in the PPT setting
(Theorem 4), all of them are passive- and standalone-complete as well. On the other hand, finite functionali-
ties which are complete in the information-theoretic setting continue to be complete — unconditionally — in
the PPT setting. It remains open to understand how the sets of passive-complete and standalone-complete
functionalities change with the assumptions.

It was shown in [CLOS02] that the coin-flipping functionality Fcoin is complete for UC security under spe-
cific hardness assumptions.17 Later, this result was shown under the sh-OT assumption [DNO10, MPR10b].
Further, [MPR10b, Ros12] proved the following (with the latter providing the extension to randomized
functionalities using a “splittability” criterion).

Theorem 5 Every (possibly reactive and randomized) finite 2-party functionality that is not UC-trivial in
the information-theoretic setting is UC-complete in the PPT setting under the sh-OT assumption.

In Section 5.2 we discuss further results, which relate to two-party functionalities. In particular, go-
ing beyond the question of triviality and completeness, one could consider the computational complexity
assumptions necessary and sufficient for a reduction F vppt G to hold (for various security models).

14As mentioned above, later results showed that oblivious transfer is complete unconditionally, first for passive-security
[GMW87] and later for active-security [Kil88], for both standalone and UC-security (latter explicit in [IPS08]). Nevertheless,
from a practical point of view, Yao’s construction is very efficient and remains of great importance.

15The original result was stated in terms of the assumption that (enhanced) trapdoor permutations exist (also see [Gol04]).
This assumption is used to realize the sh-OT assumption. The construction used a compiler — now called the GMW compiler
— to transform a passive-secure protocol into a standalone-secure protocol using zero-knowledge proofs [GMR85] for languages
in NP [GMW86]; such proofs can be constructed based on the OWF assumption (in turn implied by the sh-OT assumption).

16This is not true for all functionalities. But for Fot and other “deviation-revealing” functionalities [PR08] a standalone-secure
protocol is also passive-secure.

17The results of [CLOS02, DNO10] are somewhat stronger: all bounded functionalities are securely realizable in the “common
random string model,” in which polynomially many sessions can use the same fixed string. Further, the protocol of [CLOS02]
is secure against adaptive adversaries.

11

5 The Universe of Two Party Functionalities
We have a much deeper understanding of the cryptographic complexity of 2-party functionalities than of
general MPC functionalities. This section will focus on these results. The unified presentation here borrows
from [MPR12].

For the two party case, we denote the two parties by Alice and Bob (instead of P1 and P2), the functions
associated with a functionality by fA, fB (instead of f1, f2) and the inputs from the parties by x, y (instead of
x1, x2). In this section we consider only finite SFE functionalities (see Section 2). Also, we restrict ourselves
to unfair functionalities.18 Note that a finite two-party deterministic SSFE functionality F(f, f) can be fully
specified by a matrix, with rows indexed by Alice’s inputs and columns indexed by Bob’s inputs, and entry
f(x, y) at position (x, y).

Graph of an SFE Functionality. It is useful to represent a 2-party (possibly randomized) SFE function-
ality F as a (weighted) bipartite graph G(F), as follows. The set of nodes on the left are indexed by pairs of
the form (x, a) for each possible input value x ∈ X for Alice and output value a for Alice; similarly, the set
of nodes on the right are indexed by (y, b) for all possible inputs y ∈ Y and outputs b for Bob. There is an
edge between (x, a) and (y, b) if Pr[a, b|x, y] > 0, (i.e., there is a non-zero probability that Alice and Bob get
outputs a and b respectively, when they send x and y as their respective inputs to the functionality). The
weight on this edge ((x, a), (y, b)) will be Pr[a, b|x, y], or in a normalized version, Pr[a, b|x, y]/(|X||Y |).19

The connected components of this graph are interesting to study. As we shall see below, we can use it to
define the kernel of the given functionality.

Isomorphic Functionalities. It will be very useful to define “isomorphism” between SFE functionalities.
The definitions presented here are variants of the definitions in [MPR09, MOPR11]. Crucial to defining this
is the notion of a “local protocol” for a functionality F using a functionality G as a setup. In a local protocol,
each party (deterministically) maps its input to inputs for the functionality G, calls G once with that input
and, based on their private input, the output obtained from G, and possibly additional private random coins,
locally computes the final output, without any other communication.

Definition 1 We say F and G are strongly isomorphic to each other if there exist two local protocols πF
and πG such that

1. πGF UC-securely realizes F and πFG UC-securely realizes G.

2. πGF passive-securely realizes F and πFG passive-securely realizes G.

3. F and G have the same input domains, and in πGF and πFG , the parties invoke the given functionality
with the same input as they get from the environment.

F and G are said to be isomorphic to each other if conditions 1 and 2 are satisfied. F and G are said to be
weakly isomorphic to each other if condition 1 is satisfied.

It is not hard to see that Condition 1 above (required by all three definitions of isomorphism) is equivalent
to the (seemingly weaker) condition obtained by replacing UC-security with standalone security.

All the above notions of isomorphism are equivalence relations. Isomorphism (and hence strong isomor-
phism) preserves UC and standalone reducibility, as well as reducibility against passive adversaries, between
functionalities. Weak isomorphism preserves UC and standalone reducibility between functionalities.

18For the case of fair two-party functionalities, several impossibility results, and more recently, a few positive results are
known [Cle86, CI93, GHKL11, MNS09, GIM+10]. We leave these results outside the scope of this survey, except to remark that
the protocols in [GHKL11, MNS09] show that certain two-party fair functionalities reduce to OT in the information-theoretic
setting.

19More generally, the weight on the edge ((x, a), (y, b)) is Pr[a, b|x, y]pX(x)pY (y) where pX(x)pY (y) is the weight of the input
pair (x, y) according to some product distribution over the inputs.

12

Kernel: Common Information in an SFE functionality. Given an SFE functionality F , it is con-
venient to define an associated SSFE functionality as the “common information” that Alice and Bob both
get from F [MOPR11]. The kernel of F is defined as an SSFE functionality F ′ which takes x and y from
the parties, samples the outcome (a, b) according to F , and returns to both parties the connected component
containing the edge ((x, a), (y, b)) in G(F) (defined above). Observe that F ′ gives the same output to both
parties.

As we shall see shortly, an important property of an SFE functionality is whether or not it is (strongly)
isomorphic to its kernel.

Definition 2 A (possibly randomized) SFE functionality F is said to be simple if it is strongly isomorphic20
to its kernel.

This definition unifies several definitions in the literature for special cases. We note these below. Firstly,
it can be shown that the above condition holds if and only if the following two equivalent combinatorial
conditions hold.

