
https://helda.helsinki.fi

Complexity of Propositional Logics in Team Semantic

Hannula, Miika

2018-02

Hannula , M , Kontinen , J , Virtema , J & Vollmer , H 2018 , ' Complexity of Propositional

Logics in Team Semantic ' , ACM Transactions on Computational Logic , vol. 19 , no. 1 , 2 . https://doi.org/10.1145/3157054

http://hdl.handle.net/10138/233124

https://doi.org/10.1145/3157054

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

39

Complexity of Propositional Logics in Team Semantic

MIIKA HANNULA∗, University of Helsinki

JUHA KONTINEN, University of Helsinki

JONNI VIRTEMA†, Leibniz Universität Hannover and University of Helsinki

HERIBERT VOLLMER, Leibniz Universität Hannover

We classify the computational complexity of the satisfiability, validity and model-checking problems for
propositional independence, inclusion, and team logic. Our main result shows that the satisfiability and
validity problems for propositional team logic are complete for alternating exponential-time with polynomially
many alternations.

CCS Concepts: · Theory of computation→ Complexity theory and logic; Logic;

Additional Key Words and Phrases: Propositional logic, team semantics, dependence, independence, inclusion,

satisfiability, validity, model-checking

ACM Reference format:

Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. 2010. Complexity of Propositional Logics
in Team Semantic. ACM Trans. Comput. Logic 9, 4, Article 39 (March 2010), 14 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION

Dependence logic [30] is a logical framework for formalising and studying various notions of
dependence and independence that are important in many scientific disciplines such as mathematics,
quantum physics, social choice theory, computer science, and statistics (see, e.g., [1, 6, 13, 27, 28]).
Dependence logic extends first-order logic by dependence atoms

dep(x1, . . . ,xn ,y) (1)

expressing that the value of the variable y is functionally determined on the values of x1, . . . ,xn .
Satisfaction for formulas of dependence logic is defined using sets of assignments (teams) and not in
terms of single assignments as in first-order logic. Whereas dependence logic studies the notion of
functional dependence, independence and inclusion logic (introduced in [10] and [9], respectively)
formalize the concepts of independence and inclusion. Independence logic (inclusion logic) is
obtained from dependence logic by replacing dependence atoms by the so-called independence
atoms ®x ⊥®y ®z (inclusion atoms ®x ⊆ ®y). The intuitive meaning of the independence atom is that the
variables of the tuples ®x and ®z are independent of each other for any fixed value of the variables
in ®y, whereas the inclusion atom declares that all values of the tuple ®x appear also as values of ®y.
In database theory these atoms correspond to embedded multivalued dependencies and inclusion

∗Current affiliation: University of Auckland
2Current affiliation: Hasselt University

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1529-3785/2010/3-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

dependencies (see, e.g., [12]). Independence atoms have also a close connection to conditional
independence in statistics.
The topic of this article is complexity of logics in propositional team semantics. As opposed

to modal team semantics, propositional team semantics has received relatively little attention so
far. Since the propositional logics studied in the article are fragments of the corresponding modal
logics, some upper bounds trivially transfer to the propositional setting. The study of propositional
team semantics as a subject of independent interest was initiated after surprising connections were
discovered between propositional team semantics and inquisitive semantics (see [32] for details).
The first systematic studies on the expressive power of propositional dependence logic and many of
its variants is due to [32, 33]. In the same works natural deduction type inference systems for these
logics are also developed, whereas in [29] a complete Hilbert-style axiomatisation and a labeled
tableaux calculus for propositional dependence logic is presented. Very recently Hilbert-style proof
systems for related logics that incorporate the classical negation (denoted by ∼ in this article) have
been introduced by Lück, see [23].

The computational aspects of (first-order) dependence logic and its variants have been actively
studied, and are now quite well understood (see [7]). On the other hand, prior to the conference
version of the current article ([15]) the complexity of the propositional versions of these logics
had not been systematically studied. The study was initiated in [31] where the validity problem of
propositional dependence logic was shown to beNEXPTIME-complete, followed by [11] where both
entailment and validity were analyzed for propositional and modal dependence logics. Propositional
inclusion logic in turn (PL[⊆]) was studied in the articles [17] and [16]. The former focuses on the
satisfiability problem of propositional inclusion logic which is shown to be EXPTIME-complete. The
latter article studies validity and model checking problems showing, e.g., that the model checking
problem of propositional and modal inclusion logic is P-complete. In this article we study the
complexity of satisfiability, validity and model-checking of propositional independence (PL[⊥c]),
inclusion and team logic (PL[∼]); the latter is the extension of propositional logic by the classical
negation. The classical negation has turned out to be an interesting connective in the first-order
and modal team semantics contexts. Most of the logics studied in these areas are not closed under
classical negation and hence adding it may lead to a considerable increase in expressive power. For
example, whereas (first-order) dependence logic is equi-expressive with existential second-order
logic, its extension by the classical negation corresponds to full second-order logic [20]. In the
modal setting, all of the logics studied so far in the area can be embedded into the extension of
modal logic with the classical negation [18].

Our results (see Table 1) show that the addition of classical negation in the propositional setting
has interesting and profound consequences also in the complexity landscape. We show, e.g., that
the validity problem VAL(PL[⊆]) of propositional inclusion logic is coNP-complete but if extended
by the classical negation the problem becomes complete for alternating exponential time with
polynomially many alternations (ATIME-ALT(exp, poly)). This is a corollary of our main result
showing that the satisfiability and validity problems of team logic are ATIME-ALT(exp, poly)-
complete. Recently levels of the exponential hierarchy have been logically characterised in the
context of propositional team semantics [14, 24]. The article [14] also discusses the close relationship
between PL[∼] and propositional logic SO2, which is essentially second-order logic over the Boolean
domain.

2 PRELIMINARIES

In this section we define the basic concepts and results relevant to team-based propositional logics.
We assume that the reader is familiar with propositional logic.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Complexity of Propositional Logics in Team Semantic 39:3

Table 1. Overview of the results (completeness results if not stated otherwise)

SAT VAL MC

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME [17] coNP P [16]
PL[∼], PL[⊥c, ⊆,∼] ATIME-ALT(exp, poly) ATIME-ALT(exp, poly) PSPACE [25]

2.1 Syntax and semantics

Let D be a finite, possibly empty, set of proposition symbols. A function s : D → {0, 1} is called an
assignment. A set X of assignments s : D → {0, 1} is called a team. The set D is the domain of X .
We denote by 2D the set of all assignments s : D → {0, 1}.