• For every four nodes A0, A1, B0, B1 in G(F), with A0, A1 on the LHS and B0, B1 on the RHS, it holds
that p(A0, B0)p(A1, B1) = p(A0, B1)p(A1, B0), where p(A,B) denotes the weight on the edge (A,B)
in G(F).

• Equivalently, the weights over the edges in each connected component of G(F) is a “product distribu-
tion”: that is, there is a weight function α on the left hand nodes, and a function β on the right hand
nodes such that if A and B are in the same connected component, then p(A,B) = α(A)β(B).

It is easy to see that if the connected components are all product distributions then the functionality
is strongly isomorphic to its kernel, by means of a protocol/simulation which takes a connected component
and samples a node for a party conditioned on its input. To see the converse, note that just the correctness
of a strongly local reduction from the function to its kernel implies product distribution for each connected
component.

As mentioned above the definition of simple functionalities that we presented above unifies several defi-
nitions that appeared in the literature for special classes of functionalities.

• Deterministic symmetric SFE. The first instance where simple functionalities were identified was for
the special case of deterministic symmetric SFE: in this case a functionality is not simple if and
only if the matrix representing the function f has an “OR minor” (i.e., ∃x0, x1, y0, y1, z such that
f(x0, y0) = f(x0, y1) = f(x1, y0) = z and f(x1, y1) 6= z) [Kil91].

• Randomized symmetric SFE. In [Kil00] this was generalized to randomized symmetric SFE function-
ality: in this case a functionality is not simple iff ∃x0, x1, y0, y1, z such that

Pr[f(x0, y0) = z] > 0, and Pr[f(x0, y1) = z] > 0

Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] 6= Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z].

• Randomized asymmetric SFE. In [Kil00], the characterization of simple functionalities, specialized to
the case of randomized asymmetric SFE too appears. Kilian gives a combinatorial condition for being
non-simple, but also notes (the more intuitive characterization) that the condition does not hold (i.e.,
the functionality is simple) if and only if the functionality has a passive-secure protocol which involves
a single deterministic message from Alice to Bob. Equivalently, a (possibly randomized) asymmetric
SFE is simple if and only if it is strongly isomorphic to a deterministic functionality in which Bob has
no input.

20The definition is unaltered if isomorphism, instead of strong isomorphism is used. Indeed, if F is not strongly isomorphic
to its kernel, then by virtue of say, Theorem 6, F is complete, and hence F cannot be isomorphic to its kernel (which, being
simple, is not complete). However, for deriving the completeness characterizations, it is convenient to use such a stricter notion
of isomorphism.

13

• Deterministic SFE. Another generalization, this time to deterministic, but general (not necessarily
symmetric or asymmetric) SFE, appears in [KM11]: a deterministic SFE functionality is not simple iff
it has an “OT-core”: i.e., there are inputs x, x′ for Alice and y, y′ for Bob such that fA(x, y) = fA(x, y

′),
fB(x, y) = fB(x

′, y) and either fA(x′, y) 6= fA(x
′, y′) or fB(x, y′) 6= fB(x

′, y′) or both.

All these special cases of the definition of simple functionalities were identified for characterizing complete
functionalities (see Theorem 6 and Theorem 7).

Redundancy-Free SFE functionality. To study security against active adversaries alone (i.e., not also
against passive adversaries) it is useful to have a notion of “redundant” inputs to an SFE functionality that will
never be needed by an active adversary. We will restrict ourselves to deterministic SFE functionalities.21
Alice’s input x to a 2-party deterministic SFE functionality is said to be redundant if there is an input
x′ 6= x that dominates x: i.e., Alice can substitute x′ for x without Bob noticing (i.e., for all inputs y of Bob,
fB(x, y) = fB(x

′, y)) while still allowing her to calculate her correct output (i.e., there is a deterministic
mapping Tx,x′ such that for all inputs y of Bob, fA(x, y) = Tx,x′(fA(x

′, y))). Similarly one can define
redundant inputs for Bob. A deterministic SFE functionality is called redundancy-free if none of Alice’s and
Bob’s inputs is redundant.

Definition 3 A deterministic SFE functionality F ′ is said to be a core of a deterministic SFE functionality
F if F and F ′ are weakly isomorphic to each other and F ′ is redundancy-free.

For any deterministic SFE functionality, one can find a core by successively removing from its domain,
one at a time, inputs that are redundant (based on the set of inputs that have not been removed yet). To
see this, it is enough to verify that F and F ′, where the latter is obtained by removing a single redundant
input from the domain of F , are weakly isomorphic to each other; this is because weak isomorphism is
transitive. A local protocol for F ′ using F is to simply have parties feed their input for F ′ directly to F ;
this protocol is secure against active (as well as passive) adversaries because even if a corrupt player feeds
to F the input that is not in the domain of F ′ (and hence redundant), the simulator can send an input for
F ′ that dominates the adversary’s input. In the other direction, a local protocol for F using F ′ would be to
instruct parties to feed their input for F to F ′ unless it is the removed input x, in which case they should
send to F ′ an input x′ that dominates x; this protocol is easily seen to be secure against active adversaries
(using a simulator which forwards to the ideal functionality F , the input that the adversary sends to F ′
in the protocol), but passive adversaries may indeed learn more information than F would give them when
they use an input that dominates their actual input. Hence we can only ensure that F and F ′ are weakly
isomorphic to each other.

Due to the above connection, while studying active security, it is convenient to study only redundancy-
free functionalities, and to understand problems relating to functionalities with redundancy, relate them to
a redundancy-free functionality that is weakly isomorphic to it. Redundancy-free functionalities are more
well-behaved with respect to how their complexity under active security relates to that under passive security.
In particular, a protocol for a redundancy-free functionality that is secure against active adversaries is also
secure against passive adversaries.22

5.1 Complexity of SFE in the Information-Theoretic Setting
As an aid for keeping track of the various levels of complexity that we shall discuss in this section, it is
useful to consider the “map” of complexity classes in Figure 1. The examples shown are all deterministic
2-party SSFE functionalities that belong to various classes. These examples are used to illustrate some of
the theorems in the sequel.

21In [MPR10b] the notion of redundant inputs is generalized to reactive functionalities (where it is called dominated inputs).
22Redundancy-free functionalities are a special case of what are called “deviation-revealing functionalities” [PR08], a notion

that is defined more generally for randomized and reactive functionalities.