Let Φ be a set of proposition symbols. The syntax for propositional logic PL(Φ) is defined as
follows.

φ ::= p | ¬p | (φ ∧ φ) | (φ ∨ φ), where p ∈ Φ.

We write Var(φ) for the set of all proposition symbols that appear in φ. We denote by |=PL the
ordinary satisfaction relation of propositional logic defined via assignments in the standard way.
Next we give team semantics for propositional logic.

Definition 2.1. Let Φ be a set of proposition symbols and let X be a team. The satisfaction relation
X |= φ is defined as follows.

X |= p ⇔ ∀s ∈ X : s(p) = 1.

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (φ ∧ψ) ⇔ X |= φ and X |= ψ .

X |= (φ ∨ψ) ⇔ Y |= φ and Z |= ψ , for some Y ,Z such that Y ∪ Z = X .

Note that in team semantics ¬ is not the classical negation ∼ but a so-called dual negation that
does not satisfy the law of excluded middle. Next proposition shows that the team semantics and
the ordinary semantics for propositional logic defined via assignments coincide.

Proposition 2.2 ([30]). Let φ be a formula of propositional logic and let X be a propositional team.

Then X |= φ iff ∀s ∈ X : s |=PL φ.

The syntax of propositional dependence logic PD(Φ) is obtained by extending the syntax of PL(Φ)
by the rule

φ ::= dep(p1, . . . ,pn ,q) , where p1, . . . ,pn ,q ∈ Φ.

The semantics for the propositional dependence atoms are defined as follows:

X |= dep(p1, . . . ,pn ,q) ⇔ ∀s, t ∈ X : s(p1) = t(p1), . . . , s(pn) = t(pn)

implies that s(q) = t(q).

The next proposition is very useful when determining the complexity of PD, and it is proved
analogously as for first-order dependence logic [30].

Proposition 2.3 (Downwards closure). Let φ be a PD-formula and let Y ⊆ X be propositional

teams. Then X |= φ implies Y |= φ.

In this article we study the variants of PD obtained by replacing dependence atoms in terms
of the so-called independence or inclusion atoms: The syntax of propositional independence logic

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:4 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

PL[⊥c](Φ) is obtained by extending the syntax of PL(Φ) by the rule

φ ::= ®q ⊥ ®p ®r ,

where ®p, ®q, and ®r are finite tuples of proposition symbols (not necessarily of the same length). The
syntax of propositional inclusion logic PL[⊆](Φ) is obtained by extending the syntax of PL(Φ) by the
rule

φ ::= ®p ⊆ ®q,

where ®p and ®q are finite tuples of proposition symbols with the same length. Satisfaction for
these atoms is defined as follows. If ®p = (p1, . . . ,pn) and s is an assignment, we write s(®p) for
(s(p1), . . . , s(pn)).

X |= ®q ⊥ ®p ®r ⇔ ∀s, t ∈ X : if s(®p) = t(®p)

then there exists u ∈ X : u(®p®q) = s(®p®q) and u(®r) = t(®r).

X |= ®p ⊆ ®q ⇔ ∀s ∈ X∃t ∈ X : s(®p) = t(®q).

It is easy to check that neither PL[⊥c] nor PL[⊆] is a downward closed logic (cf. Proposition 2.3).
However, analogously to first-order inclusion logic [9], the formulas of PL[⊆] have the following
closure property.

Proposition 2.4 (Closure under unions). Let φ ∈ PL[⊆] and let Xi , for i ∈ I , be teams. Suppose

that Xi |= φ, for each i ∈ I . Then
⋃

i ∈I Xi |= φ.

We will also consider the extensions of PL, PL[⊥c] and PL[⊆], by the classical negation ∼ with
the standard semantics:

X |= ∼φ ⇔ X ̸ |= φ.

These extensions are denoted by PL[∼] (propositional team logic), PL[⊥c,∼] and PL[⊆,∼], respec-
tively.

A general notion of a generalised dependency atom expressing a property of a propositional team
has also been studied in the literature. For the purposes of this article precise definitions are not
required and are thus omitted, for a detailed exposition for generalised dependency atoms see, e.g.,
[14]. We say that a generalised dependency atom A has a polynomial time checkable semantics if
X |= A(®p) can be decided in polynomial time with respect to the combined size of X and ®p. Each of
the atoms defined above are examples of generalised dependency atoms. It is easy to see that each
of these atoms has a polynomial time checkable semantics.

2.2 Auxiliary operators

The following additional operators will be used in this paper:

X |= φ 6 ψ ⇔ X |= φ or X |= ψ ,

X |= φ ⊗ψ ⇔ ∀Y ,Z ⊆ X : if Y ∪ Z = X , then Y |= φ or Z |= ψ ,

X |= φ ⊸ ψ ⇔ ∀Y ⊆ X : if Y |= φ, then Y |= ψ ,

X |= max(x1, . . . ,xn) ⇔ {(s(x1), . . . , s(xn)) | s ∈ X } = {0, 1}
n
.

If X |= max(®x), we say that X is maximal over ®x . If tuples ®x and ®y are pairwise disjoint and
X |= max(®x) ∧ ®x ⊥ ®y, then we say that X is maximal over ®x for all ®y.

Note that atomic operators such as dependence atoms dep(·) and max(·) are in fact collections of
operators; one operator for each arity.
We will next show that the above operators can be efficiently implemented in the logic PL[∼],

i.e., that substituting occurrences of an operator by its defining PL[∼]-formula cannot cause an

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Complexity of Propositional Logics in Team Semantic 39:5

exponential blow-up in the formula size. For the atomic operators, say dep(·), we require the
mapping ®x 7→ ϕ(®x) to be polynomial-time computable, where ϕ(®x) ∈ PL[∼] and dep(®x) and ϕ(®x)
are logically equivalent. For the connectives, e.g., φ ⊗ ψ , a crucial property is that both φ and ψ
have only one occurrence in the PL[∼]-definition.

Proposition 2.5. The operators dep(·) , 6 , ⊗,⊸, and max(·) can be efficiently implemented in

PL[∼].

Proof. We present the following translations of which item 3 is due to [25] and item 4 uses the
idea of [2].

(1) The connective ⊗ is actually the dual of ∨, and hence φ ⊗ψ can be written as ∼(∼φ ∨ ∼ψ).
(2) Intuitionistic disjunction φ 6 ψ can be written as ∼(∼φ ∧ ∼ψ).
(3) Intuitionistic implication φ ⊸ ψ can be expressed as (∼φ 6 ψ) ⊗ ∼(p ∨ ¬p).
(4) First note that dep(x) can be written as x 6 ¬x . Using this we can write dep(x1, . . . ,xn ,y)

as
∧n

i=1 dep(xi)⊸ dep(y).
(5) We show that max(x1, . . . ,xn) is equivalent to ∼

∨n
i=1 dep(xi) . Assume first that X |=∨n

i=1 dep(xi), we show that X ̸ |= max(x1, . . . ,xn). By the assumption, we find Y1, . . . ,Yn ∈ X ,⋃n
i=1 Yi = X , such that Yi |= =(xi). Now for all i there exists a bi ∈ {0, 1} such that if Yi , ∅,

then for all s ∈ Yi , s(xi) , bi . Since the assignment xi 7→ bi is not in X , we obtain that
X ̸ |= max(x1, . . . ,xn).
Assume then that X ̸ |= max(x1, . . . ,xn), we show that X |=

∨n
i=1 dep(xi). By the assumption

there exists a boolean sequence (b1, . . . ,bn) such that for no s ∈ X we have s(xi) = bi for all
i = 1, . . . ,n. Let Yi := {s ∈ X | s(xi) , bi }. Since then X =

⋃n
i=1 Yi and Yi |= =(xi), we obtain

that X |=
∨n

i=1 dep(xi).

□ □

2.3 Satisfiability, validity, and model checking in team semantics

Next we define satisfiability and validity in the context of team semantics. Let L be a logic with
team semantics. A formula φ ∈ L is satisfiable, if there exists a non-empty team X such that X |= φ.
A formula φ ∈ L is valid, if X |= φ holds for every non-empty team X such that the proposition
symbols that occur in φ are in the domain of X .1 Note that when the team is empty, satisfaction
becomes easy to decide, see Proposition 2.6 below.

The satisfiability problem SAT(L) and the validity problem VAL(L) are then defined in the obvious
manner: Given a formula φ ∈ L, decide whether the formula is satisfiable (valid, respectively). The
variant of the model checking problem that we are concerned with in this article is the following:
Given a formula φ ∈ L and a team X , decide whether X |= φ. See Table 2 for known complexity
results on PL and PD.

Proposition 2.6. Checking whether ∅ |= φ, for φ ∈ PL[⊥c ⊆,∼], can be done in P. Furthermore,

∅ |= φ for all φ ∈ PL[⊥c ⊆].

Proof. Define a function π : PL[⊥c, ⊆,∼] → {0, 1} recursively as follows. Note that addition is
mod 2.

• If φ ∈ {p,¬p, ®q ⊥ ®p ®r , ®p ⊆ ®q}, then π (φ) = 1.
• If φ = ψ0 ∧ψ1, then π (φ) = π (ψ0) · π (ψ1).
• If φ = ψ0 ∨ψ1, then π (φ) = π (ψ0) · π (ψ1).
• If φ = ∼ψ , then π (φ) = π (ψ) + 1.

1It is easy to show that all of the logics considered in this article have the so-called locality property, i.e., satisfaction of a
formula depends only on the values of the proposition symbols that occur in the formula [9].

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:6 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

Table 2. Complexity of satisfiability, validity, and model checking of PL and PD. All results are completeness

results.

SAT VAL MC References

PL NP coNP NC1 [3, 5, 21]
PD NP NEXPTIME NP [8, 22, 31]

It is easy to check that ∅ |= φ iff π (φ) = 1. Since π (φ) can be computed in P, the claim follows. □

3 COMPLEXITY OF MODEL CHECKING

We start by collecting some loose ends related to the model checking problems of our logics. We
first focus on logics without the classical negation. The complexity of MC(PL[⊆]) was recently
determined by Hella et al.

Theorem 3.1 ([16]). MC(PL[⊆]) is P-complete.

Since PL[⊥c] lies between propositional dependence logic and modal independence logic we
obtain the following.

Theorem 3.2. MC(PL[⊥c]) is complete for NP.

Proof. The upper bound follows since the model checking problem for modal independence
logic is NP-complete [19]. Since the dependence atom dep(®x ,y) is equivalent to the independence
atom y ⊥®x y, the lower bound follows from the NP-completeness of MC(PD) (see Table 2). □

The following result can also be found in the PhD thesis of Müller [25].

Theorem 3.3. MC(PL[∼]) is complete for PSPACE.

Proof. We show first the upper bound. To this end, as PSPACE = APTIME [4], it suffices to
present an APTIME algorithm that, given a Boolean team T , a formula φ ∈ PL[∼], and I ∈ {0, 1},
returnsMC(T ,φ, I) true iff eitherT |= φ and I = 1, orT ̸ |= φ and I = 0. In the following we describe
the computation of MC(T ,φ, I) for all combinations of φ and I .

• If φ = ψ1 ∧ψ2 and I = 1 (I = 0), then universally (existentially) choose i ∈ {1, 2} and return
MC(T ,ψi , I).
• If φ = ψ1 ∨ψ2 and I = 1 (I = 0), then existentially (universally) choose T1 ∪T2, universally
(existentially) choose i ∈ {1, 2}, and return MC(Ti ,ψi , I).
• If φ = ∼ψ , returnMC(T ,ψ , 1 − I).

It is evident that the (negated) atomic clauses can be correctly returned in deterministic polynomial
time. Therefore, as the resulting procedure runs in APTIME, the upper bound follows.
For the lower bound, we reduce from TQBF which is known to be PSPACE-complete. In the

reduction we write ®y = ®b for the following formula∧

1≤i≤k

y
bi
i , where y

1
i = yi and y

0
i = ¬yi ,

where ®y = (y1, . . . ,yk) and ®b = (b1, . . . ,bk) is a tuple of variables and a string of bits, respectively.
LetQ1x1 . . .Qnxnθ be a quantified boolean formula and ®r a sequence of propositional symbols of

length log(n)+1. DefineT := {s1, . . . , sn} to be a team, where si (®r) encodes the binary representation
bin(i) of i . We now define inductively a formula φ ∈ PL[∼] such that

Q1x1 . . .Qnxnθ is true iff T |= φ. (2)

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Complexity of Propositional Logics in Team Semantic 39:7

Let φ := φ1, and for 1 ≤ i ≤ n, depending on whether xi is existentially or universally quantified
we let

∃: φi := ®r = bin(i) ∨ φi+1,
∀: φi := ∼®r = bin(i) ⊗ φi+1.