14

Complete

0 1
1 1

(unclassified)

0 0 2 3
2 1 1 3
2 3 0 0
1 3 2 1

1 1 4
2 0 4
2 3 3

Passive Trivial

0 1 2
1 0 2

0 1 1
2 3 2

Stand-alone Trivial

0 2
1 2

0 2 4
1 2 4
3 3 4

...

Exchange-like

0 1
1 0

0 1 2
1 2 0
2 0 1

...

UC Trivial

0 1

Figure 1 Some cryptographic complexity classes of deterministic 2-party SSFE functionalities with examples. The classes
shown are trivial functionalities for UC security, stand-alone security against active adversaries and security against passive
adversaries, the class of complete functionalities (which, for the case of SSFE functionalities, turns out to be the same for all
three types of security), and exchange-like functionalities. G(f, f) is an exchange-like functionality if it is isomorphic to an
exchange functionality G′(fA, fB) where fA(x, y) = y and fB(x, y) = y (over some finite input domains).

5.1.1 Complete SFE functionalities

The first complete functionality that was discovered was Oblivious Transfer. It was shown to be com-
plete against passive adversaries in [GMW87, GV87, HM86], and against active adversaries in [Kil88] (and
explicitly extended to UC security in [IPS08]). All subsequent completeness results build on this.

We have a full understanding of SFE functionalities that are complete under security against passive
adversaries.

Theorem 6 A finite (possibly randomized) 2-party SFE functionality is passive-complete in the information
theoretic setting if and only if it is not simple.

The first step towards such a characterization was taken by Kilian, for the special case of deterministic
symmetric SFE [Kil91]. As mentioned before, for this case the complete functionalities are those with an
OR minor. Later, Kilian extended it to the setting of randomized, symmetric SFE functionalities, and also
for randomized asymmetric SFE functionalities [Kil00]. [KM11] includes the case of deterministic general
SFE. Building on techniques in [Kil00], the characterization was completed (implicitly) in [MOPR11].23

For the case of active corruption, in standalone as well as the UC setting, a characterization of complete
functionalities is known restricted to deterministic SFE.

Theorem 7 A finite deterministic 2-party SFE functionality is standalone-complete in the information the-
oretic setting if and only if it has a core that is not simple.

This was first shown for the special case of deterministic, asymmetric SFE (in which fA is the constant
function) by Kilian [Kil00]. In this case the condition simplifies to the following: a deterministic asymmetric
SFE is simple iff it has an input y0 for Bob such that fB(x, y0) determines the function fB(x, ·) (i.e.,
∀x0, x1, y1, fB(x0, y0) = fB(x1, y0)⇒ fB(x0, y1) = fB(x1, y1)). The complete characterization in Theorem 7

23[MOPR11] extends the protocol in [Kil00] for asymmetric SFE to show that if an SFE functionality F is not (strongly)
isomorphic to its kernel, then it is complete for security against passive adversaries. (Though the statement in [MOPR11] is not
in terms of strong isomorphism, the protocols that establish completeness of F only uses the condition of F not being strongly
isomorphic to its kernel.) On the other hand, a functionality which is (strongly) isomorphic to its kernel is not complete, since
the kernel (which is an SSFE) is itself simple and hence not complete by one of the characterizations in [Kil00].

15

— including the extension to UC security — is due to Kraschewski and Müller-Quade [KM11], who phrased
it in terms of the presence of an OT-core (as described earlier). Extending this characterization to cover
randomized SFE remains an open problem. Partial progress on this problem was made by Crépeau, Morozov
and Wolf [CMW04] who showed that any non-trivial channel is standalone complete.

5.1.2 Passive Trivial SFE

We consider three classes of trivial SFE functions, depending on the type of security. The simplest 2-
party functionalities are the ones which are trivial under UC security (Section 5.1.4). A much richer class of
functionalities is obtained by considering triviality under information theoretic passive security (this section),
and triviality under information theoretic standalone active security (Section 5.1.3. The latter two have been
characterized only restricted to deterministic functionalities. We elaborate on these three low-complexity
classes below. Trivial functionalities in the PPT setting (for two-party functionalities) are considered in
Section 5.2.

An important combinatorial structure of deterministic 2-party symmetric SFE functionalities, called
decomposability, was identified in [Kus89].

Definition 4 (Decomposable Functions [Kus89]) A function f : X × Y → Z is decomposable if at
least one of the following (recursively defined) conditions holds:

• f is a constant function (i.e., |range(f)| = 1). (This is the base case.)

• f is row-decomposable: i.e., there exists a partition X = X1∪· · ·∪Xt, with t > 1, |Xi| > 0, such that:

– For each i, f
∣∣
Xi×Y

is either constant or column-decomposable.

– For all y ∈ Y , all i, j such that 1 ≤ i < j ≤ t, and x1 ∈ Xi, x2 ∈ Xj, we have f(x1, y) 6= f(x2, y).

• f is column-decomposable: i.e., there exists a partition Y = Y1 ∪ · · · ∪ Yt, with t > 1, |Yi| > 0, such
that:

– For each i, f
∣∣
X×Yi

is either constant or row-decomposable.

– For all x ∈ X, all i, j such that 1 ≤ i < j ≤ t, and y1 ∈ Yi, y2 ∈ Yj, we have f(x, y1) 6= f(x, y2).

Here f
∣∣
A×B denotes the restriction of f to the domain A×B, where A ⊆ X and B ⊆ Y .

B

A

0 1

2

As an example, consider f defined by 0 2
1 2 (i.e., with X = Y = {0, 1}, f(0, 0) = 0, f(1, 0) =

1, f(0, 1) = f(1, 1) = 2). A decomposition of f is shown to the right (the column decomposition
node is labeled B (for Bob) and the row decomposition node is labeled A (for Alice)).

Definition 5 (Decomposable SFE) We shall call a deterministic SSFE functionality F(f, f)
decomposable if the function f is decomposable. We shall call a deterministic general SFE
functionality F decomposable if it is simple and its kernel (which is an SSFE functionality to which F is
strongly isomorphic) is decomposable.

Note that an asymmetric SFE is decomposable if and only if it is simple (since its kernel is simply a
constant functionality).

Kushilevitz [Kus89] and Beaver [Bea89] proved that a deterministic SSFE functionality is decomposable
if and only if it has a perfectly secure protocol. Later, this characterization was extended to the case (of
our standard security definition) where a secure protocol is allowed to be only statistically secure [MPR09,
KMR09].

Theorem 8 A finite deterministic 2-party SFE functionality F is passive-trivial in the information theoretic
setting if and only if it is decomposable.