Finally, we let φn+1 denote the formula obtained from θ by first substituting each ¬xi by ¬®r = bin(i)
and then xi by ∼¬®r = bin(i), for each i . Note that the meaning ¬®r = bin(i) is that the assignment si
is not in the team, whereas ∼¬®r = bin(i) states that si is in the team. It is now straightforward to
establish that (2) holds. Also T and φ can be constructed in polynomial time, and hence we obtain
the result. □ □

Since the decision procedure described in the previous proof clearly extends to independence
and inclusion atoms, and to any atoms in general whose model checking is in polynomial time, we
obtain the following corollary.

Corollary 3.4. MC(PL[⊥c, ⊆,∼]) andMC(PL[C,∼]), where C is a finite collection of polynomial

time computable dependency atoms, are complete for PSPACE.

4 COMPLEXITY OF SATISFIABILITY AND VALIDITY

In this section we consider the complexity of the satisfiability and validity problems for propositional
independence, inclusion and team logic.

4.1 The logics PL[⊆] and PL[⊥c]

We consider first the satisfiability problem. For inclusion logic the following result was established
by Hella et al.

Theorem 4.1 ([17]). SAT(PL[⊆]) is complete for EXPTIME.

For pinpointing the complexity of SAT(PL[⊥c]), the following simple lemma turns out to be very
useful.

Lemma 4.2. Let φ ∈ PL[⊥c] and X a team such that X |= φ. Then {s} |= φ, for all s ∈ X .

Proof. The claim is proved using induction on the construction of φ. It is easy to check that a
singleton team satisfies all independence atoms, and the cases corresponding to disjunction and
conjunction are straightforward. □

Theorem 4.3. SAT(PL[⊥c]) is complete for NP.

Proof. Note first that since SAT(PL) isNP-complete, it follows by Proposition 2.2 that SAT(PL[⊥c])
is NP-hard. For containment in NP, note that by Lemma 4.2, a formula φ ∈ PL[⊥c] is satisfiable
iff it is satisfied by some singleton team {s}. It is immediate that for any s , {s} |= φ iff {s} |= φT ,
where φT ∈ PL is acquired from φ by replacing all independence atoms by (p ∨¬p). Thus it follows
that φ is satisfiable iff φT is satisfiable. Therefore, the claim follows. □ □

We now turn to the validity problems of PL[⊆] and PL[⊥c].

Theorem 4.4. VAL(PL[⊆]) is complete for coNP.

Proof. Recall that PL is a sub-logic of PL[⊆], and hence VAL(PL[⊆]) is hard for coNP. Therefore,
it suffices to show VAL(PL[⊆]) ∈ coNP. It is easy to check that, by Proposition 2.4, a formula
φ ∈ PL[⊆] is valid iff it is satisfied by all singleton teams {s}. Note also that, over a singleton team
{s}, an inclusion atom (p1, . . . ,pn) ⊆ (q1, . . . ,qn) is equivalent to the PL-formula∧

1≤i≤n

pi ↔ qi .

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:8 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

Denote by φ∗ the PL-formula acquired by replacing all inclusion atoms in φ by their PL-translations.
By the above, φ is valid iff φ∗ is valid. Since VAL(PL) is in coNP the claim follows. □ □

Theorem 4.5. VAL(PL[⊥c]) is hard for NEXPTIME and is in coNEXPTIMENP.

Proof. Since the dependence atom dep(®x ,y) is equivalent to the independence atom y ⊥®x y and
VAL(PD) is NEXPTIME-complete [31], hardness for NEXPTIME follows. Theorem 3.2 established
that the model checking problem for PL[⊥c] is complete forNP. It then follows that the complement
of the problem VAL(PL[⊥c]) is in NEXPTIMENP: the question whether φ is in the complement of
VAL(PL[⊥c]) can be decided by guessing a subset X of 2D , where D contains the set of proposition
symbols appearing in φ, and checking whether X ̸ |= φ. Therefore VAL(PL[⊥c]) ∈ coNEXPTIMENP.

□ □

The precise complexity of VAL(PL[⊥c]) remains open. However we believe coNEXPTIMENP-
completeness to be more plausible than NEXPTIME-completeness. As a first step, we suggest to
study VAL(PL[⊥c, ⊆]) and to show that it is coNEXPTIMENP-complete.

4.2 Logics with the classical negation

Next we incorporate classical negation in our logics. The main result of this section shows that the
satisfiability and validity problems for PL[∼] are complete for ATIME-ALT(exp, poly). The result
holds also for PL[C,∼] where C is any finite collection of dependency atoms with polynomial-
time checkable semantics. This covers the standard dependency notions considered in the team
semantics literature. The upper bound follows by an exponential-time alternating algorithm where
alternation is bounded by formula depth. For the lower bound we first relate ATIME-ALT(exp, poly)
to polynomial-time alternating Turing machines that query to oracles obtained from a quantifier
prefix of polynomial length. We then show how to simulate such computations in PL[∼].

First we observe that the classical negation gives rise to polynomial-time reductions between the
validity and the satisfiability problems. Hence, we restrict our attention to satisfiability hereafter.

Proposition 4.6. Let φ ∈ PL[C,∼] where C ⊆ {dep(·) ,⊥c, ⊆}. Then one can construct in polyno-

mial time formulaeψ ,θ ∈ PL[C,∼] such that

(i) φ is satisfiable iffψ is valid, and

(ii) φ is valid iff θ is satisfiable.

Proof. We define

ψ := max(®x)⊸ ((p ∨ ¬p) ∨ (φ ∧ ∼(p ∧ ¬p))),

θ := max(®x) ∧ (∼(p ∧ ¬p)⊸ φ),

where ®x lists Var(φ). Note that X |= ∼(p ∧ ¬p) iff X is non-empty. It is straightforward to show
that (i) and (ii) hold. Also by Proposition 2.5,ψ and θ can be constructed in polynomial time from
φ. □ □

Next we show the upper bound for the satisfiability problem of propositional logic with the
classical negation, and the independence and inclusion atoms.

Theorem 4.7. SAT(PL[⊥c, ⊆,∼]) ∈ ATIME-ALT(exp, poly).