16

The “if” direction of this theorem is easy. It is enough to consider symmetric SFE functionalities, since a
decomposable SFE functionality is (strongly) isomorphic to a decomposable SSFE functionality (namely its
kernel). If F(f, f) is an SSFE functionality that is decomposable, then a canonical protocol for evaluating f
is a deterministic protocol defined inductively as follows [Kus89]:

• If f is a constant function, both parties output the output value of f , without interaction.

• If f is row-decomposable with X = X1 ∪ · · · ∪ Xt, then Alice announces the unique i such that her
input x ∈ Xi. Then both parties run a canonical protocol for evaluating f

∣∣
Xi×Y

.

• If f is decomposable as Y = Y1 ∪ · · · ∪Yt, then Bob announces the unique i such that his input y ∈ Yi.
Then both parties run a canonical protocol for evaluating f

∣∣
X×Yi

.

It is a simple exercise to see that a canonical protocol is a perfectly secure protocol for F against passive
adversaries.

5.1.3 Standalone Trivial SFE Functionalities

To characterize standalone trivial SFE functionalities, like in the case for passive trivial SFE functionalities,
it will be convenient to first restrict to SSFE functionalities, and then extend the characterization. The
combinatorial characterization of standalone trivial SSFE functionalities in [MPR09, KMR09] is a further
restriction on decomposability mentioned above. Below we follow [MPR09] in defining this characterization.

Decomposition strategies. Given a uniquely decomposable SSFE functionality F(f, f) for f : X × Y →
Z,24 we define a new function f∗ over Alice’s and Bob’s strategies in the canonical protocol for computing
F (using the unique decomposition), as follows. A strategy for Alice specifies, at each row-decomposition
step X ′ = X ′1 ∪ · · · ∪X ′t, an index i ∈ {1, . . . , t}, and similarly a strategy for Bob specifies an index at each
column-decomposition step. If A,B are Alice and Bob strategies for F , respectively, then we define f∗(A,B)
to be the subset X ′ × Y ′ ⊆ X × Y obtained by “traversing” the decomposition of f according to the choices
of A and B.

Essentially, the function f∗ maps the strategies of (possibly corrupt) Alice and Bob in a canonical protocol
for F , to the outcome of the protocol. We define an SSFE functionality F∗(f∗, f∗).

Definition 6 (Saturation) Let F be a uniquely decomposable SSFE functionality, and F∗ be as defined
above. We say that F is saturated if F and F∗ are isomorphic to each other.

To understand this condition further, we provide an alternate description for it. For every x ∈ X we
define an Alice-strategy Ax such that at any row decomposition step X = X1 ∪ · · · ∪ Xt where x ∈ X,
it chooses Xi such that x ∈ Xi. (For X such that x 6∈ X, the choice is arbitrary, say X1.) Similarly for
y ∈ Y we define a Bob-strategy By. Note that in the canonical protocol, on inputs x and y, Alice and Bob
traverse the decomposition of f according to the strategy (Ax, By), to compute the set f∗(Ax, By) (where
f is constant). If F is saturated, then all Alice strategies should correspond to some x that Alice can use
as an input to F . That is, for all Alice-strategies A, there exists a x ∈ X such that for all y ∈ Y , we have
f∗(A,By) = f∗(Ax, By); similarly each Bob strategy B is equivalent to some By.

As examples, consider the SSFE functionalities 0 1
2 3 , 0 1 1

2 3 2 and 0 1 1 0
2 3 2 3 . The first one is not uniquely

decomposable (as it is both row-decomposable and column-decomposable). The second one is uniquely
decomposable, but not saturated. Finally, the last one is saturated.

The above characterization — that an SSFE functionality is standalone-trivial if and only if it is saturated
— can be extended to general SFE functionalities as follows.

24F(f, f) is uniquely decomposable if, in Definition 4, exactly one of the three conditions holds with the recursive references
to decomposability replaced by unique decomposability, and with the partitions required to be unique (up to reordering of the
parts).

17

Theorem 9 A finite deterministic 2-party SFE functionality is standalone-trivial in the information theo-
retic setting if and only if it is weakly isomorphic to a saturated functionality.

Note that if an SFE functionality F is weakly isomorphic to a saturated functionality (which is standalone
trivial), then it is standalone trivial itself. To see the converse, suppose F is a standalone trivial SFE. Let
F ′ be a core of F . Then F ′ is simple: otherwise, by Theorem 7, F would be standalone complete and hence
not standalone trivial. Let F ′′ be the kernel of F ′. Since F is weakly isomorphic to F ′ (because F ′ is a
core of F) and F ′ is strongly isomorphic to F ′′ (because F ′ is simple), F is weakly isomorphic to F ′′. This
implies that F ′′ is standalone trivial, and being an SSFE, saturated. Thus F is indeed weakly isomorphic
to a saturated functionality.

5.1.4 UC Trivial SFE Functionalities

Right from the introduction of the notion of UC security by Canetti [Can01], it was observed that many
interesting functionalities are not trivial for UC security [Can01, CF01]. Shortly, these impossibility results
were extended into an almost complete combinatorial characterization of all trivial deterministic 2-party
SFE functionalities by Canetti et al. [CKL03, CKL06]. Here we follow the presentation in [PR08], which
addresses the setting of randomized and reactive functionalities as well. At the heart of this characterization
is a behavioral property of a functionality (as opposed to structural properties like the presence of a minor),
called splittability.

Given a 2-party functionality F and a “splitter” T (which is a virtual party), we define another 2-party
“split functionality” 〈F|T |F〉 as follows: it internally simulates two independent instances of F , which we
call FL and FR, and an instance of T . 〈F|T |F〉 lets Alice directly interact with FL as Party 1 and lets Bob
directly interact with FR as Party 2; T interacts with FL as Party 2 and with FR as Party 1 (see Figure 2).

F

Z

1 2

FL FR

T

Z

1

1

2

2

2 1

Z interacting with F Z interacting with 〈F|T |F〉

Figure 2 Environment Z interacting with F and with 〈F|T |F〉 (shown in the shaded box).

We say F is splittable if there exists a machine T such that no environment can distinguish between
interacting with F and interacting with 〈F|T |F〉.

Theorem 10 A (possibly randomized, reactive) 2-party functionality F is UC-trivial in the computational
or information theoretic setting if and only if it is splittable.

It is easy, using the above, to explicitly characterize which finite 2-party SFE functionalities are trivial
and which are not. If a finite SFE F is splittable, then (upto the reordering of the two parties) there must
be an input for Bob y∗ which the splitter T can use to extract an input x′ that is equivalent to Alice’s actual
input x, and from Alice’s point of view, all inputs y for Bob should be equivalent. This is formalized in the
following.

Theorem 11 A finite 2-party SFE F(fA, fB) is UC-trivial in the information theoretic (or PPT) setting if
and only if (after swapping Alice and Bob, if necessary) there are functions f1, f2, g, h over finite domains,
a special input for Bob y∗, and an isomorphism R mapping a pair of strings to a single string, such that for

18

all x, y, r in the input domain of fA, fB, and r1, r2 such that r = R(r1, r2), we have fA(x, y, r) = f1(x, r1),
fB(x, y, r) = f2(g(x), y, r2) and g(x) = h(fB(x, y, r)).

Alternatively, a finite 2-party SFE is UC-trivial in the information theoretic (or PPT) setting if and only
if it is isomorphic to a deterministic asymmetric SFE which takes input from only one party.

The second characterization above follows from the first one by considering the deterministic asymmetric
SFE which takes input x from Alice and outputs g(x) to Bob. All such functionalities have single-message
protocols that UC securely realize them.

In the case where F is a deterministic SSFE functionality, F is UC-trivial if and only if F is decomposable,
with a canonical protocol that exchanges only one message.

5.1.5 Functionalities of Intermediate Complexity

As shown in Figure 1, there is a gap between complete functionalities and trivial functionalities. That is, an
SFE functionality that is simple is not necessarily trivial for any of our notions of security. Such a dichotomy
does hold for asymmetric SFE (in both passive adversary and standalone active adversary settings),25 but
more generally there are SFE functionalities of intermediate complexity levels.

In [Bea89], Beaver described a symmetric SFE functionality
1 1 4
2 0 4
2 3 3

(called spiral), in the region labeled

“unclassified” in Figure 1, which is neither complete nor trivial with respect to passive security. That is, the
function does not have an OR-minor, and is not decomposable. In Figure 1, we give another such symmetric

SFE functionality, which we call weave:
0 0 2 3
2 1 1 3
2 3 0 0
1 3 2 1

(in fact, any 3 × 4 or 4 × 3 minor of this function has

the same property). Note that weave has an output space of size 4. From a structural characterization of
functions with a ternary output space in [Kre11], it follows that a 2-party deterministic SSFE functionality
with an output space of size at most 3 is either complete or is trivial against passive corruption. So weave
is a deterministic SSFE which is neither complete nor trivial against passive corruption that is minimal in
terms of the size of the output space.

5.1.6 Finer Classification

UC-trivial functionalities form the simplest class of interest in our classification. An instructive question
to ask is which are the simplest functionalities that are not UC-trivial. Interestingly, this can indeed be
answered with two specific SSFE functionalities [MPR10b]: the XOR functionality 0 1

0 1 (denoted by Fxor)

and the “Cut-and-Choose” (or CC) functionality 0 2
1 2 (denoted by Fcc). These are the simplest in the sense

that any finite deterministic SFE functionality F (or even reactive functionality – see Section 6) that is not
UC trivial yields at least one of these functionalities: i.e., either Fxor vuc F or Fcc vuc F . In Figure 1 these
functionalities are shown just above the class of UC-trivial functionalities.

These two functionalities could be considered the simplest ones in two hierarchies of SSFE functionalities.
These are hierarchies of strictly increasing cryptographic complexity in the sense that a functionality lower
down in the hierarchy UC securely reduces to a functionality above it (in the computationally unbounded
setting), but not vice versa. The first hierarchy is of exchange-like functionalities, which are deterministic
SSFE functionalities isomorphic to the exchange functionality Fm,n

exch(fA, fB) with fA(x, y) = y and fB(x, y) =
x over domains of size |X| = m and |Y | = n. Another such hierarchy can be described in terms of
decomposition trees, which can be identified with saturated SSFE functionalities (up to isomorphism, there
is a unique saturated functionality with a given decomposition tree). Consider decomposition trees which
are binary trees of depth d, with at least one child at every node being a leaf. Fcc, with depth d = 2,

25This follows from the observation in [Kil00] that if an asymmetric SFE is simple, then it is strongly isomorphic to a
deterministic functionality in which Bob has no input. Such functionalities are trivial by means of a simple protocol in which
Alice sends a function of her input to Bob.

19

0 1
1 1

0 0 2 3
2 1 1 3
2 3 0 0
1 3 2 1

1 1 4
2 0 4
2 3 3

0 1 2
1 0 2

0 2
1 2

0 2 4
1 2 4
3 3 4

...

0 1
1 0

0 1 2
1 2 0
2 0 1

...

0 1

Figure 3 A solid arrow from G to F indicates that F vuc
ppt G is equivalent to the sh-OT assumption and a dotted arrow indicates

that it is equivalent to the OWF assumption.

has the smallest such tree (illustrated after Definition 4) among functionalities that are not UC trivial. A
functionality with decomposition depth d = 4 is also shown in Figure 1.26

5.2 Complexity of 2-Party SFE in the Computationally Bounded Setting
Triviality. In the computationally-bounded setting, the existence of a secure protocol is likely to depend
on the truth of various computational intractibility assumptions. Here we give an overview of how the class
of trivial functionalities is affected by such assumptions.

Restricted to finite 2-party deterministic asymmetric SFE, [BMM99] showed that the sets of passive-
trivial and standalone-trivial functionalities in the PPT setting are the same as those in the information-
theoretic setting, unless the sh-OT assumption holds. However, on removing the restriction of being asym-
metric, several functionalities which are not standalone-trivial in the information theoretic setting do become
standalone-trivial in the PPT setting under the weaker OWF assumption. As a concrete example, the com-
mitment functionality can be standalone-securely realized under this assumption. We note that many SFE
functionalities unconditionally reduce to commitment (see the discussion in Section 6), hence these also
become standalone-trivial under the sh-OT assumption.

In fact, in the case of finite two-party deterministic SFE functionalities, both for passive and standalone
security, a fully blackbox use of the OWF assumption is “useful only” to securely realize the commitment
functionality and those functionalities that reduce unconditionally to commitment [MMP12]. In particular,
among finite two-party deterministic SFE functionalities, the set of passive-trivial functionalities in the PPT
setting under a fully blackbox use of the OWF assumption remains the same as that in the information-
theoretic setting, as commitment itself is passive-trivial.

In general, the property of UC-triviality also depends on the truth of intractibility assumptions, as it does
for other security models. However, when restricted to the special case of finite, two-party functionalities,
UC-triviality is the same in the computationally-bounded setting as in the information-theoretic setting (see
Theorem 11).