Proof. Let φ ∈ PL[⊥c, ⊆,∼]. First existentially guess a possibly exponential-size team T with
domain Var(φ). Then implement the APTIME algorithm of Theorem 3.3 and Corollary 3.4 for
checking whether T |= φ. The result follows since the algorithm runs in polynomial time w.r.t the
combined size of T and φ and its alternation is bounded by the size of φ. □

□

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Complexity of Propositional Logics in Team Semantic 39:9

Let us then turn to the lower bound. We show that the satisfiability problem of PL[∼] is hard
for ATIME-ALT(exp, poly). For this, we first relate ATIME-ALT(exp, poly) to oracle quantification
for polynomial-time oracle Turing machines. This approach is originally due to Orponen in [26],
where the classes ΣEXP

k
and Π

EXP
k

of the exponential-time hierarchy were characterised. Recall
that the exponential-time hierarchy corresponds to the class of problems that can be recognised
by an exponential-time alternating Turing machine with constantly many alternations. In the
next theorem we generalise Orponen’s characterisation to exponential-time alternating Turing
machines with polynomially many alternations (i.e. the class ATIME-ALT(exp, poly)) by allowing
quantification of polynomially many oracles.
By (A1, . . . ,Ak) we denote an efficient disjoint union of sets A1, . . . ,Ak , e.g., (A1, . . . ,Ak) =
{(i,x) : x ∈ Ai , 1 ≤ i ≤ k}.

Theorem 4.8. A set A belongs to the class ATIME-ALT(exp, poly) iff there exist a polynomial f

and a polynomial-time alternating oracle Turing machineM such that, for all x ,

x ∈ A iff Q1A1 . . .Qf (n)Af (n)(M accepts x with oracles (A1, . . . ,Af (n))),

where n is the length of x and Q1, . . . ,Qf (n) alternate between ∃ and ∀, i.e., Qi+1 ∈ {∀,∃} \ {Qi }.

Proof. The proof is a straightforward generalisation of the proof of Theorem 5.2. in [26]:
If-part. LetM be a polynomial-time alternating oracle Turing machine, and let f and p be poly-

nomials that bound the length of the oracle quantification and the running time ofM , respectively.
We describe the behaviour of an alternating Turing machineM ′ such that for all x ,

M ′ accepts x iff Q1A1 . . .Qf (n)Af (n)(M accepts x with oracle (A1, . . . ,Af (n))). (3)

At first,M ′ simulates the quantifier block Q1A1 . . .Qf (n)Af (n) in f (n) consecutive steps. Namely,
for 1 ≤ k ≤ f (n) where Qk = ∃ (or Qk = ∀),M ′ existentially (universally) chooses a set Ak that
consists of strings i of length at most p(n). Then M ′ evaluates the computation tree associated
with the Turing machineM , the input x , and the selected oracle (A1, . . . ,Af (n)). In this evaluation
queries to Ak are replaced with investigations of the corresponding selection. We notice thatM ′

constructed in this way satisfies (3), alternates f (n) many times, and runs in time 2h(n) for some
polynomial h.

Only-if part. LetM ′ be an alternating exponential-time Turing machine with polynomially many
alternations. We show how to construct an alternating polynomial-time oracle Turing machine M
satisfying (3). W.l.o.g. we find polynomials f and д such thatM ′ runs in time at least n and at most
2f (n) − 2 and has at most д(n) many alternations.

Let # be a symbol that is not in the alphabet and denote 2f (n) − 1 bym. Each configuration ofM ′

can be represented as a string
α = uqv# . . . #, |α | =m,

with the meaning thatM ′ is in state q, has string uv on its tape, and reads the first symbol of string
v . The symbol # is only used to pad configurations to the same length. A computation ofM ′ over x
may be represented as a sequence of configurations α0,α1, . . . ,αm such that α0 = q0x# . . . # where
q0 is the initial state, αm = uqv# . . . # where q is some final state, and for i ≤ m − 1 either αi+1
is reachable from αi with one step or αi = αi+1 = αm . Each oracle Ak can encode a computation
sequence αk0 ,α

k
1 , . . . ,α

k
m with triples (i, j,αki, j) where |i |, |j | ≤ f (n) and αki, j is the jth symbol of

configuration αki . Determining whether k, i, j generate a unique αki, j can be done with a bounded
number of Ak queries since there are only finitely many alphabet and state symbols inM ′.
Next we describe the behaviour of the alternating polynomial-time oracle Turing machineM .

The idea is to simulate the computation ofM ′ using the above succinct encoding.M proceeds in
д(n) consecutive steps, and below we present step k for 1 ≤ k ≤ д(n) and Qk

= ∃. Notice that we

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:10 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

use v to indicate the last alternation point ofM ′, i.e., v is a binary string that is initially set to 0 and
has always length at most f (n). Notice also that by α0

0, j we refer to the jth symbol of configuration
α0 = q0x# . . . #.

step k :

(1) universally guess i, j such that |i |, |j | ≤ f (n) and v ≤ i;
(1a) if αk−1v, j = α

k
v, j and α

k
i, j−1,α

k
i, j ,α

k
i, j+1,α

k
i, j+2 correctly determine αki+1, j then proceed to

(2);
(1b) otherwise return false;

(2) existentially guessw such that |w | ≤ f (n) and v < w ;
(3) universally guess i, j such that |i |, |j | ≤ f (n) and v < i < w ;

(3a) if αki, j is not a universal state then proceed to (4);
(3b) otherwise return false;

(4) existentially guess j such that |j | ≤ f (n);
(4a) if w < m and αkw, j is a universal state then set v ← w and proceed to step k + 1;

(4b) else if w =m and αkw, j is an accepting state then return true;
(4c) otherwise return false.

For 1 ≤ k ≤ д(n) and Qk
= ∀, step k is described as the dual of the above procedure. Namely, it is

obtained by replacing in item (1) universal guessing with existential one, in item (1b) false with
true, and in items (3a) and (4a) universal state with existential state. It is now straightforward to
check thatM runs in polynomial time and satisfies (3). □ □

Using this theorem we now prove Theorem 4.9. For the quantification over oracles Ai , we use
repetitively ∨ and ∼.

Theorem 4.9. SAT(PL[∼]) is hard for ATIME-ALT(exp, poly).

Proof. Let A ∈ ATIME-ALT(exp, poly). From Theorem 4.8 we obtain a polynomial f and an
alternating oracle Turing machine M with running time bounded by д. By [4], the alternating
machine can be replaced by a sequence of word quantifiers over a deterministic Turing machine.
(Strictly speaking, [4] speaks only about a bounded number of alternations, but the generalisation
to the unbounded case is straightforward.) W.l.o.g. we may assume that each configuration ofM
has at most two configurations reachable in one step. It then follows by Theorem 4.8 that one can
construct a polynomial-time deterministic oracle Turing machineM∗ such that x ∈ A iff

Q1A1 . . .Qf (n)Af (n)Q
′
1 ®y1 . . .Q

′
д(n) ®yд(n)

(M∗ accepts (x , ®y1, . . . , ®yд(n)) with oracle (A1, . . . ,Af (n))),

where Q1, . . . ,Qf (n) and Q
′
1, . . . ,Q

′
д(n)

are alternating sequences of quantifiers ∃ and ∀, and each

®yi is a д(n)-ary sequence of propositional symbols where n is the length of x . Note thatM∗ runs in
polynomial time also with respect to n. Using this characterisation we now show how to reduce in
polynomial time any x to a formula φ in PL[∼] such that x ∈ A iff φ is satisfiable. We construct φ
inductively. As a first step, we let

φ := max(®q®r ®y) ∧ pt ∧ ¬pf ∧ φ1

where

• ®q and ®r list propositional symbols that are used for encoding oracles;
• ®y lists propositional symbols that occur in ®y1, . . . , ®yд(n) and in ®zi that are used to simulate
configurations ofM∗ (see phase (3) below);

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Complexity of Propositional Logics in Team Semantic 39:11

• pt and pf are propositional symbols that do not occur in ®q®r ®y.

(1) Quantification over oracles. Next we show how to simulate quantification over oracles.
W.l.o.g. we may assume thatM∗ queries binary strings that are of length h(n) for some polynomial
h. Let ®q be a sequence of length h(n) and ®r a sequence of length f (n). Our intention is that ®q
with ri encodes the content of the oracle Ai ; in fact ®q and ri encode the characteristic function

of the relation that corresponds to the oracle Ai . For a string of bits ®b = b1 . . .bk and a sequence

®s = (s1, . . . , sk) of proposition symbols, we write ®s = ®b for
∧k

i=1 s
bi
i , where s1i := si and s0i := ¬si .

The idea is that, given a team X over ®q ®r , an oracle Ai , and a binary string ®a = a1 . . . ah(n), the
membership of ®a in Ai is expressed by X |= ∼¬(®q = ®a ∧ ri). Note that the latter indicates that
there exists s ∈ X mapping ®q 7→ ®a and ri 7→ 1. Following this idea we next show how to simulate
quantification over oracles Ai . We define φi , for 1 ≤ i ≤ f (n), inductively from root to leaves.
Depending on whether Ai is existentially or universally quantified, we let

∃: φi := dep(®q, ri) ∨ (dep(®q, ri) ∧ φi+1),
∀: φi := ∼dep(®q, ri) ⊗ (∼dep(®q, ri) 6 φi+1).

The formulaφf (n)+1 will beψ1 defined in step (2) below. Let us explain the idea behind the definitions
of φi , first in the case of existential quantification. Assume that X is a team such that

X |= dep(®q, ri) ∨ (dep(®q, ri) ∧ φi+1), (4)

and, for j ≥ i , X is maximal over r j for all ®zj , where ®zj lists all symbols from the domain of X
except r j . Then by (4) we may choose two subsets Y ,Z ⊆ X , Y ∪ Z = X , where Y |= dep(®q, ri) and
Z |= dep(®q, ri) ∧ φi+1. Note that since especially X was maximal over ri for all ®q, the selection of
the partition Y ∪ Z = X essentially quantifies over the characteristic functions of the oracle Ai .
Moreover, note that, for j ≥ i + 1, Z is maximal over r j for all ®zj , where ®zj is defined as above.
Universal quantification is simulated analogously. This time we have that

X |= ∼dep(®q, ri) ⊗ (∼dep(®q, ri) 6 φi+1), (5)

and range over all subsets Y ,Z ⊆ X where Y ∪ Z = X . By (5) for all such Y and Z , we have that if
Y |= dep(®q, ri) and Z |= dep(®q, ri) then Z |= φi+1 (see Section 2.2 for the definition of ⊗). Using an
analogous argument for Z as in the existential case, we notice that the selection of Z corresponds
to universal quantification over characteristic functions of Ai .

(2) Quantification over propositional symbols. Next we show how to simulate the quantifier
block Q ′1 ®y1 . . .Q

′
д(n)
®yд(n)∃®z where ®z lists all propositional symbols that occur in ®y but not in any

®yi (i.e. the remaining symbols that occur when simulatingM∗). Assume that this quantifier block
is of the form Q∗1y1 . . .Q

∗
l
yl , and let ψ1 := φf (n)+1. We define ψi again top-down inductively. For

1 ≤ i ≤ l , depending on whether Q∗i is ∃ or ∀, we let

∃: ψi := dep(yi) ∨ (dep(yi) ∧ψi+1),
∀: ψi := ∼dep(yi) ⊗ (∼dep(yi) 6 ψi+1).

Let us explain the idea behind the two definitions ofψi . The idea is essentially the same as in the
oracle quantification step. First in the case of existential quantification. Assume that we consider a
formulaψi and a team X where

X |= ψi , (6)

and X is maximal over yi . . .yl for all ®q®ry1 . . .yi−1. By (6) we may choose two subsets Y ,Z ⊆ X ,
Y ∪ Z = X , where Y |= dep(yi) and Z |= dep(yi) ∧ ψi+1. There are now two options: either we
choose Z = {s ∈ X | s(yi) = 0} or Z = {s ∈ X | s(yi) = 1}. Since X is maximal over yi . . .yl for all
®q®ry1 . . .yi−1, we obtain that Z ↾ ®q®r = X ↾ ®q®r and Z is maximal over yi+1 . . .yl for all ®q®ry1 . . .yi .
Hence no information about oracles is lost in this quantifier step.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:12 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

The case of universal quantification is again analogous to the oracle case. Hence we obtain that
(6) holds iff both {s ∈ X | s(yi) = 0} and {s ∈ X | s(yi) = 1} satisfyψi+1.