26The strictness of the second hierarchy follows from a more general result in [MPR09]: a functionality with a larger tree
(measured in terms of the depth of the tree) cannot be UC securely reduced to one with a smaller tree, in the computationally
unbounded setting. (The proof in [MPR09] is for the case when the first functionality has a decomposition depth at least two
more than that of the second functionality.) In fact, it is enough for the former functionality to be uniquely decomposable, and
the latter functionality to be decomposable (and not necessarily saturated).

20

Reductions. More generally, the truth value of a reduction such as F vppt G may likely depend on compu-
tational intractibility assumptions such as the OWF assumption or sh-OT assumption (defined in Section 4).
In fact, one may view a statement such as “F vppt G” as a (admittedly non-standard) computational as-
sumption in itself. By considering all “assumptions” of the form F vppt G, for all functionalities F and G,
we arrive at a set of assumptions which are the most fundamental for secure multi-party computation (at
least in terms of feasibility).

This point of view of “fundamental” assumptions for multi-party computation was suggested in [MPR10a],
especially for UC-secure reductions. Despite there being infinitely many pairs of functionalities (F ,G), these
pairs appear to induce only four distinct “assumptions” of the form F vuc

ppt G. That is, for all finite two-party
SSFE functionalities F and G which have been classified in [MPR10a, MPR10b], one of the following holds:

1. F vuc
ppt G is known to be unconditionally true (i.e., the reduction is achieved by an information-theoretic

secure protocol).

2. F vuc
ppt G is known to be unconditionally false. This is the case if G is UC-trivial but F is not.

3. F vuc
ppt G is equivalent to the sh-OT assumption. There are two such cases:

(a) F is complete and G is passive-trivial.

(b) F 6vuc
it G and G is “exchange-like” (see Figure 1). This was later partly extended to randomized

SSFE: if G is Fcoin, and F 6vuc
it G then F vuc

ppt G is equivalent to the sh-OT assumption [MOPR11,
MP11].

4. F vuc
ppt G is equivalent to the OWF assumption. In fact, if the above cases do not hold, and if neither

F nor G fall into the “unclassified” region in Figure 1 (neither complete nor passive-trivial), then the
OWF assumption implies that F vuc

ppt G. Further, it is known to be equivalent to the OWF assumption
for a large subset of such pairs (and is conjectured to be so for the rest) [MPR10a].

In particular, this demonstrates the (possibly unique) fundamental nature of the OWF assumption and
the sh-OT assumption to two-party computation.

Completeness. As mentioned previously in Section 4.2, all functionalities are complete for passive and
standalone security in the computational setting under the sh-OT assumption (in a degenerate way, since
all functionalities are also trivial under the same assumption). The completeness results known for compu-
tationally bounded UC security (also described in the previous section) are all restricted to the two-party
case.

Beyond Finite Functionalities. There have been relatively fewer results about the complexity of 2-party
functionalities that are not finite. Harnik et al. [HNRR06] investigated two-party asymmetric deterministic
SFE functionalities that are not finite. They define two disjoint classes of such functionalities — row-
transitive and row non-transitive27 — which for the case of finite asymmetric deterministic SFE become
simple and non-simple functionalities. They show that in the PPT setting, the functionalities in the first class
are passive-trivial (and under the OWF assumption, standalone-trivial as well, using the GMW-compiler).
The functionalities in the second class, on the other hand, are passive-complete in the PPT setting (and
consequently, passive-trivial or standalone-trivial if and only if the sh-OT assumption holds).

However, this stops short of being a complete characterization of passive-trivial and passive-complete
2-party asymmetric deterministic SFE functionalities, because some of them could be neither row-transitive
nor row non-transitive. A similar gap appears in [Ros12], in the case of non-finite functionalities, between
functionalities which are UC-trivial and those which are UC-complete.

27For the functionality F(⊥, fB) to be row-transitive a certain computation — computing fB(x1, y) given only
(x0, x1, fB(x0, y)) — has to be “easy,” and to be non row-transitive it has to be “hard,” but being easy and being hard
are not exactly complements of each other.

21

6 Reactive Functionalities
Nearly all work related to cryptographic complexity has been restricted to non-reactive (that is, SFE)
functionalities. However, many positive results for SFE immediately carry over to the case of reactive
functionalities. Being able to securely compute arbitrary SFEs suffices to securely compute arbitrary reactive
functionalities (see Footnote 8). The picture is less clear in security models that do not admit secure protocols
for all tasks.

The ideal bit commitment functionality is a quite natural reactive functionality. A picture of commit-
ment’s cryptographic complexity arises from many protocols that use commitment. Notably, Canetti et
al. [CLOS02] showed (among other things) that the commitment functionality is complete for computa-
tional UC-secure reductions under suitable computational assumptions. As was explicitly noted in [DNO10,
MPR10b], the exact computational assumption corresponding to the completeness of commitment is the
sh-OT assumption; further, the corresponding reductions can use the sh-OT assumption in a “fully black-
box” manner [CDMW09].

In [MPR09] it was shown that the commitment functionality can be used to give a natural, alternate
characterization of the class of 2-party passive-trivial, deterministic SFE. That is, they showed that a sym-
metric (in fact, deviation revealing) F belongs to this class if and only if F has a UC-secure reduction to
the commitment functionality in the information theoretic setting.

A comprehensive treatment of arbitrary reactive functionalities (beyond commitment) first appears in
[MPR10b]. There the reactive functionalities are modeled as finite automata. This model was used in
[MPR10b, Ros12] to prove a zero-one law (Theorem 5) of triviality and completeness for reactive as well as
non-reactive functionalities. Further, in [MPR10b], this model was used to show a structural result about
finite deterministic reactive functionalities: informally, it was shown that for any (possibly reactive) F that
is not UC-trivial, the non-triviality of F is either due to F behaving “like a non-trivial SFE” functionality,
or from F behaving “like commitment.”

Another instance of a result that extends to reactive functionalities is the characterization of UC-trivial
functionalities in terms of splittability (Section 5.1.4).

But it remains the case that beyond a few such instances, the literature lacks a thorough study of the
complexity of reactive functionalities.

Different complexities for reactive & non-reactive functionalities. Under very specific circum-
stances, reactive and non-reactive (SFE) functionalities can exhibit surprisingly different qualitative com-
plexities. Specifically, Ishai et al. [IKLP06] considered a model in which a (polynomial-time) adversary is
allowed to either actively corrupt a strict minority, or passively corrupt any number of parties (but no mix-
ture of corruption types). In this setting, arbitrary SFE is possible, but there are reactive functionalities that
cannot be securely realized. Hirt, Maurer, and Zikas [HMZ08] showed an analogous separation between SFE
and reactive functionalities in the information-theoretic setting. In the simpler case where the adversary is
a mixed threshold adversary (i.e., the adversary can actively corrupt up to ta parties, passively corrupt up
to tp parties, and so on; see Section 3.1.2) there is no such qualitative separation between SFE and reactive
functionalities.

7 Open Problems
We list a few open problems on cryptographic complexity (but omit several other important questions as
the related results were not covered above.)

Privacy hierarchy. It remains open to fully characterize the different levels of the privacy hierarchy
(Section 3.1.1). Importantly, it is not known which functions are n-private. A curious open problem is to
find the size of the smallest output space (known to be between 4 and 16) for which Theorem 2 breaks down.

22

Reduction-based cryptographic complexity. The map in Figure 1 indicates a fairly detailed picture
of the complexity landscape of deterministic 2-party SSFE functionalities (except for the region marked as
“unclassified” in Figure 1). But extending this to the universe of functionalities that are randomized or has
cardinality larger than 2 remains largely open. In particular, it remains open to extend the characterizations
of passive and complete functionalities (Theorem 6, Theorem 7 and Theorem 8) to randomized 2-party SFE
functionalities.

Computational Complexity and Cryptographic Complexity. The map in Figure 3 suggested the
conjecture that among 2-party deterministic SSFE functionalities, any assumption of the form F vuc

ppt G is
equivalent to one of OWF assumption and sh-OT assumption. This conjecture remains open. On the other
hand, reductions of the form F vsh

ppt G and F vsa
ppt G are less understood, and perhaps there are numerous

“distinct” (blackbox-separated) assumptions of this form. In particular, the assumptions of the form that a
functionality is passive-trivial or standalone-trivial have not been characterized; similarly the completeness
of (non-trivial) functionalities have not been characterized for passive, standalone or UC reductions.

All these forms of reductions are much less understood for randomized functionalities and functionalities
with cardinality larger than 2.

References
[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing

polynomials and their applications. Computational Complexity, 15(2):115–162, 2006.

[Bea89] Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigenbaum and Michael Mer-
ritt, editors, Proceedings of DIMACS Workshop on Distributed Computing and Cryptography,
volume 2, pages 65–77. American Mathematical Society, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon,
editor, STOC, pages 1–10. ACM, 1988.

[Blu81] Manuel Blum. Three applications of the oblivious transfer: Part I: Coin flipping by telephone;
part II: How to exchange secrets; part III: How to send certified electronic mail. Technical
report, University of California, Berkeley, 1981.

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-party secure
computation. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 80–97. Springer, 1999.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous version
“A unified framework for analyzing security of protocols” available at the ECCC archive TR01-
016. Extended abstract in FOCS 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols. In Janos Simon, editor, STOC, pages 11–19. ACM, 1988.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box
constructions of adaptively secure protocols. In Omer Reingold, editor, TCC, volume 5444 of
Lecture Notes in Computer Science, pages 387–402. Springer, 2009.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. Report 2001/055, Cryp-
tology ePrint Archive, July 2001. Extended abstract appeared in CRYPTO 2001.

23

[CGK94] Benny Chor, Mihály Geréb-Graus, and Eyal Kushilevitz. On the structure of the privacy hier-
archy. J. Cryptology, 7(1):53–60, 1994.

[CGK95] Benny Chor, Mihály Geréb-Graus, and Eyal Kushilevitz. Private computations over the integers.
SIAM J. Comput., 24(2):376–386, 1995.

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty computations secure uncon-
ditionally from minorities and cryptographically from majorities. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 591–602. Springer, 1989.

[CI93] Richard Cleve and Russel Impagliazzo. Martingales, collective coin flipping and discrete control
processes. Manuscript, 1993. http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps.

[CI01] Benny Chor and Yuval Ishai. On privacy and partition arguments. Information and Computa-
tion, 167(1):2–9, 2001.

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy (extended abstract). In
David S. Johnson, editor, STOC, pages 62–72. ACM, 1989.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally compos-
able two-party computation without set-up assumptions. In Eli Biham, editor, EUROCRYPT,
volume 2656 of Lecture Notes in Computer Science. Springer, 2003.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. J. Cryptology, 19(2):135–167, 2006.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In Juris Hartmanis, editor, STOC, pages 364–369. ACM, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party computation. In John H. Reif, editor, STOC, pages 494–503. ACM, 2002.

[CMW04] Claude Crépeau, Kirill Morozov, and Stefan Wolf. Efficient unconditional oblivious transfer
from almost any noisy channel. In Carlo Blundo and Stelvio Cimato, editors, SCN, volume 3352
of Lecture Notes in Computer Science, pages 47–59. Springer, 2004.

[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance,
editor, CRYPTO, volume 293 of Lecture Notes in Computer Science, pages 350–354. Springer,
1987.

[CS95] Benny Chor and Netta Shani. The privacy of dense symmetric functions. Computational Com-
plexity, 5(1):43–59, 1995.

[DNO10] Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. On the necessary and sufficient
assumptions for UC computation. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture
Notes in Computer Science, pages 109–127. Springer, 2010.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing con-
tracts. Commun. ACM, 28(6):637–647, 1985.

[FGMO05] Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal complete
primitives for secure multi-party computation. J. Cryptology, 18(1):37–61, 2005.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in uncon-
ditional multi-party computation (extended abstract). In Hugo Krawczyk, editor, CRYPTO,
volume 1462 of Lecture Notes in Computer Science, pages 121–136. Springer, 1998.

24

http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries in unconditional multi-
party computation. In Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing, editors, ASI-
ACRYPT, volume 1716 of Lecture Notes in Computer Science, pages 232–246. Springer, 1999.

[FM00] Matthias Fitzi and Ueli M. Maurer. From partial consistency to global broadcast. In F. Frances
Yao and Eugene M. Luks, editors, STOC, pages 494–503. ACM, 2000.

[GHKL11] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in secure
two-party computation. J. ACM, 58(6):24, 2011.

[GIM+10] S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On complete
primitives for fairness. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in
Computer Science, pages 91–108. Springer, 2010.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems. In Robert Sedgewick, editor, STOC, pages 291–304. ACM, 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor,
CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 171–185. Springer, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental game. In Alfred V.
Aho, editor, STOC, pages 218–229. ACM, 1987. See [Gol04, Chap. 7] for more details.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
Earlier version available on http://www.wisdom.weizmann.ac.il/~oded/frag.html .

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press,
2004.

[GV87] Oded Goldreich and Ronen Vainish. How to solve any protocol problem - an efficiency improve-
ment. In Carl Pomerance, editor, CRYPTO, volume 293 of Lecture Notes in Computer Science,
pages 73–86. Springer, 1987.