(3) Simulation of computations. Next we define ψl+1 that simulates the polynomial-time
deterministic oracle Turing machine M∗. Note that this formula is evaluated over a subteam
X such that X |= dep(yi), for each yi ∈ ®y, and ®a ∈ Ai iff X |= ∼¬(®q = ®a ∧ ri). Using this
it is now straightforward to construct a propositional formula θ such that X |= θ if and only

if M∗ accepts (x , ®b1, . . . , ®bд(n)) with oracle (A1, . . . ,Af (n)), where ®bi denotes the unique value of
®yi in X . Each configuration of M∗ can be encoded with a binary sequence ®zi of length O(t(n))
where t is a polynomial bounding the running time of M∗. Then it suffices to define ψl+1 as a
conjunction of formulae θstart(®z0),θmove(®zi , ®zi+1),θfinal(®zt (n)) describing that ®z0 corresponds to the
initial configuration, ®zi determines ®zi+1, and ®zt (n) is in accepting state. Note that the formulae
θstart(®z0), θmove(®zi , ®zi+1), and θfinal(®zt (n)) can be written exactly as in the classical setting, except that
all disjunctions ∨ are replaced by the intuitionistic disjunction 6.

Finally note that, by Proposition 2.5, all occurrences of dependence atoms, the shorthand max(·),
and the connectives 6 and ⊗ can be eliminated from the above formulae by a polynomial overhead.
Thus the constructed formula φ is a PL[∼]-formula as required. □

By Proposition 4.6, and Theorems 4.7 and 4.9 we now obtain the following.

Theorem 4.10. Satisfiability and validity problems of PL[⊥c, ⊆,∼] and PL[∼] are complete for

ATIME-ALT(exp, poly).

The following corollary now follows by a direct generalisation of Theorem 4.7.

Corollary 4.11. Let C be a finite collection of dependency atoms with polynomial-time checkable

semantics. Satisfiability and validity of PL[C,∼] is complete for ATIME-ALT(exp, poly).

5 CONCLUSION

In this article we have initiated a systematic study of the complexity theoretic properties of
team based propositional logics. Regarding the logics considered in this paper, an interesting
open question is to determine the exact complexity of VAL(PL[⊥c]) for which membership in
coNEXPTIMENP was shown in this paper. Propositional team semantics is a very rich framework
in which many interesting connectives and operators can be studied such as the intuitionistic
implication ⊸ applied in the area of inquisitive semantics. It is an interesting question to extend
this study to cover a wider range of team based logics.

ACKNOWLEDGMENTS

This work was supported by Jenny and Antti Wihuri Foundation and, by grants 292767 and 308712,
the Academy of Finland. This work was supported in part by the joint grant by the DAAD (57348395)
and the Academy of Finland (308099).

REFERENCES

[1] Samson Abramsky. 2013. Relational Hidden Variables and Non-Locality. Studia Logica 101, 2 (2013), 411ś452.
[2] Samson Abramsky and Jouko Väänänen. 2009. From IF to BI. Synthese 167 (2009), 207ś230. Issue 2. 10.1007/s11229-

008-9415-6.
[3] Sam Buss. 1987. The Boolean Formula Value Problem is in ALOGTIME. In Proceedings of the Nineteenth Annual ACM

Symposium on Theory of Computing (STOC ’87). ACM, New York, NY, USA, 123ś131. DOI:http://dx.doi.org/10.1145/
28395.28409

[4] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. 1981. Alternation. J. ACM 28, 1 (Jan. 1981), 114ś133.
DOI:http://dx.doi.org/10.1145/322234.322243

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://dx.doi.org/10.1145/28395.28409
http://dx.doi.org/10.1145/28395.28409
http://dx.doi.org/10.1145/322234.322243

Complexity of Propositional Logics in Team Semantic 39:13

[5] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM

symposium on Theory of computing (STOC ’71). ACM, New York, NY, USA, 151ś158. DOI:http://dx.doi.org/10.1145/
800157.805047

[6] Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänänen. 2016. A Logical Approach to
Context-Specific Independence. In Logic, Language, Information, and Computation - 23rd International Workshop,

WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings (Lecture Notes in Computer Science), Jouko A. Väänä-
nen, Åsa Hirvonen, and Ruy J. G. B. de Queiroz (Eds.), Vol. 9803. Springer, 165ś182. DOI:http://dx.doi.org/10.1007/
978-3-662-52921-8_11

[7] Arnaud Durand, Juha Kontinen, and Heribert Vollmer. 2016. Expressivity and Complexity of Dependence Logic. In
Dependence Logic: Theory and Applications, Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer
(Eds.). Springer International Publishing, 5ś32.

[8] Johannes Ebbing and Peter Lohmann. 2012. Complexity of Model Checking for Modal Dependence Logic. In SOFSEM

2012: Theory and Practice of Computer Science, Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser,
and György Turán (Eds.). Lecture Notes in Computer Science, Vol. 7147. Springer Berlin / Heidelberg, 226ś237.

[9] Pietro Galliani. 2012. Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information.
Annals of Pure and Applied Logic 163, 1 (2012), 68 ś 84.

[10] Erich Grädel and Jouko Väänänen. 2013. Dependence and Independence. Studia Logica 101, 2 (2013), 399ś410.
[11] Miika Hannula. 2017. Validity and Entailment in Modal and Propositional Dependence Logics. In 26th EACSL Annual

Conference on Computer Science Logic (CSL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Valentin
Goranko and Mads Dam (Eds.), Vol. 82. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
28:1ś28:17. DOI:http://dx.doi.org/10.4230/LIPIcs.CSL.2017.28

[12] Miika Hannula and Juha Kontinen. 2016. A finite axiomatization of conditional independence and inclusion dependen-
cies. Inf. Comput. 249 (2016), 121ś137. DOI:http://dx.doi.org/10.1016/j.ic.2016.04.001

[13] Miika Hannula, Juha Kontinen, and Sebastian Link. 2016a. On the finite and general implication problems of indepen-
dence atoms and keys. J. Comput. Syst. Sci. 82, 5 (2016), 856ś877. DOI:http://dx.doi.org/10.1016/j.jcss.2016.02.007

[14] Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema. 2016b. On Quantified Propositional Logics and
the Exponential Time Hierarchy. In Proceedings of the Seventh International Symposium on Games, Automata,

Logics and Formal Verification, Catania, Italy, 14-16 September 2016 (Electronic Proceedings in Theoretical Computer

Science), Domenico Cantone and Giorgio Delzanno (Eds.), Vol. 226. Open Publishing Association, 198ś212. DOI:

http://dx.doi.org/10.4204/EPTCS.226.14
[15] Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. 2015. Complexity of Propositional Independence

and Inclusion Logic. In Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015,

Milan, Italy, August 24-28, 2015, Proceedings, Part I (Lecture Notes in Computer Science), Giuseppe F. Italiano, Giovanni
Pighizzini, and Donald Sannella (Eds.), Vol. 9234. Springer, 269ś280. DOI:http://dx.doi.org/10.1007/978-3-662-48057-1_
21

[16] Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema. 2017. Model checking and validity in propositional and
modal inclusion logics. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS

2017) (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik. To
appear.