[GY89] Ronald L. Graham and Andrew Chi-Chih Yao. On the improbability of reaching byzantine
agreements (preliminary version). In David S. Johnson, editor, STOC, pages 467–478. ACM,
1989.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.
Preliminary versions in STOC’89 and STOC’90.

[HLMR12] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Passive corruption in statistical
multi-party computation. In Adam Smith, editor, The 6th International Conference on Infor-
mation Theoretic Security - ICITS 2012, Lecture Notes in Computer Science. Springer-Verlag,
2012. Full Version available from http://eprint.iacr.org/2012/272.

[HM86] Stuart Haber and Silvio Micali. Unpublished manuscript, 1986.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. J. Cryptology, 13(1):31–60, 2000. Extended abstract in Proc. 16th of
ACM PODC’97.

25

http://www.wisdom.weizmann.ac.il/~oded/frag.html

[HMZ08] Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE : Unconditional and compu-
tational security. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2008.

[HNRR06] Danny Harnik, Moni Naor, Omer Reingold, and Alon Rosen. Completeness in two-party secure
computation: A computational view. J. Cryptology, 19(4):521–552, 2006.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy
with guaranteed output delivery in secure multiparty computation. In Cynthia Dwork, edi-
tor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 483–500. Springer,
2006.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In Proc. 30th FOCS, pages 230–235. IEEE, 1989.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer
Science, pages 572–591. Springer, 2008.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way per-
mutations. In David S. Johnson, editor, STOC, pages 44–61. ACM, 1989.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor, STOC, pages
20–31. ACM, 1988.

[Kil89] Joe Kilian. Uses of Randomness in Algorithms and Protocols. PhD thesis, Department of
Electrical Engineering and Computer Science, Mas sachusetts Institute of Technology, 1989.

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In Cris Koutsougeras and
Jeffrey Scott Vitter, editors, STOC, pages 553–560. ACM, 1991.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In F. Frances
Yao and Eugene M. Luks, editors, STOC, pages 316–324. ACM, 2000.

[KKMO00] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and completeness
in private computations. SIAM J. Comput., 29(4):1189–1208, 2000.

[KM11] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with constructive proofs
for finite deterministic 2-party functions. In Yuval Ishai, editor, TCC, volume 6597 of Lecture
Notes in Computer Science, pages 364–381. Springer, 2011.

[KMO94] Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and completeness in multi-
party private computations. In FOCS, pages 478–489. IEEE Computer Society, 1994.

[KMR09] Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computability of functions in
the IT setting with dishonest majority and applications to long-term security. In Omer Reingold,
editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 238–255. Springer, 2009.

[Kre11] Gunnar Kreitz. A zero-one law for secure multi-party computation with ternary outputs. In
Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 382–399.
Springer, 2011.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421. IEEE,
1989.

[KY86] Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for the Byzantine generals
problem. Manuscript, 1986.

26

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computa-
tion. J. Cryptology, 22(2):161–188, 2009.

[MMP12] Mohammad Mahmoody, Hemanta K. Maji, and Manoj Prabhakaran. Limits of random oracles
in secure computation. Electronic Colloquium on Computational Complexity (ECCC), 19:65,
2012.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In TCC 2009, volume 5444
of Lecture Notes in Computer Science, pages 1–18. Springer, March 2009.

[MOPR11] Hemanta K. Maji, Pichayoot Ouppaphan, Manoj Prabhakaran, and Mike Rosulek. Exploring
the limits of common coins using frontier analysis of protocols. In Yuval Ishai, editor, TCC,
volume 6597 of Lecture Notes in Computer Science, pages 486–503. Springer, 2011.

[MP11] Hemanta K. Maji and Manoj Prabhakaran. The limits of common coins: Further results. In
INDOCRYPT, pages 344–358, 2011.

[MPR09] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-party compu-
tation problems: The case of 2-party symmetric secure function evaluation. In Omer Reingold,
editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 256–273. Springer, 2009.

[MPR10a] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Cryptographic complexity classes
and computational intractability assumptions. In Andrew Chi-Chih Yao, editor, ICS, pages
266–289. Tsinghua University Press, 2010.

[MPR10b] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law for cryptographic
complexity with respect to computational UC security. In Tal Rabin, editor, CRYPTO, volume
6223 of Lecture Notes in Computer Science, pages 595–612. Springer, 2010.

[MPR12] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A unified characterization of com-
pleteness and triviality for secure function evaluation. To Appear in the proceedings of In-
docrypt, 2012.

[PR08] Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-party computation
problems: Classifications and separations. In David Wagner, editor, CRYPTO, volume 5157 of
Lecture Notes in Computer Science, pages 262–279. Springer, 2008.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
Aiken Computation Laboratory, 1981.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In David S. Johnson, editor, STOC, pages 73–85. ACM, 1989.

[Rog91] Phillip Rogaway. The Round Complexity of Secure Protocols. PhD thesis, Massachusetts Insti-
tute of Technology, 1991.

[Ros12] Mike Rosulek. Universal composability from essentially any trusted setup. In Rei Safavi-Naini,
editor, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 406–423. Springer,
2012.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2004.

27

[SRA79] Adi Shamir, R. L. Rivest, and Leonard M. Adleman. Mental poker. Technical Report LCS/TR-
125, Massachusetts Institute of Technology, April 1979.

[TX03] Stephen R. Tate and Ke Xu. On garbled circuits and constant round secure function evaluation.
CoPS Lab Technical Report 2003-02, University of North Texas, 2003.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15:78–88, January 1983.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164. IEEE Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, pages 162–167. IEEE
Computer Society, 1986.

28

	Introduction
	Preliminaries
	Functionalities
	Protocols and Reductions
	Security Models
	Cryptographic Complexity

	Information-Theoretic Results
	Triviality of Functionalities
	Passive-Triviality and t-privacy
	Triviality for active security

	Complete Functionalities
	Completeness for Functionalities with Guaranteed Output Delivery

	Intermediate Levels of Complexity

	Results in the Computational Setting
	Trivial Functionalities in the PPT Setting
	Completeness in the PPT Setting

	The Universe of Two Party Functionalities
	Complexity of SFE in the Information-Theoretic Setting
	Complete SFE functionalities
	Passive Trivial SFE
	Standalone Trivial SFE Functionalities
	UC Trivial SFE Functionalities
	Functionalities of Intermediate Complexity
	Finer Classification

	Complexity of 2-Party SFE in the Computationally Bounded Setting

	Reactive Functionalities
	Open Problems