[17] Lauri Hella, Antti Kuusisto, Arne Meier, and Heribert Vollmer. 2015. Modal Inclusion Logic: Being Lax is Simpler than
Being Strict. In Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan,

Italy, August 24-28, 2015, Proceedings, Part I (Lecture Notes in Computer Science), Giuseppe F. Italiano, Giovanni Pighizzini,
and Donald Sannella (Eds.), Vol. 9234. Springer, 281ś292. DOI:http://dx.doi.org/10.1007/978-3-662-48057-1_22

[18] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. 2015. A Van Benthem Theorem for
Modal Team Semantics. In 24th EACSL Annual Conference on Computer Science Logic (CSL 2015) (Leibniz International

Proceedings in Informatics (LIPIcs)), Stephan Kreutzer (Ed.), Vol. 41. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 277ś291. DOI:http://dx.doi.org/10.4230/LIPIcs.CSL.2015.277

[19] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. 2017. Modal independence logic. Journal
of Logic and Computation 27, 5 (2017), 1333ś1352. DOI:http://dx.doi.org/10.1093/logcom/exw019

[20] Juha Kontinen and Ville Nurmi. 2011. Team Logic and Second-Order Logic. Fundam. Inform. 106, 2-4 (2011), 259ś272.
DOI:http://dx.doi.org/10.3233/FI-2011-386

[21] Leonid A. Levin. 1973. Universal search problems. Problems of Information Transmission 9, 3 (1973).
[22] Peter Lohmann and Heribert Vollmer. 2013. Complexity Results for Modal Dependence Logic. Studia Logica 101, 2

(2013), 343ś366. DOI:http://dx.doi.org/10.1007/s11225-013-9483-6
[23] Martin Lück. 2016. Axiomatizations for Propositional and Modal Team Logic. In 25th EACSL Annual Conference on

Computer Science Logic (CSL 2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Jean-Marc Talbot and
Laurent Regnier (Eds.), Vol. 62. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 33:1ś33:18.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1007/978-3-662-52921-8_11
http://dx.doi.org/10.1007/978-3-662-52921-8_11
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.28
http://dx.doi.org/10.1016/j.ic.2016.04.001
http://dx.doi.org/10.1016/j.jcss.2016.02.007
http://dx.doi.org/10.4204/EPTCS.226.14
http://dx.doi.org/10.1007/978-3-662-48057-1_21
http://dx.doi.org/10.1007/978-3-662-48057-1_21
http://dx.doi.org/10.1007/978-3-662-48057-1_22
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.277
http://dx.doi.org/10.1093/logcom/exw019
http://dx.doi.org/10.3233/FI-2011-386
http://dx.doi.org/10.1007/s11225-013-9483-6

39:14 M. Hannula, J. Kontinen, J. Virtema, and H. Vollmer

DOI:http://dx.doi.org/10.4230/LIPIcs.CSL.2016.33
[24] Martin Lück. 2016. Complete Problems of Propositional Logic for the Exponential Hierarchy. CoRR abs/1602.03050

(2016). http://arxiv.org/abs/1602.03050
[25] Julian-Steffen Müller. 2014. Satisfiability and Model Checking in Team Based Logics. PhD Thesis, Leibniz Universität

Hannover, Cuvillier Verlag Göttingen (2014).
[26] Pekka Orponen. 1983. Complexity Classes of Alternating Machines with Oracles. In Automata, Languages and

Programming, 10th Colloquium, Barcelona, Spain, July 18-22, 1983, Proceedings. 573ś584. DOI:http://dx.doi.org/10.1007/
BFb0036938

[27] Eric Pacuit and Fan Yang. 2016. Dependence and Independence in Social Choice: Arrow’s Theorem. In Dependence

Logic, Theory and Applications, Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer (Eds.).
Springer, 235ś260. DOI:http://dx.doi.org/10.1007/978-3-319-31803-5_11

[28] Gianluca Paolini and Jouko Väänänen. 2016. Dependence Logic in pregeometries and ω-stable Theories. J. Symb. Log.

81, 1 (2016), 32ś55. DOI:http://dx.doi.org/10.1017/jsl.2015.16
[29] Katsuhiko Sano and Jonni Virtema. 2015. Axiomatizing Propositional Dependence Logics. In 24th EACSL Annual

Conference on Computer Science Logic (CSL 2015) (Leibniz International Proceedings in Informatics (LIPIcs)), Stephan
Kreutzer (Ed.), Vol. 41. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 292ś307. DOI:http:
//dx.doi.org/10.4230/LIPIcs.CSL.2015.292

[30] Jouko Väänänen. 2007. Dependence Logic. Cambridge University Press.
[31] Jonni Virtema. 2017. Complexity of validity for propositional dependence logics. Inf. Comput. 253 (2017), 224ś236.

DOI:http://dx.doi.org/10.1016/j.ic.2016.07.008
[32] Fan Yang. 2014. On Extensions and Variants of Dependence Logic. Ph.D. Dissertation. University of Helsinki.
[33] Fan Yang and Jouko Väänänen. 2016. Propositional logics of dependence. Ann. Pure Appl. Logic 167, 7 (2016), 557ś589.

DOI:http://dx.doi.org/10.1016/j.apal.2016.03.003

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.33
http://arxiv.org/abs/1602.03050
http://dx.doi.org/10.1007/BFb0036938
http://dx.doi.org/10.1007/BFb0036938
http://dx.doi.org/10.1007/978-3-319-31803-5_11
http://dx.doi.org/10.1017/jsl.2015.16
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.292
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.292
http://dx.doi.org/10.1016/j.ic.2016.07.008
http://dx.doi.org/10.1016/j.apal.2016.03.003

